
Toronto MongoDB Atlas
Workshop

Eugene Kang, Sr. Solutions Architect, MongoDB
Jeegar Ghodasara, Sr. Solutions Architect, MongoDB
Will Chow, Sr. Solutions Architect, MongoDB
Amy Rosenberg, Manager, Field Marketing, MongoDB

This document is Proprietary and Confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of
MongoDB Inc.

Agenda
Introductions and Kickoff

MongoDB Technical Overview

Atlas Overview and Demo

CRUD Operations and Indexes/Explain Plans

Aggregation Framework

MongoDB Stitch

MongoDB Charts

Closing Remarks

MongoDB Technical Overview

4

Why MongoDB?

Best way to work
with data

Intelligently put data
where you need it

Freedom
to run anywhere

Intelligent Operational Data Platform

MongoDB is a modern, operational database that supports a polyglot data strategy – on-premise and in the cloud. This
allows us to drive several business critical topics with our customers.

Cases for Change

Cloud Data Strategy
Leveraging the right data platforms as part of your overall
cloud strategy helps to avoid vendor lock-in.

Single View
Provide a holistic view of data entities (e.g. customer) across
multiple underlying, disconnected source systems.

Legacy Modernization
Current legacy technology stacks can’t cope with the range
of new business requirements – we can help you
modernise in a highly efficient and effective way

Mainframe Offloading
Reduce cost and MIPS on legacy mainframes and enable
data to be leveraged for new use cases.

Operational Intelligence
Solving the problem of deriving value from existing EDW or
Hadoop-based data lake solutions in real-time

Distributed Ledger/Blockchain
MongoDB is the ideal database/persistence layer for enterprise-
grade Distributed Ledger applications

Internet of Things (IoT)
MongoDB can help you overcome Scalability & Performance
issues that are not being met by many current IoT solutions.

Leading modern general purpose database

Creative
Cloud

HR Mobile
Application

Real-Time
Travel Search

Mobile Drug
Applications

Mobile
Banking

Multi-Screen
TV

Internet of
Things Platform

Predictive
Messaging

Background Checks
as a Service

Order
Capture

Cryptocurrency
Platform

Logistics
Modernization

E-Commerce
System

Entry Decision
System

Social Security
Benefits Program

Mobile App for
Patient Data

Product
Catalog

Single View
of Patient

Genetic
Analysis

Online
Lending

Swap Equities
Management

E-Commerce
Personalization

E-Commerce
Platform

Marketing
Cloud

Video
Streaming

Log Metadata
Store

Social Media
Management

Website
Platform

Product
Catalog

Identity Theft
Protection

Mass Spectrometer
Instrumentation

Subscriber
QoS

Shopping
Cart

Gaming Platform

Online Tax Returns Real-Time Analytics

7

Some Terminology
A comparison

Database Table Parent –
Child Tables

MongoDB

Index Row Column Join View
Multi-Record

ACID
Transaction

RDBMS

Database Collection
Nested Sub-
Document or

Array
Index Document** Field Embedding,

Linking, $lookup View
Multi-Document

ACID
Transaction

** Proper document schema design yields more entity data per document than found in a relational database row

8

Easy: Contrasting data models

Tabular (Relational) Data Model
Related data split across multiple records and tables

Document Data Model
Related data contained in a single, rich document

{
"_id" : ObjectId("5ad88534e3632e1a35a58d00"),
"name" : {

"first" : "John",
"last" : "Doe" },

"address" : [
{ "location" : "work",

"address" : {
"street" : "16 Hatfields",
"city" : "London",
"postal_code" : "SE1 8DJ"},

"geo" : { "type" : "Point", "coord" : [
51.5065752,-0.109081]}},

+ {...}
],
"phone" : [

{ "location" : "work",
"number" : "+44-1234567890"},

+ {...}
],
"dob" : ISODate("1977-04-01T05:00:00Z"),
"retirement_fund" : NumberDecimal("1292815.75")

}

9

{
"_id" : ObjectId("5ad88534e3632e1a35a58d00"),
"name" : {

"first" : "John",
"last" : "Doe" },

"address" : [
{ "location" : "work",

"address" : {
"street" : "16 Hatfields",
"city" : "London",
"postal_code" : "SE1 8DJ"},

