
JSweet Language Specifications
Version 1.2.x

Renaud Pawlak
renaud.pawlak@jsweet.org

http://www.jsweet.org

Contents

1 Basic concepts 3
1.1 Core types and objects . 3

1.1.1 Primitive Java types . 3
1.1.2 Allowed Java objects . 4
1.1.3 Getting more Java APIs . 8
1.1.4 Java arrays . 8
1.1.5 Core JavaScript API . 9

1.2 Classes . 10
1.3 Interfaces . 11

1.3.1 Object typing . 11
1.3.2 Optional fields . 12
1.3.3 Special functions in interfaces . 12

1.4 Untyped objects (maps) . 12
1.4.1 Reflective/untyped accesses . 12
1.4.2 Untyped objects initialization . 13
1.4.3 Indexed objects . 13

1.5 Enums . 13
1.6 Globals . 14
1.7 Optional parameters and overloading . 15

2 Bridging to external JavaScript elements 16
2.1 Ambient declarations . 16
2.2 Definitions . 16
2.3 Untyped accesses . 17
2.4 Mixins . 18

2.4.1 Untyped accesses to mixins . 18
2.4.2 Typed accesses with mixins . 18
2.4.3 Implementation and how to use . 19

3 Auxiliary types 20
3.1 Functional types . 20
3.2 Object types . 21
3.3 String types . 22
3.4 Tuple types . 23
3.5 Union types . 23
3.6 Intersection types . 24

4 Semantics 26
4.1 Main methods . 26
4.2 Initializers . 26
4.3 Arrays initialization and allocation . 27
4.4 Name clashes . 27

4.4.1 Methods and fields names clashes . 28
4.4.2 Method overloading . 28
4.4.3 Local variable names . 29

4.5 Testing the type of an object (instanceof) . 29
4.5.1 Limitations and constraints . 30

4.6 Variable scoping in lambda expressions . 30
4.7 Scope of this . 30

1

5 Packaging 32
5.1 Use your files without any packaging . 32
5.2 Creating a bundle for a browser . 32
5.3 Packaging with modules . 33

5.3.1 Modules in JSweet . 33
5.3.2 External modules . 33

5.4 Root packages . 34
5.4.1 Behavior when not using modules (default) . 34
5.4.2 Behavior when using modules . 34

5.5 Packaging a JSweet jar (candy) . 34
5.5.1 Anatomy of a candy . 35
5.5.2 How to create a candy from a JSweet program 35
5.5.3 How to create a candy for an existing JavaScript or TypeScript library 35

2

1. Basic concepts

This section presents the JSweet language basic concepts. One must keep in mind that JSweet, as a
Java-to-JavaScript transpiler, is an extension of Java at compile-time, and executes as JavaScript at runtime.
Thus, most Java typing and syntactic constraints will apply at compile time, but some JavaScript semantics
may apply at runtime. This document will mention JSweet-specific semantics.

1.1 Core types and objects
JSweet allows the use of primitive Java types, core Java objects and of core JavaScript objects, which are
defined in the jsweet.lang package. Next, we describe the use of such core types and objects.

1.1.1 Primitive Java types
JSweet allows the use of Java primitive types (and associated literals).

• int, byte, short, double, float are all converted to JavaScript numbers (TypeScript number
type). Precision usually does not matter in JSweet, however, casting to int, byte, or short forces
the number to be rounded to the right-length integer.

• char follows the Java typing rules but is converted to a JavaScript string by the transpiler.

• boolean corresponds to the JavaScript boolean.

• java.lang.String corresponds to the JavaScript string. (not per say a primitive type, but is
immutable and used as the class of string literals in Java)

A direct consequence of that conversion is that it is not possible in JSweet to safely overload methods
with numbers or chars/strings. For instance, the methods pow(int, int) and pow(double, dou-
ble) will be considered as the same method at runtime and should not have different implementations for
that reason. Also, there will be no difference between n instanceof Integer and n instanceof
Double, because it both means typeof n === ’number’. These behavior ensure low impedance
between JSweet programs and JavaScript ones.
Examples of valid statements:

// warning ’==’ behaves like JavaScript ’===’ at runtime
int i = 2;
assert i == 2;
double d = i + 4;
assert d == 6;
String s = "string" + ’0’ + i;
assert s == "string02";
boolean b = false;
assert !b;

Note that since JSweet 1.1.0, the == operator behaves like the JavaScript strict equals operator ===
so that it is close to the Java semantics. Similarly, != is mapped to !==. There is an exception to that
behavior which is when comparing an object to a null literal. In that case, JSweet translates to the loose
equality operators so that the programmers see no distinction between null and undefined (which are
different in JavaScript but it may be confusing to Java programmers). To control whether JSweet gener-
ates strict or loose operators, you can use the following helper methods: jsweet.util.Globals.-
equalsStrict (===), jsweet.util.Globals.notEqualsStrict (!==), jsweet.util.-
Globals.equalsLoose (==), and jsweet.util.Globals.notEqualsLoose (!=). For exam-
ple:

3

import static jsweet.util.Globals.equalsLoose;
[...]
int i = 2;
assert i == 2; // generates i === 2
assert !((Object)"2" == i);
assert equalsLoose("2", i); // generates "2" == i

1.1.2 Allowed Java objects
By default, JSweet maps core Java objects and methods to JavaScript through the use of built-in macros.
It means that the Java code is directly substituted with a valid JavaScript code that implements similar
behavior. Here is the list of accepted Java core classes and methods in a JSweet program:

• java.lang.Object

– allowed methods: boolean equals()

– allowed methods: Class<?> getClass()

– allowed methods: String toString()

• java.lang.CharSequence

– allowed methods:

∗ char charAt(int index)

∗ int length() (transpiles to length)
∗ CharSequence subSequence(int beginIndex, int endIndex)

∗ String toString()

• java.lang.String

– allowed constructors:

∗ String()

∗ String(byte[] bytes)

∗ String(byte[] bytes, int offset, int length)

∗ String(char[] value)

∗ String(char[] value, int offset, int count)

– allowed methods:

∗ char charAt(int index)

∗ int codePointAt(int index)

∗ int compareTo(String anotherString)

∗ int compareToIgnoreCase(String str)

∗ String concat(String str)

∗ boolean equals(String anotherString)

∗ boolean equalsIgnoreCase(String anotherString)

∗ byte[] getBytes()

∗ int indexOf(int ch)

∗ int indexOf(String str)

∗ boolean isEmpty()

∗ int lastIndexOf(int ch)

∗ int lastIndexOf(int ch, int fromIndex)

∗ int lastIndexOf(String str)

∗ int lastIndexOf(String str, int fromIndex)

∗ int length() (transpiles to length)

4

∗ String replace(CharSequence target, CharSequence replacement)

∗ CharSequence subSequence(int beginIndex, int endIndex)

∗ String substring(int beginIndex)

∗ String substring(int beginIndex, int endIndex) (with the JavaScript
behavior)

∗ String[] split(String regex)

∗ boolean startsWith(String prefix)

∗ boolean startsWith(String prefix, int toffset)

∗ char[] toCharArray()

∗ String toLowerCase()

∗ String toString()

∗ String toUpperCase()

∗ String trim()

∗ static String valueOf(boolean b)

∗ static String valueOf(char c)

∗ static String valueOf(char[] data)

∗ static String valueOf(char[] data, int offset, int count)

∗ static String valueOf(double d)

∗ static String valueOf(float f)

∗ static String valueOf(int i)

∗ static String valueOf(long l)

∗ static String valueOf(Object obj)

• java.lang.Class

– allowed methods:

∗ String getName(): only on class literals
∗ String getSimpleName(): only on class literals

• java.lang.Boolean

– allowed constructors:

∗ Boolean(value value)

∗ Boolean(String s)

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ String toString()

• java.lang.Void

– allowed methods: none

• java.lang.Integer

– allowed constructors:

∗ Integer(int value)

∗ Integer(String s)

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ String toString()

5

• java.lang.Long

– allowed constructors:

∗ Long(long value)

∗ Long(String s)

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ String toString()

• java.lang.Double

– allowed constructors:

∗ Double(double value)

∗ Double(String s)

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ boolean isInfinite()

∗ boolean isNaN()

∗ String toString()

• java.lang.Number

– allowed methods: none

• java.lang.Float

– allowed constructors:

∗ Float(float value)

∗ Float(String s)

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ boolean isInfinite()

∗ boolean isNaN()

∗ String toString()

• java.lang.Byte

– allowed constructors:

∗ Byte(byte value)

∗ Byte(String s)

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ String toString()

• java.lang.Short

– allowed constructors:

∗ Short(short value)

∗ Short(String s)

6

– allowed methods:

∗ boolean equals()

∗ int hashCode()

∗ String toString()

• java.lang.Iterable

– allowed methods: none (for using the foreach loop on indexed objects)

• java.lang.Runnable

– allowed methods: none (for declaring lambdas)

• java.lang.Throwable and all sub-classes

– allowed methods:

∗ getMessage()

∗ getCause(): valid but always return null by default

• java.lang.Math

– allowed fields:

