
Network Traffic Analysis with

Seth Grover, Malcolm developer • Cybersecurity R&D • Idaho National Lab

Intrusion Detection Systems

 HIDS: Host Intrusion Detection Systems
 Agents run on individual hosts or devices on a

network
 Not what we’re talking about today

 NIDS: Network Intrusion Detection Systems
 Monitor and analyze network traffic for anomalies:

suspicious activity, policy violations, etc.
 Generally passive/out-of-band; otherwise it’s an

Intrusion Prevention System
 Detection methods

 Signature-based detection
 Statistical anomaly-based detection
 Stateful protocol analysis detection

comparitech.com

2

IDS: Types of Attacks
 Scanning Attack

 Determine network topology
 IDS highlights connections from one host

to many other hosts in the network, or connection
attempts to sequential IP addresses and/or ports

 Denial of Service Attack
 Interrupt service by flooding requests or flaws in protocol implementations
 IDS identifies large volume of traffic from or to a particular host or invalid connection

states (e.g., TCP SYN/ACK with no ACK)

 Penetration Attack
 Gain access to system resources by exploiting a software or configuration flaw
 Trickier, but IDS may detect vulnerable software versions or simply alert on unusual

operations (e.g., a “write” operation in an already-configured environment with mostly “read” operations)

3

 Extensible, open-source passive network analysis
framework

 More than just an Intrusion Detection System:

• Packet capture (like)

• Traffic inspection (like)

• Intrusion detection (like)

• Log recording (like NetFlow and syslog)

• Scripting framework (like)

4

5

Strengths 👍 Weaknesses 👎
● Analyzes both link-layer and

application-layer behavior
● Content extraction
● Behavioral analysis
● Session correlation
● Can add support for uncommon

protocols through scripts/plugins

● Session metadata only (not full
payload)

● Setup and configuration can be
complicated

● Produces flat textual log files
which can be unwieldy for in-
depth analysis

Zeek Log Files

 Network
Protocols

 Files
 Detection
 Network

Observations
corelight.com

6

Network Protocols

 conn – Network session tracking
 Identified by session 4-tuple (originating IP:port, responding

IP:port)
 One session (line in a log file) for every IP connection
 Unique identifier (UID) ties lines from other logs to a session

 http , modbus , ftp , dns, etc.
 Protocol-specific log files created as traffic is seen
 Contain application-layer metadata about network activities

7

Files

• files – File analysis results
• Each transferred file identified with FUID

• Associated with connection UID(s) over which file was transferred

• File name, mime type, file size, etc. provided when available

• pe – Analysis of Portable Executable (PE) files
• Target platform, architecture, OS, etc. for executables transferred

across the network

• x509 – Analysis of X.509 public key certificates

8

Detection

• notice – Zeek concept of “alarms,” notices draw extra
attention to an event
• Conn::Content_Gap, DNS::External_Name,
FTP::Bruteforcing, Heartbleed::SSL_Heartbeat_Attack,
HTTP::SQL_Injection_Attacker, Scan::Address_Scan,
Scan::Port_Scan, Software::Vulnerable_Version,
SSH::Password_Guessing, SSL::Certificate_Expired,
Weird::Activity, …

• https://docs.zeek.org/en/stable/zeek-noticeindex.html

9

https://docs.zeek.org/en/stable/zeek-noticeindex.html
https://docs.zeek.org/en/stable/zeek-noticeindex.html

Detection (cont.)

• weird – Unexpected network-level activity
• > 150 weirdness indicators across many protocols

• https://docs.zeek.org/en/stable/scripts/base/frameworks/notice/weird.zeek.
html#id1

• signatures – Signature matches, including hits from
enabled carved file scanners like ClamAV, YARA and capa

10

https://docs.zeek.org/en/stable/scripts/base/frameworks/notice/weird.zeek.html#id1
https://docs.zeek.org/en/stable/scripts/base/frameworks/notice/weird.zeek.html#id1
https://docs.zeek.org/en/stable/scripts/base/frameworks/notice/weird.zeek.html#id1
https://docs.zeek.org/en/stable/scripts/base/frameworks/notice/weird.zeek.html#id1

Network Observations

• Periodic dump of entities seen over the last day
• known_certs – SSL certificates

• known_devices – MAC addresses

• known_hosts – Hosts with TCP handshakes

• known_modbus – Modbus masters and slaves

• known_services – Services (TCP “servers”)

• software – Software being used on the network (e.g., Apache,
OpenSSH, etc.)

