

Table of Contents

About this book
1. Introduction
1.1. What is Helix and Habitat?
1.2. Reading this documentation
1.3. Definitions
2. Patterns, Principles and Conventions
2.1. Architecture Principles
2.1.1. Dependencies
2.1.2. Layers
2.1.3. Modules
2.1.4. Domain language
2.2. Visual Studio
2.2.1. Implementation structure
2.2.2. Solution structure
2.2.3. Projects
2.3. File and Disk Structure
2.3.1. Solution structure
2.3.2. Module structure
2.4. Managing Sitecore Items
2.4.1. Item types
2.4.2. Managing items in development
2.4.3. Deploying items
2.5. Templates
2.5.1. Structure
2.5.2. Inheritance
2.5.4. References from code
2.5.3. Template types
2.6. Page layout
2.6.1. Layouts and sub layouts
2.6.2. Renderings
2.6.3. Datasource settings
2.6.4. Rendering parameters
2.6.5. Compatible renderings

2.6.6. Placeholders
2.7. Configuration and settings
2.7.1. Configuration strategy
2.7.2. Definition Scope
2.7.3. Value Scope
2.7.4. Managing .config files
2.8. Multi-site and multi-tenant
2.8.1. Tenants
2.8.2. Sites
2.9. Language and culture support
2.9.1. Enabling multi-language support
2.9.2. Dictionary
2.10. Security and workflows
2.10.1. Rights management
2.10.2. Domains
2.10.3. Workflows
2.11. Working with code
2.11.1. Code formatting
2.12. Visual Design and Theming
2.12.1. Front-end technologies
2.12.2. HTML mark-up
2.12.3. CSS and Theming
2.12.4. Scripting
3. DevOps and development lifecycle management
3.1. Development
3.1.1. Setting up a development environment
3.1.2. Local deployment
3.1.3. Version Control
3.2. Build and integration
3.2.1. Building your solution
3.2.2. Integration
3.3. Testing
3.3.1. Managing Tests
3.3.2. Unit tests
3.3.3. Integration, Acceptance or other automated testing methods
3.4. Deployment
3.4.1. Deployment strategy

3.4.2. What to deploy and to where

Sitecore Helix Documentation

Compiled from official Sitecore Helix Documentation last updated on 21st
August 2017.

Compiled by:

Peter Prochazka (@chorpo / tothecore.sk)

19th October 2018

More Sitecore guidelines and Sitecore related topics can be found on my
blog tothecore.sk.

You can find them also directly in my github repositories.

http://helix.sitecore.net/index.html
https://twitter.com/chorpo
https://tothecore.sk/
https://tothecore.sk
https://github.com/chorpo?tab=repositories

1. Introduction
There are some good overall design principles that should be used
when designing any software project. One of the key principles is to
be very strict about the dependencies between software modules.
This makes the modules easier to code, test and maintain. The
principles apply to any software project in any language so they are
equally applicable to Java as they are to .NET and Sitecore.

The development guidelines and recommended practices in this
documentation describe the application of the overall design principles
applied to a Sitecore project. It says how modules should be
structured and how individual sites should use these modules. It is a
set of recommendations for making your Sitecore project as easy to
create, test, extend and maintain as possible.

Helix is the overall design principles and conventions for Sitecore
development described in this documentation.

1.1. What is Helix and Habitat?
Helix is a set of overall design principles and conventions for Sitecore
development.

Habitat is a real Sitecore project implemented on the Sitecore
Experience Platform using Helix. It is an example that allows
developers to see how Helix is applied and lets developers experience
a project based on these principles. It also provides an excellent basis
on which to develop additional modules and extend existing ones. In
addition, it saves the developer from having to create these modules
from scratch. Throughout this document is a series of examples of
how Habitat implements the described principles and conventions.

Habitat Example

Throughout the Helix documentation you will find various examples
from Habitat.

You can find the running Habitat project on http://habitat.sitecore.net
and the source code on http://github.com/sitecore/habitat

1.1.1. Fuelling fast paced Sitecore development

Still not sure? Let’s try an example with racing cars.

When you design a racing car, there are some good things to have.
For example, the shape of the car affects wind resistance so you
choose the right shape to minimise drag. The engine efficiency affects
the amount of fuel you need and thus weight so you design efficiently
and lightly to maximise acceleration. To achieve the fastest car, you
apply the overall design principles.

If you are a Formula One racing team, you have to apply these overall

http://habitat.sitecore.net/
http://github.com/sitecore/habitat

design principles within the bounds of the Formula One rules for car
length, weight, size of engine, spoilers, etc. This is like Helix because
you have taken some overall design principles and applied them to a
particular type of racing car – in this case a Formula One racing car.
The overall design principles are good for any type of racing car in any
race but only the overall design principles used with Formula One are
correct for a Formula One race.

Habitat is like the Formula One car itself. It is an example of an F1 Car
(Habitat) you can race around a track that follows overall design
principles for Formula One (Helix). The difference between Formula
One and Sitecore is that Formula One does not provide the racing
teams with an example car to give all the racing teams a head start,
whereas Sitecore does.

1.1.2. Why be interested at all in Helix or Habitat?

Helix provide a set of guidelines for your Sitecore projects. The
Habitat example provides you with a pre-built and tested set of
common modules that you can use as an inspiration to your project.
Both improve the efficiency of your projects, reduce costs and time to
market. As more and more people and organisations adopt the Helix
conventions and principles, it will become a Sitecore standard. This
means that people who are familiar with the conventions or the Habitat
example will be able to work more easily on other convention-based
projects with minimal training. It will be easier for Sitecore Product
Support to understand projects built using the conventions, enabling
them to resolve issues more quickly. Sitecore will test its software
using the conventions so any compatible project that has been
implemented for a customer will be more reliable. And since Sitecore
will test its software using the conventions, Sitecore will be able to
provide better guidance on how to update and upgrade existing
Sitecore projects when new versions and new products are released.

Still need a car example? A race engineer has been working for an F1

team and decides to transfer to another F1 team. The race engineer is
already familiar with Formula One (Helix). She recognises just about
everything on the car (Habitat). There are a few minor differences for
which she will need some training but those small differences do not
stop her opening her bag of wrenches and getting to work right away.

1.2. Reading this documentation
Before you start venturing into a complete understanding of Helix –
and particularly the reasoning behind it – it is a good idea to have a
reasonable experience in developing in ASP.NET and in Sitecore.
Although the Habitat example site works well as an end-to-end
example of a Sitecore implementation – and as such is a good
supplement to the Sitecore developer training – the added intricacies
of the conventions can add to an increased learning curve of Sitecore.

However, if you are new to Sitecore and are determined to understand
more about Habitat and Helix, please understand that although
Sitecore is not generally conceived as hard to get started with, there
are an incredible number of opportunities and possibilities to make
your new journey with Sitecore both fun, interesting and sometimes
challenging. Treat Helix and Habitat as just another one of these great
opportunities.

Helix and this documentation do not define conventions or principles
for all aspects of ASP.NET or Sitecore, but rather focus on the macro
architecture conventions in Sitecore development. This means that
you find that many of the traditional aspects of software development
such as object-oriented architecture and ASP.NET MVC conventions
are not mentioned in this document. In other words, despite the
conventions and recommended practices in this document Helix still
gives you great freedom in your choice of tools and general
development practices.

Although the overall Helix conventions and principles can be applied
to ASP.NET Web Forms, this document assumes the use of ASP.NET
MVC with Sitecore. If you are currently working in ASP.NET Web
Forms, the adoption of Helix might be an appropriate excuse to switch
to ASP.NET MVC, as it is more future-proof and generally
recommended for Sitecore development.

Although Helix is a set of recommended principles and conventions
from Sitecore itself, it is not a set of rules. Development teams,
businesses and requirements are different. Although there are great
benefits to be gained from aligning to a defined set of conventions,
there is also a need for pragmatism. The advice is to generally read all
development conventions, patterns and principles – including Helix –
with a critical mindset and apply them in the context of your own
business, team and solution.

1.3. Definitions
Module
A Module is a conceptual grouping of assets which relates to a
business requirement. The conventions, processes and tools
described in this document relate to managing all these assets in a
module-centric – and thereby business centric – way. For example,
when the company asks that their Sitecore solution contains website
search, all assets, business logic and configuration relating to search
belongs to the Search module.

Solution
Technically often refers to Visual Studio solution, but conceptually, it
can also refer to an implementation. For example, Michael is a
developer at his company. Most of his time is spent working in the
Visual Studio solution that contains the code that powers his
company’s Sitecore solution.

Project
In technical terms, project often refers to Visual Studio project, but
conceptually can also to the process of implementing the business
requirements into an implementation. For example, Michael is a
developer at his company. Most of his time is spent working in one of
the five Visual Studio projects that contain the code that powers his
company’s Sitecore solution. He is starting on a new implementation,
which is a project that will result in new features being added to his
company’s website.

Serialization
The process of writing data in the Sitecore databases to disk so that it

can maintained in version control and packaged into deployments
across environments.

Assets
Technically an Asset refers to a digital asset such as images, but can
also mean the actual output from any process or task in your entire
application lifecycle: code, files, visual design, data, content,
configuration changes, deployment packages etc.

Dictionary
A collection of named text snippets which can be translated across
languages and used in the UX, for example on websites, Sitecore
tools, e-mails, etc.

Tenant
A product owner of one or more sites in a Sitecore implementation.
Sitecore allows multiple tenants to share a single implementation,
which allows certain resources to be shared (such as templates and
digital assets), while allowing other resources (such as sites and other
business entities) to be defined and managed independently
(see Multi-site and multi-tenant).

Site
A collection of content and output with a common overall business
objective, and sharing a common set of assets. A site can output
content to any channel, not necessarily as a website to the web
channel. In Sitecore, technically a site is a context under which
content is output, i.e. which assets the business logic can access.

Website

A website is a site that can output content to the web channel. See
Site.

Implementation
An implementation, or customer implementation, is the total number of
modules, features and functionalities developed and deployed to solve
the customer business problem. Also often referred to as the solution.

2. Patterns, Principles and Conventions
Helix describes the overall architecture of your Sitecore solution and
thus communicates some guidelines and conventions which should be
durable and flexible enough to be applied to any Sitecore project or
business. The architecture pattern described by Helix is often referred
to as Component-based Architecture or Modular Architecture.

Modular architecture provides you with a framework to optimize and
increase productivity by describing how to isolate domain logic to
make the whole solution or implementation more manageable.
Modular architecture is therefore in its foundation a way of making
sure that the resulting solution is flexible enough for whatever change
might be coming. There are many great benefits to modular
architecture such as reusability and rapid development, but the core
motivators behind the conventions are simplicity, flexibility and
extensibility in the implementation.

Keep in mind though, that the principles behind modular architecture
will not ensure you remain within the conventions or confines of said
principles. This is defined by the methodology on which you apply the
architecture and even the specific tools you use to build the final
solution.

Habitat Example

The Habitat example implementation is not meant to dictate the
specific methods or tools to use in your Sitecore project but should
rather be an example of how the architectural design pattern, namely
modular architecture, can be implemented including a methodology
and a set of tools to support it.

You should always consciously select the tools and methods which fit
the scenario, your development team and your business.

https://en.wikipedia.org/wiki/Component-based_software_engineering

2.1. Architecture Principles
The architecture principles and conventions defined in Helix focus
largely on macro architecture, i.e. how the complete solution is put
together for maximum productivity, quality and longevity. This is not to
say that lower level architecture and principles – class design, code
structure, naming conventions etc. – are not important, but these
principles are often more focused on general developer practices and
less related to Sitecore.

There are three main topics important to Helix and modular
architecture:

Dependencies
which describe how feature and functionality in the solution relate to
each other.

Layers
which control the direction of dependencies and thereby assure a
manageable solution.

Modules
which define the isolation of features and functionality leading to
greater discoverability and simplicity in the development process.

Figure: Logical architecture of Helix

2.1.1. Dependencies
Controlling dependencies throughout a solution is critical to software
development in any shape or form. This is both important in the micro
architecture – how you break down functionality into methods,
classes, class inheritance etc. – but equally so in macro architecture –
how you define the overall features of the solution and how these
features are coupled.

One of the fundamental principles of object-oriented programming is
High Cohesion and Low Coupling. High cohesion relies on breaking
the solution down into the right parts with logic that belong together –
in Helix referred to as modules – and low coupling relies on keeping
the number of dependencies between the different parts down to the
absolute minimum.

Figure: Uncontrolled Dependencies, High Coupling

A solution where dependencies are not controlled and with high

coupling between the various parts (maybe even to a degree where
there are no tangible parts of the solution) very quickly becomes
unmanageable and general stability is affected because changes
cannot be made without affecting many parts of the solution. This
decrease in productivity resulting from the lack of architectural focus is
often referred to as technical debt.

With an increase in functionality, the interconnection between modules
becomes so high that productivity slowly grinds to a halt. The effort is
spent on maintaining the relationships between features, testing and
stabilising the solution as opposed to developing new functionality.

Figure: Effort wasted on High Coupling

If a more structured approach to coupling is taken, as described in
Helix, the number of dependencies between features is reduced
dramatically. And by reducing the number of dependencies and also
making them apparent and obvious, the developers will know exactly
what effects any change will have on the wider solution, greatly
reducing the effort spent on stability and testing. Also, by isolating
features, with defined interfaces and clear dependencies, the internal
workings of the individual modules become less of an impediment, as
developers can focus exclusively on the business feature they are
addressing, thus greatly increasing flexibility of the solution and
productivity of the team.

Figure: Controlled Dependencies, Low Coupling

2.1.1.1. Types of dependencies

In software, dependencies can either be explicit or implicit. Examples
of explicit dependencies are the keyword using in C#, and a reference
in one assembly to another. Examples of implicit dependencies are a
class string in the HTML mark-up, references to Sitecore fields by
name or reliance on specific technology behaviours in one module
without explicitly referencing the module or exposing this behaviour in
the interface of the module.

It is very important to stress that conceptually, as well as practically,
all dependencies between modules count. In a Sitecore context this
includes not only references between C# classes and .NET
assemblies, but also references from code to Sitecore templates and
fields, references between templates, references from templates to
renderings, references from HTML mark-up to CSS and so on.
Therefore, when working in a modular architecture environment with
Sitecore, make sure you constantly keep an eye out for loose coupling
or implicit dependencies, and actively ensure dependencies are as

explicit as possible.

2.1.2. Layers
The layer concept in Helix supports the architecture by making the
dependency flow completely clear everywhere in the solution, in
Sitecore, in Visual Studio and even in the file system. Furthermore,
the layers provide a structure that is extremely suitable for creating
and maintaining solutions of any size and steers both new and
experienced developers to producing more maintenance-friendly and
clean code.

Note that the layers in Modular Architecture are not equivalent to the
layers seen in 3/n-tiers architecture even though they bear
resemblance in terms of dependency direction.

Even though layers are a conceptual construct in the architecture,
layers are physically described in the implementation by folders in the
filesystem, Visual Studio and Sitecore, along with namespaces in
code and layers defines in which direction modules can depend on
other modules.

Layers helps control the direction of dependencies – the importance of
which is described by the Stable Dependencies Principle or SDP,
which is one of the cornerstone principles in Modular Architecture:

Note

Stable Dependency Principle

The dependencies between packages should be in the direction of the
stability of the packages. A package should only depend upon
packages that are more stable than it is.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

This principle tells us that a module should only depend on a module

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

that is more stable than itself. Code stability is a way of expressing
how likely it is that the code in a module and its interfaces will change.
Stability is important since if you depend on a module that changes,
then these changes could affect all the dependent modules as well.

If dependencies are not controlled, then you can end up in a situation
where a change will unintentionally affect seemingly unrelated parts of
the solution – in effect, an unstable codebase - and an unstable code-
base will make your solution hard or impossible to maintain over time.