∗ static double E

∗ static double PI

– allowed methods:

∗ static double abs(double a)

∗ static float abs(float a)

∗ static int abs(int a)

∗ static long abs(long a)

∗ static double acos(double a)

∗ static double asin(double a)

∗ static double atan(double a)

∗ static double atan2(double y, double x)

∗ static double cbrt(double a)

∗ static double ceil(double a)

∗ static double copySign(double magnitude, double sign)

∗ static double cos(double a)

∗ static double cosh(double x)

∗ static double exp(double a)

∗ static double expm1(double x)

∗ static double floor(double a)

∗ static double hypot(double x, double y)

∗ static double log(double a)

∗ static double log10(double a)

∗ static double log1p(double a)

∗ static double max(double a, double b)

∗ static float max(float a, float b)

∗ static int max(int a, int b)

∗ static long max(long a, long b)

∗ static double min(double a, double b)

∗ static float min(float a, float b)

∗ static int min(int a, int b)

∗ static long min(long a, long b)

7

∗ static double pow(double a, double b)

∗ static double random()

∗ static double rint(double a)

∗ static long round(double a)

∗ static int round(float a)

∗ static double scalb(double d, int scaleFactor)

∗ static float scalb(float f, int scaleFactor)

∗ static double signum(double d)

∗ static float signum(float f)

∗ static double sin(double a)

∗ static double sinh(double x)

∗ static double sqrt(double a)

∗ static double tan(double a)

∗ static double tanh(double x)

∗ static double toDegrees(double angrad)

∗ static double toRadians(double angdeg)

• java.util.function.* (for declaring lambdas)

– prohibited method names:

∗ and

∗ negate

∗ or

∗ andThen

Examples of valid statements:

Integer i = 2;
assert i == 2;
Double d = i + 4d;
assert d.toString() == "6";
assert !((Object) d == "6");
BiFunction<String, Integer, String> f = (s, i) -> { return s.substring(i); };
assert "bc" == f.apply("abc", 1);

1.1.3 Getting more Java APIs
With JSweet, it is possible to add a runtime that implements Java APIs in JavaScript, so that programmers
can access more Java APIs and thus share the same code between Java and JavaScript. The core project for
implementing Java APIs for JSweet is J4TS (https://github.com/cincheo/j4ts) and contains a
quite complete implementation of java.util.* classes and other core package. J4TS is based on a fork
of the GWT’s JRE emulation, but it is adapted to be compiled with JSweet. Programmers can use J4TS as
a regular JavaScript library available in our Maven repository.

Although J4TS cannot directly implement the Java core types that conflict with JavaScript ones (Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String), J4TS contributes to sup-
porting the static part of them by providing helpers for each class (javaemul.internal.BooleanHelper,
javaemul.internal.ByteHelper, ...). When the JSweet transpiler meets a static Java method on a
type java.lang.T that is not supported as a built-in macro, it delegates to javaemul.internal.THelper,
which can provide a JavaScript implementation for the given static method. That way, by using J4TS, pro-
grammers can use even more of the core JRE API.

8

https://github.com/cincheo/j4ts

1.1.4 Java arrays
Arrays can be used in JSweet and are transpiled to JavaScript arrays. Array initialization, accesses and and
iteration are all valid statements.

int[] arrayOfInts = { 1, 2, 3, 4};
assert arrayOfInts.length == 4;
assert arrayOfInts[0] == 1;
int i = 0;
for (int intItem : arrayOfInts) {
assert arrayOfInts[i++] == intItem;

}

1.1.5 Core JavaScript API
The core JavaScript API is defined in jsweet.lang (the full documentation can be found at http:
//www.jsweet.org/core-api-javadoc/). Main JavaScript classes are:

• jsweet.lang.Object: JavaScript Object class. Common ancestor for JavaScript objects func-
tions and properties.

• jsweet.lang.Boolean: JavaScript Boolean class. A wrapper for boolean values.

• jsweet.lang.Number: JavaScript Number class. A wrapper for numerical values.

• jsweet.lang.String: JavaScript String class. A wrapper and constructor for strings.

• jsweet.lang.Function: JavaScript Function class. A constructor for functions.

• jsweet.lang.Date: JavaScript Date class, which enables basic storage and retrieval of dates and
times.

• jsweet.lang.Array<T>: JavaScript Array class. It is used in the construction of arrays, which
are high-level, list-like objects.

• jsweet.lang.Error: JavaScript Error class. This class implements java.lang.RuntimeException
and can be thrown and caught with try ... catch statements.

When using JavaScript frameworks, programmers should use this API most of the time, which is
HTML5 compatible and follows the JavaScript latest supported versions. However, for objects that need
to be used with Java literals (numbers, booleans, and strings), the use of the java.lang package classes is
recommended. For instance, the jQuery API declares $(java.lang.String) instead of $(jsweet.-
lang.String). This allows the programmer to write expressions using literals, such as $(”a”) (for
selecting all links in a document).

As a consequence, programmers need to be able to switch to the JavaScript API when coming from a
Java object. The jsweet.util.Globals class defines convenient static methods to cast back and forth
core Java objects to their corresponding JSweet objects. For instance the string(...) method will
allow the programmer to switch from the Java to the JSweet strings and conversely.

import static jsweet.util.Globals.string;
String str = "This is a test string"; // str is actually a JavaScript string

at runtime
str.toLowerCase(); // valid: toLowerCase it defined both in Java and JavaScript
str.substr(1); // this is ok, but it is a macro that will generate JavaScript

code
string(str).substr(1); // direct call to the substr method on the JavaScript

string

9

http://www.jsweet.org/core-api-javadoc/
http://www.jsweet.org/core-api-javadoc/

Note: for code sharing between a JavaScript client and a Java server for instance, it is better to use Java
APIs only and not JavaScript ones.
Here is another example that shows the use of the array method to access the push method available on
JavaScript arrays.

import static jsweet.util.Globals.array;
String[] strings = { "a", "b", "c" };
array(strings).push("d");
assert strings[3] == "d";

1.2 Classes
Classes in JSweet fully support all types of Java classes declarations. For example:

public class BankAccount {
public double balance = 0;
public double deposit(double credit) {

balance += credit;
return this.balance;

}
}

Which is transpiled to the following JavaScript code:

var BankAccount = (function () {
function BankAccount() {

this.balance = 0;
}
BankAccount.prototype.deposit = function(credit) {

this.balance += credit;
return this.balance;

};
return BankAccount;

})();

Classes can define constructors, have super classes and be instantiated exactly like in Java. Similarly
to Java, inner classes and anonymous classes are allowed in JSweet since version 1.1.0. JSweet supports
both static and regular inner/anonymous classes, which can share state with enclosing classes. Still like
in Java, anonymous classes can access final variables declared in their scope. For example, the following
declarations are valid in JSweet and will mimic the Java semantics at runtime so that Java programmers can
benefit all the features of the Java language.

abstract class C {
public abstract int m();

}
public class ContainerClass {
// inner class
public class InnerClass {
public I aMethod(final int i) {
// anonymous class
return new C() {
@Override
public int m() {
// access to final variable i
return i;

}
}

}

10

}
}

1.3 Interfaces
In JSweet, an interface (a.k.a. object type) can be seen as object signature, that is to say the accessible
functions and properties of an object (without specifying any implementation). An interface is defined for
typing only and has no runtime representation (no instances), however, they can be used to type objects.

JSweet interfaces can be defined as regular Java interfaces, but also as Java classes annotated with
@jsweet.lang.Interface, so that is is possible to define properties as fields. Such classes impose
many constraints, as shown in the following code.

@Interface
public class WrongConstructsInInterfaces {
native public void m1(); // OK
// error: field initializers are not allowed
public long l = 4;
// error: statics are not allowed
static String s1;
// error: private are not allowed
private String s2;
// error: constructors are not allowed
public WrongConstructsInInterfaces() {
l = 4;

}
// error: bodies are not allowed
public void m2() {
l = 4;

}
// error: statics are not allowed
native static void m3();
// error: initializers are not allowed
{
l = 4;

}
// error: static initializers are not allowed
static {
s1 = "";

}
}

1.3.1 Object typing
In JSweet, typed objects can be constructed out of interfaces. If we take the following interface:

@Interface
public class Point {
public double x;
public double y;

}

We can create an object typed after the interface. Note that the following code is not actually creating an
instance of the Point interface, it is creating an object that conforms to the interface.

Point p1 = new Point() {{ x=1; y=1; }};

11

This object creation mechanism is a TypeScript/JavaScript mechanism and shall not be confused with
anonymous classes, which is a Java-like construction.

Note also that, for each object, JSweet keeps track of which interface it was created from and of all the
potential interfaces implemented by its class. This interface tracking system is implemented as a special
object property called interfaces. Using that property, JSweet allows the use of the instanceof
operator on interfaces, exactly like in Java, as we will see later in this document.

