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Distributed Deep Learning

Problem: How do we reduce the training time of our (large) models, while training
them on very large datasets? (like use-cases in CMS and ATLAS)

- Jeff Dean et al. (Google) proposes 2 different paradigms:
- Model parallelism
- Data parallelism

Our focus: Data parallelism



Data Parallelism

n compute nodes (or processes)
Data is split into n data shards.

Objective: optimize center model.

Ideally: time is reduced by factor n

However:

-  Communication constraints
- Computational overhead

Model is copied to compute nodes.

wir1 = UPDATE(wy,n, V fi(x))

Parameter Server




Approaches and techniques

- How to optimize the center model (or center variable) using data parallelism?

- Synchronous Data Parallelism
- Model Averaging
- Elastic Averaging SGD (Zhang et al.)
- Asynchronous Data Parallelism
- Asynchronous Elastic Averaging SGD (Zhang et al.)
- DOWNPOUR (Dean et al.)
- ADAG

|:> Methods are available in our framework.



Synchronous Data Parallelism

t
Pull § Commmit %7 fy |— Pull &
r— —— [ Commit ¥V f, p r
Wi, eewy Uy ] [un | [yt
) | Process variables 'I

Problem: As fast as the slowest compute node due to blocking.



Asynchronous Data Parallelism
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- Solves the blocking issue of synchronous data parallelism.

- Problems:

- Gradient updates can be based on older values of the center variable (staleness)
- Introduces a simple queuing model of gradient updates (implicit momentum, see next slide)

Note: basically the definition of the DOWNPOUR optimization scheme introduced by Dean et al.



Asynchrony induces momentum

- Or rather, something that behaves like momentum.

- Too many workers causes decay in performance or even divergence! (unless
optimizer is able to handle this) P

Simulation of DOWNPOUR (right)
Green Regular Gradient Descent
Blue Parallel worker

Red Center variable



Model Averaging
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Note: gradients are pointing in the opposite direction to make the figure more intuitive.



Elastic Averaging SGD

- What to do under communication constraints (e.g., heavily used networks)?
- Let workers do more iterations before communicating with the PS (exploration).
- Too much exploration, workers do not “agree on neighbourhood” anymore.
- Answer: “elasticity”.

it =6 —nV f(6;) —np(0; — 6)
| |
Y

elastic difference

N |:.[:i'|‘. ) {Li-'l.l.'j%l' 2} )
" () —

|.EEJ . v
npldy, — 8-y (dmall p)

Eid)

i

However, EASGD requires some fine-tuning (rho). And has difficulties converging when communication window is small (why?).
But scales very well (almost ideally)! 10



dist-keras: architecture

Wi+1 = UPDATE(wy, 1, Tf( Y)
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Why Apache Spark?

- We use Apache Spark mainly as a distribution mechanism for the training.
- Strong data preprocessing framework and libraries.

- Bigger than memory datasets.

- Large community and active development.

- CERN Hadoop Service has several clusters available.

- Integration with Spark Streaming to do on-line predictions.
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Experiments

2 networks: a multilayer perceptron and convolutional network.

Both have ~1 000 000 trainable parameters (~32 MB per model).

4 sample mini-batches, 1 epoch.

Dataset: MNIST.

Optimizers: Adam (sequential), EASGD, DOWNPOUR, ADAG (distributed)

20 parallel workers:
- 10 compute nodes with 10 Gbps network cards
- 2 processes per node (32 cores per node)
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Experiments (1)

30 experiments for every optimization scheme (multilayer perceptron).

Statistical performance produced by every trainer.
. .
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Google’s DOWNPOUR cannot handle
amount of workers due to “implicit

momentum’. %
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Training time (seconds)

Experiments (2)

Optimization algorithm: DOWNPOUR
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Divergence due to the number of parallel workers
@ g

20 parallel workers (convergence) 40 parallel workers (divergence) ,



Training time (seconds)

Experiments (3)

Optimization algorithm: Asynchronous EASGD (rho = 5.0)

Training time (wallclock) vs. number of workers. Center variable accuracy vs. number of workers.
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Training time (seconds)

Experiments (4)

Optimization algorithm: ADAG

Training time (wallclock) vs. number of workers. Center variable accuracy vs. number of workers.
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Problems we encountered

- Convolutional layers expect matrices to be in a specific format (reshape).

reshape_transformer = ReshapeTransformer("features_normalized", "matrix", (28, 28, 1))
dataset = reshape_transformer.transform(dataset)

- Adding a column to a distributed DataFrame based on other columns proved be non-trivial to
do efficiently.

def new_dataframe_row(old_row, column_name, column_value):
"""Constructs a new Spark Row based on the old row, and a new column name and value."""
row = Row(*(old_row.__fields_ + [column_name]))(*(old_row + (column_value, )))

return row

- Strugglers. Some workers are idle because they completed their data shard way faster.
- Parallelism factor. a data-shard is segmented in “tasks” w.r.t. this factor. If a w

then it will take tasks from other workers in order to get the job done faster. 19



Future Work

Further theoretical understanding.
Steps have been / will be made to build an optimizer (ADAG).

- Combine EASGD like communication windows (to ensure scaling).
- Staleness compensation.

In-depth performance tests (including CIFAR-10(0)).

- PS doesn’t scale that well when using models with a -very- high number of parameters.
- Initially, weight sharing was done using a REST API, now custom protocol.
- Random communication windows to lower “spiking” load of PS?

Some work needs to be done to improve throughput of parameter server.
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Questions?

https://github.com/cerndb/dist-keras

https://github.com/cerndb/dist-keras/blob/master/examples/mnist.ipynb
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Appendices

22



Code example

trainer = DOWNPOUR(keras_model=convnet, worker_optimizer=optimizer_convnet, loss=loss_convnet,
num_workers=num_workers, batch_size=8, communication_window=5, learning_rate=0.1,
num_epoch=1, features_col="matrix", label_col="label_encoded")

trainer.set_parallelism_factor(1) # default value (more on this later)
trained_model = trainer.train(training_set)

print("Training time: " + str(trainer.get_training_time()))
print("Accuracy: " + str(evaluate_accuracy(trained_model, test_set, "matrix")))

def evaluate_accuracy(model, test_set, features="features_normalized_dense"):
evaluator = AccuracyEvaluator(prediction_col="prediction_index", label_col="label")
predictor = ModelPredictor(keras_model=model, features_col=features)
transformer = LabellndexTransformer(output_dim=nb_classes)
test_set = test_set.select(features, "label")
test_set = predictor.predict(test_set)
test_set = transformer.transform(test_set)
score = evaluator.evaluate(test_set)
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ADAG (research idea)

- Our 10 Gbps network allows for fast parameter transfers.
- As aresult, no communication constraints (assumption).

- In order to reduce communication overhead ever further:
Random communication windows in specific range. E.g., [2-6]

- This reduces computational overhead introduced by EASGD.
- Instead of averaging the gradients, divide the gradient residual by the
communication window. -> Empirically proved to be better than DOWNPOUR
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