

Distributed Deep Learning
with Apache Spark and Keras

2

Joeri Hermans (Technical Student)
Maastricht University

Introduction

- CMS is exploring the possibility for a deep learning model in the HLT.
- Use-case requires a lot of training data (~ 1 TB).
- Application of distributed optimization algorithms.

- Can be extended to more general use-cases!

3

Distributed Deep Learning?

- Training with millions of parameters takes a lot of time and expensive
operations like convolutions make the task even more computationally
expensive.

- How do we decrease the training time?

4

Distributed Deep Learning

- 2 main paradigms introduced by Dean et al. (Google)
- Model parallelism
- Data parallelism

Note: hybrids of these are possible.

5

Model Parallelism

- Big network spread over multiple machines.
- Usually due to memory requirements.
- Not only for training, faster propagation.
- Sharing of updates.

6

Data Parallelism

- Model is replicated over different machines.
- Every worker gets own shard (partition) of the dataset.
- Every update is reported to PS.
- PS: Parameter Server
- We will be focussing on this!

- Two approaches:
- Synchronous data parallelism
- Asynchronous data parallelism

7

Synchronous Data Parallelism
- All workers synchronize on the update variable.
- Synchronization mechanism required.

- What in the case of a slow node?
- But updates will be consistent!

8

Asynchronous Data Parallelism
- All workers read and write whenever they want.
- Problem: stale gradient updates.
- But: sparse updates!

9

Distributed Keras

10

Optimizers

- Recap: an optimizer will modify the weights of the NN in such a way
that it will (try to) minimize the error of the prediction.

- Most optimizers follow a Gradient Descent (next slide) approach.
- 3 classes of distributed optimizers in Distributed Keras:

- SingleTrainer (1 worker, for benchmarking)
- EASGD (Elastic Averaging, global variable consensus)
- DOWNPOUR (Explicit gradient updates are sent to the PS)

11

12

Spark Driver Implementation
 def train(self, data, shuffle=False):

 self.start_service()

 worker = self.allocate_worker()

 numPartitions = data.rdd.getNumPartitions()

 if numPartitions > self.num_workers:

 data = data.coalesce(self.num_workers)

 else:

 data = data.repartition(self.num_workers)

 if shuffle:

 data = shuffle(data)

 for i in range(0, self.num_epoch):

 self.reset_variables()

 data.rdd.mapPartitionsWithIndex(worker.train).collect()

 self.stop_service() 13

Data iterations.

Repartition depending on number of workers.

Spark Worker Implementation
 def train(self, index, iterator):

 # Deserialize and compile the Keras model.

 try:

 while True:

 batch = [next(iterator) for _ in range(self.batch_size)]

 feature_iterator, label_iterator = tee(batch, 2)

 X = np.asarray([x[self.features_column] for x in feature_iterator])

 Y = np.asarray([x[self.label_column] for x in label_iterator])

 if self.iteration % self.communication_period == 0:

 # Compute Elastic Average and send to the Parameter Server.

 model.train_on_batch(X, Y)

 self.iteration += 1

 except StopIteration:

 pass 14

Fetch mini-batch from
partition iterator.

Duplicate mini-batch.

Train local replica of model on mini-batch.

Interface for Spark’s mapPartitionsWithIndex(index, iterator)

Results (1)
- Similar statistical performance among trainers.
- But single process is still “the best”.
- But!

15

Results (2)
- Model is computed a lot (10x) faster!
- But using 24 times the amount of computational resources… (tradeoff)

16

Scaling: statistical model performance

17

Scaling: training speedup
- Green line depicts the expected value (2 workers, 2 times faster, …)

18

Future Work

- Stop on target loss (early stopping)
- Training metrics
- Improve parameter transmission performance:

- Threaded parameter queue
- Compression
- HashIndexing (e.g., non-zero values)
- Gradient residuals

19

Summary

- We presented an architecture for Distributed Deep Learning on
Apache Spark and shown the gain in performance.

- Prototype of “production” environment is being built (dml.cern.ch).
- Found incorrectly derived equation in EASGD research paper during

implementation.

20

Notebook
Complete Apache Spark workflow with more details and experimental findings:

https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb

Feedback + Issues are welcome!

21

https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb
https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb

Questions?

22