1.3.2 Optional fields
Interfaces can define optional fields, which are used to report errors when the programmer forgets to ini-
tialize a mandatory field in an object. Supporting optional fields in JSweet is done through the use of
@jsweet.lang.Optional annotations. For instance:

@Interface
public class Point {
public double x;
public double y;
@Optional
public double z = 0;

}

It is the JSweet compiler that will check that the fields are correctly initialized, when constructing an
object from an interface.

// no errors (z is optional)
Point p1 = new Point() {{ x=1; y=1; }};
// JSweet reports a compile error since y is not optional
Point p2 = new Point() {{ x=1; z=1; }};

1.3.3 Special functions in interfaces
In JavaScript, objects can have properties and functions, but can also (not exclusively), be used as construc-
tors and functions themselves. This is not possible in Java, so JSweet defines special functions for handling
these cases.

• apply is used to state that the object can be used as a function.

• $new is used to state that the object can be used as a constructor.

1.4 Untyped objects (maps)
In JavaScript, object can be seen as maps containing key-value pairs (key is often called index, especially
when it is a number). So, in JSweet, all objects define the special functions (defined on jsweet.lang.Object):

• $get(key) accesses a value with the given key.

• $set(key,value) sets or replace a value for the given key.

• $delete(key) deletes the value for the given key.

1.4.1 Reflective/untyped accesses
The functions $get(key), $set(key,value) and $delete(key) can be seen as a simple reflective
API to access object fields and state. Note also the static method jsweet.lang.Object.keys(object),
which returns all the keys defined on a given object.

The following code uses this API to introspect the state of an object o.

12

for(String key : jsweet.lang.Object.keys(o)) {
console.log("key=" + key + " value=" + o.$get(key));

});

When not having the typed API of a given object, this API can be useful to manipulate the object in an
untyped way (of course it should be avoided as much as possible).

1.4.2 Untyped objects initialization
One can use the $set(key,value) function to create new untyped object. For instance:

Object point = new jsweet.lang.Object() {{ $set("x", 1); $set("y", 1); }};

As a shortcut, one can use the jsweet.util.Global.$map function:

import static jsweet.util.Global.$map;
[...]
Object point = $map("x", 1, "y", 1);

1.4.3 Indexed objects
The type of keys and values can be overloaded for every object. For example, the Array<T> class, will
define keys as numbers and values as objects conforming to type T.

In the case of objects indexed with number keys, it is allowed to implement the java.lang.Iterable
interface so that it is possible to use they in foreach loops. For instance, the NodeList type (from the
DOM) defines an indexed function:

@Interface
class NodeList implements java.lang.Iterable {

public double length;
public Node item(double index);
public Node $get(double index);

}

In JSweet, you can access the node list elements with the $get function, and you can also iterate with
the foreach syntax. The following code generates fully valid JavaScript code.

NodeList nodes = ...
for (int i = 0; i < nodes.length; i++) {
HTMLElement element = (HTMLElement) nodes.$get(i);
[...]

}
// same as:
NodeList nodes = ...
for (Node node : nodes) {
HTMLElement element = (HTMLElement) node;
[...]

}

1.5 Enums
JSweet allows the definition of enums similarly to Java. The following code declares an enum with tree
possible values (A, B, and C).

enum MyEnum {
A, B, C

13

}

The following statements are valid statements in JSweet.

MyEnum e = MyEnum.A;
assert MyEnum.A == e;
assert e.name() == "A";
assert e.ordinal() == 0;
assert MyEnum.valueOf("A") == e;
assert array(MyEnum.values()).indexOf(MyEnum.valueOf("C")) == 2;

Like Java enums, additional methods, constructors and fields can be added to enums.

enum ScreenRatio {
FREE_RATIO(null),
RATIO_4_3(4f / 3),
RATIO_3_2(1.5f),
RATIO_16_9(16f / 9),
RATIO_2_1(2f / 1f),
SQUARE_RATIO(1f);

private final Float value;

private MyComplexEnum(Float value) {
this.value = value;

}

public Float getValue() {
return value;

}
}

Enums portability notes
Simple enums are translated to regular TypeScript enums, that is to say numbers. In JavaScript, at runtime,
an enum instance is simple encode as its ordinal. So, JSweet enums are easy to share with TypeScript enums
and a JSweet program can interoperate with a TypeScript program even when using enums.

Enums with additional members are also mapped to TypeScript enums, but an additional class is gener-
ated to store the additional information. When interoperating with TypeScript, the ordinal will remain, but
the additional information will be lost. The programmers wanting to share enums with TypeScript should
be aware of that behavior.

1.6 Globals
In Java, on contrary to JavaScript, there is no such thing as global variables or functions (there are only
static members, but even those must belong to a class). Thus, JSweet introduces reserved Globals classes
and globals packages. These have two purposes:

• Generate code that has global variables and functions (this is discouraged in Java)

• Bind to existing JavaScript code that defines global variables and functions (as many JavaScript
frameworks do)

In Globals classes, only static fields (global variables) and static methods (global functions) are allowed.
Here are the main constraints applying to Globals classes:

• no non-static members

• no super class

14

• cannot be extended

• cannot be used as types like regular classes

• no public constructor (empty private constructor is OK)

• cannot use $get, $set and $delete within the methods

For instance, the following code snippets will raise transpilation errors.

class Globals {
public int a;
// error: public constructors are not allowed
public Globals() {
this.a = 3;

}
public static void test() {
// error: no instance is available
$delete("key");

}
}

// error: Globals classes cannot be used as types
Globals myVariable = null;

One must remember that Globals classes and global packages are erased at runtime so that their
members will be directly accessible. For instance mypackage.Globals.m() in a JSweet program
corresponds to the mypackage.m() function in the generated code and in the JavaScript VM at runtime.
Also, mypackage.globals.Globals.m() corresponds to m().

In order to erase packages in the generated code, programmers can also use the @Root annotation,
which will be explained in Section 5.

1.7 Optional parameters and overloading
In JavaScript, parameters can be optional, in the sense that a parameter value does not need to be provided
when calling a function. Except for varargs, which are fully supported in JSweet, the general concept of an
optional parameter does not exist in Java. To simulate optional parameters, JSweet programmers can use
method overloading, which is supported in Java. Here are some examples of supported overloads in JSweet:

String m(String s, double n) { return s + n; }
// simple overloading (JSweet transpiles to optional parameter)
String m(String s) { return m(s, 0); }
// complex overloading (JSweet generates more complex code to mimic the Java

behavior)
String m(String s) { return s; }

15

2. Bridging to external JavaScript elements

It can be the case that programmers need to use existing libraries from JSweet. In most cases, one should
look up in the available candies (http://www.jsweet.org/candies-releases/ and http://
www.jsweet.org/candies-snapshots/), which are automatically generated from TypeScript’s
DefinitelyTyped. When the candy does not exist, or does not entirely cover what is needed, one can use the
@jsweet.lang.Ambient annotation, which will make available to the programmers a class definition
or an interface.

2.1 Ambient declarations
The following example shows the backbone store class made accessible to the JSweet programmer with a
simple ambient declaration. This class is only for typing and will be erased during the JavaScript generation.

@Ambient
class Store {
public Store(String dbName) {}

}

Note that ambient classes constructors must have an empty body. Also, ambient classes methods must
be abstract or native. For instance:

@Ambient
class MyExternalJavaScriptClass {
public native myExternalJavaScriptMethod();

}

2.2 Definitions
By convention, putting the classes in a def.libname package defines a set of definitions for the lib-
name external JavaScript library called libname. Definitions are by default all ambient declarations
and do not need to be annotated with @jsweet.lang.Ambient annotations since they are implicit in
def.* packages and sub-packages. Note that this mechanism is similar to the TypeScript d.ts definition
files.

Candies (bridges to external JavaScript libraries) use definitions. For instance, the jQuery candy defines
all the jQuery API in the def.jquery package.

Here is a list of rules and constraints that need to be followed when writing definitions.

• The def.libname package must be annotated with a @jsweet.lang.Root (to be placed in a
package-info.java file).

• Within a def.* package, @Ambient annotations are not required. By conventions all declarations
are ambient.

• Interfaces are preferred over classes, because interfaces can be merged and classes can be instantiated.
Classes should be used only if the API defines an explicit constructor (objects can be created with
new). To define an interface in JSweet, just annotate a class with @jsweet.lang.Interface.

• Top-level functions and variables must be defined as public static members in a Globals
class.

• All classes, interfaces and packages, should be documented with comments following the Javadoc
standard.

16

http://www.jsweet.org/candies-releases/
http://www.jsweet.org/candies-snapshots/
http://www.jsweet.org/candies-snapshots/

• When several types are possible for a function parameter, method overloading should be preferred
over using union types. When method overloading is not possible, it can be more convenient to
simply use the Object type. It is less strongly typed but it is easier to use.

• One can use string types to provide function overloading depending on a string parameter value.

• In a method signature, optional parameters can be defined with the @jsweet.lang.Optional
annotation.

• In an interface, optional fields can be defined with the @jsweet.lang.Optional annotation.

Definitions can be embedded directly in a JSweet project to access an external library in a typed way.
In that case, you should specify the definitions compilation option so that these definitions can be
generated and used by the TypeScript transpiler.