• Could be used for identifying vulnerable versions of software or firmware

11

12

Strengths 👍 Weaknesses 👎
● Large scale index packet capture

and search tool
● Packet analysis engine with

support for many common IT
protocols

● Web interface for browsing,
searching, analysis and PCAP
carving for exporting

● PCAP payloads (not just session
header/metadata) are viewable
and searchable

● No OT protocol support
● Adding new protocol parsers

requires C programming

Internet layer
Border Gateway Protocol (BGP)
Building Automation and Control (BACnet)
Bristol Standard Asynchronous Protocol (BSAP)
Distributed Computing Environment / Remote
Procedure Calls (DCE/RPC)
Dynamic Host Configuration Protocol (DHCP)
Distributed Network Protocol 3 (DNP3)
Domain Name System (DNS)
EtherCAT
EtherNet/IP / Common Industrial Protocol (CIP)
FTP (File Transfer Protocol)
Google Quick UDP Internet Connections (gQUIC)
Hypertext Transfer Protocol (HTTP)
IPsec
Internet Relay Chat (IRC)
Lightweight Directory Access Protocol (LDAP)

Kerberos
Modbus
MQ Telemetry Transport (MQTT)
MySQL
NT Lan Manager (NTLM)
Network Time Protocol (NTP)
Oracle
OpenVPN
PostgreSQL
Process Field Net (PROFINET)
Remote Authentication Dial-In User Service
(RADIUS)
Remote Desktop Protocol (RDP)
Remote Framebuffer (RFB / VNC)
S7comm / Connection Oriented Transport
Protocol (COTP)
Session Initiation Protocol (SIP)

Server Message Block (SMB) / Common Internet
File System (CIFS)
Simple Mail Transfer Protocol
Simple Network Management Protocol
SOCKS
Secure Shell (SSH)
Secure Sockets Layer (SSL) / Transport Layer
Security (TLS)
Syslog
Tabular Data Stream
Telnet / remote shell (rsh) / remote login (rlogin)
TFTP (Trivial File Transfer Protocol)
WireGuard
tunnel protocols (e.g., GTP, GRE, Teredo, AYIYA,
IP-in-IP, etc.)

https://github.com/idaholab/Malcolm

13

elastic stack CyberChef …

https://www.zeek.org/
https://virustotal.github.io/yara/
https://www.clamav.net/

https://github.com/idaholab/Malcolm

14

Configuring and Running Malcolm

• Runs natively in Docker or
in a Virtual Machine

• 16+GB RAM, 4+ cores,
“enough” disk for PCAP and
logs suggested

• Documentation and source
code on GitHub:
github.com/idaholab/Malcolm

• Walkthroughs on YouTube:
search “Malcolm Network
Traffic Analysis”

15

https://github.com/idaholab/Malcolm
https://www.youtube.com/channel/UCFPhxEhTxyC5xVsIHh0vsSg
https://github.com/idaholab/Malcolm
https://www.youtube.com/channel/UCFPhxEhTxyC5xVsIHh0vsSg

Identifying Network Hosts and Subnets

• Assign custom names to
network hosts and subnets
prior to PCAP import

• Allows identification of
cross-segment traffic and
name-based search and filter