"geo" : { "type" : "Point", "coord" : [
51.5065752,-0.109081]}},

+ {...}
],

"dob" : ISODate("1977-04-01T05:00:00Z"),
"retirement_fund" : NumberDecimal("1292815.75")

}

Flexible: Adapt to change

Add new fields dynamically at runtime

{
"_id" : ObjectId("5ad88534e3632e1a35a58d00"),
"name" : {

"first" : "John",
"last" : "Doe" },

"address" : [
{ "location" : "work",

"address" : {
"street" : "16 Hatfields",
"city" : "London",
"postal_code" : "SE1 8DJ"},

"geo" : { "type" : "Point", "coord" : [
51.5065752,-0.109081]}},

+ {...}
],
"phone" : [

{ "location" : "work",
"number" : "+44-1234567890"},

+ {...}
],
"dob" : ISODate("1977-04-01T05:00:00Z"),
"retirement_fund" : NumberDecimal("1292815.75")

}

10

Flexible: Govern

JSON Schema
Enforces strict schema structure over a complete collection for data governance & quality

• Builds on document validation introduced by restricting new content that can be added to a
document

• Enforces presence, type, and values for document content, including nested array

• Simplifies application logic

Tunable: enforce document structure, log warnings, or allow complete schema flexibility

Queryable: identify all existing documents that do not comply

Schema Validation Example

12

Versatile: Multiple data models, rich query functionality

Rich Queries
Point | Range | Geospatial | Faceted Search | Aggregations | JOINs | Graph Traversals

JSON Documents Tabular Key-Value Text GraphGeospatial

13

Fully Indexable
Fully featured secondary indexes

• Primary Index
– Every Collection has a primary key index

• Compound Index
– Index against multiple keys in the document

• MultiKey Index
– Index into arrays

• Text Indexes
– Support for text searches

• GeoSpatial Indexes
– 2d & 2dSphere indexes for spatial geometries

• Hashed Indexes
– Hashed based values for sharding

Index Types
• TTL Indexes

– Single Field indexes, when expired delete the document

• Unique Indexes
– Ensures value is not duplicated

• Partial Indexes
– Expression based indexes, allowing indexes on subsets of data

• Case Insensitive Indexes
• supports text search using case insensitive search

• Sparse Indexes
– Only index documents which have the given field

Index Features

14

Easy: MongoDB Multi-Document ACID Transactions

Just like relational transactions
• Multi-statement, familiar relational syntax
• Easy to add to any application
• Multiple documents in 1 or many collections and databases

ACID guarantees
• Snapshot isolation, all or nothing execution
• No performance impact for non-transactional operations

Schedule
• MongoDB 4.0: replica set
• MongoDB 4.2: extended to sharded clusters

15

Aggregations

Advanced data processing
pipeline for transformations
and analytics

• Multiple stages

• Similar to a unix pipe
– Build complex pipeline by

chaining commands together

• Rich Expressions

Collection

db.orders.aggregate([
$match stage {$match: { status: "A"

} },
$group stage { $group: { _id:

"$cust_id",total: { $sum: "$amount" } } }
]

)

{
cust_id:

"A123",
amount:

500,
status:

"A",
}
{

cust_id:
"A123",

amount:
250,

status:
"A",
}
{

cust_id:
"B212",

amount:
200,

status:
"A",
}
{

cust_id:
"A123",

amount:
300,

status:
"D",
} Orders

{
cust_id:

"A123",
amount:

500,
status:

"A",
}
{

cust_id:
"A123",

amount:
250,

status:
"A",
}
{

cust_id:
"B212",

amount:
200,

status:
"A",
}

{
id: "A123",
total: 750

}

{
id: "B212",
total: 200

}

$match $group

16

Aggregation Features
A feature rich analytical framework

• $match

• $group

• $facet

• $geoNear

• $graphLookup

Pipeline Stages
• Mathematical

– $add, $abs,
$substract,
$multiply, $divide,
$log, $log10,
$stdDevPop,
$stdDevSam, $avg,
$sqrt, $pow, $sum,
$zip, $convert, etc.

• Array
– $push, $reduce,

$reverseArray,
$addToSet,
$arrayElemAt,
$slice, etc.

Operators
• $lookup

• $project

• $sort

• $unwind

• Conditionals
– $and, $or, $eq, $lt,

$lte, $gt, $gte,
$cmp, $cond,
$switch, $in, etc

• Date
– $dateFromParts,

$dateToParts,
$dateFromString,
$dateToString,
$dayOfMonth,
$isoWeek, $minute,
$month, $year, etc.