Definitions can also be packaged in a candy (a Maven artifact), so that they can be shared by other
projects. See the Packaging section for full details on how to create a candy. Note that you do not need to
write definitions when a library is written with JSweet because the Java API is directly accessible and the
TypeScript definitions can be automatically generated by JSweet using the declaration option.

2.3 Untyped accesses
Sometimes, definitions are not available or are not correct, and just a small patch is required to access a
functionality. Programmers have to keep in mind that JSweet is just a syntactic layer and that it is always
possible to bypass typing in order to access a field or a function that is not explicitly specified in an API.

Although, having a well-typed API is the preferred and advised way, when such an API is not available,
the use of jsweet.lang.Object.$get allows reflective access to methods and properties that can
then be cast to the right type. For accessing functions in an untyped way, one can cast to jsweet.-
lang.Function and call the generic and untyped method apply on it. For example, here is how to
invoke the jQuery $ method when the jQuery API is not available :

import jsweet.dom.Globals.window;
[...]
Function $ = (Function)window.$get("$");
$.apply("aCssSelector"):

The $get function is available on instances of jsweet.lang.Object (or subclasses). For a
java.lang.Object, you can cast it using the jsweet.util.Globals.object helper method.
For example:

import static jsweet.dom.Globals.object;
[...]
object(anyObject).$get("$");

The other way it to use the jsweet.util.Globals.$get helper method. Using helper methods
can be convenient to easily write typical (untyped JavaScript statement). For example:

import static jsweet.dom.Globals.$get;
import static jsweet.dom.Globals.$apply;
[...]
// generate anyObject["prop"]("param");
$apply($get(anyObject, "prop"), "param");

Finally, note also the use of the jsweet.util.Globals.any helper method, which can be ex-
tremely useful to erase typing. Since the any method generates a cast to the any type in TypeScript, it is
more radical than a cast to Object for instance. The following example shows how to use the any method
to cast an Int32Array to a Java int[] (and then allow direct indexed accesses to it.

ArrayBuffer arb = new ArrayBuffer(2 * 2 * 4);
int[] array = any(new Int32Array(arb));

17

int whatever = array[0];

2.4 Mixins
In JavaScript, it is common practice to enhance an existing class with news elements (field and methods). It
is an extension mechanism used when a framework defines plugins for instance. Typically, jQuery plugins
add new elements to the JQuery class. For example the jQuery timer plugin adds a timer field to the
JQuery class. As a consequence, the JQuery class does not have the same prototype if you are using
jQuery alone, or jQuery enhanced with its timer plugin.

In Java, this extension mechanism is problematic because Java cannot dynamically enhance a given
class.

2.4.1 Untyped accesses to mixins
Programmers can access the added element with $get accessors and/or with brute-force casting.

Here is an example using $get for the timer plugin case:

((Timer)$("#myId").$get("timer")).pause();

Here is an other way to do it exampled through the use of the jQuery UI plugin (note that this solution
forces the use of def.jqueryui.JQuery instead of def.jquery.JQuery in order to access the
menu() function, added by the UI plugin):

import def.jqueryui.JQuery;
[...]
Object obj = $("#myMenu");
JQuery jq = (JQuery) obj;
jq.menu();

However, these solutions are not satisfying because clearly unsafe in terms of typing.

2.4.2 Typed accesses with mixins
When cross-candy dynamic extension is needed, JSweet defines the notion of a mixin. A mixin is a class
that defines members that will end up being directly accessible within a target class (mixin-ed class). Mixins
are defined with a @Mixin annotation. Here is the excerpt of the def.jqueryui.JQuery mixin:

package def.jqueryui;
import jsweet.dom.MouseEvent;
import jsweet.lang.Function;
import jsweet.lang.Date;
import jsweet.lang.Array;
import jsweet.lang.RegExp;
import jsweet.dom.Element;
import def.jquery.JQueryEventObject;
@jsweet.lang.Interface
@jsweet.lang.Mixin(target=def.jquery.JQuery.class)
public abstract class JQuery extends jsweet.lang.Object {

native public JQuery accordion();
native public void accordion(jsweet.util.StringTypes.destroy methodName);
native public void accordion(jsweet.util.StringTypes.disable methodName);
native public void accordion(jsweet.util.StringTypes.enable methodName);
native public void accordion(jsweet.util.StringTypes.refresh methodName);
...
native public def.jqueryui.JQuery menu();
...

18

One can notice the @jsweet.lang.Mixin(target=def.jquery.JQuery.class) that states
that this mixin will be merged to the def.jquery.JQuery so that users will be able to use all the UI
plugin members directly and in a well-typed way.

2.4.3 Implementation and how to use
JSweet merges mixins using a bytecode manipulation tool called Javassist. It takes the mixin classes byte-
code, copies all the members to the target classes, and writes the resulting merged classes bytecode to the
.jsweet/candies/processed directory. As a consequence, in order to benefit the JSweet mixin
mechanism, one must add the .jsweet/candies/processed directory to the compilation classpath.
This directory should be placed before all the other classpath elements so that the mixined results override
the original classes (for example the def.jquery.JQuery should be overridden and, as a consequence,
.jsweet/candies/processed/def/jquery/JQuery.class must be found first in the class-
path).

The JSweet transpiler automatically adds the .jsweet/candies/processed directory to the
compilation classpath so that you do not have to do anything special when using JSweet with Maven.
However, when using mixins within an IDE, you must force your project classpath to include this directory
in order to ensure compilation of mixin-ed elements. When using the JSweet Eclipse plugin for instance,
this is done automatically and transparently for the user. But when not using any plugins, this configuration
must be done manually.

For example, with Eclipse (similar configuration can be made with other IDEs):

1. Right-click on the project >Build path >Configure build path... >Libraries (tab) >Add class folder
(button). Then choose the .jsweet/candies/processed directory.

2. In the ”order and export” tab of the build path dialog, make sure that the .jsweet/candies/pro-
cessed directory appears at the top of the list (or at least before the Maven dependencies).

NOTE: you do not have to configure anything if you are not using mixins or if you are using the Eclipse
plugin.

Once this configuration is done, you can safely use mixins. For instance, if using the jQuery candy
along with jQuery UI, you will be able to write statements such as:

$("#myMenu").menu();

This is neat compared to the untyped access solution because it is checked by the Java compiler (and
you will also have completion on mixin-ed elements).

19

3. Auxiliary types

JSweet uses most Java typing features (including functional types) but also extends the Java type system
with so-called auxiliary types. The idea behind auxiliary types is to create classes or interfaces that can hold
the typing information through the use of type parameters (a.k.a generics), so that the JSweet transpiler
can cover more typing scenarios. These types have been mapped from TypeScript type system, which is
much richer than the Java one (mostly because JavaScript is a dynamic language and requires more typing
scenarios than Java).

3.1 Functional types
For functional types, JSweet reuses the java.Runnable and java.util.function functional in-
terfaces of Java 8. These interfaces are generic but only support up to 2-parameter functions. Thus, JSweet
adds some support for more parameters in jsweet.util.function, since it is a common case in
JavaScript APIs.

Here is an example using the Function generic functional type:

import java.util.function.Function;

public class C {

String test(Function<String, String> f) {
f.apply("a");

}

public static void main(String[] args) {
String s = new C().test(p -> p);
assert s == "a";

}
}

We encourage programmers to use the generic functional interfaces defined in the jsweet.util.-
function and java.util.function (besides java.lang.Runnable). When requiring func-
tions with more parameters, programmers can define their own generic functional types in jsweet.-
util.function by following the same template as the existing ones.

In some cases, programmers will prefer defining their own specific functional interfaces. This is sup-
ported by JSweet. For example:

@FunctionalInterface
interface MyFunction {
void run(int i, String s);

}

public class C {
void m(MyFunction f) {
f.run(1, "test");

}
public static void main(String[] args) {
new C().m((i, s) -> {
// do something with i and s

});
}

}

20

Important warning: it is to be noted here that, on contrary to Java, the use of the @FunctionInter-
face annotation is mandatory.

Note also the possible use of the apply function, which is by convention always a functional definition
on the target object (unless if apply is annotated with the @Name annotation). Defining/invoking apply
can done on any class/object (because in JavaScript any object can become a functional object).

3.2 Object types
Object types are similar to interfaces: they define a set of fields and methods that are applicable to an object
(but remember that it is a compile-time contract). In TypeScript, object types are inlined and anonymous.
For instance, in TypeScript, the following method m takes a parameter, which is an object containing an
index field:

// TypeScript:
public class C {
public m(param : { index : number }) { ... }

}

Object types are a convenient way to write shorter code. One can pass an object that is correctly typed
by constructing an object on the fly:

// TypeScript:
var c : C = ...;
c.m({ index : 2 });

Obviously, object types are a way to make the typing of JavaScript programs very easy to programmers,
which is one of the main goals of TypeScript. It makes the typing concise, intuitive and straightforward to
JavaScript programmers. In Java/JSweet, no similar inlined types exist and Java programmers are used to
defining classes or interfaces for such cases. So, in JSweet, programmers have to define auxiliary classes
annotated with @ObjectType for object types. This may seem more complicated, but it has the advantage
to force the programmers to name all the types, which, in the end, can lead to more readable and maintenable
code depending on the context. Note that similarily to interfaces, object types are erased at runtime. Also
@ObjectType annotated classes can be inner classes so that they are used locally.