The Sitecore Architecture Conventions defines three layers: Project,
Feature and Foundation. Each layer have a very clearly defined
purpose. In order to structure your Sitecore implementation properly, it
is important to understand the principles behind each of these.

Figure: Layers in the Sitecore Architecture Conventions

Practically speaking, the three layers are defined in Visual Studio as
Solution folders, in the file system and directories and in Sitecore as
corresponding content type folders.

These are the typical places where layer folders are defined in
Sitecore:

Master:/sitecore/system/Settings/[Project|Feature|Foundation]

Master:/sitecore/templates/[Project|Feature|Foundation]
Master:/sitecore/templates/branches/[Project|Feature|Foundation]
Master:/sitecore/layout/renderings/[Project|Feature|Foundation]
Master:/sitecore/layout/layouts/[Project|Feature|Foundation]
Master:/sitecore/layout/placeholder
settings/[Project|Feature|Foundation]
Master:/sitecore/layout/models/[Project|Feature|Foundation]
Core:/sitecore/templates/[Project|Feature|Foundation]

Habitat Example

In Habitat the Sitecore root folders for the layers – as described above
- are managed by the Sitecore.Foundation.Serialization project, as this
project is the foundation for Sitecore content serialization in the
solution. (See Managing items in development)

In Visual Studio, the layers are defined as solution folders:

Figure: Layer Solution Folders in Visual Studio

On disk, the layers are defined as folders under /src:

Figure: Layer folders under /src on disk

Example of layer folders in Sitecore under Templates and Layouts:

Figure: Layer folders under /sitecore/templates in Sitecore

Figure: Layer folders under /sitecore/layout/renderings in Sitecore

2.1.2.1. Project Layer

The Project layer provides the context of the solution. This means the
actual cohesive website or channel output from the implementation,
such as the page types, layout and graphical design. It is on this layer
that all the features of the solution are stitched together into a
cohesive solution that fits the requirements.

Each time there is a change in a feature, a new one is added or one is
removed, then this layer will typically change. The layer also brings
together the concrete graphical design of the solution, which means
that in terms of the Stable Dependencies Principle, the modules in this
layer are unstable. The most unstable modules in your solution and
thus, remembering the Stable Dependency Principle, should have the
fewest dependencies on it.

The Project layer is typically small and contains few modules, often
determined by the number of tenants in the solution and their needs
(see Multi-site and multi-tenant).

Typically, in a single tenant solution there will only be a single module,
namely the specific website or requirements that fits the needs of the
tenant, and this will contain little or no pre-compiled code but instead
consist of mark-up, styling, layout and templates of the item types in
Sitecore which the editors can create (see Template types).

Habitat Example

In Habitat there are two modules in the Project layer: Habitat and
Common. Habitat represents the actual Habitat website or channel
output, and therefore connects the features and page layouts in a way
that fits the requirements for this website. The Common module paves
the way for a multi-tenant implementation by defining some of the
shared templates and settings between tenants.

Project layer modules can also be used to expose one feature’s
functionality to another without having to directly make one Feature
module dependant on another, for example through the inversion of
control or pipeline patterns. However, be careful not to implement
actual feature-specific business logic in the Project layer in this
process.

2.1.2.2. Feature Layer

The Feature layer contains concrete features of the solution as
understood by the business owners and editors of the solution, for
example news, articles, promotions, website search, etc.

The features are expressed as seen in the business domain of the
solution and not by technology, which means that the responsibility of
a Feature layer module is defined by the intent of the module as seen
by a business user and not by the underlying technology. Therefore
the module’s responsibility and naming should never be decided by
specific technologies but rather by the module’s business value or
business responsibility.

Each Feature layer module has to strictly conform to the Common
Closure Principle.

Note

Common Closure Principle

Classes that change together are packaged together.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

This principle ensures that changes in one feature do not cause
changes anywhere else, and that features can be added, modified and
removed without impacting other features. For example, in a Sitecore
context, it is important that all Sitecore items – such as the interface
templates and rendering items – are managed, versioned and
packaged with the views and code files of the feature. This can be
done by serialization (see Managing items in development). Likewise,
changes to configuration files (web.config or Sitecore .config include
files) must be managed as part of the feature module (see
Configuration and settings).

A strict awareness of dependencies within the Feature layer is very
important. One Feature module must never depend on another

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Feature module as this certainly makes you lose many of the benefits
that that Modular Architecture provides, such as the overall flexibility
and reliability of the solution. This principle can sometimes be
challenging as functionality in some features often rely on data from
other features and you will have to rely on architectural patterns to get
around this. For example, website search will rely on data from other
modules as part of the indexing and search results rendering. To get
around this a typical approach would be to add the concept of
indexing and rendering search results to a foundation level module
(see Layers) which the Search feature module then utilises. Other
modules can then offer their content to search by plug into the
indexing and rendering functionality in the Foundation module –
through for example an inversion of control pattern.

Note that although several modules in the Feature layer can be
grouped together semantically (see Modules) this only suggests a
conceptual coherence between modules – not in any way a technical
dependency.

2.1.2.3. Foundation Layer

The lowest level layer in Helix is the Foundation layer, which as the
name suggests forms the foundation of your solution. When a change
occurs in one of these modules it can impact many other modules in
the solution. This mean that these modules should be the most stable
in your solution in term of the Stable Dependencies Principle.

Conceptually, it is helpful to think of all the frameworks and software
you rely on in your solution as foundation modules. This includes the
Sitecore platform, .NET and other technology frameworks such as
Bootstrap, Foundation, jQuery etc. In the context of your
implementation, these are typically very stable modules but when they
do change, it often requires a more rigorous testing process and
potentially a lot of changes to your Feature and Project layer modules.
By controlling dependencies even to these frameworks, you can

greatly decrease the time needed on technology upgrades and
increase the stability of the solution.

Habitat Example

In the Habitat example, the Sitecore.Foundation.Theming module
implements most of the CSS stylesheets for the Habitat website. This
might be seen as a very Project layer specific functionality but on
close inspection, you will notice that the CSS of the module merely
pulls in, wraps and extends the standard Bootstrap framework, and
thus exposes an implementation specific design framework for all
Feature modules to use. Any website or page specific CSS additions
can be added in the Project layer modules – just as you would if you
are styling on top of standard Bootstrap, Foundation or other frontend
frameworks.

CSS is the single most common cause for implicit dependencies
between modules, so be sure to have a strategy for how to deal with
the graphical design implementation in your Helix compliant solution
(see Visual Design and Theming).

Typically, modules in the Foundation layer are either business-logic
specific extensions on the technology frameworks used in the
implementation, or shared functionality between feature modules that
is abstracted out into separate frameworks.

Typically, modules in the Foundation layer are conceptually abstract
and do not contain presentation in the form of renderings or views - as
these are to be considered concrete. Some framework modules might
still contain mark-up in code though, examples being precompiled
web-controls and html helper functions, but in order to control
dependencies, any Feature or Project specific knowledge should be
passed as parameters from the depending module.

Habitat Example

The Sitecore.Foundation.Indexing module in Habitat allows all Feature
modules, and their content types, to participate in the search
functionality of the solution. This means that a new Feature layer
module can be exposed through the search pages of the websites by
simply implementing the interface or configuration defined in the
Foundation layer module – and without the Sitecore.Feature.Search
module knowing anything about the new module or its content.

Unlike the Feature layer, there is no strict convention on
dependencies between modules in the Foundation layer. This means
that one Foundation layer module can depend on another Foundation
layer module in the solution – as long as they rely on the basic
principles on component architecture such as the Acyclic
Dependencies Principle and the Stable Abstractions Principle:

Note

Acyclic Dependencies Principle

The dependency graph of packages must have no cycles.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Note

Stable Abstractions Principle

Abstractness increases with stability.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

2.1.3. Modules
The concept of modules in Helix is derived from the concept of
components in Component-based Architecture, which is described in
the book Agile Software Development by Robert C. Martin. However,
in the Sitecore context the word “component” might be confusing as it
often refers to an element of a page – a rendering – and therefore a
more generally accepted term module is used.

Keep in mind that in Helix, modules are business-centric. This means
that they should relate to business objectives and group together
multiple technology entities that refer to this objective. This principle
goes against many traditional software conventions - such as the ones
dictated by MVC (models, controllers and views) or even Sitecore
(templates, layouts, settings) - that define grouping based on their
type, rather than their business objective.

For this reason, the breakdown and naming of modules can be one of
the most challenging parts of adopting Helix. Developers are often
caught by the type-centric nature of many development tools or
methodologies and forget about the business- or feature-centric
nature of modular architecture. Be careful not to fall in this trap and
always keep the Common Closure Principle in mind.

Note

Common Closure Principle

Classes that change together are packaged together.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Never be too afraid or cautious of having modules with very little logic
or modules with just a single technology. There might be management
issues with having a large number of modules, but these challenges

http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

can often be overcome by breaking the implementation into multiple
Visual Studio solutions or with DevOps and automation. The Single
Responsibility Principle should always have higher priority than any
management or tools related issues – if you deviate from this, it will
start to devalue your clean architecture and potentially lead to the
technical debt you are trying to avoid.

The name of a module should reflect the business requirement or the
use case of the feature – never the technology or implementation –
and should always be in the domain language. (See Domain
language).

Habitat Example

These are examples of modules in the Habitat example site:

Feature/Accounts
This feature handles everything involving user accounts: login,
registration, xDB integration, user profiles, etc.
Feature/Navigation
All elements of navigation on the website are handled by this module.
This includes: primary and secondary menus, breadcrumbs and link
lists.
Feature/Social
The Social feature enables Twitter feeds on the pages as well as
allows the editor to add Facebook metadata to the website pages.
Foundation/Indexing
This Foundation layer module provides an abstraction layer on the
search functionality of Sitecore and allows features both to search
within the data they provide and to integrate into the site-wide search.

2.1.3.1. Groups

Modules can be conceptually grouped together for better

maintainability, readability or structure, for example commerce related
features and foundation modules can be grouped together to
distinguish them from the standard website features. However, this
kind of grouping does not override any of the other conventions. Nor
does it introduce new architectural layers to do things such as enable
references across feature modules. This kind of grouping exists solely
for readability or discoverability purposes.

Figure: Modules, Layers and Groups

2.1.4. Domain language
Terminology and naming is one of the hardest things to get right in
software development – and one of the biggest sources of confusion
and inefficiency.

Remember that the true users of the code you are writing are never
the developers or technical project members. The true users are the
business users, editors, administrators or visitors. Therefore,
establishing a common domain language between the developers and
business users should be a top priority in any project. Likewise, once
a domain language has been established, it is imperative that the
terminology be ubiquitous. What is even worse and more confusing
than using the wrong terminology is using multiple terminologies at
once.

Habitat Example

In Habitat Teaser refers to a rendering which can be used across
different page types to highlight another type of content, for example
News Teaser (highlighting and linking to a news article) or Person
Teaser (relating a person to the content and linking to the person’s
page or contact details). This concept is often known as or referred to
as Spots, Promotions or just Promos. Choosing the term which the
end users are familiar with can make the learning curve flatter and
drive an easier adoption.

Also be cautious that terminology can be ambiguous between
domains, for example the marketing and technology domain, and a
specific technical tool can define a business domain term in another
way than the common or individual company understanding. For
example, the Sitecore Experience Platform uses the terms campaign
and template in very particular ways – and is often in conflict with the
common understanding in the marketing domain.

A close attention to terminology always increases productivity.

2.2. Visual Studio
A single Sitecore implementation can end up consisting of a large
number of modules and this can lead to technical management
issues.

Good rules of thumb are that your architecture should always have
higher priority than any tools or technology related issues and only
with sincere thought should you deviate from your conventions.
Deviations or exceptions will most often lead to technical debt and
instability or lack of flexibility. Management and development
problems, such as slow development environments or complex
deployment procedure etc. – especially with the pressure and stress
of performance and deliveries - will lead to deviations from
architectural principles and therefore to technical debt.

In large scale implementations, it is therefore often helpful to break
down your implementation into multiple Visual Studio Solutions – each
with a logical grouping, for example independent Foundation modules,
cross-project or reusable modules or feature groupings such as Basic
Website or Commerce features.

In this context, though, it is important to stress that each architectural
module, for example the Navigation Feature module, most often will
consists of a number of different technologies and tools used for the
feature and can therefore be represented by different Visual Studio
projects of different types (for example the main code assembly, unit
tests, item serialization projects etc.) – but which should always be
managed together in one Visual Studio solution. Avoid grouping Visual
Studio project together by technology or type.

2.2.1. Implementation structure
A Visual Studio (VS) solution is the manifested grouping of one or
more architectural modules, and can represent many different types of
groupings. One VS solution could represent an entire Sitecore
implementation, with all Project, Foundation and Feature layer
modules managed together, while another Sitecore implementation
could span multiple VS solutions, with one VS solution grouping
together the feature modules for commerce, another VS solution
housing the regular website features and with the Project layer
modules in additional VS solutions per tenant.

How a customer implementation is structured between Visual Studio
solutions is entirely up the requirements, complexity and logical
architecture of the specific customer implementation. Be aware that a
Visual Studio Solution should logically group together conceptual
modules – not VS projects – and therefore all Visual Studio projects
belonging to a logical module should be managed together in one VS
solution.

Habitat Example

Internally in Sitecore Habitat is used as the foundation for many
Sitecore demos, each focused on demoing specific business
scenarios, such lead nurturing, campaign management and portals,
and how these are handled by the Sitecore products range, such as
the Sitecore Experience Platform, Sitecore Print Experience Manager
or Sitecore Commerce. The Habitat demo framework is therefore
maintained within its own Visual Studio solution (and version control
repository) and each demo scenario – with any specific scenario
features - is maintained in its own solution.

Figure: Habitat Visual Studio Solution

2.2.2. Solution structure
For maximum discoverability, the structure of the Visual Studio
solution must represent the layer and module structure, i.e. have
solution folders for Project, Feature and Foundation layers and
separate solution folders for each module. If there are any additional
grouping of modules, these can have their own solution folders.

The VS solution can have other solution folders (beyond Project,
Feature and Foundation) in the root of the solution, to increase
discoverability for specific files. However, these folders will never
represent new layers and must not contain any module projects.

Habitat Example

Figure: Habitat solution with feature and foundation modules

Figure: Demo solution with specific feature and foundation modules

Figure: Simple demo solution without feature or foundation modules

2.2.3. Projects
A Visual Studio solution can host a number of different project types,
such as Web Application projects, unit test projects, Team
Development for Sitecore (TDS) projects, behavioural testing projects,
Xamarin projects, etc., but modules are always grouped by their
logical connection to a module – and never by type.

Projects are grouped together in a solution by the layer and module to
which they belong.

Habitat Example

Figure: Project grouping. Please note that even though the SpecFlow
(see Integration, Acceptance or other automated testing methods)
projects might test the individual features, they are grouped with the
Sitecore.Habitat project because they depend on the entire running
website, and therefore the Sitecore.Habitat module.

A project, and assembly, should be named in a namespace-like
fashion with:

The overall customer, partner or solution name
The layer (optional for project layer modules)
The logical module grouping (optionally)

The module name
The logical function of the project
For example, the following VS project contains the unit tests for the
commerce orders feature module:

Sitecore.Feature.Commerce.Orders.Tests

2.3. File and Disk Structure
A single customer implementation can consist of multiple solutions
that are all managed as free standing solutions with references
between them.

2.3.1. Solution structure
A single solution has a fixed folder structure on disk:

/ // Solution root folder, contains the Visual Studio solution and other solution manifest or configuration files
 /src // The root of the solution source (always *src*)
 /[Feature|Foundation|Project] // Layer folder (ONLY *Project* or *Foundation* or *Feature*)
 /[Module Group] // Optional logical grouping of modules
 /[Module Name] // Module folder
 /[…] // Other global solution folders, for example external references/modules or build and deployment scripts

2.3.2. Module structure
Each module has the following structure:

/…
 /[Module Name] // Module root folder, named after the module (without prefixes)
 /code // Houses the main code for the module, for example the Visual Studio project with the module business logic or views.
 /serialization // Contains the serialized data from Sitecore, for example templates, content or security data
 /tests // Unit or other test types for the module

Habitat Example

Figure: Solution and module structure on disk

2.4. Managing Sitecore Items
Just as files and Visual Studio projects are a part of our Sitecore
implementation, so are Sitecore items.