• String
– $toUpper, $toLower,

$substr,
$strcasecmp,
$concat, $split, etc.

• Laterals
– $exp, $let, $literal,

$map, $type, etc

17

MongoDB Replica Sets

Replica Set – 2 to 50 copies

Self-healing

Data Center Aware

Addresses availability considerations:
• High Availability

• Disaster Recovery

• Maintenance

Workload Isolation: operational & analytics

Application

Driver

Primary

Secondary

Secondary

Replication

Serving global audiences with relational databases

10 ms 2 ms

45 ms

35 ms

85 ms

75 ms

105 ms

MongoDB’s native replica sets puts your entire database
right next to users

10 ms 2 ms

10 ms

4 ms

4 ms

2 ms

10 ms

2 ms

20

Scaling MongoDB: Automatic Sharding

Multiple sharding policies: hashed, ranged, zoned

Increase or decrease capacity as you go

Automatic balancing for elasticity

Horizontally Scalable

•••Shard 1 Shard 2 Shard 3 Shard N

21

Co-locating operational and analytical workloads

Analytics

PRIMARY Secondary Secondary Secondary
{use = analytics}

Operational
(interactive)

BI & Reporting

Predictive Analytics

Aggregations

22

Freedom to run anywhere

Local
On-premises

Server & Mainframe Private cloud
Fully managed
cloud service Hybrid cloud Public cloud

• Database that runs the same everywhere

• Leverage the benefits of a multi-cloud strategy

• Global coverage

• Avoid lock-in

Convenience: same codebase, same APIs, same tools, wherever you run

23

Easy: Drivers and Frameworks

Drivers Frameworks

24

2 choices as you move to the cloud: Self-Managed or DBaaS

Database as
a Service

Self-Managed
Aka “Lift and Shift”

Cloud Migration
or Cloud First

Fork in
the road

25

2 choices as you move to the cloud: Self-Managed or DBaaS

1. Provision instances and storage

2. Configure HA

3. Configure security

4. Configure backup/restore

5. Monitoring & alerting

6. Ongoing upgrades & maintenance

Database as
a Service

Self-Managed
Aka “Lift and Shift”

Cloud Migration
or Cloud First

Fork in
the road

26

2 choices as you move to the cloud: Self-Managed or DBaaS

1. Provision instances and storage

2. Configure HA

3. Configure security

4. Configure backup/restore

5. Monitoring & alerting

6. Ongoing upgrades & maintenance

Choose instance, hit deploy,
available in a couple of
minutes

Database as
a Service

Self-Managed
Aka “Lift and Shift”

Cloud Migration
or Cloud First

Fork in
the road

Atlas
unlocks agility
and reduces

cost

Self-service and
elastic

Global and highly
available Secure by default

Comprehensive
monitoring Managed backup Cloud agnostic

Atlas Demo

Atlas Workshop

30

https://www.mongodb.com/cloud/atlas

Sign Up for Free

https://www.mongodb.com/cloud/atlas

EXERCISE 1: MONGODB ATLAS & USERS

32

AFTER EXERCISE 1, YOU SHOULD BE ABLE TO...

• Deploy a MongoDB Atlas Cluster (free-tier M0 or paid M10+)
(Go to https://www.mongodb.com/cloud/atlas)

• Secure the cluster, e.g. user and IP whitelisting

• Understand the basic features of Atlas

https://www.mongodb.com/cloud/atlas

33

• Deploy M0 instance on your choice of cloud provider

• Give the cluster a name

• Create a user via Atlas (db.createuser())

• testuser / testuser

EXERCISE 1: LET’S DO IT!

EXERCISE 2: MONGODB COMPASS & CRUD

35

AT THE END OF THIS EXERCISE 2, YOU SHOULD BE ABLE TO...