Here is the JSweet version of the previous TypeScript program.

public class C {
@ObjectType
public static class Indexed {
int index;

}
public void m(Indexed param) { ... }

}

Using an object type is similar to using an interface:

C c = ...;
c.m(new Indexed() {{ index = 2; }});

When object types are shared objects and represent a typing entity that can be used in several contexts,
it is recommended to use the @Interface annotation instead of @ObjectType. Here is the interface-
based version.

@Interface
public class Indexed {
int index;

}

public class C {

21

public m(Indexed param) { ... }
}

C c = ...;
c.m(new Indexed {{ index = 2; }});

3.3 String types
In TypeScript, string types are a way to simulate function overloading depending on the value of a string
parameter. For instance, here is a simplified excerpt of the DOM TypeScript definition file:

// TypeScript:
interface Document {
[...]
getElementsByTagName(tagname: "a"): NodeListOf<HTMLAnchorElement>;
getElementsByTagName(tagname: "b"): NodeListOf<HTMLPhraseElement>;
getElementsByTagName(tagname: "body"): NodeListOf<HTMLBodyElement>;
getElementsByTagName(tagname: "button"): NodeListOf<HTMLButtonElement>;
[...]

}

In this code, the getElementsByTagName functions are all overloads that depend on the strings
passed to the tagname parameter. Not only string types allow function overloading (which is in general not
allowed in TypeScript/JavaScript), but they also constrain the string values (similarly to an enumeration),
so that the compiler can automatically detect typos in string values and raise errors.

This feature being useful for code quality, JSweet provides a mechanism to simulate string types with
the same level of type safety. A string type is a public static field annotated with @StringType. It must
be typed with an interface of the same name declared in the same container type.

For JSweet translated libraries (candies), all string types are declared in a the jsweet.util.-
StringTypes class, so that it is easy for the programmers to find them. For instance, if a ”body”
string type needs to be defined, a Java interface called body and a static final field called body are defined
in a jsweet.util.StringTypes.

Note that each candy may have its own string types defined in the jsweet.util.StringTypes
class. The JSweet transpiler merges all these classes at the bytecode level so that all the string types of all
candies are available in the same jsweet.util.StringTypes utility class. As a result, the JSweet
DOM API will look like:

@Interface
public class Document {
[...]
public native NodeListOf<HTMLAnchorElement> getElementsByTagName(a tagname);
public native NodeListOf<HTMLPhraseElement> getElementsByTagName(b tagname);
public native NodeListOf<HTMLBodyElement> getElementsByTagName(body tagname);
public native NodeListOf<HTMLButtonElement> getElementsByTagName(button

tagname);
[...]

}

In this API, a, b, body and button are interfaces defined in the jsweet.util.StringTypes
class. When using one the method of Document, the programmer just need to use the corresponding type
instance (of the same name). For instance:

Document doc = ...;
NodeListOf<HTMLAnchorElement> elts = doc.getElementsByTagName(StringTypes.a);

Note: if the string value is not a valid Java identifier (for instance ”2d” or ”string-with-dashes”),
it is then translated to a valid one and annotated with @Name(”originalName”), so that the JSweet tran-

22

spiler knows what actual string value must be used in the generated code. For instance, by default, ”2d”
and ”string-with-dashes” will correspond to the interfaces StringTypes. 2d and String-
Types.string with dashes with @Name annotations.

Programmers can define string types for their own needs, as shown below:

import jsweet.lang.Erased;
import jsweet.lang.StringType;

public class CustomStringTypes {
@Erased
public interface abc {}

@StringType
public static final abc abc = null;

// This method takes a string type parameter
void m2(abc arg) {
}

public static void main(String[] args) {
new CustomStringTypes().m2(abc);

}
}

Note the use of the @Erased annotation, which allows the declaration of the abc inner interface. This
interface is used to type the string type field abc. In general, we advise the programmer to group all the
string types of a program in the same utility class so that it is easy to find them.

3.4 Tuple types
Tuple types represent JavaScript arrays with individually tracked element types. For tuple types, JSweet
defines parameterized auxiliary classes TupleN<T0, ... TN-1>, which define $0, $1, ... $N-1
public fields to simulate typed array accessed (field $i is typed with Ti).

For instance, given the following tuple of size 2:

Tuple2<String, Integer> tuple = new Tuple2<String, Integer>("test", 10);

We can expect the following (well-typed) behavior:

assert tuple.$0 == "test";
assert tuple.$1 == 10;
tuple.$0 = "ok";
tuple.$1--;
assert tuple.$0 == "ok";
assert tuple.$1 == 9;

Tuple types are all defined (and must be defined) in the jsweet.util.tuple package. By default
classes Tuple[2..6] are defined. Other tuples (> 6) are automatically generated when encountered in
the candy APIs. Of course, when requiring larger tuples that cannot be found in the jsweet.util.-
tuple package, programmers can add their own tuples in that package depending on their needs, just by
following the same template as existing tuples.

3.5 Union types
Union types represent values that may have one of several distinct representations. When such a case
happens within a method signature (for instance a method allowing several types for a given parameter),

23

JSweet takes advantage of the method overloading mechanism available in Java. For instance, the following
m method accept a parameter p, which can be either a String or a Integer.

public void m(String p) {...}
public void m(Integer p) {...}

In the previous case, the use of explicit union types is not required. For more general cases, JSweet
defines an auxiliary interface Union<T1, T2> (and UnionN<T1, ... TN>) in the jsweet.-
util.union package. By using this auxiliary type and a union utility method, programmers can cast
back and forth between union types and union-ed type, so that JSweet can ensure similar properties as
TypeScript union types.

The following code shows a typical use of union types in JSweet. It simply declares a variable as a
union between a string and a number, which means that the variable can actually be of one of that types
(but of no other types). The switch from a union type to a regular type is done through the jsweet-
.util.Globals.union helper method. This helper method is completely untyped, allowing from a
Java perspective any union to be transformed to another type. It is actually the JSweet transpiler that checks
that the union type is consistently used.

import static jsweet.util.Globals.union;
import jsweet.util.union.Union;
[...]
Union<String, Number> u = ...;
// u can be used as a String
String s = union(u);
// or a number
Number n = union(u);
// but nothing else
Date d = union(u); // JSweet error

The union helper can also be used the other way, to switch from a regular type back to a union type,
when expected.

import static jsweet.util.Globals.union;
import jsweet.util.union.Union3;
[...]
public void m(Union3<String, Number, Date>> u) { ... }
[...]
// u can be a String, a Number or a Date
m(union("a string"));
// but nothing else
m(union(new RegExp(".*"))); // compile error

Note: the use of Java function overloading is preferred over union types when typing function parame-
ters. For example:

// with union types (discouraged)
native public void m(Union3<String, Number, Date>> u);
// with overloading (preferred way)
native public void m(String s);
native public void m(Number n);
native public void m(Date d);

3.6 Intersection types
TypeScript defines the notion of type intersection. When types are intersected, it means that the resulting
type is a larger type, which is the sum of all the intersected types. For instance, in TypeScript, A & B
corresponds to a type that defines both A and B members.

24

Intersection types in Java cannot be implemented easily for many reasons. So, the practical choice
being made here is to use union types in place of intersection types. In JSweet, A & B is thus defined
as Union<A, B>, which means that the programmer can access both A and B members by using the
jsweet.util.Globals.union helper method. It is of course less convenient than the TypeScript
version, but it is still type safe.

25

4. Semantics

Semantics designate how a given program behaves when executed. Although JSweet relies on the Java
syntax, programs are transpiled to JavaScript and do not run in a JRE. As a consequence, the JavaScript
semantics will impact the final semantics of a JSweet program compared to a Java program. In this section,
we discuss the semantics by focusing on differences or commonalities between Java/JavaSript and JSweet.

4.1 Main methods
Main methods are the program execution entry points and will be invoked globally when a class containing
a main method is evaluated. For instance:

public class C {
private int n;
public static C instance;
public static void main(String[] args) {
instance = new C();
instance.n = 4;

}
public int getN() {
return n;

}
}
// when the source file containing C has been evaluated:
assert C.instance != null;
assert C.instance.getN() == 4;

The way main methods are globally invoked depends on how the program is packaged. See the ap-
pendixes for more details.

4.2 Initializers
Initializers behave like in Java.
For example:

public class C1 {
int n;
{
n = 4;

}
}
assert new C1().n == 4;

And similarly with static initializers:

public class C2 {
static int n;
static {
n = 4;

}
}
assert C2.n == 4;

26

While regular initializers are evaluated when the class is instantiated, static initializers are lazily evalu-
ated in order to avoid forward-dependency issues, and mimic the Java behavior for initializers. With JSweet,
it is possible for a programmer to define a static field or a static intializer that relies on a static field that has
not yet been initialized.