2.4.1. Item types
The items in your Sitecore databases can be split, for management
and governance purposes, into two main categories: Content Items
and Definition Items. The categorization determines the process in the
application lifecycle that “owns” the creation and management of the
items, as well as in which direction the items flow: from development,
through to test, through to production – or the opposite.

Although it is not always 100% possible in practice, the better you can
clearly split the Sitecore items in your implementation into these
categories, the easier it will be to manage your implementation
through development, integration and deployment - as well as new
features and upgrades.

2.4.1.1. Definition items

Definition items are items that typically define the configuration or
structure of the implementation or which contain metadata for assets
in the solutions. These items are owned, i.e. created and managed, in
the development environment and moved as part of versioned
deployments from development to test to production.

Think for example of a View Rendering in Sitecore, which consists of a
Razor view file (.cshtml) and an item somewhere under
/sitecore/layout/renderings . Both these pieces together make up the

View Rendering in Sitecore, and they should be managed and
versioned together in the development process. If the filename of the
view file changes, the filename in the Sitecore item needs to change –
and these two pieces need to be deployed in a versioned and
consistent process through from development to test to production.
The item itself should never be changed by editors in production (just
as the .cshtml file should never be changed in production), as the next
deployment might overwrite the production change. The View

Rendering item in Sitecore is a therefore a Definition item.

These item types are typically Definition items:

Layout and Rendering items
Template and Field items
Placeholder setting items
Custom field types
Lookup items for settings
All items in the Core database

Habitat Example

Note how in the Habitat example sites, all Feature and Foundation
modules almost exclusively contain Definition Items. This means that
when developing or extending modules developers can know that the
items are managed in the development environment and deployed
along with their business logic as a part of new versions.

The Project layer modules on the other hand consist of a majority of
Content items, which are managed by editors.

2.4.1.2. Content items

Content Items are items which are managed by the editors on the
website and contain content that is output on the sites or channels of
the website, or that are part of shaping the specific user experience of
the pages. Content Items are owned by the production environment,
i.e. the editors and administrators.

An example of a Content Item is a site home page item. Although this
item is often created very early in the initial development process and
deployed into production on the first deploy, the item itself is owned by
the production environment and should never be overwritten by an

item coming from the development or test environments. On the other
hand, it could be very useful to get a snapshot of the Home Page from
production back into the test or even development environments for
realistic testing purposes.

Even if Content Items are owned by the production environment,
sometimes the business logic will have to know about the specifics of
these items, for example their location or type, or the development
process might need to change specific data in them – for example, if
business logic introduces new settings or fields in a template that
require initial values in the content of the sites. Therefore, Content
Items can be split into two sub-categories: items that are created in
development and deployed once into production, and items that are
created and managed in production.

2.4.2. Managing items in development
Since Definition Items and some Content Items in Sitecore are created
and managed in the development environment and, given the
Common Closure Principle (“what changes together should live
together”), we need not only to make it obvious which items in
Sitecore belong to which modules, but also to manage and version the
items alongside the code in these modules.

2.4.2.1. Associating items with modules

Now, for connecting items with modules in Sitecore, we use a basic
convention-based approach, where Definition Items are placed in
folders according to which the layers and module they belong to. This
applies to the items that belong to the typical configuration areas in
Sitecore such as:

/sitecore/templates/[Project|Feature|Foundation]/[Module]
/sitecore/system/Settings/[Project|Feature|Foundation]/[Module]
/sitecore/layout/renderings/[Project|Feature|Foundation]/[Module]
/sitecore/layout/layouts/[Project|Feature|Foundation]/[Module]
/sitecore/layout/placeholder
settings/[Project|Feature|Foundation]/[Module]
/sitecore/layout/models/[Project|Feature|Foundation]/[Module]

Habitat Example

Figure: Rendering items in the Feature/Accounts module

Figure: Template items in the Feature/Accounts module

2.4.2.2. Versioning items in modules

Managing the Definition Items along with the business logic that uses
them poses a technical challenge, as the items are physically stored in
the Sitecore SQL databases while the business logic in code files are
stored on disk. For this challenge, the Sitecore concept of serialization
comes in handy.

Serialization allows items in the databases (typically in the Master and
Core database) to be written to disk in a text-based format and
subsequently restored into a database.

The Helix conventions define that serialized items should be versioned
as part of the owning module, next to the code and project files. Place
the serialized items on disk in a subfolder beneath the module:

/src/[Foundation|Feature|Project]/[Module]/serialization

Sitecore supports serialization through the developer toolbar in the
Content Editor, but this mechanism will by default serialize items to a
single location on disk – and it therefore not directly compliant with the
Helix modular architecture. Serialization is also supported through the
package generation tools.

Both these approaches are very manual in nature, and can be
inefficient to use with the Helix methodology. It is therefore
recommended to look into the third party tools available for item
serialization, for example Team Development for Sitecore or Unicorn.

Habitat Example

The default repository for the Habitat example site uses Unicorn for
serialization. The Foundation/Serialization module imports the
required NuGet packages and configures the module for the other
modules in the implementation. Each module then subsequently
configures Unicorn to serialize the relevant items into the /serialization
subfolder for the module. Please refer to the Unicorn documentation
for more information on using Unicorn.

http://www.teamdevelopmentforsitecore.com/
https://github.com/kamsar/Unicorn

Figure: Serialized items for the Feature/Navigation module

The following shows the Unicorn configuration for the
Feature/Navigation module of Habitat

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">
<sitecore>
 <unicorn>
 <configurations>
 <configuration name="Feature.Navigation" description="Feature Navigation"
 <targetDataStore physicalRootPath="$(sourceFolder)\feature\navigation\serialization"
 <predicate type="Unicorn.Predicates.SerializationPresetPredicate, Unicorn"
 <include name="Feature.Navigation.Templates" database="master"

 <include name="Feature.Navigation.Renderings" database="master"
 </predicate>
 <roleDataStore type="Unicorn.Roles.Data.ReverseHierarchyRoleDataStore, Unicorn.Roles"
 <rolePredicate type="Unicorn.Roles.RolePredicates.ConfigurationRolePredicate, Unicorn.Roles"
 <include domain="modules" pattern="^Feature Navigation .*$" />
 </rolePredicate>
 </configuration>
 </configurations>
 </unicorn>
</sitecore>
</configuration>

Habitat Example

Hedgehog Development, the company behind Team Development for
Sitecore (TDS), maintains a separate branch for TDS and Habitat.
Please refer to this branch, TDS documentation and support for more
information on using Helix and Habitat with TDS.
https://github.com/HedgehogDevelopment/Habitat/tree/TDS.

https://github.com/HedgehogDevelopment/Habitat/tree/TDS

Figure: The Feature/Navigation module using Team Development for
Sitecore

2.4.3. Deploying items
Even though the details of integrating and deploying your
implementation can be very specific to the business requirements,
there are general recommendations to integrating and deploying your
items through development to production environments (see
Deployment).

Just as it is recommended to version and manage items and business
logic together in your development process, it is also highly
recommended to deploy business logic and items together in your
deployment process.

Given the split between Definition and Content Items, the deployment
process can continuously deploy all Definition Items as part of a new
version of your implementation. Having this strict approach will help
assure that the ownership of Definition Items lies in the development
process and that no occasional changes are made in production or
test environments.

Note that the modularity of Helix is in no way meant as a general
modular approach to deploying and running Sitecore in production.
Even if you version and maintain modules separately in the
development process, your entire implementation should be integrated
and deployed in a single versioned process (See Build and
integration).

Habitat Example

Given the nature of the Habitat example site, all Content and
Definition Items are versioned and managed in the development
process and integrated and deployed as a single package. This is not
possible in a real life scenario where content items are managed in
production.

Tools such as Team Development for Sitecore can help automate and
secure the deployment of all Sitecore items – even Content items –
through the environments.

http://www.teamdevelopmentforsitecore.com/

2.5. Templates
Items and fields in Sitecore are used for a number of purposes, the
most obvious being to hold content which is presented on the
channels and structuring the information architecture for the sites. But
items can also be used for other purposes such as configuring the
business logic in features or structure the content in with an
organisational focus to make maintenance easier. The use of items -
and thereby the template on which they are based – helps determines
the governance model around them.

Fundamentally it is important that the data structures – i.e. templates
and fields - needed by modules are owned by the module itself, as this
makes it possible to separate the different modules and the
implementation and the logic in them. On the other hand, templates in
Sitecore are also the integration point of the pages and sites in
Sitecore, bringing together content and presentation into pages and
the business information architecture.

The template inheritance technique in Sitecore is instrumental in
allowing this separation of concerns in modules: To allow page types
to derive from the features required and to allow individual renderings
to reference items deriving from the features needed by the
renderings. A correct template structure allows this separation while
still allowing the content structure and management of the content to
be designed with the focus of the owning organisation or specific use
case, i.e. with focus on organisation structure, security, languages,
etc.

2.5.1. Structure
Given the type-centric nature of Sitecore, templates are all maintained
under /sitecore/templates in the Sitecore content tree, but
implementation specific templates are maintained as part of a module.
Specifically, in the following structure:

/sitecore/templates/[Project|Feature|Foundation]/[module]

where module is the short name of the module, i.e. without prefixes.

Habitat Example

Figure: Module specific template folders in Habitat

Since the root layer folders (Project/Feature/Foundation) are not a
native part of Sitecore, these folders are created by the
Foundation/Serialization module.

2.5.2. Inheritance
In Helix, think of template inheritance as interfaces on an item which
exposes a certain set of data to the business logic. This makes it
possible for a multiple modules and business logic to share items and
content, but simple look at the interface of the item which they
understand.

The architecture does not have the concept of a single common base
template across all templates – which is a practice that is commonly
discouraged as it will often lead to bloated items with unnecessary
fields.

Any business logic or views which uses content on an item should
therefore only reference the base template of the item – by using a is
operator approach (for example by using the
Item.Template.InheritsFrom) – which allows for much less coupled
feature modules and a freer content architecture.

Figure: Template inheritance

This figure shows how the architecture allows business and
presentation logic, i.e. renderings, and other logic to recognize the
templates and fields they require while at the same time allowing
pages and page types to be designed with the specific presentation
and organisational governance model in mind. In other words,
renderings and business logic can be written with sole focus on the
domain of the specific feature and oblivious to the other features or
logic in the implementation.

2.5.3. Template types
Now, to separate the purposes of the templates in the solution, we
need to define a number of different logical template types. These
templates types are not represented as such in Sitecore but rather
differentiated by the naming, where they are defined and how they are
used in the system.

Interface template
Defines an interface for solution logic to work against, for example by
defining the fields that are used by a module’s logic or by simply being
a template in the template inheritance hierarchy of an item. Can also
be referred to as a base template.

Page type template
Makes up the pages of the website. Derives from interface templates
and has a presentation layout.

Datasource template
Items from this template are referenced by renderings as a
datasource. Derives from interface templates but has no associated
layout.

Settings template
Used for lookup items for fields or to hold fields to configure the
business logic in modules.

Folder templates
These templates are used for the folder items that make up the
scaffolding of the content structure.

Template Type Can have a page
layout?

Exists in which layers

Interface template No Feature or Foundation
Page type template Yes Project
Datasource template No Project
Settings template No Feature or Foundation
Folder templates No All

2.5.3.1. Interface templates

Interface Templates are maintained in the Feature and Foundation
modules and form the base of the content for the solution. They are
never instantiated but are solely used as base templates for Page
Type Templates or Data Source templates. The primary reason for
this is that page items require a layout definition, and a layout
definition inherently contains references to renderings in other
features, which means that templates defined in one feature will start
referencing other features, thus breaking the architectural principles,
creating dependencies and ultimately leading to higher coupling and
less flexibility and stability in the solution (see Dependencies).

Interface templates are prefixed with an underscore (_) to signify that
they are interface templates and cannot be instantiated as items.

Interface templates can have an associated Standard Values item –
given that the module in which they are created wants to set universal
standards for the fields. Be aware that this standard value is universal
and will be applied across all inheriting templates, sites and tenants.

Habitat Example

Examples of Interface Templates in Habitat are present in almost all
Feature modules, for example in the Sitecore.Feature.Navigation
module where the _Navigable template makes a page part of the

navigation structure of the site.

Figure: Interface templates in the Navigation Module in Habitat

2.5.3.1.1. Fields

The content fields for business and presentation logic all live in
Interface Templates – never in Page Type templates or Datasource
Templates. Therefore, these content fields live with the logic that use
them (see References from code).

Since fields and templates should always be referred to by ID and not
by name (see References from code), try to be as descriptive and
editor friendly as possible when choosing a field name. Even though
the item used to define a field has a Title field that can be used to

specify an editor-friendly name for the field, it is common that this
configuration option is not used. This means that the actual fieldname
is presented to the editor. Therefore, avoid CamelCasing or
AbbevInFldNames as this is not considered editor friendly – in other
words, always prioritize the editor experience over technical
considerations.

See more about fields and language support in Language and culture
support.

2.5.3.2. Page Type Templates

Because of the flexible nature of the page layout in Sitecore, it can be
challenging to determine how many actual page types a site will
require. Theoretically a site could consist of a single page type, but
with enough flexibility in the layout and datasources to cater for any
type of page or content. This will greatly increase flexibility for the site
editor, but would also require more work when adding simple content
pages such as a news article. Alternately you could also configure a
very elaborate set of page types with all necessary permutations of
content and layouts, thereby making it easy for editors to create and
edit new pages and perhaps also increasing consistency in the overall
look and feel of the website.

Although there is no fixed result, the best option often lies somewhere
in between these two examples. A good rule of thumb is to create
page types based on the maturity and workflow of the editors, the
information architecture of the websites, as well as the main entities of
content. Page Type Templates are mainly used to assert consistency
in the pages, to facilitate management, and to force stringent
information architecture by defining insert options.

For example, it might be beneficial to define page types for the home
pages, sections, campaign landing pages etc. of the website in order
to define and maintain the overall hierarchy of the website. The leaf

nodes of the website will most likely be Article or common Content
Pages, or some of the more specialized News, Event, Product, etc.
pages.

Furthermore, by defining very specialized pages, such as login,
registration, forgot password etc., as actual page types as opposed to
generic service pages, it can make it easier to maintain a consistent
look and feel for these pages with the other page types.

The architecture of Helix makes this kind of flexibility possible by
allowing you to define your page type and datasource structure
independently of the features, and the primary instrument in this
flexibility in template inheritance.

Interface templates and template inheritance in Sitecore can be
compared to multi-class inheritance object-oriented programming,
such as C++. In this type of programming, classes define the data
they need and the business logic to manipulate or present it. Another
class can then derive from multiple classes to inherit multiple
capabilities from them.

In the same manner, a Page Type Template in Sitecore can derive
from multiple Interface Templates to inherit their data and use the
renderings (business logic) in its layout.

Page Type templates are only ever present in the Project layer, as
these are the integration points for the functionality in feature and
foundation modules. Page Type Templates are therefore maintained
in a common folder for a Project, equivalent to a site type. Each page
in a site of the given Project type are instances of a Page Type
template. This is actually very handy as all page types of a site are
maintained in a single location, which can make it easier to manage
site-wide changes to all page types.

Page Type templates typically have standard values that set up the
page type for all sites of the given project.

Page Type templates typically never have fields since there is never
any feature-specific business logic in the project layer that can
leverage these fields. These templates will get their content fields from
the Interface templates from which they derive.