• Launch Compass (tool to explore, visualize, optimize,
and modify MongoDB data) and connect to that cluster

• Use Compass to create a database, create a collection,
and import a data set into that collection

• Use Compass to create, read, update, and delete
(CRUD) documents in a collection

36

• Download and Install Compass: https://bit.ly/2S2jozr
• Connect to Atlas with Compass
• Create a database and collection

– Database: movies
– Collection: movies

• Download data: https://bit.ly/2MpsvoJ
• Import data using Compass

EXERCISE 2: LET’S DO IT!

https://bit.ly/2S2jozr
https://bit.ly/2MpsvoJ

37

CONNECTION STRINGS

Key Value

Server <<insert your server details here>>

SRV Record Yes on Switch

Authentication Username / Password

Username <<insert your username that you created>>

Password <<insert your password that you created>>

Auth DB admin

38

db.movies.insertOne(

{

"title": "Ghostbusters",

"Year": 1984,

"Rated": "PG",

"Runtime": 105,

"Type": "movie",

"Genres": ["comedy", "action"] ,

"Director": "Ivan Reitman",

"Writers": ["dan aykroyd", "Harold ramis"]

}

)

CRUD: LET’S CREATE...

SCHEMA AND DATA TYPES

(COMPASS)

40

db.movies.findOne()

db.movies.find().pretty()

CRUD: LET’S READ...

41

db.movies.updateOne(

{

title: "Ghostbusters"

},

{

$set: {

imdb: { id: "tt0087332", rating: 7.8, votes: 312798 }

}

}

)

CRUD: LET’S UPDATE...

42

db.movies.deleteOne(

{

title: "Ghostbusters"

}

)

CRUD: LET’S DELETE...

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres

“Comedy” as the only genre

“Comedy” or “Drama”

“Comedy” and “Drama”

IMDB Rating>8.0 and PG Rating

title starting with “Dr. Strangelove”

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres db.movies.find({genres: "Comedy"})

“Comedy as only genre

“Comedy” or “Drama”

“Comedy” and “Drama”

IMDB Rating>8.0 and PG Rating

title starting with “Dr. Strangelove”

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres db.movies.find({genres: "Comedy"})

“Comedy as only genre db.movies.find({genres:["Comedy"]})

“Comedy” or “Drama”

“Comedy” and “Drama”

IMDB Rating>8.0 and PG Rating

title starting with “Dr. Strangelove”

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres db.movies.find({genres: "Comedy"})

“Comedy as only genre db.movies.find({genres:["Comedy"]})

“Comedy” or “Drama” db.movies.find({genres:{$in:["Comedy",
"Drama"]}})

“Comedy” and “Drama”

IMDB Rating>8.0 and PG Rating

title starting with “Dr. Strangelove”

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres db.movies.find({genres: "Comedy"})

“Comedy as only genre db.movies.find({genres:["Comedy"]})

“Comedy” or “Drama” db.movies.find({genres:{$in:["Comedy",
"Drama"]}})

“Comedy” and “Drama” db.movies.find({ genres: { $all: ["Comedy",
"Drama"] } })

IMDB Rating>8.0 and PG Rating

title starting with “Dr. Strangelove”

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres db.movies.find({genres: "Comedy"})

“Comedy as only genre db.movies.find({genres:["Comedy"]})

“Comedy” or “Drama” db.movies.find({genres:{$in:["Comedy",
"Drama"]}})

“Comedy” and “Drama” db.movies.find({ genres: { $all: ["Comedy",
"Drama"] } })

IMDB Rating>8.0 and PG Rating db.movies.find({"imdb.rating" : {$gt: 8.0},
rated:"PG"})

title starting with “Dr. Strangelove”

CRUD: FIND ME MOVIES...

QUESTION ANSWER

From 1987 db.movies.find({year:1987})

“Comedy” as one of their genres db.movies.find({genres: "Comedy"})

“Comedy as only genre db.movies.find({genres:["Comedy"]})

“Comedy” or “Drama” db.movies.find({genres:{$in:["Comedy",
"Drama"]}})

“Comedy” and “Drama” db.movies.find({ genres: { $all: ["Comedy",
"Drama"] } })

IMDB Rating>8.0 and PG Rating db.movies.find({"imdb.rating" : {$gt: 8.0},
rated:"PG"})

Title starting with “Dr. Strangelove” db.movies.find({title: {$regex: '^Dr.
Strangelove'}})

EXERCISE 3: INDEXES AND EXPLAIN PLAN

AT THE END OF THIS EXERCISE, YOU SHOULD BE ABLE TO...

● Identify how a query was run using the Explain
Plan

● Create an index on a collection
● See how an index affects query plans

INDEXES AND EXPLAIN PLAN

COMPASS

ADDING INDEX

● Rule of thumb (ESR):

○ Equality

○ Sort

○ Range

EXERCISE 4: AGGREGATION FRAMEWORK

AT THE END OF THIS EXERCISE 4 YOU SHOULD
BE ABLE TO...