More details on this behavior can be found in the appendixes.

4.3 Arrays initialization and allocation
Arrays can be used like in Java.

String[] strings = { "a", "b", "c" };
assert strings[1] == "b";

When specifying dimensions, arrays are pre-allocated (like in Java), so that they are initialized with the
right length, and with the right sub-arrays in case of multiple-dimensions arrays.

String[][] strings = new String[2][2];
assert strings.length == 2;
assert strings[0].length == 2;
strings[0][0] = "a";
assert strings[0][0] == "a";

The JavaScript API can be used on an array by casting to a jsweet.lang.Array with jsweet.-
util.Globals.array.

import static jsweet.util.Globals.array;
[...]
String[] strings = { "a", "b", "c" };
assert strings.length == 3;
array(strings).push("d");
assert strings.length == 4;
assert strings[3] == "d";

In some cases it is preferable to use the jsweet.lang.Array class directly.

Array<String> strings = new Array<String>("a", "b", "c");
// same as: Array<String> strings = array(new String[] { "a", "b", "c" });
// same as: Array<String> strings = new Array<String>(); strings.push("a",

"b", "c");
assert strings.length == 3;
strings.push("d");
assert strings.length == 4;
assert strings.$get(3) == "d";

4.4 Name clashes
On contrary to TypeScript/JavaScript, Java makes a fundamental difference between methods, fields, and
packages. Java also support method overloading (methods having different signatures with the same name).
In JavaScript, object variables and functions are stored within the same object map, which basically means
that you cannot have the same key for several object members (this also explains that method overloading
in the Java sense is not possible in JavaScript). Because of this, some Java code may contain name clashes
when generated as is in TypeScript. JSweet will avoid name clashes automatically when possible, and will
report sound errors in the other cases.

27

4.4.1 Methods and fields names clashes
JSweet performs a transformation to automatically allow methods and private fields to have the same name.
On the other hand, methods and public fields of the same name are not allowed within the same class or
within classes having a subclassing link.

To avoid programming mistakes due to this JavaScript behavior, JSweet adds a semantics check to detect
duplicate names in classes (this also takes into account members defined in parent classes). As an example:

public class NameClashes {

// error: field name clashes with existing method name
public String a;

// error: method name clashes with existing field name
public void a() {
return a;

}

}

4.4.2 Method overloading
On contrary to TypeScript and JavaScript (but similarly to Java), it is possible in JSweet to have several
methods with the same name but with different parameters (so-called overloads). We make a distinction
between simple overloads and complex overloads. Simple overloading is the use of method overloading
for defining optional parameters. JSweet allows this idiom under the condition that it corresponds to the
following template:

String m(String s, double n) { return s + n; }
// valid overloading (JSweet transpiles to optional parameter)
String m(String s) { return m(s, 0); }

In that case, JSweet will generate JavaScript code with only one method having default values for the
optional parameters, so that the behavior of the generated program corresponds to the original one. In this
case:

function m(s, n = 0) { return s + n; }

If the programmer tries to use overloading differently, for example by defining two different implemen-
tations for the same method name, JSweet will fallback on a complex overload, which consists of generating
a root implementation (the method that hold the more parameters) and one subsidiary implementation per
overloading method (named with a suffix representing the method signature). The root implementation is
generic and dispatches to other implementations by testing the values and types of the given parameters.
For example:

String m(String s, double n) { return s + n; }
String m(String s) { return s; }

Generates the following (slightly simplified) JavaScript code:

function m(s, n) {
if(typeof s === ’string’ && typeof n === ’number’) {
return s + n;

} else if(typeof s === ’string’ && n === undefined) {
return this.m$java_lang_String(s);

} else {
throw new Error("invalid overload");

}
}

28

function m$java_lang_String(s) { return s; }

4.4.3 Local variable names
In TypeScript/JavaScript, local variables can clash with the use of a global method. For instance, using the
alert global method from the DOM (jsweet.dom.Globals.alert) requires that no local variable
hides it:

import static jsweet.dom.Globals.alert;

[...]

public void m1(boolean alert) {
// JSweet compile error: name clash between parameter and method call
alert("test");

}

public void m2() {
// JSweet compile error: name clash between local variable and method call
String alert = "test";
alert(alert);

}

Note that this problem also happens when using fully qualified names when calling the global methods
(that is because the qualification gets erased in TypeScript/JavaScript). In any case, JSweet will report sound
errors when such problems happen so that programmers can adjust local variable names to avoid clashes
with globals.

4.5 Testing the type of an object
To test the type of a given object at runtime, one can use the instanceof Java operator, but also the
Object.getClass() function.

4.5.1 instanceof

The instanceof is the advised and preferred way to test types at runtime. JSweet will transpile to a
regular instanceof or to a typeof operator depending on the tested type (it will fallback on typeof
for number, string, and boolean core types).

Although not necessary, it is also possible to directly use the typeof operator from JSweet with the
jsweet.util.Globals.typeof utility method. Here are some examples of valid type tests:

import static jsweet.util.Globals.typeof;
import static jsweet.util.Globals.equalsStrict;
[...]
Number n1 = 2;
Object n2 = 2;
int n3 = 2;
Object s = "test";
MyClass c = new MyClass();

assert n1 instanceof Number; // transpiles to a typeof
assert n2 instanceof Number; // transpiles to a typeof
assert n2 instanceof Integer; // transpiles to a typeof
assert !(n2 instanceof String); // transpiles to a typeof
assert s instanceof String; // transpiles to a typeof
assert !(s instanceof Integer); // transpiles to a typeof
assert c instanceof MyClass;

29

assert typeof(n3) == "number";

From JSweet version 1.1.0, the instanceof operator is also allowed on interfaces, because JSweet
keeps track of all the implemented interfaces for all objects. This interface tracking is ensured through
an additional hidden property in the objects called interfaces and containing the names of all the
interfaces implemented by the objects (either directly or through its class inheritance tree determined at
compile time). So, in case the type argument of the instanceof operator is an interface, JSweet simply
checks out if the object’s interfaces field exists and contains the given interface. For example, this
code is fully valid in JSweet when Point is an interface:

Point p1 = new Point() {{ x=1; y=1; }};
[...]
assert p1 instanceof Point

4.5.2 Object.getClass() and X.class
In JSweet, using the Object.getClass() on any instance is possible. It will actually return the con-
structor function of the class. Using X.class will also return the constructor if X is a class. So the
following assertion will hold in JSweet:

String s = "abc";
assert String.class == s.getClass()

On a class, you can call the getSimpleName() or getName() functions.

String s = "abc";
assert "String" == s.getClass().getSimpleName()
assert String.class.getSimpleName() == s.getClass().getSimpleName()

Note that getSimpleName() or getName() functions will also work on an interface. However,
you have to be aware that X.class will be encoded in a string (holding the interface’s name) if X is is an
interface.

4.5.3 Limitations and constraints
Since all numbers are mapped to JavaScript numbers, JSweet make no distinction between integers and
floats for example. So, n instanceof Integer and n instanceof Float will always give the
same result whatever the actual type of n is. The same limitation exists for strings and chars, which are not
distinguishable at runtime, but also for functions that have the same number of parameters. For example, an
instance of IntFunction<R> will not be distinguishable at runtime from a Function<String,R>.

These limitations have a direct impact on function overloading, since overloading uses the instanceof
operator to decide which overload to be called.

Like it is usually the case when working in JavaScript, serialized objects must be properly ”revived”
with their actual classes so that the instanceof operator can work again. For example a point object
created through Point p = (Point)JSON.parse("{x:1,y:1}") will not work with regard to
the instanceof operator. In case you meet such a use case, you can contact us to get some useful JSweet
code to properly revive object types.

4.6 Variable scoping in lambda expressions
JavaScript variable scoping is known to pose some problems to the programmers, because it is possible to
change the reference to a variable from outside of a lambda that would use this variable. As a consequence,
a JavaScript programmer cannot rely on a variable declared outside of a lambda scope, because when the
lambda is executed, the variable may have been modified somewhere else in the program. For instance, the
following program shows a typical case:

30

NodeList nodes = document.querySelectorAll(".control");
for (int i = 0; i < nodes.length; i++) {
HTMLElement element = (HTMLElement) nodes.$get(i); // final
element.addEventListener("keyup", (evt) -> {

// this element variable will not change here
element.classList.add("hit");

});
}

In JavaScript (note that EcmaScript 6 fixes this issue), such a program would fail its purpose because
the element variable used in the event listener is modified by the for loop and does not hold the expected
value. In JSweet, such problems are dealt with similarly to final Java variables. In our example, the
element variable is re-scoped in the lambda expression so that the enclosing loop does not change its
value and so that the program behaves like in Java (as expected by most programmers).