Habitat Example

Figure: Page Type Templates of the Habitat website

2.5.3.3. Datasource template

Datasource templates are similar to Page Type templates in that they

derive from Interface templates for their content. Datasource
templates however do not have any renderings and are therefore used
for items that are not part of the page or navigation structure of the
website.

Like Page Type Templates, Datasource templates live only in the
Project layer and typically do not have fields themselves.

Habitat Example

Because of the multi-site/multi-tenant nature of the Habitat project, the
Datasource templates in Habitat are maintained in the Common
Project layer module. This allows multiple project layer modules and
sites (such as the Habitat site) to use these templates. This does not
however stop a Project layer module from overriding one of the
Common Datasource Templates and adding more or another
functionality to it.

Figure: Datasource Templates in Habitat managed in the
Project.Common module

Given the loose coupling and inheritance structure of the templates,
renderings typically are unaware of whether the context item they are
rendering is a Datasource or Page Type template. This allows the
functionality of feature modules to be used in a wide variety of ways
across Project layer modules.

2.5.3.4. Settings templates

Settings templates can be managed in all business logic modules, for
example Foundation and Feature layer modules, and are for any
configuration settings (global or site-specific) needed by the module.
Unlike Interface Templates, these templates are often not used by
Project Layer modules as base templates, but are instantiated in the
content tree (or under /sitecore/system) directly from the template
defined in the module.

Depending on how dynamic the configuration needs to be, settings
can be single items with predefined template with fields for the
configuration data – or it can be an item structure where each item
under a setting root holds the configuration settings, like key/value
pairs.

To avoid coupling and to encourage greater flexibility, avoid reusing
Settings templates across modules. Each module should define its
own Settings templates and settings structure, even if two modules
use the same technique for settings (for example Key/Value pairs).

Good Helix practice is to store global implementation-wide settings
under /sitecore/system/settings/[Layer], as some settings can be
confusing for the low maturity editor personas - but always carefully
consider the maturity of the user managing the settings before
deciding. For example, /sitecore/system is not generally available to
the average, low maturity, editor and thus settings which are managed
by this persona should be placed as close to the content as possible,
for example under /sitecore/content/settings.

If there are settings that are tenant or site specific, they should be
stored either under a site or tenant related item under
/sitecore/system/settings or directly under the tenant or site in the
content tree.

It is also considered good practice to allow low maturity editors to use
the Experience Editor to manage the entire experience – including
settings. Consider implementing feature specific Experience Editor

extensions to allow for this.

Avoid storing environment specific settings in Sitecore. In order to
move Sitecore content items freely between environments (for
example on deployment to production or when testing with product
data) these settings should reside in for example .config files. If there
is a need for administrators to manage these types of settings,
settings in Sitecore can point to different .config file settings for
example <connectionStrings> or <sitecore><settings>.

Habitat example

Figure: The background type Settings Templates for the Media
Feature module in Habitat

2.5.3.5. Folder templates

Folder templates are the templates that make up the content structure
outside the actual website structure, for example in datasource
repositories, settings, etc.

Avoid using the Folder template provided with Sitecore
(/sitecore/templates/common/folder). Instead, have each module
define its own folder templates. This will allow greater flexibility for
example in insert options and the content structure and provide better
user friendliness, for example, in icons.

Habitat example

Figure: The datasource folder templates defined in the Common
project in Habitat

Figure: The Habitat datasource repository using different folder
templates

2.5.3.6. Rendering parameters templates

In Sitecore, templates used for rendering parameters must derive from
the Standard Rendering Parameters (as opposed to the Standard
Template).

In Helix rendering parameters templates should be prefixed with
ParametersTemplate_ to distinguish them from the other template
types.

2.5.4. References from code
In Sitecore solutions, references to templates and fields are among
the most frequent sources of rogue dependencies across modules
(see Dependencies). Therefore, maintaining tight control over these
dependencies is important in a Sitecore project.

Templates and fields should always be referenced by ID and never by
name. This makes it easier to have editor-friendly names or to change
field names if needed. Furthermore, hardcoded GUIDs tend to stick
out in code and views and therefore makes it easier to detect and
avoid implicit dependencies to templates and fields.

Define constants for a module’s templates in a single struct named
Templates. This struct is located in the root namespace for the
module. This makes it easy to explicitly reference a template in the
business logic or views and makes it easier to discover references to
a template or field. The conventions define this as structs to clearly
signal the Templates type’s unique function as a constants holder
only.

Each Templates struct should have a nested struct for each template
which each contains an ID member and a nested struct, Fields, which
contains all fields in the template.

Habitat Example

The following shows the Templates struct for
Sitecore.Feature.Navigation:

namespace Sitecore.Feature.Navigation
{
 using Sitecore.Data;

 public struct Templates

 {
 public struct NavigationRoot
 {
 public static readonly ID ID = new ID("{F9F4FC05-98D0-4C62-860F-F08AE7F0EE25}"
 }

 public struct Navigable
 {
 public static readonly ID ID = new ID("{A1CBA309-D22B-46D5-80F8-2972C185363F}"

 public struct Fields
 {
 public static readonly ID ShowInNavigation = new ID("{5585A30D-B115-4753-93CE-422C3455DEB2}"
 public static readonly ID NavigationTitle = new ID("{1B483E91-D8C4-4D19-BA03-462074B55936}"
 }
 }

 public struct Link
 {
 public static readonly ID ID = new ID("{A16B74E9-01B8-439C-B44E-42B3FB2EE14B}"

 public struct Fields
 {
 public static readonly ID Link = new ID("{FE71C30E-F07D-4052-8594-C3028CD76E1F}"
 }
 }

 public struct LinkMenuItem
 {
 public static readonly ID ID = new ID("{18BAF6B0-E0D6-4CCE-9184-A4849343E7E4}"

 public struct Fields
 {
 public static readonly ID Icon = new ID("{2C24649E-4460-4114-B026-886CFBE1A96D}"
 public static readonly ID DividerBefore = new ID("{4231CD60-47C1-42AD-B838-0A6F8F1C4CFB}"
 }
 }
 }
}

A templates class should never define constants for templates that are
not created in the module itself. If a module needs to reference a
template or field in another module, it should reference the Templates
struct in that module.

The practice of referencing different fields across modules by their
shared name – an equivalence to duck typing – is discouraged.

Note

Duck Typing

“If it walks like a duck and it quacks like a duck, then it is a duck”

https://en.wikipedia.org/wiki/Duck_typing

An often seen Sitecore example of this is to define that any field
named “Title” is used as the header of the page. The problem of this is
that “Title” might have different connotations for different content
types. For an Article, the title is typical headline of the text – and can
be used as the header for the page, but for a person, the Title is
typically their job title and might not make sense as the header of the
page. If modules need to share data, consider using design patterns
such as providers or pipelines to allow one feature to inject content
into another feature.

Since template inheritance in Sitecore can be compared to class
inheritance object-oriented programming, it is important that, when
querying an item’s template, you not use the equals operator but
rather an is operator.

Habitat Example

The is operator is not native to Sitecore items and templates. Sitecore

https://en.wikipedia.org/wiki/Duck_typing

Habitat introduces the IsDerived extension method for the Item class.
This method is located in the
Sitecore.Foundation.SitecoreExtensions.Extensions.ItemExtensions
class.

2.6. Page layout
The dynamic layout engine of Sitecore is one of most significant
features of the system. When designing the user experience or
information architecture of a Sitecore powered website, this should be
kept in mind.

Many of the unique tools and features in the Sitecore platform, such
as the Experience Editor with built in personalization and MV testing
capabilities, rely on the dynamic layout engine and the definition of
Layouts, Renderings and Placeholders.

The balance between flexibility – allowing the editors to dynamically
construct the pages by placing feature renderings in placeholders –
and consistency – having a coherent visual design and user
experience across pages – needs to be found in all implementations.
Swing too far in one direction and the user experience may be hurt,
swing too far in the other direction and the business might end up with
a rigid and inflexible solution that frustrates users, or lessens the
return of investment by not supporting the full capabilities of the
Sitecore platform.

2.6.1. Layouts and sub layouts
Sitecore Layouts and Sub-layouts are in Helix primarily used to
structure the pages with the outer HTML mark-up.

Avoid statically binding renderings in sub-layouts, but rather bind all
renderings to layouts via layout definitions and placeholders. Static
binding will make the page and solution structure less flexible and
introduces multiple maintenance methodologies. Although you might
end up with longer lists of renderings in your layout definitions, the
centralised Page Type templates (see Template types) and single
layout management methodology will prove more maintainable and
flexible in the long run.

Habitat Example

Figure: Habitat home page layout definition

As layouts and sub-layouts (in MVC defined as View Renderings)
typically control the overall page design and therefore contain very site
or project specific mark-up, they belong in Project layer modules.

Reduce the number of layouts and sub-layouts by dynamically
assembling the pages in layout definitions and controlling assets such
as scripts and CSS on pages using asset management techniques
(see Visual Design and Theming). In some scenarios, for example
when implementing adaptive design using the Devices in Sitecore,
multiple layouts can be required, but in most scenarios a single layout
per site type or project module is sufficient.

Having elastic page layouts, i.e. page layouts that at editing time can
vary in structure, can reduce the need for sub-layouts quite
considerably and should be considered for all projects. Elastic layouts
are typically achieved through the use of dynamic placeholders, i.e.
allowing the number of placeholders of a page to vary and thereby
allowing an editor to construct page variations at will. Note that the
Sitecore Experience Platform does not provide support for dynamic
placeholders out of the box, but there are multiple variations available
as open source or through the Sitecore marketplace, for example
https://marketplace.sitecore.net/en/Modules/I/Integrated_Dynamic_Placeholders.aspx

Habitat Example

The Sitecore Habitat example site contains only a single layout for all
page types – defined in the Habitat Project layer module - and few
sub-layouts needed for consistent headers and footers across pages –
defined in the Common Project layer module.

https://marketplace.sitecore.net/en/Modules/I/Integrated_Dynamic_Placeholders.aspx

Figure: Habitat sub-layouts defined as View Renderings in the
Project/Common module

@using Sitecore.Foundation.Assets
@using Sitecore.Foundation.Assets.Models
@using Sitecore.Foundation.SitecoreExtensions.Extensions
@using Sitecore.Mvc.Analytics.Extensions
@inherits WebViewPage
@{
 Layout = null;
}
<!DOCTYPE html>
<!--[if IE 9]><html lang="en" class="ie9 no-js"><![endif]-->
<!--[if !IE]><!-->
<html lang="@Sitecore.Context.Language.CultureInfo.TwoLetterISOLanguageName">
<!--<![endif]-->
 <head>
 <meta charset="utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">

 <meta content="width=device-width, initial-scale=1.0" name="viewport" />
 @if (!Sitecore.Context.PageMode.IsExperienceEditor)
 {
 @Html.Sitecore().Placeholder("head")
 }
 <!-- Latest compiled and minified JavaScript -->
 @RenderAssetsService.Current.RenderScript(ScriptLocation.Head)
 @RenderAssetsService.Current.RenderStyles()
 @Html.Sitecore().VisitorIdentification()
 </head>
 <body class="header-static @(Sitecore.Context.PageMode.IsNormal ? "" : (Sitecore.Context.PageMode.IsExperienceEditor ? "pagemode-edit" : "pagemode-preview"))">
 <div id="main-container">
 <header class="header-static">
 @Html.Sitecore().Placeholder("header-top")

 @Html.Sitecore().Placeholder("navbar")
 </header>
 <main role="main">
 @Html.Sitecore().Placeholder("page-layout")
 </main>
 <footer>
 @Html.Sitecore().Placeholder("footer")
 </footer>

 @Html.Sitecore().Placeholder("page-sidebar")
 </div>
 @RenderAssetsService.Current.RenderScript(ScriptLocation.Body)
 </body>
</html>

The Habitat example site uses the DynamicPlaceholders.Mvc
package available through NuGet
(https://www.nuget.org/packages/DynamicPlaceholders.Mvc/) to allow
elastic page layouts.

https://www.nuget.org/packages/DynamicPlaceholders.Mvc/

2.6.2. Renderings
Renderings, whether they are Controller or View Renderings typically
belong to the Feature layer modules as they are connected to
business features in the solution.

Only sub-layout style renderings, i.e. view renderings with no business
logic but purely mark-up structure and placeholders, should occur in
the Project layer. Any controller renderings in project modules are
typically an example of business logic creeping into the project layer,
which should always be avoided.

In rare occasions renderings can occur in the Foundation layer,
although this should generally be avoided. Examples could be a
rendering which purely output metadata on the page or is only
executing business logic.

2.6.2.1. Design for simplicity

When designing your business-centric feature modules, keep in mind
that you are designing and implementing for maintainability and
simplicity, not for reusability. This means that you should keep focus
on simplicity in the razor views and avoid advanced configuration
options. In other words, if multiple variations of a view are required,
prioritize the simplicity of creating another view with alternate markup
as opposed to coming up with an elaborate mechanism for a generic
view generating different sets of markups.

For discoverability and simplicity, the naming of view files and the
rendering items in Sitecore should align as much as possible. This
said, the name of the Rendering item in Sitecore should be as editor-
friendly as possible – even if it differs from the actual filename.
Generally, throughout Sitecore you avoid using CamelCasingInNames
or AbbevInNames as it not considered editor friendly – in other words,

in Sitecore always favour the editor experience over the technical
aspects.

Partial views should be prefixed with underscore (_) to separate them
from the views references through Sitecore items or controllers.

Place view rendering files in subfolders under /views named after the
module to which they belong, for example
/views/navigation/menu.cshtml for the Feature layer Navigation
module. In the case of Controller Renderings, follow the standard
ASP.NET MVC conventions for working with razor views and Areas if
these apply to your project.

2.6.3. Datasource settings
Renderings are defined in the feature layer, but they reference
elements in the project layer, such as Page Type Templates,
Datasource Templates and locations within the content tree. These
references can result in dependencies that go the wrong way, or
dependencies that cross features.

When dealing with datasource locations and datasource templates,
Sitecore offers limited help in overcoming these dependencies – and
therefore, to preserve the stringency of the architecture, you will have
to introduce custom logic to overcome this limitation, typically by
introducing a Foundation module (See Layers).

2.6.3.1. Datasource Template

The Datasource Template field in Editing Options section of the
rendering’s item has two functions: it controls which types of items are
allowed as datasource items for the rendering, and it designates the
template used for new items created through the datasource dialog.

The Datasource Template field supports template inheritance. This
means that you can select an item based on the specified template, or
an item based on a template that derives from the specified template.
This is very useful since a rendering in a Feature layer module most
often relies on an Interface Template – which should be defined in the
same Feature layer module (See Template types). The problem is,
however, that Sitecore will use the specified template as the template
for new items created through the Select the Associated Content
dialog. This means that even though Sitecore supports it, you should
not specify an Interface Template in the Datasource Template field, as
you will end up with pages or datasource items based on this template
– which ends up violating the architecture and create dependencies
(see Dependencies).

Figure: Creating new content in the datasource dialog

Unless you plan to disable the opportunity to create new content in the
Associated Content dialog or simply ignore the architectural principles
and specify a Page Type or Datasource Template (see Template
types) in the Datasource Template field, there is no easy solution for
this conundrum. However, Sitecore does allow you to hook in to a
pipeline to resolve the datasource template in context and thus be
smarter around this. See the Habitat Example below.

2.6.3.2. Datasource Locations

The Datasource Location field in the Editor Options section of the
rendering item allows you to specify one or more content locations
from where the editors can select content for the rendering. More
locations can be specified using a piped query: syntax.

The immediate challenge is that locations from which the renderings

draw their content are often defined in the Project layer – by the sites
themselves – and thus specifying the Datasource Location of the
rendering will create a dependency from a feature rendering to a
Project layer module. Furthermore, the challenges with specifying
datasource locations can vary according to the complexity of your
content architecture, for example if you are building a multi-site or
even a multi-tenant solution where a rendering will have different
locations depending of the context in which it is used.