● Have a basic understanding of what the
aggregation framework is

● Write some basic queries using the
aggregation framework

56

Aggregations

Advanced data processing
pipeline for transformations
and analytics

• Multiple stages

• Similar to a unix pipe
– Build complex pipeline by

chaining commands together

• Rich Expressions

Collection

db.orders.aggregate([
$match stage {$match: { status: "A" } },
$group stage { $group: { _id: "$cust_id",total: { $sum:

"$amount" } } }
]) {

cust_id:
"A123",

amount:
500,

status:
"A",
}
{

cust_id:
"A123",

amount:
250,

status:
"A",
}
{

cust_id:
"A123",

amount:
200,

status:
"A",
}
{

cust_id:
"A123",

amount:
300,

status:
"D",
} Orders

{
cust_id:

"A123",
amount:

500,
status:

"A",
}
{

cust_id:
"A123",

amount:
250,

status:
"A",
}
{

cust_id:
"B212",

amount:
200,

status:
"A",
}

{
id: "A123",
total: 750

}

{
id: "B212",
total: 200

}

$match $group

57

Aggregation Features
A feature rich analytical framework

• $match

• $group

• $facet

• $geoNear

• $graphLookup

Pipeline Stages
• Mathematical

– $add, $abs,
$substract,
$multiply, $divide,
$log, $log10,
$stdDevPop,
$stdDevSam, $avg,
$sqrt, $pow, $sum,
$zip, etc.

• Array
– $push, $reduce,

$reverseArray,
$addToSet,
$arrayElemAt,
$slice, etc.

Operators
• $lookup

• $project

• $sort

• $unwind

• Conditionals
– $and, $or, $eq, $lt,

$lte, $gt, $gte,
$cmp, $cond,
$switch, $in, etc

• Date
– $dateFromParts,

$dateToParts,
$dateFromString,
$dateToString,
$dayOfMonth,
$isoWeek, $minute,
$month, $year, etc.

• String
– $toUpper, $toLower,

$substr,
$strcasecmp,
$concat, $split, etc.

• Laterals
– $exp, $let, $literal,

$map, $type, etc

LET’S PLAY WITH AGGREGATION
PIPELINE BUILDER IN COMPASS

AGGREGATION WORKSHOP

QUESTION ANSWER
How can you use $match to find all
comedies?

AGGREGATION WORKSHOP

QUESTION ANSWER
How can you use $match to find all
comedies?

$match {genres: “Comedy”}

AGGREGATION WORKSHOP

QUESTION ANSWER
How can you use $match to find all
comedies?

$match {genres: “Comedy”}

How can you use $unwind to create an
individual document for each country?

AGGREGATION WORKSHOP

QUESTION ANSWER
How can you use $match to find all
comedies?

$match {genres: “Comedy”}

How can you use $unwind to create an
individual document for each country?

$unwind {path: “$countries”}

AGGREGATION WORKSHOP

QUESTION ANSWER
How can you use $match to find all
comedies?

$match {genres: “Comedy”}

How can you use $unwind to create an
individual document for each country?

$unwind {path: “$countries”}

How can you use $group to count all the
comedies grouped by country?

AGGREGATION WORKSHOP

QUESTION ANSWER
How can you use $match to find all
comedies?

$match {genres: “Comedy”}

How can you use $unwind to create an
individual document for each country?

$unwind {path: “$countries”}

How can you use $group to count all the
comedies grouped by country?

$group {
_id: “$countries”,
count: {$sum:1}

}

Lunch Break

MongoDB Stitch

A bit of background on why...

More businesses driven by Web/Mobile Apps

• Mobile internet usage has surpassed desktop
– 56% of usage from Mobile/Tablet

• Apps are expected to work across web, mobile, etc.
– 58% of apps are developed for multiple platforms

• Apps must be highly available, globally distributed
– 48% of apps are deployed to the cloud

Creating/Integrating services drives development

• More is expected of developers
– 64% of developers identified as full-stack
– Leading to more time spent on integration/security

• Microservice architecture gaining traction
– 69% of teams considering MSA for new projects

• Too much time spent on maintenance/integration
– 41% of time spent maintaining
– Only 39% on new projects

It’s easier to develop with MongoDB & Atlas, but
building applications is still tough because…

• Applications still need somewhere for the app logic to live

• Applications are expected to have features like
• Facebook sign in
• Push notifications
• Email confirmations
• Robust offline features

This comes will all the same headaches of maintaining databases the traditional way

Non Differentiating

Low to No Value

App Backend Infrastructure

Core Database Functionality

Storage

Service integrations, data access control

Code that moves the business forward

Managing OS, Scale, Security, Backups, etc.

