

Distributed Deep Learning
with Apache Spark and Keras

Joeri Hermans
Maastricht University

Introduction

- CMS is exploring the possibility for a deep learning model in the HLT.
- Use-case requires a lot of training data (~ 1 TB).
- Application of distributed optimization algorithms.

- Can be extended to more general use-cases!

Distributed Deep Learning?

- Training with millions of parameters takes a lot of time and expensive
operations like convolutions make the task even more computationally
expensive.

- How do we decrease the training time?

Distributed Deep Learning

- 2 main paradigms introduced by Dean et al. (Google)
- Model parallelism
- Data parallelism

Note: hybrids of these are possible.

Model Parallelism

- Big network spread over multiple machines.
- Usually due to memory requirements.

- Not only for training, faster propagation.
- Sharing of updates.

Machine 3

Machine |

¢ duiydely

p auIydel

Data Parallelism

- Model is replicated over different machines.

- Every worker gets own shard (partition) of the dataset.
- Every update is reported to PS. Parameter Server W' = W - 1JAW
- PS: Parameter Server OO)

- We will be focussing on this! W/ Aw l I \\

Model D[:]

Replicas [:]C]
- Two approaches: e
- Synchronous data parallelism Shards ﬁ ﬁ ﬁ

- Asynchronous data parallelism

7

Synchronous Data Parallelism

- All workers synchronize on the update variable.

Parameter Server

- Synchronization mechanism required. ‘

- What in the case of a slow node?
- But updates will be consistent! READ
—_—

WRITE |
FEm LR IR
WRITE
—_—
WRITE
—

READ
—_—

Asynchronous Data Parallelism

- All workers read and write whenever they want.
- Problem: stale gradient updates.

t=3

i "| t=0 f=1 =2
| es |

- But: sparse updates!

WRITE W lREF\D

. Parameter stalenass of Worker 1

Distributed Keras

000000000

/ Parameter Updates \
sk ()] [we¥]
Worker Wgrknr

‘ Data partition ‘ Data partition

[Hadoop Distributed File System (HDFS) J

Sﬁaff’:z [F’arameter Server ﬂ

10

Optimizers

Recap: an optimizer will modify the weights of the NN in such a way
that it will (try to) minimize the error of the prediction.
Most optimizers follow a Gradient Descent (next slide) approach.
3 classes of distributed optimizers in Distributed Keras:
- SingleTrainer (1 worker, for benchmarking)
- EASGD (Elastic Averaging, global variable consensus)
- DOWNPOUR (Explicit gradient updates are sent to the PS)

11

Goal: optimize parameters in such a way that it minimizes the error.

Grad |ent Desce nt Problem: Gradient can only be evaluated locally.

Solution: Iteratively, add gradient (slope) until convergence.

Additional dimension to indicate error of expected value, and predicted value.

U".‘: ‘77_ '“"—‘“‘. s o o (’:1‘;H Bl

A single dimension corresponds with one parameter (weight) of a Neural Network.

Spark Driver Implementation

def train(self, data, shuffle=False):
self.start_service()
worker = self.allocate_worker() Repartition depending on number of workers.
numPartitions = data.rdd.getNumPartitions()
if numPartitions > self.num_workers:
data = data.coalesce(self.num_workers)
else:

data = data.repartition(self.num_workers)

if shuffle: Data iterations.
data = shuffle(data) %

for i in range(0, self.num_epoch):
self.reset_variables()
data.rdd.mapPartitionsWithIndex(worker.train).collect()

self.stop_service() 13

Spark Worker Implementation

def train(self, index, iterator):

Deserialize and compile the Keras model. o
Fetch mini-batch from

try: partition iterator.
while True:

batch = [next(iterator) for _ in range(self.batch_size)]
feature_iterator, label_iterator = tee(batch, 2) Duplicate mini-batch.
X = np.asarray([x[self.features_column] for x in feature_iterator])
Y = np.asarray([x[self.label_column] for x in label_iterator])
if self.iteration % self.communication_period ==

Compute Elastic Average and send to the Parameter Server.
model.train_on_batch(X, Y)

self.iteration +=1 %
except Stoplteration: Train local replica of model on mini-batch.

pass

<: Interface for Spark’s mapPartitionsWithindex(index, iterator)

14

Results (1)

Similar statistical performance among trainers.

But single process is still “the best”.
But!

F1

9

08 -

07}

06 -

05 F

04|

03+

0z

0l

00

F1 score with different trainers - (higher is better)

B L]
(O A a™ | @ " e.-:_ﬁ"'“
oo gos @ T g s
lﬂ}““ - -
5 240
Trainers

15

Results (2)

Seconds

- Model is computed a lot (10x) faster!
- But using 24 times the amount of computational resources...

140 Tramlng time - ilower is better]

120

100

40 +
201 I
o

a‘-“e ﬁ"':‘ a‘t“ﬁi

- th
- P _, '1'5 P
o o e e?' af g

Trainers

F1

09

08 [

07

0a

05

04

03}

02}

0l f
0.0

(tradeoff)

F1 score with different trainers - ihigher is I:r:-:-tteril

g’ﬁ

u'*':"E' a‘t“ﬁi
- 9 gt and® ﬁ"qﬁf
lﬁ:ﬂ*n -a.’%“l“l; "’E. n'-'..- e?

P 16

Trainers

Scaling: statistical model performance

0825 Performance vs. parallel trainers - (higher is better)

0.820 |
~ 0815 |

0810 “I

0.805 L L L L
o 5 10 15 20 25
Number of trainers

17

Scaling: training speedup

Green line depicts the expected value (2 workers, 2 times faster, ...)

Wallclock time (seconds)

140

120

100

Total training time - {lower is better)

5 10 15 20
Number of trainers

25

18

Future Work

- Stop on target loss (early stopping)
- Training metrics
- Improve parameter transmission performance:
- Threaded parameter queue
- Compression
- HashlIndexing (e.g., non-zero values)
- Gradient residuals

Summary

- We presented an architecture for Distributed Deep Learning on
Apache Spark and shown the gain in performance.
- Prototype of “production” environment is being built (dml.cern.ch).

- Found incorrectly derived equation in EASGD research paper during
implementation.

20

Notebook

Complete Apache Spark workflow with more details and experimental findings:

https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb

Feedback + Issues are welcome!

21

https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb
https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb

Questions?

22