A simple solution to this challenge is for the features themselves to
own the datasource location itself. For example, a feature Teasers
module could point to /sitecore/content/teasers as the datasource
location for all its renderings, thereby forcing all sites to have a shared
teasers repository. This will work perfectly fine for a simple single
site/single tenant solution. But in other scenarios this might be
challenged by the content governance model. Habitat provides an
example.

Habitat Example

The Habitat example site is a true multi-tenant and multi-site solution.
The Habitat project layer module, as well as our internally built product
demonstrations, represent tenants (and sites) that define their own
page types and datasource locations (see Multi-site and multi-tenant).

In order to accommodate this scenario, the datasource location and
template resolution have been extended in the Habitat project. This
means that it is also possible to define datasource templates and
locations for each site, in addition to on the rendering itself. This is
done through an extension of the getRenderingDatasource pipeline
and the addition of a site: prefix to the Datasource Location field. In
short: if the Datasource Location field contains a site: prefix, the
pipeline extension will attempt to lookup the datasource location and
template in a site specific list. This functionality is implemented in the
Foundation.Multisite module.

Figure: Site specific datasource location for a FAQ rendering

Figure: The FAQ site specific datasource settings for Habitat

2.6.4. Rendering parameters
Rendering parameter templates are managed in the same module as
the code that uses them, either in the feature module where the
rendering and controller logic resides or in a foundation level module.
In the latter case a rendering parameters template in a feature module
can derive from one or more rendering parameters templates from
foundation modules and include all parameters in the rendering. If the
rendering parameters template reference any setting items, make sure
that the items along with their templates reside in the same module (or
in a lower layer module) as the parameters template itself.

Please consider carefully what configuration of the rendering belongs
in the datasource or on the context page, as opposed to the rendering
parameters. Rendering parameters are generally considered less
editor friendly than content fields and are often restricted to
administrators, but it is possible through rendering parameters to
preconfigure a number of compatible renderings – which makes the
rendering parameters both accessible and very user friendly.

Consider using Field Editor buttons for managing those hidden fields
in the Experience Editor
(http://www.nonlinearcreations.com/Digital/how-we-
think/articles/2016/03/Sitecore-8-and-8-1-How-to-add-a-Field-Editor-
Button-to-a-component-in-Experience-Editor-Mode.aspx).

Habitat Example

Habitat has many examples of Rendering Parameters applied
throughout the solution, for example, many renderings use the
ParametersTemplate_HasBackground template to render different
background colours and images for the rendering.

Habitat also has an example of a general Field Editor button
(implemented in the Foundation.FieldEditor module) which makes it

http://www.nonlinearcreations.com/Digital/how-we-think/articles/2016/03/Sitecore-8-and-8-1-How-to-add-a-Field-Editor-Button-to-a-component-in-Experience-Editor-Mode.aspx

possible to edit all fields in a datasource item from the Experience
Editor.

2.6.5. Compatible renderings
Compatibility between different renderings are typically defined by
business rules in the solution, such as whether they can share the
same datasource and whether they can be placed in the same
placeholder.

In Helix, compatible renderings are renderings which have identical
datasources (or no datasources) and placed in the same module.
These conventions ensure that there will be no unwanted
dependencies between feature modules from Compatible Renderings
fields.

2.6.6. Placeholders
Placeholders in Sitecore allow the dynamic assembly of page layouts
either by allowing the editors to design specific pages, or by allowing
administrators to create predefined variations of layouts on Page Type
templates (see Template types). Most often, placeholders are
contained in the layouts and sub-layouts in the Project layer modules.
In rare cases renderings in feature or foundation modules can contain
placeholders, for example when dealing with elastic or composite
page components such as tabs, accordions, carousels etc.

The actual conventions for placeholders and placeholder definitions
are very project specific, as they affect the dynamic page layouts
(which renderings can go where on the page) and the visual design of
the pages (how will renderings change appearance based on where
they are placed).

Keep in mind that placeholders are not only used by editors to
dynamically design pages, but also allow developers to create
variations of pages merely by reconfiguring a Page Type template.
Therefore you should favor the dynamic constructing the page layout
with many placeholders and renderings, but ensure that you keep a
consistent visual design and coherent user experience by controlling
the page layout editing with security or by marking placeholders as
non-editable. This practice will greatly increase the flexibility and
simplicity of creating new page types and layouts as it reduces the
need for development.

Habitat Example

Even though the header of the Habitat example site is relatively static
across the page types, it still contains around 10 placeholders - most
of them marked as non-editable and thus only configurable by a
developer. This makes it possible to reconfigure the header and reuse
the renderings in the header for other site variations in a multi-site

scenario or page variations such as campaign landing pages or
commerce check-out pages.

Figure: Example of a header placeholder from Habitat

Define Placeholder definitions in the Project layer modules, as they
will need to reference the renderings from the feature modules. This
also allows multi-tenant scenarios where each tenant defines its own
unique mark-up and site structure.

2.7. Configuration and settings
Configuration and Settings describe the overall configuration of the
Sitecore system, implementation or configuration of specific features
or functionalities. These can take many forms, such as .config files or
data in Sitecore, and can be defined by the installed software such as
Sitecore or 3 party modules or by the business logic in the solution
modules.

rd

2.7.1. Configuration strategy
It is very important to have a strategy for configuration and settings
management, as wrong or missing configuration can not only have a
negative impact on for example the performance and stability of the
running solution, but poor configuration management can also slow
down the productivity of the development team, as aspects such as
deployment and upgrades can be unnecessarily complicated.

We differentiate Configuration from Settings in that Settings are aimed
at the user roles (editor, administrator) and Configuration is aimed at
the developer or IT system administrator roles.

This differentiation makes it significant where and how Settings and
Configurations are managed in the Application Lifecycle. For example,
you should be cautious of having Configurations defined as Sitecore
content, as this can make it harder for developers and IT
administrators to manage during deployment and upgrades, and can
make it difficult to manage environment or server specific values such
as connection strings. Take particular notice of the scopes of the
configuration as defined in the following.

Each Configuration or Setting – whether predefined by for example
Sitecore or defined by a module in your implementation - will have a
Definition Scope and a Value Scope:

Definition Scope
describes on which level the configuration is defined, i.e. in what
scope of effect a change of value will have.

Value Scope
defines in which circumstance values changes.

The following table describes the possible combinations of scope, and
how configurations and settings map to those.

Figure: Scope of Configuration and Settings

Avoid having Settings defined in .config files as this counters the
purpose of Sitecore users being able to change them. Please note
that – although confusing – the <settings> section in the Sitecore
.config files is considered Configuration.

2.7.2. Definition Scope
Just like code, templates, views etc., configurations and settings
defined in your implementation relate to a specific module and should
therefore be managed and versioned with that module.

Project layer modules should never define new settings or
configurations, as it indicates business logic in the project layer –
which should always be avoided.

2.7.2.1. Solution-wide

Solution-wide settings and configurations cover the entire
implementation. In other words, they are defined once within the
solution and their values will affect the entire implementation.
Examples of solution-wide configurations are all the <settings>
defined under <sitecore> in the web.config. Examples of solution-wide
settings in Sitecore are the installed languages and aliases, which are
defined under /sitecore/system.

Solution-wide Configurations should be defined in a .config file,
whereas Solution-wide Settings should be defined under
/sitecore/system/settings or similar.

Settings defined for a single Project, Feature or Foundation layer
module should be defined in their corresponding module folder under
/sitecore/system/settings/[layer]/[module].

Be cautious when creating solution-wide configurations in your feature
and foundation modules, as you might be restricting the flexibility of
the implementation. It is generally good practise to make features as
context-aware as possible, for example in terms of support for multi-
site, multi-tenant or multi-language. For example, by moving a
configurable path from a Solution-wide configuration under <sitecore>

<settings> to the Sitecore <site> node in the web.config, one can help
make a feature site context specific - or by changing the value of an
Unversioned setting field, one can make a feature context language
specific.

2.7.2.2. Context-wide

Context-wide covers, as the name implies, a given context. This
means that a configuration or setting can exist in multiple places, for
example per tenant, per site, per language, per database, content
hierarchical, by taxonomy etc. The context is, in other words, defined
by the business logic in the module that defines the configuration or
setting. Examples of context configurations are domain names on
sites, search indexes, security domains, user profiles etc.

Sitecore defines a number of contexts to which you can associate
your own configuration or settings, for example the site definitions in
the web.config.

Habitat Example

The Foundation/Dictionary module in the Habitat example site allows
dictionary content to be defined on a site context. This is done by
defining a dictionary path on the <site> definition in the web.config.

private Item GetDictionaryRoot(SiteContext site)
{
 var dictionaryPath = site.Properties["dictionaryPath"];
 if (dictionaryPath == null)
 throw new ConfigurationErrorsException("No dictionaryPath was specified on the <site> definition."
 var rootItem = site.Database.GetItem(dictionaryPath);
 if (rootItem == null)
 throw new ConfigurationErrorsException("The root item specified in the dictionaryPath on the <site> definition was not found."
 return rootItem;
}

Context-wide settings are often created in the content section as part
of a hierarchical content tree, for example site-context settings are
defined on the site root item or on an item under the site root. This
allows easy access to the settings for Sitecore users.

2.7.3. Value Scope

2.7.3.1. Environment scoped values

Environment scoped values are configurations or settings whose
values change depending on the environment on which the
implementation is running. Environment scoped values are typically
associated with solution-wide configurations, such as connection
strings, but can also be context-wide – for example by allowing sites to
specify the connection string to use.

Environment-scoped values should be managed in .config files as
they are directly affected by the application lifecycle and deployments
– which is typically managed by IT.

In cases where environment scoped values are defined as Settings
that Sitecore users can manage, for example in cases where different
sites or content trees have different connection strings, let these
settings point to values defined in a .config file. This will make it
possible to change the values in Sitecore, while allowing deployments
and the IT application lifecycle to manage the environment’s specific
values.

Do not manage environment scoped values as part of the
development process, but rather as part of your deployment
procedure (see Deployment).

2.7.3.2. Role scoped values

Sitecore implementations can extend over multiple servers in a single
environment. This includes content management, content delivery,
email delivery, processing and more. Some configurations have
different values, for example disabling features or functionalities, on

specific server roles. An example of role scoped values is the
configuration in the
App_Config/Include/Sitecore.Publishing.DedicatedInstance.config.example
file, which configures a server as a dedicated publishing server.

Role scoped values can be managed in the development process, for
example by managing role specific Sitecore .config include files or role
specific web.config files as part of the build process. Alternately the
specific values can be managed as part of the deployment process.

Role scoped values are typically restricted to IT/developer managed
configurations, as Settings are typically managed in Sitecore items –
whose values are shared across server roles.

2.7.3.3. Implementation scoped values

This is by far the most typical value scope, as it is a value which, when
set, affects the entire implementation. Most configurations in the
Sitecore .config include files that are implementation scoped and user
managed Settings.

Implementation scoped values for Settings are typically initially
defined in the development process, but are managed as part of the
content management process in the production environment. As
implementation scoped settings values are therefore “owned” by the
Sitecore users in the production environment – and it should be able
to bring these back through the environments as part of the content -
for testing purposes, it is good practice to manage these as part of the
Sitecore content.

Always manage implementation scoped values in configurations in the
development environment and deploy them through the usual
deployment procedure. Avoid at all cost making implementation
scoped changes in specific environments as this will differentiate
environments and can severely cripple a consistent testing effort.

In Helix, implementation scoped values should always be associated
with the module which requires them. For example, if a Foundation
module requires the standard Sitecore configuration setting to change,
the module itself should manage this change – by including an
App_Config/Include file in the module.

2.7.4. Managing .config files
Managing .config files for even a simple Sitecore project can, over
time, become a very complex and time consuming task, and if done
wrongly it can be a source of many problems such as performance,
consistent testing, instability and waste of resources.

The key to long-lasting good configuration management is isolating
not only the implementation specific changes and additions from the
standard Sitecore and .NET configuration, but also keeping any
changes and additions to configuration together with the business
logic which needs it. The first makes it possible to easily identify
changes – making upgrades much easier – and the latter makes it
easy to identify the reason for changes – making issue resolution and
implementation changes stress-free.

Changes or additions to configuration files are most often associated
with specific features, and in Helix, this means that these configuration
changes belong in the modules that need them.

2.7.4.1. Sitecore include files

Changes to any configuration under the <sitecore> root in the
web.config should always be done through app_config/include files.

Habitat Example

Figure: Foundation/Multisite specific configuration changes

Place the configuration changes for a given module in the modules
layer subfolder under /include and name the configuration file with
[Layer].[Module].config.

Sitecore merges include files alphabetically, and if a certain
configuration file needs to be included last in the web.config merge
with in a layer, prefix the file with z., for example
z.Foundation.Indexing.config. If the file needs to be run last of all
include files, place the file in a subfolder under /include called zzz.
Refer to the Sitecore documentation for more information on config
patching.

2.7.4.2. Other .config files

Changes to .config files outside the <sitecore> element in the
web.config, such as the .NET or IIS parts of the web.config or other
.config files such as domains.config, will require another strategy.
Keep in mind the Helix convention: keeping the configuration change
together with the business logic which requires it.

Sitecore does not provide an out-of-the-box approach for this
challenge, and other tools such as the Visual Studio web.config
transformations or SlowCheetah works in a file-based approach –
which is not directly compliant with Helix, as all changes to a single file
are not necessarily associated with a single module.

The MS Build xml transforms can be used to apply feature centric
configuration changes to files, but it will require custom integration into
the MS Build system. Please refer to the MS Build documentation on
the TransformXml task.

Habitat Example

https://visualstudiogallery.msdn.microsoft.com/69023d00-a4f9-4a34-a6cd-7e854ba318b5

Habitat does use the MS Build XmlTransform task to make multiple
file transformation across features. This is done as part of the gulp
build system supplied with the Habitat example site.

The functionality allows each module to have one or more .transform
files placed in the same sub folder as the target .config file and with
the same name. For example, the
/App_Config/Security/domains.config.transform will apply a
transformation to the domains.config file as part of the build. The
syntax of the .transform file follows the MS Build web.config
transformation syntax (See https://msdn.microsoft.com/en-
us/library/dd465326(v=vs.110).aspx).

All .transform files are picked up in the 04-Apply-Xml-Transform gulp
task in the /gulpfile.js and applied one by one in a separate MS Build
command defined in the /applytransform.targets file.

At the time of writing, Habitat has four config transformations across
the web.config and domains.config files.

Figure: Output from the Habitat xml transform task

https://msdn.microsoft.com/en-us/library/dd465326(v=vs.110).aspx

2.8. Multi-site and multi-tenant
One of the exciting parts of building Sitecore implementations is the
flexibility it offers to solve pretty much any business requirement.
There is a great range of choice when it comes to putting together the
content and information architecture to suit the business. This includes
the ability for a single Sitecore implementation to host multiple
tenants, sites and channels.

Even though Sitecore does not natively support a Tenant context, the
separation between multi-site and multi-tenant is important, as multi-
tenancy introduces a whole new level of governance which needs to
be considered both in the architecture and in the managing
organisation.

2.8.1. Tenants
Tenants are groupings in the business organisation that need freedom
and autonomy to define and manage their own sites, channels and
data, while at the same time desire or require the ability to share with
other tenants. For example, this could be multiple departments in an
organisation with separate websites, but a willingness to collectively
define and share the features available on these sites in order to
reduce the cost of development and maintenance.

Multi-tenancy in Sitecore is primarily about creating a governance
model and technical architecture that support different requirements
and decision models.

Helix suits this scenario perfectly, as it defines a common feature and
foundation layer in the implementation, but allows multiple project
layer modules – one per tenant – that bring these features together.
Tenants can even define and implement new business specific
features, new modules, which are only used in their project layer
module – and thereby the architecture allows one tenant to adapt its
solutions or to change its business objectives without disrupting other
tenants.

