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Introduction

- CMS is exploring the possibility for a deep learning model in the HLT.
- Use-case requires a lot of training data (~ 1 TB).
- Application of distributed optimization algorithms.

- Can be extended to more general use-cases!
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Distributed Deep Learning?

- Training with millions of parameters takes a lot of time and expensive 
operations like convolutions make the task even more computationally 
expensive.

- How do we decrease the training time?
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Distributed Deep Learning

- 2 main paradigms introduced by Dean et al. (Google)
- Model parallelism
- Data parallelism

Note: hybrids of these are possible.
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Model Parallelism

- Big network spread over multiple machines.
- Usually due to memory requirements.
- Not only for training, faster propagation.
- Sharing of updates.
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Data Parallelism

- Model is replicated over different machines.
- Every worker gets own shard (partition) of the dataset.
- Every update is reported to PS.
- PS: Parameter Server
- We will be focussing on this!

- Two approaches:
- Synchronous data parallelism
- Asynchronous data parallelism
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Synchronous Data Parallelism
- All workers synchronize on the update variable.
- Synchronization mechanism required.

- What in the case of a slow node?
- But updates will be consistent!
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Asynchronous Data Parallelism
- All workers read and write whenever they want.
- Problem: stale gradient updates.
- But: sparse updates!
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Distributed Keras
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Optimizers

- Recap: an optimizer will modify the weights of the NN in such a way 
that it will (try to) minimize the error of the prediction.

- Most optimizers follow a Gradient Descent (next slide) approach.
- 3 classes of distributed optimizers in Distributed Keras:

- SingleTrainer (1 worker, for benchmarking)
- EASGD (Elastic Averaging, global variable consensus)
- DOWNPOUR (Explicit gradient updates are sent to the PS)
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Spark Driver Implementation
   def train(self, data, shuffle=False):

       self.start_service()

       worker = self.allocate_worker()

       numPartitions = data.rdd.getNumPartitions()

       if numPartitions > self.num_workers:

           data = data.coalesce(self.num_workers)

       else:

           data = data.repartition(self.num_workers)

       if shuffle:

           data = shuffle(data)

       for i in range(0, self.num_epoch):

           self.reset_variables()

           data.rdd.mapPartitionsWithIndex(worker.train).collect()

       self.stop_service() 13

Data iterations.

Repartition depending on number of workers.



Spark Worker Implementation
   def train(self, index, iterator):

       # Deserialize and compile the Keras model.

       try:

           while True:

               batch = [next(iterator) for _ in range(self.batch_size)]

               feature_iterator, label_iterator = tee(batch, 2)

               X = np.asarray([x[self.features_column] for x in feature_iterator])

               Y = np.asarray([x[self.label_column] for x in label_iterator])

               if self.iteration % self.communication_period == 0:

                     # Compute Elastic Average and send to the Parameter Server.

               model.train_on_batch(X, Y)

               self.iteration += 1

       except StopIteration:

           pass 14

Fetch mini-batch from 
partition iterator.

Duplicate mini-batch.

Train local replica of model on mini-batch.

Interface for Spark’s mapPartitionsWithIndex(index, iterator)



Results (1)
- Similar statistical performance among trainers.
- But single process is still “the best”.
- But!
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Results (2)
- Model is computed a lot (10x) faster!
- But using 24 times the amount of computational resources… (tradeoff)
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Scaling: statistical model performance

17



Scaling: training speedup
- Green line depicts the expected value (2 workers, 2 times faster, …)
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Future Work

- Stop on target loss (early stopping)
- Training metrics
- Improve parameter transmission performance:

- Threaded parameter queue
- Compression
- HashIndexing (e.g., non-zero values)
- Gradient residuals
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Summary

- We presented an architecture for Distributed Deep Learning on 
Apache Spark and shown the gain in performance.

- Prototype of “production” environment is being built (dml.cern.ch).
- Found incorrectly derived equation in EASGD research paper during 

implementation.
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Notebook
Complete Apache Spark workflow with more details and experimental findings:

https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb

Feedback + Issues are welcome!
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Questions?
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