4.7 Scope of this
On contrary to JavaScript and similarly to Java, using a method as a lambda will prevent loosing the ref-
erence to this. For instance, in the action method of the following program, this holds the right
value, even when action was called as a lambda in the main method. Although this seem logical to Java
programmers, it is not a given that the JavaScript semantics ensures this behavior.

package example;
import static jsweet.dom.Globals.console;

public class Example {
private int i = 8;
public Runnable getAction() {
return this::action;

}
public void action() {
console.log(this.i); // this.i is 8

}
public static void main(String[] args) {
Example instance = new Example();
instance.getAction().run();

}
}

It is important to stress that the this correct value is ensured thanks to a similar mechanism as the
ES5 bind function. A consequence is that function references are wrapped in functions, which means
that function pointers (such as this::action) create wrapping functions on the fly. It has side effects
when manipulating function pointers, which are well described in this issue https://github.com/
cincheo/jsweet/issues/65.

31

https://github.com/cincheo/jsweet/issues/65
https://github.com/cincheo/jsweet/issues/65

5. Packaging

Packaging is one of the complex point of JavaScript, especially when coming from Java. Complexity
with JavaScript packaging boils down to the fact that JavaScript did not define any packaging natively. As
a consequence, many de facto solutions and guidelines came up along the years, making the understanding
of packaging uneasy for regular Java programmers. JSweet provides useful options and generates code
in order to simplify the life of Java programmers by making the packaging issues much more transparent
and as ”easy” as in Java for most cases. In this section, we will describe and explain typical packaging
scenarios.

5.1 Use your files without any packaging
The most common and simple case for running a program is just to include each generated file in an HTML
page. This is the default mode when not precising any packaging options. For example, when your program
defines two classes x.y.z.A and x.y.z.B in two separated files, you can use them as following:

<script type="text/javascript" src="target/js/x/y/z/A.js"></script>
<script type="text/javascript" src="target/js/x/y/z/B.js"></script>
[...]
<!-- access a method later in the file -->
<script type="text/javascript">x.y.z.B.myMethod()</script>

When doing so, programmers need to be extremely cautious to avoid forward static dependencies be-
tween the files. In other words, the A class cannot use anything from B in static fields, static initializers, or
static imports, otherwise leading to runtime errors when trying to load the page. Additionally, the A class
cannot extend the B class. These constraints come from JavaScript/TypeScript and have nothing to do with
JSweet.

As you can imagine, running simple programs with this manual technique is fine, but can become really
uncomfortable for developing complex applications. Complex applications most of the time bundle and/or
package the program with appropriate tools in order to avoid having to manually handle dependencies
between JavaScript files.

5.2 Creating a bundle for a browser
To avoid having to take care of the dependencies manually, programmers use bundling tools to bundle up
their classes into a single file. Such a bundle is included in any web page using something like this:

<script type="text/javascript" src="target/js/bundle.js"></script>
[...]
<!-- access a method later in the file -->
<script type="text/javascript">x.y.z.B.myMethod()</script>

JSweet comes with such a bundling facility. To create a bundle file, just set to true the bundle option
of JSweet. Note that you can also set to true the declaration option that will ask JSweet to generate
the TypeScript definition file (bundle.d.ts). This file allows you to use/compile your JSweet program
from TypeScript in a well-typed way.

The ”magic” with JSweet bundling option is that it analyzes the dependencies in the source code and
takes care of solving forward references when building the bundle. In particular, JSweet implements a lazy
initialization mechanism for static fields and initializers in order to break down static forward references
across the classes. There are no specific additional declarations to be made by the programmers to make it
work (on contrary to TypeScript).

32

Note that there are still some minor limitations to it (when using inner and anonymous classes for
instance), but these limitations will be rarely encountered and will be removed in future releases.

Note also that JSweet will raise an error if you specify the module option along with the bundle
option.

5.3 Packaging with modules
First, let us start by explaining modules and focus on the difference between Java packages (or TypeScript
namespaces) and modules. If you feel comfortable with the difference, just skip this section.

Packages and modules are two similar concepts but for different contexts. Java packages must be
understood as compile-time namespaces. They allow a compile-time structuration of the programs through
name paths, with implicit or explicit visibility rules. Packages have usually not much impact on how the
program is actually bundled and deployed.

Modules must be understood as deployment / runtime ”bundles”, which can be required by other
modules. The closest concept to a module in the Java world would probably be an OSGi bundle. A module
defines imported and exported elements so that they create a strong runtime structure that can be used for
deploying software components independently and thus avoiding name clashes. For instance, with modules,
two different libraries may define a util.List class and be actually running and used on the same VM
with no naming issues (as long as the libraries are bundled in different modules).

Nowadays, a lot of libraries are packaged and accessible through modules. The standard way to use
modules in a browser is the AMD, but in Node.js it is the commonjs module system.

5.3.1 Modules in JSweet
JSweet supports AMD, commonjs, and UMD module systems for packaging. JSweet defines a module
option (value: amd, commonjs or umd). When specifying this option, JSweet automatically creates a
default module organization following the simple rule: one package = one module generated in a single file
called module.js.

For example, when packaged with the module option set to commonjs, one can write:

> node target/js/x/y/z/module.js

The module system will automatically take care of the references and require other modules when
needed.

Note: once the program has been compiled with the module option, it is easy to package it as a bundle
using appropriate tools such as Browserify, which would give similar output as using the bundle option
of JSweet. Note also that JSweet will raise an error when specifying both module and bundle, which
are exclusive options.

5.3.2 External modules
When compiling JSweet programs with the module options, all external libraries and components must be
required as external modules. JSweet can automatically require modules, simply by using the @Mod-
ule(name) annotation. In JSweet, importing or using a class or a member annotated with @Mod-
ule(name) will automatically require the corresponding module at runtime. Please not that it is true
only when the code is generated with the module option. If the module option is off, the @Module
annotations are ignored.

package def.jquery;
public final class Globals extends jsweet.lang.Object {
...
@jsweet.lang.Module("jquery")
native public static def.jquery.JQuery $(java.lang.String selector);
...

}

33

The above code shows an excerpt of the JSweet jQuery API. As we can notice, the $ function is anno-
tated with @Module(”jquery”). As a consequence, any call to this function will trigger the require of
the jquery module.

Note: the notion of manual require of a module may be available in future releases. However, automatic
require is sufficient for most programmers and hides the complexity of having to require modules explicitly.
It also brings the advantage of having the same code whether modules are used or not.

Troubleshooting: when a candy does not define properly the @Module annotation, it is possible to
force the declaration within the comment of a special file called module defs.java. For example, to
force the BABYLON namespace of the Babylonjs candy to be exported as a babylonjs module, you can
write the following file:

package myprogram;
// declare module "babylonjs" {
// export = BABYLON;
// }

Note that a JSweet project can only define one module defs.java file, which shall contain all the
module declarations in a comment.

5.4 Root packages
Root packages are a way to tune the generated code so that JSweet packages are erased in the generated
code and thus at runtime. To set a root package, just define a package-info.java file and use the
@Root annotation on the package, as follows:

@Root
package a.b.c;

The above declaration means that the c package is a root package, i.e. it will be erased in the generated
code, as well as all its parent packages. Thus, if c contains a package d, and a class C, these will be top-level
objects at runtime. In other words, a.b.c.d becomes d, and a.b.c.C becomes C.

Note that since that packaged placed before the @Root package are erased, there cannot be any type
defined before a @Root package. In the previous example, the a and b packages are necessarily empty
packages.

5.4.1 Behavior when not using modules (default)
By default, root packages do not change the folder hierarchy of the generated files. For instance, the
a.b.c.C class will still be generated in the <jsout>/a/b/c/C.js file (relatively to the <jsout>
output directory). However, switching on the noRootDirectories option will remove the root direc-
tories so that the a.b.c.C class gets generated to the <jsout>/C.js file.

When not using modules (default), it is possible to have several @Root packages (but a @Root package
can never contain another @Root package).

5.4.2 Behavior when using modules
When using modules (see the module option), only one @Root package is allowed, and when having
one @Root package, no other package or type can be outside of the scope of that @Root package. The
generated folder/file hierarchy then starts at the root package so that all the folders before it are actually
erased.

5.5 Packaging a JSweet jar (candy)
A candy is a Maven artifact that contains everything required to easily access a JavaScript library from a
JSweet client program. This library can be an external JavaScript library, a TypeScript program, or another
JSweet program.

34

5.5.1 Anatomy of a candy
Like any Maven artifact, a candy has a group id, a artifact id (name), and a version. Besides, a typical candy
should contain the following elements:

1. The compiled Java files (*.class), so that your client program that uses the candy can compile.

2. A META-INF/candy-metadata.json file that contains the expected target version of the tran-
spiler (to be adapted to your target transpiler version).

3. The program’s declarations in d.ts files, to be placed in the src/typings directory of the jar.
Note that these definitions are not mandatory if you intend to use JSweet for generating TypeScript
source code (tsOnly option). In that case, you may delegate the JavaScript generation to an external
tsc compiler and access the TypeScript definitions from another source.

4. Optionally, the JavaScript bundle of the library, which can in turn be automatically extracted and
used by the JSweet client programs. JSweet expects the JavaScript to be packaged following the
Webjars conventions: http://www.webjars.org/. When packaged this way, a JSweet tran-
spiler using your candy will automatically extract the bundled JavaScript in a directory given by the
candiesJsOut option (default: js/candies).