• Define in text file(s) or via
web interface

• https://localhost/name-map-ui

16

Importing Traffic
Captures for Analysis
• Specify tags for search

and filter

• Enable Zeek analysis
and file extraction
• Or configure as global

default

• Upload PCAP files or
archived Zeek logs
• pcapng not supported yet

• https://localhost/upload
17

Data Tagging and Enrichment

• Logstash enriches Zeek log data
• MAC addresses to hardware

vendor
• GeoIP and ASN lookups
• Internal/external traffic based

on IP ranges
• Reverse DNS lookups
• DNS query and hostname

entropy analysis
• Connection fingerprinting (JA3 for

TLS, HASSH for SSH, Community ID
for flows)

● tags field
• Populated for both Arkime sessions

and Zeek logs with tags provided
on upload and words extracted
from PCAP filenames
• internal_source,
internal_destination,
external_source,
external_destination,
cross_segment

18

• Front end for Zeek logs

• Prebuilt visualizations for all
protocols Malcolm parses

• WYSIWYG editors to create
custom visualizations and
dashboards

• Drill down from high-level
trends to specific items of
interest

• https://localhost/kibana

19

Kibana Filters and Search

• Time filter: define
search time frame

• Query bar: write queries
in Lucene or KQL syntax

• Filter bar: define filters
using a UI
• Pin filters as you move

across dashboards

• Save queries and filters
for reuse

20

Overview
Dashboards
• High-level view of trends,

sessions and events

• Populated from logs across all
protocols

• Good jumping-off place for
investigation

21

Notices

• Zeek notices are things
that are odd or
potentially bad

• In addition to Zeek’s
defaults, Malcolm
raises notices for
recent critical
vulnerabilities and
attack techniques

22

https://docs.zeek.org/en/stable/zeek-noticeindex.html

Security & ICS/IoT Security Overview

23

Actions and
Results
• Malcolm normalizes

“action” (e.g., write,
read, create file, logon,
logoff, etc.) and “result”
(e.g., success, failure,
access denied, not
found) across protocols

24

Protocol Dashboards

25

● Highlight application-specific fields of
interest

● Grouped by common IT protocols and
ICS/IoT protocols

● OT protocols
● BACnet
● BSAP
● DNP3
● EtherCAT
● EtherNet/IP
● Modbus
● MQTT
● PROFINET
● S7comm
● TDS

Discover
• Field-level details of logs matching filter criteria

• Create and view saved searches and column configurations

• View other events just before and after an event

26

Custom Visualizations

• Create new visualizations from scratch or
based on existing charts or dashboards

27

Search Syntax Comparison

30

Arkime Kibana (Lucene) Kibana (KQL)

Field exists
zeek.logType == EXISTS! _exists_:zeek.logType zeek.logType:*

Field does not exist
zeek.logType != EXISTS! NOT

exists:zeek.logType NOT zeek.logType:*

Field matches a value
port.dst == 22 dstPort:22 dstPort:22

Field does not match
a value port.dst != 22 NOT dstPort:22 NOT dstPort:22

Field matches at least
one of a list of values

tags ==
[external_source,

external_destination]

tags:(external_source OR
external_destination)

tags:(external_source or
external_destination)

Field range (inclusive) http.statuscode >= 200
&& http.statuscode <=

300

http.statuscode:[200 TO
300]

http.statuscode >= 200
and http.statuscode <=

300

Search Syntax Comparison (cont.)

31

Arkime Kibana (Lucene) Kibana (KQL)

Field range
(exclusive)

http.statuscode > 200 &&
http.statuscode < 300

http.statuscode:{200 TO
300}

http.statuscode > 200
and http.statuscode <

300

Field range (mixed
exclusivity)

http.statuscode >= 200 &&
http.statuscode < 300

http.statuscode:[200 TO
300}

http.statuscode >=
200 and

http.statuscode < 300

Match all search
terms (AND)

(tags == [external_source,
external_destination]) &&
(http.statuscode == 401)

tags:(external_source OR
external_destination) AND

http.statuscode:401

tags:(external_source
or

external_destination)
and

http.statuscode:401

Match any search
terms (OR)

(zeek_ftp.password ==
EXISTS!) ||

(zeek_http.password ==
EXISTS!) || (zeek.user ==

"anonymous")

exists:zeek_ftp.password
OR

exists:zeek_http.password
OR zeek.user:"anonymous"

zeek_ftp.password:*
or

zeek_http.password:*
or

zeek.user:"anonymous"

Search Syntax Comparison (cont.)