Note that although many Sitecore implementations have multiple sites,
most are single tenant, where a single organisational entity can make
decisions on the business direction of the overall implementation.

In any multi-tenancy scenario, it is very important to completely
understand and highlight the restrictions in autonomy, as well as the
benefits of the shared implementation, and subsequently define the
governance model for these overlaps between tenants. Although
critical for the success of the implementation, this is largely an
organisational task that lies outside the realm of the technology.

In a scenario where one implementation hosts two or more tenants

with no common content or desired sharing of features – in other
words completely autonomous tenants – it is highly recommended to
split into multiple implementations, with separate governance models.

2.8.1.1. Defining a tenant in Helix

Although Sitecore offers a great platform to support multi-tenancy in
the software, there is no predefined tenant context in Sitecore. This
means that the borders between what is shared between tenants and
what can be defined autonomously is largely for you and the business
to define. This includes content hierarchies, content repositories,
media, workflows and more.

It is recommended that each tenant in a Helix compliant
implementation has its own project layer module, i.e. that each tenant
has the freedom to define its own set of datasource and page type
templates (see Template types) as well as its own overall page
layouts and sub layouts. If multiple tenants share templates or layouts,
it is recommended to have a shared project layer module to host these
entities. This gives the flexibility for a tenant to use shared as well as
specific page types and layouts in their site or sites.

Habitat Example

In Habitat the Project/Common module contains primarily Datasource
templates and placeholder settings that can be used across multiple
tenants, i.e. project layer modules.

Content sharing or isolation between tenants comes largely down to
content hierarchy and security. By defining organisational roles, users
can belong to different tenants and content can be shared or
separated. Because of the powerful, feature-rich and fine grained
security model in Sitecore, pretty much any business requirements
can be met. See more on security in Helix in Security and workflows.

It is often not relevant for business logic to understand the tenant
context under which the business logic is running. Tenant related
locations such as datasource locations, datasource templates etc. can
be configured in Sitecore and there is often no use for an actual tenant
context API. If this is needed, it is recommended to create it.

Habitat Example

The Habitat example site defines one project layer module –
effectively one tenant. Although the current implementation only
defines a single site under the tenant - which lives under
/sitecore/content/Habitat - all features support a multi-site scenario. In
Habitat, the tenant or site is defined to have its own shared content
repositories for features such as teasers, dictionary, FAQ’s etc. –
which means this content could be shared across sites but not
necessarily across to other tenants.

The Habitat tenant defines isolated tenant specific data for the
following areas:

Page Type and Datasource Templates
Page Layouts and Sub-layouts
Personas and profiling
Goals and outcomes
Campaigns and engagement plans
Social network accounts
Forms
Security domain

Please note that some 3 party modules and features in Sitecore do
not fully support multi-tenancy or multi-site, and thus are limited in
ways they can be isolated across tenants or sites. An example is that,
by default, the Sitecore Analytics only allows analytics to be broken
down by site and thus not by tenant. Please refer to the product

rd

documentation for the modules you are interested in using in your
implementation.

2.8.2. Sites
The connotation of a Site varies, but in Sitecore a Site is a concrete
context to which different properties can be attributed. Hence a multi-
site implementation is an implementation where content can exist in
multiple different contexts (for example different channel types,
domains, websites etc.). Despite the association with a website, a site
can output content and define contexts for a range of channels, web,
mail, print etc. and different features and modules (such as for
example EXM – Email Experience Manager – and FXM - Federated
Experience Manager) can attribute different properties to the site
context.

In this perspective, Feature or Foundation layer modules should
always be implemented in a multi-site setting, i.e. the business logic in
modules has to be context aware. Furthermore, this means that not
only can the Feature layer or Foundation layer modules in Sitecore
utilise the site definitions in Sitecore to determine context, they can
also extend the Sitecore site context with their own properties.

Habitat Example

The Foundation/Dictionary module extends the site context in Sitecore
with the ability to configure a site specific dictionary location. This is
done by adding an attribute to the Site definition and reading this
through the Site context API.

Note also how the Sitecore WFFM module uses the same technique
to set the root folder for forms for the site.

<sites>
 <site name="habitat" patch:before="site[@name='demo']"
 database="web"
 virtualFolder="/"
 physicalFolder="/"

 rootPath="/sitecore/content/habitat"
 startItem="/Home"
 dictionaryPath="/sitecore/content/habitat/global/dictionary"
 dictionaryAutoCreate="false"
 domain="extranet"
 allowDebug="true"
 cacheHtml="true"
 htmlCacheSize="50MB"
 registryCacheSize="0"
 viewStateCacheSize="0"
 xslCacheSize="25MB"
 filteredItemsCacheSize="10MB"
 enablePreview="true"
 enableWebEdit="true"
 enableDebugger="true"
 disableClientData="false"
 cacheRenderingParameters="true"
 renderingParametersCacheSize="10MB"
 formsRoot="{4BC8A78C-44A7-46EB-8126-040D3F12CAA0}"
 enableItemLanguageFallback="true" />
</sites>

Most standard modules and functionality rely on the Site definition in
Sitecore for context, and it is therefore recommended to use the
standard Sitecore API to determine site context in business logic – as
opposed to implementing new logic to define the site context. If any
additional properties or extended logic are needed on the site context,
it is recommended to provide these to the feature modules through a
foundation layer module.

Habitat Example

The Habitat example site implements the Foundation/Multisite module
that defines multi-site and multi-tenancy specific functionality for the
feature modules. The most important feature in the
Foundation/Multisite module is the ability for renderings to define site
specific datasources. This means that each site can maintain a list of

datasource locations for different renderings – which means that for
example teasers does not have to be shared between all tenants in a
solution, but only between sites within a tenant.

By default, sites are defined in the configuration files, in the <sitecore>
<sites> section of the web.config, and the site context is resolved as
part of the request for each page or context. It is however possible to
add site definitions configured by other means, for example the FXM
(Federated Experience Manager) feature adds site definitions for each
domain matcher defined under /sitecore/system/Marketing Control
Panel/FXM, to allow requests from 3 party sites to be isolated by
domain. There are also 3 party modules which allow you to define
new site definitions using Sitecore items (see for example the Multiple
Sites Manager in Sitecore Marketplace
https://marketplace.sitecore.net/Modules/M/Multiple_Sites_Manager.aspx

When adding properties to the site definitions and context, consider
the separation between configuration and settings (see Configuration
and settings). In a standard configuration scenario, site definition
additions should be added to the <site> definition in the configuration
file. To add editor managed settings to the site, modules should define
templates which can be added as base templates to the site root item
for the project layer module, or add settings items inside the site
hierarchy. Regardless of which of the two approaches you choose in
your implementation, be consistent in how you define context specific
settings. Also, be conscious that advanced settings might be
confusing for the average editor, so consider limiting visibility of and
access to these settings to administrative users.

Habitat Example

The Habitat example site generally uses the base templates
approach, for example, the Feature/Accounts module defines an
AccountsSettings template which is assigned to the Site Root
template in the Project/Habitat module.

rd
rd

https://marketplace.sitecore.net/Modules/M/Multiple_Sites_Manager.aspx

The module uses the site hierarchy to find the settings items for the
module.

public virtual Item GetAccountsSettingsItem(Item contextItem)
{
 Item item = null;

 if (contextItem != null)
 {
 item = contextItem.GetAncestorOrSelfOfTemplate(Templates.AccountsSettings
 }
 item = item ?? Context.Site.GetContextItem(Templates.AccountsSettings.ID

 return item;
}

Keep in mind that parts of the site definition configuration or settings
can be environment specific, and should the managed with an
environments specific perspective (see Configuration and settings).

2.9. Language and culture support
How your Sitecore implementation handles languages is largely
dependent on the business requirements, but it is recommended that
you include support for multiple languages or cultures in your
modules. This not only adds the possibility for adding more languages
or cultures over time, but also encourages good practices such as not
hard coding any content and letting an editor manage and edit all text
on the website.

2.9.1. Enabling multi-language support
Language support includes having all content on your sites and
channels provided through Sitecore, including main page content,
related content, headings, labels, metadata etc.

Remember to set up site metadata to reflect the context language and
culture, and that all number and date formats follow the format of the
context culture.

Consider Right-To-Left language support both in the content and
visual design implementation.

It is generally recommended not to mark fields as shared or
unversioned unless carefully thought through in a language and
culture context. Consider that some fields, such as image fields have
metadata which should be translated and list fields can have different
sort orders depending on language.

Languages are defined on a global implementation-scope level in
Sitecore and thus all sites and tenants will have the same languages
installed. In a multi-tenant and multi-site scenario (see Multi-site and
multi-tenant) consider adding business logic to make languages and
cultures configurable by site and tenant.

Habitat Example

Habitat relies on the standard Sitecore language support, but includes
a Feature layer module which allows individual sites to define the
languages they support. This will determine the languages shown to
the site visitor in the language selection dropdown.

Figure: Language feature in Habitat

2.9.2. Dictionary
When defining the content architecture of your implementation, some
pieces of presented content on the pages will not necessarily be part
of the main or related content, i.e. the context item or datasource
items, this could include labels for business forms, buttons or similar.
As it is recommended that all content on the pages can be edited
through Sitecore – for flexibility as well as language support reasons –
there needs to be a way of managing this content.

There are a few different mechanisms for managing these types of
content, but the most traditional way is through a Dictionary – which is
also supported in the Sitecore platform through the
Sitecore.Globalization namespace. Although the default Sitecore
implementation is somewhat rudimentary and does not for example
include Experience Editor or hierarchical support, it is often enough for
many use cases. The Sitecore Dictionary does have support for a
context specific (multi-site, multi-tenant or modular architecture)
through the use of dictionary domains, however for advanced use
cases it is recommended to re-implement the Dictionary concept
within your solution.

Avoid reusing dictionary texts across modules, features or views as it
can limit the flexibility for the editors. Just because two labels have the
same value at the time of implementation does not mean that an
editor does not want to change them independently at some later time.

Dictionary entries are used in the presentation and business logic of
the modules and are therefore owned by the feature modules
themselves. In order to make itself available to all features, any
custom Dictionary API, functionality or principles herein should be a
foundation level module in the Sitecore implementation.

To increase modularity and discoverability in the dictionary, entries
should be referenced in a hierarchical structure. For example, their

structure [module]/[view]/[text] would be represented as
Accounts/Login/Remember Me. Furthermore, dictionaries should be
available on a site or tenant level to allow labels to be managed
individually across sites.

Habitat Example

The Habitat example site includes a custom Dictionary foundation
layer module which enables site specific dictionaries, default values
and development support, enables Experience Editor and hierarchical
support.

Figure: Hierarchical dictionary in Habitat

2.10. Security and workflows
Security, i.e. what access editors have to features, pages, content,
languages, workflows, fields etc. can be set extremely granularly in
Sitecore.

How granularly you will need to set workflows or security in your
application is entirely up to the business requirements, but there are
some aspects to workflows and rights to be cautious of if you want to
preserve the references between layers, the decoupling between
modules and any multi-tenant requirements.

2.10.1. Rights management
Most aspects of rights and access are defined in the content area of
the sites and therefore in the Project layer modules or directly in the
production content itself.

These types of rights and roles could be called Organisational Rights
or Organisational Roles, as they typically will define the organisation
or groups to which the users belong, and thus the hierarchical content
they can access – and which rights they have to it.

But there are aspects of security that reach into the feature and
foundation modules – and which therefore needs to be addressed in
the modular context of Helix. This is particularly true for individual
fields, as these are defined in Interface Templates in the feature and
foundation layer modules. It is also true for configuration settings, and
even specific tools and editor extensions within Sitecore that are
contained within the feature modules.

These types of rights and roles are called Functional Rights or Roles,
as they define which types of functional access the user is given
inside for the hierarchy that he or she can access.

For example,: If a user has the functional role of News Editor and he
has the Organisational role to edit Site A, this user will be able to edit
news on Site A. If the same user is given the Organisational role to
read Site B, the user will not necessarily be able to edit news on Site
B, as he – although he has the functional right to edit news - will not
have the organisational right to edit content on Site B.

Functional Rights should be defined on Functional Roles owned by
the Feature or Foundation layer modules which defines them. Certain
Functional Roles and Rights will be managed on the project layer, for
example which Page Types an editor can create, which languages or
which workflow states.

This type of functional and organisational combination makes it
possible to define functional roles and rights on the features which
defines them, while staying independent of how the content is
structured.

Habitat Example

The Habitat example site defines functional roles for the Feature and
Foundation modules that define access to fields and configuration on
the module. It also defines organisational Roles for the Habitat project.

Figure: Example of Habitat feature roles

Feature roles are prefixed with the layer and module name followed by
a descriptive name for the role, for example sitecore/Foundation

Accounts Admin or sitecore/Feature Maps Editor.

It is highly discouraged to assign specific rights to individual users
inside Sitecore. Always set rights to domain roles and assign these
roles to the individual users.

The fact that a user in one domain can be a member of roles from
another domain can be very useful to separate rights in multi-tenant
solutions or between modules.

2.10.2. Domains
Sitecore ships with two standard domains, sitecore and extranet,
which in most cases are sufficient to accommodate the business
requirements of Sitecore implementations.

In advanced multi-tenant solutions, it can be required to create
multiple security domains to set up isolated roles and rights for each
tenant – either for the website or for the editors in Sitecore -
prohibiting access for the users of one tenant to another tenant’s
content – or even providing access across tenants or websites in
some cases.

For example, in a case where two tenants, A & B, have two different
projects with their own page types and content trees. This case could
have two domains ProjectA and ProjectB:

An editor in the ProjectA domain, ProjectA/User, could be granted
access to his own organisations content by enrolling him in the
ProjectA/Editor role.
Likewise, ProjectB/User in the ProjectB domain could be member of
the ProjectB/Editor.
By enrolling ProjectA/User in the ProjectB/Editor role, the editor –
despite belonging to the tenant A domain – would gain rights to the
ProjectB content.

If there is a need for more granular rights on a feature level (as
described in Rights management) it could be beneficial to add an
additional domain on which modules across the layers can register
feature level roles. Using the previous example:

The ProjectA/Editor role could be a member or Features/Accounts
Admin and Features/News Admin, not only giving ProjectA/User

access to the ProjectA website and content but also to administer the
feature configuration for the News and Accounts feature.

Habitat Example

Because of its multi-tenant and multi-site nature, Habitat defines a
domain for the Habitat Project layer. To exemplify the configuration of
rights on a feature level, Habitat also defines a Modules domain where
Feature layer modules define roles which grants access to the
functionality.

2.10.3. Workflows
Workflows in Sitecore reflect how editors in an organisation – or
tenant - work with the content. In a multi-tenant scenario, two
autonomous tenants (see Multi-site and multi-tenant) with different
project layer modules, different content architectures, page types, and
sites will often need different workflows assigned. Therefore, the
actual Sitecore workflow definitions belong in the Project layer
modules.

To cater for flexibility across sites and projects, workflows are always
assigned to Page Type or Datasource templates (see Template
types). Therefore, workflows are managed in a Project layer module.

Any custom actions or other business logic extensions to the Sitecore
workflow engine will belong to a foundation or feature layer module.

2.11. Working with code

2.11.1. Code formatting
Formatting of code is deep in the tools layer, but can often be a great
source of discussion and frustration that can lead to decreased
productivity – and therefore important for establishing actual business
value. Focus on a common team standard, and then look at the
tooling available to make transitions for team members. As with most
conventions and standards consistency is essential. Less friction will
ease adoption.

Habitat Example

Habitat uses two spaces for indentation along with a whole series of
conventions, for example for brackets and syntax. Code indentation is
specified in the .editorconfig file in the solution root. The editorconfig
extension for Visual Studio will read the file when the solution is
loaded and configure the editor for this formatting.