Here is an example of the META-INF/candy-metadata.json file:

{
"transpilerVersion": "1.0.0"

}

5.5.2 How to create a candy from a JSweet program
A typical use case when building applications with JSweet, is to share a common library or module between
several other JSweet modules/applications. Note that since a JSweet candy is a regular Maven artifact, it
can also be used by a regular Java program as long as it does not use any JavaScript APIs.

So, a typical example in a project is to have a commons library containing DTOs and common utility
functions, which can be shared between a Web client written in JSweet (for example using the angular or
knockout libraries) and a mobile client written also in JSweet (for example using the ionic library). The
great news is that this commons library can also be used by the Java server (JEE, Spring, ...) as is, because
the DTOs do not use any JavaScript, and that the compiled Java code packaged in the candy can run on a
Java VM. This this extremely helpful, because it means that when you develop this project in your favorite
IDE, you will be able to refactor some DTOs and common APIs, and it will directly impact your Java server
code, your Web client code, and your mobile client code!

We provide a quick start project to help you starting with such a use case: https://github.com/
cincheo/jsweet-candy-quickstart

5.5.3 How to create a candy for an existing JavaScript or TypeScript library
We provide a quick start project to help you starting with such a use case: https://github.com/
cincheo/jsweet-candy-js-quickstart

35

http://www.webjars.org/
https://github.com/cincheo/jsweet-candy-quickstart
https://github.com/cincheo/jsweet-candy-quickstart
https://github.com/cincheo/jsweet-candy-js-quickstart
https://github.com/cincheo/jsweet-candy-js-quickstart

Appendix 1: JSweet transpiler options

[-h|--help]

[-v|--verbose]
Turn on all levels of logging.

[--encoding <encoding>]
Force the Java compiler to use a specific encoding (UTF-8, UTF-16, ...).
(default: UTF-8)

[--jdkHome <jdkHome>]
Set the JDK home directory to be used to find the Java compiler. If not
set, the transpiler will try to use the JAVA_HOME environment variable.
Note that the expected JDK version is greater or equals to version 8.

(-i|--input) <input>
An input dir containing Java files to be transpiled.

[--noRootDirectories]
Skip the root directories (i.e. packages annotated with
@jsweet.lang.Root) so that the generated file hierarchy starts at the
root directories rather than including the entire directory structure.

[--tsout <tsout>]
Specify where to place generated TypeScript files. (default: .ts)

[(-o|--jsout) <jsout>]
Specify where to place generated JavaScript files (ignored if jsFile is
specified). (default: js)

[--tsOnly]
Tells the transpiler to not compile the TypeScript output (let an
external TypeScript compiler do so).

[--disableJavaAddons]
Tells the transpiler disable runtime addons (instanceof, overloading,
class name access, static initialization [...] will not be fully
supported).

[--definitions]
Tells the transpiler to generate definitions from def.* packages in d.ts
definition files. The output directory is given by the tsout option.
This option can be used to create candies for existing JavaScript
libraries and must not be confused with the ’declaration’ option, that
generates the definitions along with a program written in JSweet.

[--declaration]
Tells the transpiler to generate the d.ts files along with the js files,
so that other programs can use them to compile.

[--dtsout <dtsout>]
Specify where to place generated d.ts files when the declaration option
is set (by default, d.ts files are generated in the JavaScript output
directory - next to the corresponding js files).

36

[--candiesJsOut <candiesJsOut>]
Specify where to place extracted JavaScript files from candies.
(default: js/candies)

[--sourceRoot <sourceRoot>]
Specifies the location where debugger should locate Java files instead
of source locations. Use this flag if the sources will be located at
run-time in a different location than that at design-time. The location
specified will be embedded in the sourceMap to direct the debugger where
the source files will be located.

[--classpath <classpath>]
The JSweet transpilation classpath (candy jars). This classpath should
at least contain the core candy.

[(-m|--module) <module>]
The module kind (none, commonjs, amd, system or umd). (default: none)

[-b|--bundle]
Bundle up the generated files and used modules to bundle files, which
can be used in the browser. Bundles contain all the dependencies and are
thus standalone. There is one bundle generated per entry (a Java ’main’
method) in the program. By default, bundles are generated in the entry
directory, but the output directory can be set by using the
--bundlesDirectory option. NOTE: bundles will be generated only when
choosing the commonjs module kind.

[--bundlesDirectory <bundlesDirectory>]
Generate all the bundles (see option --bundle) within the given
directory.

[--sourceMap]
Set the transpiler to generate source map files for the Java files, so
that it is possible to debug them in the browser. This feature is not
available yet when using the --module option. Currently, when this
option is on, the generated TypeScript file is not pretty printed in a
programmer-friendly way (disable it in order to generate readable
TypeScript code).

[--ignoreAssertions]
Set the transpiler to ignore ’assert’ statements, i.e. no code is
generated for assertions.

37

Appendix 2: packaging and static behavior

This appendix explains some static behavior with regards to packaging.

When main methods are invoked
When main methods are invoked depends on the way the program is packaged.

• module: off, bundle: off. With default packaging, one Java source file corresponds to one gen-
erated JavaScript file. In that case, when loading a file in the browser, all the main methods will be
invoked right at the end of the file.

• module: off, bundle: on. When the bundle option is on and the module option is off, main
methods are called at the end of the bundle.

• module: on, bundle: off. With module packaging (module option), one Java package corre-
sponds to one module. With modules, it is mandatory to have only one main method in the program,
which will be the global entry point from which the module dependency graph will be calculated. The
main module (the one with the main method) will use directly or transitively all the other modules.
The main method will be invoked at the end of the main module evaluation.

Because of modules, it is good practice to have only one main method in an application.

Static and inheritance dependencies
In TypeScript, programmers need to take care of the ordering of classes with regards to static fields and
initializers. Typically, a static member cannot be initialized with a static member of a class that has not yet
been defined. Also, a class cannot extend a class that has not been defined yet. This forward-dependency
issue triggers runtime errors when evaluating the generated JavaScript code, which can be quite annoying
for the programmers and may requires the use of external JavaScript bundling tools, such as Browserify.

JSweet’s statics lazy initialization allows static forward references within a given file, and within an
entire bundle when the bundle option is set. Also, when bundling a set of files, JSweet analyses the
inheritance tree and performs a partial order permutation to eliminate forward references in the inheritance
tree. Note that TypeScript bundle provide a similar feature, but the references need to be manually declared,
which is not convenient for programmers.

To wrap it up, here are the guidelines to be followed by the programmers depending on the packaging
method:

• module: off, bundle: off. One JavaScript file is generated per Java file. The programmer must
take care of including the files in the right order in the HTML page, so that there are no forward
references with regard to inheritance and statics. Within a given file, static forward references are
allowed, but inheritance forward reference are not supported yet (this will be supported in coming
releases).

• module: off, bundle: on. This configuration produces a unique browser-compatible bundle file
that can be included in an HTML page. Here, the programmer does not have to take care at all of
the forward references across files. Exactly like in Java, the order does not matter. Within a single
file, the programmer still have to take care of the inheritance forward references (in other words, a
subclass must be declared after its parent class) (this will be supported in coming releases).

• module: commonjs, amd or umd, bundle: off. This configuration produces one module file per
Java package so that they can be used within a module system. For instance, using the commonjs
module kind will allow the program to run on Node.js. In that configuration, the program should

38

contain one main method and only the module file containing the main method should be loaded (be-
cause it will take care loading all the other modules). This configuration imposes the same constraint
within a single file (no forward-references in inheritance).

39

	Basic concepts
	Core types and objects
	Primitive Java types
	Allowed Java objects
	Getting more Java APIs
	Java arrays
	Core JavaScript API

	Classes
	Interfaces
	Object typing
	Optional fields
	Special functions in interfaces

	Untyped objects (maps)
	Reflective/untyped accesses
	Untyped objects initialization
	Indexed objects

	Enums
	Globals
	Optional parameters and overloading

	Bridging to external JavaScript elements
	Ambient declarations
	Definitions
	Untyped accesses
	Mixins
	Untyped accesses to mixins
	Typed accesses with mixins
	Implementation and how to use

	Auxiliary types
	Functional types
	Object types
	String types
	Tuple types
	Union types
	Intersection types

	Semantics
	Main methods
	Initializers
	Arrays initialization and allocation
	Name clashes
	Methods and fields names clashes
	Method overloading
	Local variable names

	Testing the type of an object (instanceof)
	Limitations and constraints

	Variable scoping in lambda expressions
	Scope of this

	Packaging
	Use your files without any packaging
	Creating a bundle for a browser
	Packaging with modules
	Modules in JSweet
	External modules

	Root packages
	Behavior when not using modules (default)
	Behavior when using modules

	Packaging a JSweet jar (candy)
	Anatomy of a candy
	How to create a candy from a JSweet program
	How to create a candy for an existing JavaScript or TypeScript library