MongoDB
Atlas

MongoDB
Stitch Fully managed

Elastic scale
Highly Available
Secure

You should focus here

Focus Your Energy Where You Can Make a Difference

Save weeks of
development

and thousands
of lines of code

Without Stitch With Stitch

Provision backend server Not needed

Install backend runtime environment Not needed

Code user authentication {Simple JSON config}

Code data access controls {Simple JSON config}

Code against each external service API Code against a single SDK/API

Poll the database for changes Not needed

Code REST API for frontend to use backend Not needed

Add code to make backend HA Not needed

Add code to scale backend Not needed

Code backend application logic Provide code for Stitch Functions

Code application frontend Code application frontend using single SDK

Monitor & manage backend infrastructure Not needed

MongoDB Stitch Serverless Platform – Services

Stitch QueryAnywhere

Brings MongoDB's rich

query language safely to

the edge

iOS, Android, Web, IoT

Stitch Functions

Integrate microservices +

server-side logic + cloud

services

Build full apps, or Data as a

Service through custom APIs

Stitch Mobile Sync

Automatically synchronizes

data between documents

held locally in MongoDB

Mobile and your backend

database

(coming soon)

Streamlines app development with simple, secure access to data and services from the client with thousands of lines less

code to write and no infrastructure to manage – getting your apps to market faster while reducing operational costs.

Stitch Triggers

Real-time notifications let your

application functions react in

response to database

changes, as they happen

ToDo App Demo

- Google Authentication
- Twilio, for SMS integration

- Send text messages to
add items to my ToDo list.

MongoDB Stitch
Workshop

Workshop

Workshop - Basic Blog

- What will we build?
- a blog with a comments section backed by Stitch

- Prerequisites
- MongoDB Atlas Account
- MongoDB cluster hosted in Atlas

- Estimated Time to Complete: ~15 minutes

Workshop - Basic Blog - Step 1

- Open a text editor
- create blog.html

<html>

<head>

</head>

<body>

<h3>This is a great blog post</h3>

<div id="content">

I like to write about technology because I want to get on the

front page of hacker news.

</div>

<hr>

<div id="comments"></div>

</body>

</html>

Workshop - Basic Blog - Step 2

- Create a Stitch Application

1. Click Stitch Apps in the left-hand corner navigation of the Atlas
console

2. Click Create New Application
3. Give the application a name (e.g. Blog Tutorial)
4. Click Create
5. Wait for your application to initialize

Workshop - Basic Blog - Step 3

- Turn on Anonymous Authentication
- From the Getting Started page

- Enable Anonymous Authentication under the Turn On Authentication heading

Workshop - Basic Blog - Step 4

- Configure blog.comments MongoDB Collection

1. Click Rules under MongoDB Atlas in the left-hand navigation
2. Click Add Collection
3. Enter blog for the Database Name
4. Enter comments for the Collection Name
5. Select No Template
6. Click Add Collection

Workshop - Basic Blog - Step 5

- Select the Permissions tab of the rules for the collection
- enable reading and writing to the comments collection

1. Click the Read and Write checkboxes for the default role
2. Click Save

Workshop - Basic Blog - Step 6

- Add a Commenting System to the Blog Post
- add the following <script> tag to the <head> section of blog.html

<script src="https://s3.amazonaws.com/stitch-sdks/js/bundles/4.0.0/stitch.js"></script>

Workshop - Basic Blog - Step 7

- Initialize Stitch Clients
- Paste the following <script> tag in blog.html beneath the tag that imports Stitch SDK

<script>

// Initialize the App Client

const client = stitch.Stitch.initializeDefaultAppClient("<your-app-id>");

// Get a MongoDB Service Client

const mongodb = client.getServiceClient(

stitch.RemoteMongoClient.factory,

"mongodb-atlas"

);

// Get a reference to the blog database

const db = mongodb.db("blog");