Habitat also uses ReSharper for easy code formatting and has an
associated .DotSettings file that defines the chosen conventions.

https://visualstudiogallery.msdn.microsoft.com/c8bccfe2-650c-4b42-bc5c-845e21f96328

2.12. Visual Design and Theming
The user experience, in particular the visual design in an
implementation, is the part of an implementation likely to change the
most frequently. Often this area involves separate technologies,
separate qualifications from Sitecore and ASP.NET and sometimes
even separate development teams.

Therefore, this area often needs special attention in the architectural
phase – emphasized by the specific business requirements of the
greater implementation, for example multi-tenancy, multi-site,
marketing maturity and so on.

2.12.1. Front-end technologies
Avoid looking at front-end technologies, such as JavaScript, CSS,
Sass, Less etc., as a monolithic technology maintained in a single
module, but rather as another technical part of the business domain
modules in Helix. In other words, front-end technologies and assets
such as JavaScript and CSS are technologies and are related to
features and modules as other technologies.

Technologies with specific purposes, such as, bootstrap, jQuery, sass,
bower, grunt, gulp etc. can be introduced and managed in separate
modules. However, if a technology is used across multiple modules –
for example in a multi-tenant or multi-site implementation – it can be
useful to introduce it in a foundation layer module to make it available
to all modules.

Habitat Example

The front-end technologies used in the Habitat example site are
introduced in the Foundation/Theming module and can therefore be
shared across to all foundation, feature and project layer modules.

The main front-end technologies introduced in Habitat are Bootstrap,
jQuery, Bower and Sass. Furthermore, it uses the Visual Studio Web
Compiler to bundle and minify JavaScript and CSS.

2.12.2. HTML mark-up
In a web solution, the relationship between mark-up and theming is
one of the biggest sources of dependencies. If there is no strategy for
managing HTML mark-up in a decoupled manner, the whole
implementation can easily become very monolithic, and flexibility and
productivity become stifled.

Most renderings, and therefore the HTML mark-up, in a Helix
implementation will reside in the feature layer. On the other side, the
business requirements are fulfilled in the project layer, by combining
the features into the user experience. Therefore, in a multi-tenant or
multi-site scenario, the challenge is that features need to address
multiple business requirements – or simply different visual designs.

In other words, in a multi-tenant scenario some assets will always be
shared between tenants (see Multi-site and multi-tenant) and when
following the Helix conventions, the mark-up is very often one of these
assets.

In a single tenant scenario, this is not such a big issue, as features
can be built with a single business in mind. Features can be changed
and adapted as the requirements changes.

A recommended approach to the shared mark-up challenge is to align
your front-end technologies with the Helix principles and split the
implementation of the Visual Design across the layers. In your
foundation layer, you place the principal front-end framework or
frameworks on which you are basing the implementation. These are
the frameworks that define how to structure the HTML mark-up in the
features. This includes technologies like Bootstrap, Foundation, 960
Grid System, and jQuery. In reality, the foundation layer module will
likely contain a multitude of frameworks and utilities – perhaps
extended with custom mark-up - which together form the conceptual
base that feature developers need to follow. It can even be a custom

defined mark-up strategy that is clearly known to feature developer.

The point is that by defining a mark-up strategy in the foundation
layer, the feature modules can follow this strategy and know that they
are adhering to the implementation conventions.

Habitat Example

The module Foundation/Theming establishes the mark-up framework
for the Habitat example site. The module uses bower to bring in a
number of external frameworks based on Bootstrap and jQuery.

{
 "name": "sitecorehabitattheme",
 "private": true,
 "dependencies": {
 "bootstrap-sass": "~3.3.5",
 "bootstrap-block-grid": "~1.1.2",
 "modernizr": "~2.8.3",
 "hover": "Hover#~2.0.2",
 "animate.css": "~3.5.0",
 "wow": "wowjs#~1.1.2",
 "shufflejs": "~3.1.1",
 "responsive-bootstrap-toolkit": "responsive-toolkit#~2.5.1",
 "OwlCarousel": "~1.3.2",
 "jquery": "~2.2.0",
 "font-awesome": "4.4.0",
 "ekko-lightbox": "~4.0.1",
 "ace-builds": "~1.2.2",
 "imagesloaded": "~4.1.0"
 },
 "overrides": {
 "bootstrap-sass": {
 "main": [
 "assets/stylesheets/_bootstrap.scss",
 "assets/fonts/bootstrap/*",
 "assets/javascripts/bootstrap.js"

]
 },
 "font-awesome": {
 "main": [
 "fonts/*"
]
 },
 "OwlCarousel": {
 "main": [
 "owl-carousel/owl.carousel.min.js",
 "owl-carousel/owl.carousel.css"
]
 }
 },
 "devDependencies": {},
 "resolutions": {
 "jquery": "~2"
 }
}

2.12.3. CSS and Theming
The visual design – CSS and script – can be implemented based on
the mark-up frameworks and strategy – either in the foundation
module as part of a general theming approach or individually in the
project layer modules. This allows more individual design per tenant.

Habitat Example

The theming in the Habitat example site is primarily based on
Bootstrap. The module Foundation/Theming implements the base
CSS theme based on an Atomic Design approach. It references no
feature specific mark-up, but clearly follows the mark-up defined in the
frameworks.

Figure: Atomic Design Sass implementation in Habitat

The Helix approach will often require a close collaboration between
front-end development and Sitecore/.NET development as it requires
a common understanding of the architecture and reasoning behind it.
A good relationship and understanding between the different
competencies in the team is always a thing to strive for.

Avoid at all cost outputting HTML mark-up in code or business logic –
try as much as possible to stick to a single technology – for example
razor views – for mark-up, as this will facilitate management and
increase flexibility immensely.

2.12.4. Scripting
Although front-end scripting technologies such as JavaScript are often
associated with visual design and CSS, they are starting to serve
more purposes in website implementations. And even though Sitecore
is predominantly ASP.NET and C# driven, JavaScript and its
associated frameworks are taking an increasingly important role in the
actual business logic of the application.

Scripting technologies are typically related to the different layers,
depending on what purpose they serve:

Framework technologies (such as jQuery, Angular.js, Backbone.js,
Require.js and so on) are typically Foundation layer modules that
provide a standardized API or framework for feature modules to
leverage. These should therefore be introduced into the
implementation in a Foundation layer module.
Functionality-specific scripts, i.e. presentation or business logic which
enables parts of a feature to function belongs in the Feature layer. For
example, scripts that enable menus to open or close, results to lazy-
load on scrolling of the page and so on, belong in the module that has
the related content or views.
The last group is presentation-related scripting, which relates to the
way a page or parts of a page presents itself. This includes scripts that
relate to the holistic visual design of the page and its CSS, and scripts
that often require knowledge of the DOM of the page in order to
function. These types of scripts belong with the page or site specific
design implementation in the Project layer (see Scripting)

In order to support this type of separation, the implementation will
need a mechanism for features to register scripts to be loaded – either
solution-wide or on the pages where they are used. Since Sitecore

does not natively provide such a mechanism, you will need to choose
the approach and provide this in the Foundation layer. This can be
accomplished by using either a standard framework, such as
require.js, or custom logic implemented in a Foundation layer module.

Habitat Example

The Habitat example site provides an Assets module in the
Foundation layer that allows modules to register script or styling files
through .config files, which is subsequently loaded on the website.
Files and assets can also be bound to specific renderings and
dynamically loaded on pages which use those renderings.

Although the Habitat example shows a highly pluggable and Sitecore-
centric approach to assets, it does not include aspects such as
minification and other optimization techniques. These can however be
integrated using standard technologies such as require.js.

3. DevOps and development lifecycle
management
The development lifecycle consists of a number of different phases.
The length of each phase depends on the development methodology
you use (Waterfall, Agile, etc.). These phases can include Analysis,
Design, Specification, Planning, Development, Testing, Deployment
and more.

Depending on the complexity of your specific Sitecore implementation
– or general Sitecore governance model – the need for automation of
all or some of processes in the Application Lifecycle phases can vary
greatly. Take, for example, the differences between a small in-house
development team independently working solely and consistently on a
single Sitecore implementation, a Sitecore implementation partner
trying to consistently develop and maintain numerous Sitecore
implementations and an enterprise product owner trying to govern a
Sitecore implementation with multiple implementation partners and
design agencies working together. In other words, in some
governance models, it would be acceptable to have documented and
manually executed processes, where as in others it could be
catastrophic to be unable to repeat processes consistently.

Therefore, DevOps can be as much a challenge of identifying and
prioritizing the important processes to automate as it is the task of
actually implementing the automation.

In the scope of this document we will only look into DevOps processes
in specific phases of the application lifecycle:

Development
in which the features or modules are being built

Build
or Integration in which the implementation is put together as a single
testable package

Testing
in which the features or integrated package are tested against the
specifications

Deployment
in which the package is ultimately deployed onto the production
environment

Please note that this is in no way an in-depth look at the DevOps or a
governance model for these phases, but rather is an inspection of
some of the Sitecore related processes and activities in these phases.

3.1. Development
Development is typically the process in which the team will spend the
most time, and therefore an obvious target of optimisation and
automation. Two parts of the development process in particular should
be the focus, as they can be instrumental in productivity and
consistency: the initial setup and continuous development.

3.1.1. Setting up a development
environment
Optimising the task of setting up a local development environment is
not just about on-boarding new developers or resetting a developer’s
local environment – although these tasks can be important to
optimise. It is also – and sometimes more importantly – about being
able to consistently and quickly set up a given version of the complete
clean implementation for testing and troubleshooting.

Typically, after the initial build phase – where there often is an
abundance of resources – comes the support or extension phase. In
this phase, where there are often fewer resources and maybe even
less experience with the implementation and processes, there is often
a need for working on multiple branches at the same time, testing on
production-like environments, the need to establish troubleshooting
environments, etc. and so the need to quickly spin up a specific
version of the local development environment increases.

Setting up a local developer machine with a running environment can
be more or less complex given business requirements and
dependencies, but the following is an example of the tasks that could
be involved and example of what each might contain:

Check out
Get the required branch or version from the version control.

For example: This is typically a manual clone from git or similar of the
version which needs to be running.

Dependencies
Import and configure external frameworks and dependencies

For example: Execute package managers such as NuGet or npm or
run custom scripts to restore required dependencies

Build
Compile the modules

For example: Run compilers such as MSBuild and other tools, such as
CSS/JavaScript processors.

Baseline
Set up a running website/environment based on a clean Sitecore or a
defined baseline

For example: Install a local Sitecore setup, for example through SIM,
PowerShell or similar. This may involve restoring backup databases
with production-like test data. This may also involve restoring a virtual
machine with the full running environment.

Publish
Publish the modules to the baseline website

For example: Deploy the compiled assets and files to the running
website - for example through Microsoft WebDeploy, PowerShell or
similar.

Configure
Configure the baseline for the modules

For example: Add implementation specific configuration – to, for
example, web.config or other files – using MSBuild, PowerShell or
similar.

Deserialize
Restore the Sitecore items

For example: Deserialize or install implementation or version specific
items into the running website.

It is recommended that you automate these steps as far as possible.
This will increase productivity and quality in both the short and
especially the long run.

Habitat Example

Habitat includes an example of an almost fully automated local
environment configuration using a combination of various tools. The
overall build system uses Gulp, which can be triggered through the
Visual Studio Task Runner.

Please note that the Habitat example site has all content versioned
through the version control system – unlike a production environment
in which content is managed in production – and can therefore use a
clean Sitecore installation as the baseline.

Figure: Running the Publish task through the Visual Studio Task
Runner

http://gulpjs.com/
https://blogs.msdn.microsoft.com/webdev/2016/01/06/task-runners-in-visual-studio-2015/

3.1.2. Local deployment
One of the most frequently asked questions when working with
Sitecore is whether to develop locally inside the web root or outside.
Although the general recommendation is to work outside the web root,
a general qualification is needed.

There are two major aspects which should lead to choosing one or the
other:

Firstly, it is very important to be able to separate the implementation
specific files and changes from the standard frameworks and files.
The importance of this separation cannot be overstated, as it will help
in many aspects in the long run, such as general development,
troubleshooting, upgrades and more. This separation is easier if the
implementation specific files are physically separated from the files in
the standard frameworks etc. On the other hand, tools and processes
might cater for this separation, even when working inside the web
root.

Generally, if tasks that are repeated frequently become taxing, they
will be circumvented – and this will lead to inconsistencies in the
processes and ultimately inconsistencies in quality. Therefore,
secondly, the ease of development is important. Working outside the
web root will lead to an additional step in the development process –
deploying the change to the running environment – and given the
frequency of this task it is imperative that this is easy. Tools and
automated scripts can help this to become almost transparent for the
developer.

Habitat Example

The build system in Habitat includes a number of tasks that will watch
files of a given type and deploy these automatically to the local
instance. This includes changes to assemblies after a build, changes

to .cshtml view files and changes to .css files. Habitat also includes
tasks for deploying all files of a given type.

Figure: All gulp tasks as available through the Visual Studio Task
Runner

3.1.3. Version Control
Throughout the development phase, the single source of truth should
be your version control system. In order to integrate and build versions
of your implementation across environments in a consistent and
automated fashion, you should strive to keep everything that your
toolset needs in the version control system. This does not in any way
mean that all files, frameworks and data need to be versioned, but
rather that your version control repository should have enough
information to restore a given version of your implementation.

This ambition assures that you consistently organise and version files,
frameworks and data together that belong together, so the individual
parts have less of a chance of getting out of sync with others.

The parts you should look to store together in your version control
system of choice include, but are not limited to: source code, tests
scripts, configuration files, Sitecore definition items, and build scripts
package manifests.

Some types of data can be harder to version control than others – for
example Sitecore items – (see Managing Sitecore Items). Finding
tools to manage all types of data through version control should be a
priority as it will greatly diminish the risk of manual errors and
inconsistent deployments.

3.1.3.1. Versioning external requirements

Keep in mind that your version control is not an integration
environment. In order to improve your maintenance and to better
upgrade and control the various parts of your solution, limit your
version control system to only contain the implementation additions
and changes. As much as possible, avoid adding standard
frameworks and standard files to version control. This includes the

implementation web.config and standard Sitecore config files (see
Managing .config files).

There are a number of package managers, for example NuGet,
Bower, node/npm, that are useful to help install and integrate external
frameworks for different purposes. These all largely use the same
approach. They require a manifest file that points to the required
versioned packages. This manifest can be versioned alongside your
implementation specific files to allow your system to pull in the
packages from external repositories.

Habitat Example

Habitat uses NuGet packages for .NET dependencies and Bower for
front-end technologies. The build system in Habitat is based on gulp
and node.js, and therefore uses the node.js Package Manager (npm)
for build script dependencies.

Some external dependencies, for example Sitecore itself, cannot
immediately be integrated via a standard package manager such as
NuGet – or might require custom configuration to be integrated
correctly. For this purpose, consider building custom scripts that
automate the integration or configuration of the dependencies.
Remember to version these scripts (either in the version control
system itself or through a package manager manifest) as part of your
implementation.

Habitat Example

Build scripts in Habitat are versioned as part of the implementation,
and have a simple task for pulling in Sitecore dependent assemblies
for the build.

Note that there are approaches to adding the Sitecore assemblies to a
local NuGet repository. One option is to use the Sitecore Instance
Manager

(https://marketplace.sitecore.net/en/Modules/Sitecore_Instance_Manager.aspx

3.1.3.2. Environment specific settings

Generally, be careful about storing environment specifics in version
control, as version control tools are typically used exclusively used in
the development process, and not during deployment or system
configuration. Having a too rigid process for deploying environment
specific changes (for example connection strings for new servers etc.)
might lead to changes directly in production environments –
circumventing processes altogether. Therefore, pay close attention to
who “owns” the environments and where these environment specific
settings then go.

