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Distributed Deep Learning

Problem: How do we reduce the training time of our (large) models, while training    
them on very large datasets? (like use-cases in CMS and ATLAS)

- Jeff Dean et al. (Google) proposes 2 different paradigms:
- Model parallelism
- Data parallelism

Our focus: Data parallelism
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Data Parallelism
- n compute nodes (or processes)
- Data is split into n data shards.
- Model is copied to compute nodes.
- Objective: optimize center model.

Ideally: time is reduced by factor n

However:

- Communication constraints
- Computational overhead 
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Approaches and techniques
- How to optimize the center model (or center variable) using data parallelism?

- Synchronous Data Parallelism
- Model Averaging
- Elastic Averaging SGD (Zhang et al.)

- Asynchronous Data Parallelism
- Asynchronous Elastic Averaging SGD (Zhang et al.)
- DOWNPOUR (Dean et al.)
- ADAG
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Methods are available in our framework.



Synchronous Data Parallelism

Problem: As fast as the slowest compute node due to blocking.
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Asynchronous Data Parallelism

- Solves the blocking issue of synchronous data parallelism.
- Problems: 

- Gradient updates can be based on older values of the center variable (staleness)
- Introduces a simple queuing model of gradient updates (implicit momentum, see next slide)

Note: basically the definition of the DOWNPOUR optimization scheme introduced by Dean et al.
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Asynchrony induces momentum
- Or rather, something that behaves like momentum.
- Too many workers causes decay in performance or even divergence! (unless 

optimizer is able to handle this)

Simulation of DOWNPOUR (right)
Green Regular Gradient Descent
Blue     Parallel worker
Red Center variable
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Model Averaging (inherently synchronous)

9Note: gradients are pointing in the opposite direction to make the figure more intuitive.



Elastic Averaging SGD
- What to do under communication constraints (e.g., heavily used networks)?

- Let workers do more iterations before communicating with the PS (exploration).
- Too much exploration, workers do not “agree on neighbourhood” anymore.
- Answer: “elasticity”.
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elastic difference

However, EASGD requires some fine-tuning (rho). And has difficulties converging when communication window is small (why?).
But scales very well (almost ideally)!



dist-keras: architecture
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Why Apache Spark?
- We use Apache Spark mainly as a distribution mechanism for the training.
- Strong data preprocessing framework and libraries.
- Bigger than memory datasets.
- Large community and active development.
- CERN Hadoop Service has several clusters available.
- Integration with Spark Streaming to do on-line predictions.
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Experiments
- 2 networks: a multilayer perceptron and convolutional network.
- Both have ~1 000 000 trainable parameters (~32 MB per model).
- 4 sample mini-batches, 1 epoch.
- Dataset: MNIST.
- Optimizers: Adam (sequential), EASGD, DOWNPOUR, ADAG (distributed)
- 20 parallel workers:

- 10 compute nodes with 10 Gbps network cards
- 2 processes per node (32 cores per node)
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Distributed Preprocessing



Experiments (1)
- 30 experiments for every optimization scheme (multilayer perceptron). 

14

Google’s DOWNPOUR cannot handle 
amount of workers due to “implicit 
momentum”.

.971.959



Experiments (2)
Optimization algorithm: DOWNPOUR
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10% accuracy (random) 
10 MNIST classes



Divergence due to the number of parallel workers

20 parallel workers (convergence)
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40 parallel workers (divergence)



Experiments (3)
Optimization algorithm: Asynchronous EASGD (rho = 5.0)
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Experiments (4)
Optimization algorithm: ADAG
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No decline in performance!
Mean accuracy: 0.9739
Std: 0.00278 (0.278%)



Problems we encountered
- Convolutional layers expect matrices to be in a specific format (reshape).

           reshape_transformer = ReshapeTransformer("features_normalized", "matrix", (28, 28, 1))
           dataset = reshape_transformer.transform(dataset)

- Adding a column to a distributed DataFrame based on other columns proved be non-trivial to
do efficiently.

def new_dataframe_row(old_row, column_name, column_value):

           """Constructs a new Spark Row based on the old row, and a new column name and value."""

                        row = Row(*(old_row.__fields__ + [column_name]))(*(old_row + (column_value, )))

                       return row

- Strugglers. Some workers are idle because they completed their data shard way faster.

- Parallelism factor: a data-shard is segmented in “tasks” w.r.t. this factor. If a worker is done, 
then it will take tasks from other workers in order to get the job done faster. 19



Future Work
- Further theoretical understanding.
- Steps have been / will be made to build an optimizer (ADAG).

- Combine EASGD like communication windows (to ensure scaling).
- Staleness compensation.
- ...

- In-depth performance tests (including CIFAR-10(0)).
- Some work needs to be done to improve throughput of parameter server.

- PS doesn’t scale that well when using models with a -very- high number of parameters.
- Initially, weight sharing was done using a REST API, now custom protocol.
- Random communication windows to lower “spiking” load of PS?

20



Questions?

https://github.com/cerndb/dist-keras

https://github.com/cerndb/dist-keras/blob/master/examples/mnist.ipynb
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https://github.com/cerndb/dist-keras
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Appendices
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Code example
trainer = DOWNPOUR(keras_model=convnet, worker_optimizer=optimizer_convnet, loss=loss_convnet,
                                     num_workers=num_workers, batch_size=8, communication_window=5, learning_rate=0.1,
                                     num_epoch=1, features_col="matrix", label_col="label_encoded")

trainer.set_parallelism_factor(1) # default value (more on this later)

trained_model = trainer.train(training_set)

print("Training time: " + str(trainer.get_training_time()))
print("Accuracy: " + str(evaluate_accuracy(trained_model, test_set, "matrix")))

def evaluate_accuracy(model, test_set, features="features_normalized_dense"):
    evaluator = AccuracyEvaluator(prediction_col="prediction_index", label_col="label")
    predictor = ModelPredictor(keras_model=model, features_col=features)
    transformer = LabelIndexTransformer(output_dim=nb_classes)
    test_set = test_set.select(features, "label")
    test_set = predictor.predict(test_set)
    test_set = transformer.transform(test_set)
    score = evaluator.evaluate(test_set)
    
    return score 23



ADAG (research idea)
- Our 10 Gbps network allows for fast parameter transfers.
- As a result, no communication constraints (assumption).
- In order to reduce communication overhead ever further:

- Random communication windows in specific range. E.g., [2-6]

- This reduces computational overhead introduced by EASGD.
- Instead of averaging the gradients, divide the gradient residual by the 

communication window. -> Empirically proved to be better than DOWNPOUR
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