</script>

Replace <your-app-id> with your Stitch App ID

* find your App ID on the Clients page of the Stitch UI

Workshop - Basic Blog - Step 8

- Query and Display Comments on Page Load
- Add the following function to the <script> tag

function displayComments() {

db.collection("comments")

.find({}, {limit: 1000})

.asArray()

.then(docs => {

const html = docs.map(doc => `<div>${doc.comment}</div>`);

document.getElementById("comments").innerHTML = html;

});

}

Workshop - Basic Blog - Step 9

- Log In and Display Comments On Load
- Setup anonymous authentication in blog.html

- Add the following function to the <script> tag:

function displayCommentsOnLoad() {

client.auth

.loginWithCredential(new stitch.AnonymousCredential())

.then(displayComments)

.catch(console.error);

}

- Update the <body> tag in blog.html with

<body onload="displayCommentsOnLoad()">

Workshop - Basic Blog - Step 10

- Add a Form for Submitting Comments
- Add the addComment() function to the <script> tag

function addComment() {

const newComment = document.getElementById("new_comment");

console.log("add comment", client.auth.user.id)

db.collection("comments")

.insertOne({ owner_id : client.auth.user.id, comment: newComment.value })

.then(displayComments);

newComment.value = "";

}

- Add a comment form in the <body> of body.html
<hr>

Add comment:

<input id="new_comment"><input type="submit" onClick="addComment()">

Workshop - Basic Blog - Summary

At this point, you should be able to refresh the page and submit a comment on the blog post.

Workshop

Workshop - Dashboard

- What will we build?
- a real-time dashboard that displays customer purchase data from the point-of-sale system of a

hypothetical pizza restaurant
- The dashboard will have an automatically updating chart of recent customer purchases and a

table of the most popular toppings from the last 100 pizza orders

- Prerequisites
✓ MongoDB Atlas Account
✓ MongoDB cluster hosted in Atlas
- A MongoDB Atlas User API Key for your cluster
- Node.js version 6.0.0 or newer
- A properly installed copy of stitch-cli that has been added to your system PATH
- A local copy or clone of the stitch-examples GitHub repository

- Estimated Time to Complete: 25 minutes

Workshop - Generate API Key
1. On the upper-right hand corner, click on your user name and select Account. Click on Public API Access.

2. In the API Keys section, click Generate.

3. Type a description and click Generate.

4. If prompted for two-factor authentication, enter the code and click Verify. Then click Generate again.

5. Copy and Record the key immediately. Atlas displays the full key one time only. You will not be able to view the full
key again.

6. Record the key in a secure place. After you record the key, click Close.

Workshop - Node.js
Node.js is an open-source, cross-platform
JavaScript run-time environment that
executes JavaScript code outside of a
browser.

Download and Install Node.js:
https://nodejs.org/en/download/

https://nodejs.org/en/download/

Workshop - Install stitch-cli

The easiest way to install stitch-cli is with the npm package manager. Ensure that
you have Node.js installed, then run the following command in your shell:

npm install -g mongodb-stitch-cli

Workshop - Get a Local Copy of the Stitch Examples

https://github.com/mongodb/stitch-examples/

git clone https://github.com/mongodb/stitch-examples.git

https://github.com/mongodb/stitch-examples/

Workshop - Dashboard
dashboard/appdir/dashboard-stitch contains configurations for the following Stitch entities:

• An email/password authentication provider.
• A MongoDB service that will link with your Atlas cluster. The service has custom read and write Rules

defined for the SalesReporting. Receipts collection. The rules remove sensitive fields, such as a
customer’s credit card number, from read results and require specific fields to be included when inserting
new documents.

• A Stitch Function named salesTimeline.
• The function returns data from MongoDB for orders made between the provided start and end

timestamps.
• A Stitch Function named getPopularToppings.

• The function returns a sorted count of the most popular toppings from the last 100 pizza orders
stored in MongoDB.

• An HTTP service named PizzaOrderAPI.
• The service exposes a webhook named addOrder that adds customer order data to MongoDB when

it is sent in the body of a POST request to the webhook. The webhook requires a secret query
parameter to validate requests.