For example: Consider an implementation team that consists of a
development team, a QA team and an IT admin team, . The
development team owns the individual development machines, CI
environment and even the QA environment, whereas the IT admin
team owns the pre-production/staging test servers and the production
environment. If an emergency arises and the IT team needs to switch
a server (SQL, CDN, etc.), they must ask the development team to
make the change. This creates a bottleneck. Therefore, the settings
specific to the production environment , such as those that live in the
web.config, should not be maintained through the development team
tools, but rather through the IT admin tools.

https://marketplace.sitecore.net/en/Modules/Sitecore_Instance_Manager.aspx

3.2. Build and integration

3.2.1. Building your solution
Building your implementation is typically part of three processes:

Local builds
which typically happen in Visual Studio and assisted with scripts or
tools for deployment onto the local IIS (See Setting up a development
environment).

Continuous Integration (CI)
which happens automatically on a build or CI server when someone
commits a change to the version control.

Deployment
or integration, which is when the implementation is combined into a
distributable package for deployment through the environments.

The continuous integration and deployment builds are very similar as
they most often deal with the combined implementation. This is
opposed to the local builds, where a developer might be working on a
single module or modules logically grouped together in a single Visual
Studio solution (See Visual Studio).

Figure: Development, integration and deployment process

Modular architecture is really only focused on the development
process, not the deployment. Do not confuse Helix with a modular
approach to building or running Sitecore environment. In the
integration process (continuous or during deployment builds) the
modules should be combined into a versioned and distributable
package that can be tested and deployed consistently through the
environments (see Deployment).

It is recommended to run deployment builds – and continuous
integration builds – on a separate build server, using a dedicated build
system such as Microsoft Team Foundation Server, Visual Studio
Team Services, TeamCity, Jenkins, Bamboo, etc. This assures a
consistent build and integration process, which is important for quality
in the deliveries and agility in development and support.

3.2.2. Integration
Integration is the point where the implementation is combined into a
versioned solution. It is recommended to include as much as possible
in the packages generated in order to allow the deployment process to
be as simple as possible. The packages should include your
implementation specific files, standard Sitecore and other framework
files, configuration files, definition items in the Sitecore databases (see
Item types) and any scripts to run during the deployment process. By
covering as much as possible in this process result in a more
simplified deployment process by detaching the deployment process
from your development tools and repositories. Ideally only the
configuration of the specific environment and roles should happen
during the deployment process.

Depending on your tools stack – version control, configuration
management, item serialization etc. – various tools can help you with
the integration of your modules and solutions into a distributable
package. The format of this package will depend on the deployment
strategy and tools you choose. For example, Team Development for
Sitecore covers the complete application lifecycle from development
through to integration, and supports generation of Sitecore Update
and NuGet packages that can be automatically installed with for
example Octopus Deploy.

Habitat Example

The internal build process used for the Habitat example site runs
continuous integration and deployment through a TeamCity build
server. Please note that these tools are publicly available on GitHub.

The CI process is triggered by each change in the GitHub version
control system and runs separate builds for each branch and pull
request. The process executes the following tasks

https://octopus.com/

Restore NuGet packages and other external dependencies
Build using MSBuild
Run Unit and SpecFlow Tests
No packages or assets are created from the CI build.
The deployment build is triggered nightly on changes to the master
branch – or can be triggered manually to create official releases or
special branch releases. The process runs the following tasks:

Restore NuGet packages and other external dependencies
Build using MSBuild
Run Unit tests
Setup a clean Sitecore on the build server
Publish solution to the Sitecore instance using the Gulp build scripts
Create Sitecore package by executing the Sitecore Package
Generator
Publish Package to GitHub as a release
The Sitecore package distributed via the GitHub releases page
(https://github.com/Sitecore/Habitat/releases).

Internally in Sitecore, official releases of Habitat and our demo sites
that are built on Habitat are distributed as Sitecore Instance Manager
(SIM) packages, which include database backups and analytics data.
This allows deployment to local machines to happen in a one click
process through the SIM user interface.

These SIM packages are created on the build server too using
PowerShell and the Sitecore Instance Manager command-line
interface (https://github.com/sitecore/sitecore-instance-manager).

https://github.com/Sitecore/Habitat/releases
https://github.com/sitecore/sitecore-instance-manager

3.3. Testing

3.3.1. Managing Tests
All tests, independent of testing methodology or technology, should be
located in the /tests folder under the corresponding module. If there
are multiple testing methodologies for one module, for example unit
testing and integration testing, the module can contain sub-folders.

Habitat Example

Figure: Tests folder under the Forms module in Habitat

3.3.2. Unit tests
There is a fair number of unit testing approaches and frameworks for
.NET and Sitecore, but as with other technologies and methodologies,
Helix does not dictate which to choose. We do emphasise the value of
adding unit tests to your business logic, and highly encourage the
general practice.

On disk, unit test projects should be contained in the /tests folder
below the module folder. In Visual Studio the unit test project should
be in the same Visual Studio solution as the corresponding module
projects and contained with the module solution folder.

Habitat Example

Figure: Unit Test Project in Visual Studio

Habitat Example

Unit Tests in Habitat are developed as Arrange-Act-Assert and uses
the following modules:

xUnit (https://xunit.github.io) framework as the main unit testing
framework
NSubstitute (http://nsubstitute.github.io/) for mocking objects
AutoFixture (https://github.com/AutoFixture/AutoFixture) for
“Arranging” the unit tests

https://xunit.github.io/
http://nsubstitute.github.io/
https://github.com/AutoFixture/AutoFixture

FluentAssertions (http://www.fluentassertions.com/) for the assertion
syntax
FakeDb (https://github.com/sergeyshushlyapin/Sitecore.FakeDb) for
faking Sitecore objects and services
Example of a Habitat unit test for
Sitecore.Feature.Language.LanguageRepository:

public class LanguageRepositoryTests
{
 [Theory]
 [AutoDbData]
 public void GetActive_ShouldReturnLanguageModelForContextLanguage(Db db
 {
 var contextItem = db.GetItem(item.ID);
 Context.Item = contextItem;
 var activeLanguage = LanguageRepository.GetActive();
 activeLanguage.TwoLetterCode.Should().BeEquivalentTo(Context.Language
 }
}

http://www.fluentassertions.com/
https://github.com/sergeyshushlyapin/Sitecore.FakeDb

3.3.3. Integration, Acceptance or other
automated testing methods
When you are doing automated testing – and especially for automated
browser testing – you are often running the tests on an assembled
solution and therefore the tests might be dependent on the combined
pages of the website. Even though your tests might just focus on the
features or functionality in a single module, they depend on the
functionality of integration mapping in other modules or layers.
Therefore, the tests belong in the Project layer as opposed to together
with the module in the Feature or Foundation layer.

Code and other files related to tests – independent of whether they
are unit tests or other testing methodologies – belong in the /tests
folder under the respective module.

A single implementation can consist of multiple Visual Studio
solutions. It might be beneficial to keep automated testing projects
(apart from the unit tests) in a separate solution than the code.

Habitat Example

Habitat has a whole range of acceptance tests built with SpecFlow.
These are generally structured to test the functionality within a single
module. But since they rely on the integrated Habitat website to run,
they are all located in the Habitat project layer module.

Figure: SpecFlow Projects under the Habitat Project Module

3.4. Deployment

3.4.1. Deployment strategy
A successful deployment strategy is highly connected with a good
versioning strategy. To consistently run a successful develop, test,
deploy cycle, it is important to be able to consistently version the full
application stack you are running on each environment and to be able
to recreate this across environments.

The modular architecture - as exposed through Helix - is not to be
confused with a modular deployment model where a base version of
the system is deployed and modules are installed on top of it – and
where the product lifecycle of the modules, underlying system and
websites on top of it are independent.

In Helix – as with development and Sitecore generally – it is highly
recommended to follow a strict develop, test and deploy lifecycle for
the whole application. This means that although development of the
individual modules might have different development speeds, the
assembly and versioning of the application stack happen at a
particular point in the application lifecycle, before the deployment onto
the environments. In other words, it is discouraged to do partial
deploys of modules or features from development to production.
Deployments should happen on an application-level scale, which fits
with the availability requirements of the business.

Managing the full application stack - which includes vendor systems
such as SQL Server and Sitecore XP, modules for those systems, and
the underlying operating system - can be handled in a variety of ways.
The best option often depends on the level of automation of the
deployment process. In most cases this is done through
documentation. It can also be handled by manifests that are read by
automation systems and that then automatically pull in the right
underlying systems to create the application stack in the build
process. This methodology is done by popular package systems such
as Node/NPM, NuGet, Bower and even the Sitecore Instance

Manager. This methodology can also be employed as part of your
custom build process to build more complete deployment packages.

Habitat Example

Habitat leverages a number of package tools including NuGet,
Node/npm and Bower to pull versioned packages into the build
process.

The internal continuous integration and build server for the Habitat
project – which is hooked up to the public GitHub repository – is set up
to create versioned Sitecore packages on nightly builds or releases.
This means that the full Habitat application with all modules can be
installed as a single package onto any environment – and thereby it is
possible to consistently recreate a given version.

Furthermore, the server fully automated reinstalls the Sitecore IIS
website on an internal test server as part of the automated build. This
includes reinstalling a blank Sitecore XP and required modules, and
installing the Habitat content and application package on top. Even
though this server is not publicly available as an example, parts of the
build scripts, specifically the Gulp scripts, for the CI process are in the
Habitat GitHub repository.

Tools such as Microsoft Team Foundation Server or Octopus Deploy
can help immensely with automating of the build and deployment
process and thereby in securing consistent versioning and deployment
across environments.

3.4.2. What to deploy and to where
Some data and configuration will sit outside the development and
build phases of the application lifecycle. Therefore, your process
should cater for this environment specific data or configuration (see
Value Scope).

Some data and configuration is owned by the development process
(such as C# code, views and the template structure) while others are
owned by the production environment (such as the content items). It is
important that your deployment process takes this into consideration
and maps this carefully. This is especially important for items in
Sitecore and configuration in .config changes –both of which can be
managed in multiple places. Also, this is important in an automation
process, as you do not want to overwrite production content or
configuration by accident or be unable to test on a representative
production-like dataset.

The detailed ownership and direction of flow depends on the business
logic and requirements of the solution. For example, although
templates are most often managed in development and should at all
times be deployed from development to production, in some rare
cases Project layer templates, such as Page Type templates and
Datasource templates, can be managed partly in production to allow
for dynamic fields and content.

Figure: Parts of a deployed Sitecore instance

The diagram above breaks down the overall parts of a typical
deployed Sitecore instances, and highlights some of the data types
and configurations to consider. The following describes the diagram in
more details. Ownership in the table means that a change in the given
environment always takes precedence – and therefore will overwrite
changes in other environments.

Items
What is it: Items in the Sitecore databases (core and master)
Content Items

What is
it:

The content that is displayed on a website or other digital
channel, and settings that affect the behaviour of a website
or another digital channel. This content can be edited by
content authors.

Owned
by:

Production

Direction:
Typically moved from production to other environments for
testing. Some items might initially be created in
development and deployed to production in an install-once
process.

Definition Items

What is
it:

Sitecore data items that configure the implementation and
that have a direct relationship with the presentation and
business logic in the code, for example templates, fields,
layouts, placeholders etc.

Owned
by:

Development

Direction: Installed as part of application deployments from
development to QA and ultimately production.

Files
What is it:Files on disk on the servers
Implementation Files

What is
it:

The implementation specific files, for example assemblies,
views, CSS and JavaScript files.

Owned Development

by:

Direction: Installed as part of application deployments from
development to QA and ultimately production.

Platform Files
What is

it:
Vendor specific files, i.e. files that are installed as part of a
standard module

Owned
by:

Development

Direction:
Installed as part of application deployments from
development to QA and ultimately production or as part of
the initial configuration of the environment.

Configuration files
What is it: .config or other files that configure the system.
Implementation

What is
it:

Configuration that sets up the functionality, but that is
application wide

Owned
by:

Development

Direction: Installed as part of application deployments from
development to QA and ultimately production.

Role

What is
it:

Configuration that sets up the instance as a particular
Sitecore instance role, for example a delivery,
management or xDB processing server.

Owned
by:

Deployment

Direction:
Set up by the deployment process as part of the
configuration of the installation. Any individual role
configuration files can be managed in Development as part
of the implementation.

Environment

What is
it:

Configuration file changes relating to the specific running
server or specific environment, for example connection
strings, server names, domains etc.

Owned Deployment

by:

Direction:Set up by the deployment and managed in the specific
environments.

Environment
What is

it:
The infrastructure needed for running the Sitecore and the
application.

Configuration
What is

it:
Server or environment specific configurations such as
network, DNS, hosts file changes, machine.config etc.

Owned
by:

Deployment

Direction:Set up as part of the initial deployment process. Can be
automated but often is not.

Services

What is
it:

Related services running in the environment or on the
instance server, for example operating systems, IIS, SQL
servers, Windows Services etc.

Owned
by:

Deployment

Direction:Set up as part of the initial deployment process. Can be
automated but often is not.

Infrastructure
What is

it:
The underlying server, virtual or physical,

Owned
by:

Deployment

Direction:Set up as part of the initial deployment process. Can be
automated but often is not.

Once you have mapped the ownership and direction of data in your
implementation, avoid making changes that violate this, for example
by submitting code or configuration changes directly to test or product
environments and circumventing the QA and development
procedures. Violating this mapping is highly discouraged and should
be avoided at all cost.

Consider every type of deployment onto the environments, including
initial deployment, vendor upgrades and minor or major application
updates, when designing your deployment process. Remember to
take into account the availability of the running solution.

	Sitecore Helix Documentation
	1. Introduction
	1.1. What is Helix and Habitat?
	1.2. Reading this documentation
	1.3. Definitions
	2. Patterns, Principles and Conventions
	2.1. Architecture Principles
	2.1.1. Dependencies
	2.1.2. Layers
	2.1.3. Modules
	2.1.4. Domain language
	2.2. Visual Studio
	2.2.1. Implementation structure
	2.2.2. Solution structure
	2.2.3. Projects
	2.3. File and Disk Structure
	2.3.1. Solution structure
	2.3.2. Module structure
	2.4. Managing Sitecore Items
	2.4.1. Item types
	2.4.2. Managing items in development
	2.4.3. Deploying items
	2.5. Templates
	2.5.1. Structure
	2.5.2. Inheritance
	2.5.4. References from code
	2.5.3. Template types
	2.6. Page layout
	2.6.1. Layouts and sub layouts
	2.6.2. Renderings
	2.6.3. Datasource settings
	2.6.4. Rendering parameters
	2.6.5. Compatible renderings
	2.6.6. Placeholders
	2.7. Configuration and settings
	2.7.1. Configuration strategy
	2.7.2. Definition Scope
	2.7.3. Value Scope
	2.7.4. Managing .config files
	2.8. Multi-site and multi-tenant
	2.8.1. Tenants
	2.8.2. Sites
	2.9. Language and culture support
	2.9.1. Enabling multi-language support
	2.9.2. Dictionary
	2.10. Security and workflows
	2.10.1. Rights management
	2.10.2. Domains
	2.10.3. Workflows
	2.11. Working with code
	2.11.1. Code formatting
	2.12. Visual Design and Theming
	2.12.1. Front-end technologies
	2.12.2. HTML mark-up
	2.12.3. CSS and Theming
	2.12.4. Scripting
	3. DevOps and development lifecycle management
	3.1. Development
	3.1.1. Setting up a development environment
	3.1.2. Local deployment
	3.1.3. Version Control
	3.2. Build and integration
	3.2.1. Building your solution
	3.2.2. Integration
	3.3. Testing
	3.3.1. Managing Tests
	3.3.2. Unit tests
	3.3.3. Integration, Acceptance or other automated testing methods
	3.4. Deployment
	3.4.1. Deployment strategy
	3.4.2. What to deploy and to where