Workshop - Dashboard - Step 1

Import a New Stitch Application
1. Navigate to the Pre-Configured Application Directory

cd dashboard/appdir/dashboard-stitch

1. Authenticate a MongoDB Atlas User

stitch-cli login --username=<MongoDB Cloud username> --api-key=<MongoDB
Atlas API Key>

1. Optional: Update MongoDB Atlas Cluster Name.

Edit dashboard-stitch/services/mongodb-atlas/config.json

1. Import the Application Directory. Run the following command from within the dashboard-stitch directory:

stitch-cli import

Workshop - Dashboard - Step 2

Create an Email/Password User

1. Open your application in the Stitch UI.
2. Select Users from the left-side navigation
3. Click Add New User.
4. Enter the following user information then click Create:

Username example@email.com

Password mypassword

Workshop - Dashboard - Step 3
Configure the addOrder Webhook to Run as
the New User

1. Select Services from the left-side navigation
2. Select the PizzaOrderAPI service then click

the addOrder webhook.
3. From the Settings tab, set Run Webhook As

to User Id then click the Select User button
that appears.

4. Choose the email/password user that you just
created from the list of users then click Select
User.

5. Click Save to save your changes to the
webhook configuration.

Note the values of the Webhook URL and Secret.

Workshop - Dashboard - Client

The dashboard client code is located in the stitch-examples/dashboard
directory. There are two files that communicate with Stitch:

dashboard.js

This file contains the dashboard client JavaScript code. It queries data from
MongoDB using the salesTimeline and getPopularToppings Functions that
we imported in the previous section.

data_generator.js

This script simulates customer orders being entered into a point-of-sale system
at a pizza shop. The order data is uploaded to MongoDB Atlas by including it
as the body of a POST request sent to the addOrder webhook.

Workshop - Dashboard - Step 4

Configure the Data Generation Script

1. In stitch-examples/dashboard/data_generator.js, find and replace
<YOUR WEBHOOK> with the Webhook URL you got from the addOrder
configuration page. Make sure to append the secret as in the following
prototype:

<webhook url>?secret=yummypizza

1. Navigate to the stitch-examples/dashboard directory and run the
following command to install all Node.js dependencies:

npm install

Workshop - Dashboard - Step 5

Connect the Dashboard Client to your Stitch Applications

1. In stitch-examples/dashboard/dashboard.js, find and replace <YOUR
APP ID> with your Stitch application’s App ID.

Run the Data Generation Script data_generator.js

1. Run the following command in the dashboard directory to begin uploading
simulated order data to your MongoDB Atlas cluster:

node data_generator.js

Workshop - Dashboard - Step 6
Launch the Dashboard

From a new shell window, run the following command in the dashboard directory to begin serving the
dashboard locally:

npm start

Log In to the Dashboard

Navigate to localhost:8080 in your browser

Workshop - Dashboard - Summary

Today:
Link to
tutorial

https://docs.mongodb.com/stitch/tutorials/build-blog/

Tomorrow:

MongoDB Charts

MongoDB Charts: Create, Visualize, Share

Work with complex data Connect to data sources securely.
Filter. Sample. Visualize.

Share dashboards and
collaborate

Charts Workshop - Visualizing Movie Details

- What will we build?
- MongoDB Charts dashboard with a data source containing information gleaned from IMDb and

Rotten Tomatoes.

- Prerequisites
- MongoDB Atlas Account
- MongoDB cluster hosted in Atlas

- Estimated Time to Complete: ~10 minutes

Charts Workshop - Step 1

Add the Data Collection as a Data Source

1. In MongoDB Atlas, click on Charts on the left side
2. Click the Data Sources tab
3. Click New Data Source
4. Select your Atlas Deployment in your project
5. Click Connect
6. Select the movies.movies collection
7. Click Set Permissions, leave the permissions as the default
8. Click Publish Data Source

Charts Workshop - Step 2

Create a New Dashboard

1. Click the Dashboards tab
2. Click the New Dashboard button
3. Enter the Title: Movie Details
4. Click Create

Charts Workshop - Step 3

Create Chart Showing Directors with the Most Awards

1. Click Add Chart
2. In the Data Source dropdown, select movies.movies
3. Select Chart Type: Column / Stacked
4. X Axis: director

○ Sort By: Aggregated Value, Descending
○ Limit: 10

5. Y Axis: awards.wins
○ Aggregate: sum

6. Series: genres
○ Array Reduction: Unwind Array

7. Title: Directors with Most Awards, Split by Genre
8. Click Save and Close

Charts Workshop - Summary

Thank You

APPENDIX