32

Arkime Kibana (Lucene) Kibana (KQL)

Global string
search (anywhere
in the document)

all Arkime search expressions
are field-based

microsoft microsoft

Wildcards
host.dns == "*micro?oft*"
(? for single character, * for

any characters)

dns.host:*micro?oft*
(? for single character, * for

any characters)

dns.host:*micro*ft*
(* for any characters)

Regex host.http
== /.*www\.f.*k\.com.*/

zeek_http.host:
/.*www\.f.*k\.com.*/

Kibana Query Language
does not currently

support regex

IPv4 values ip == 0.0.0.0/0 srcIp:"0.0.0.0/0" OR
dstIp:"0.0.0.0/0"

srcIp:"0.0.0.0/0" OR
dstIp:"0.0.0.0/0"

IPv6 values
(ip.src == EXISTS! ||
ip.dst == EXISTS!) &&

(ip != 0.0.0.0/0)

(_exists_:srcIp AND NOT
srcIp:"0.0.0.0/0") OR

(_exists_:dstIp AND NOT
dstIp:"0.0.0.0/0")

(srcIp:* and not
srcIp:"0.0.0.0/0") or

(dstIp:* and not
dstIp:"0.0.0.0/0")

Search Syntax Comparison (cont.)

33

Arkime Kibana (Lucene) Kibana (KQL)

GeoIP information
available

country == EXISTS! _exists_:zeek.destination_geo
OR _exists_:zeek.source_geo

zeek.destination_geo:*
or zeek.source_geo:*

Zeek log type zeek.logType == notice zeek.logType:notice zeek.logType:notice

IP CIDR Subnets ip.src ==
172.16.0.0/12 srcIp:"172.16.0.0/12" srcIp:"172.16.0.0/12"

Search time frame
Use Arkime time

bounding controls under
the search bar

Use Kibana time range controls in
the upper right-hand corner

Use Kibana time range
controls in the upper

right-hand corner

GeoIP information
available

country == EXISTS! _exists_:zeek.destination_geo
OR _exists_:zeek.source_geo

zeek.destination_geo:*
or zeek.source_geo:*

• Front end for both enriched Zeek logs and Arkime sessions
• Malcolm’s custom Arkime Zeek data source adds full support for Zeek logs to

Arkime, including ICS protocols

• Filter by Zeek logs or Arkime sessions; or, view both together

• “Wireshark at scale”: full PCAP availability for
• viewing packet payload
• exporting filtered and joined PCAP sessions

• running deep-packet searches

• https://localhost

34

Arkime Filters and Search

35

• Time filter: define search time frame

• Map filter: restrict results to geolocation

• Query bar: write queries in Arkime syntax

• Views : overlay previously-specified filters on current search👁

Sessions

• Field-level details
of sessions/logs
matching filters

• Similar to
Kibana’s Discover

36

Packet Payloads
• Displayed for Arkime sessions with full PCAP (i.e., not Zeek logs)

• File carving on the fly

• Download session PCAP

• Examine payload with CyberChef

37

Save and Export PCAP

• Creates a new PCAP file from filtered sessions

• Include open, visible or all matching sessions

• Apply “PCAP Files” view to sessions first

• Narrow as much as possible prior to exporting (huge PCAP files are a pain)

38

SPIView

• Explore “top n” and field cardinality
for all fields of both Arkime sessions
and Zeek logs

• Apply filters or pivot to Sessions or
SPIGraph view for field values of
interest

• Limit search to ≤ 1
week before using
(it runs many queries)

39

SPIGraph

• View “top n” field values chronologically and geographically

• Identify trends and patterns in network traffic

40

Connections

• Visualize logical
relationship
between hosts

• Use any
combination of
fields for source and
destination nodes

• Compare current vs.
previous (baseline)
traffic

41

Packet Search (“Hunt”)

• Deep-packet search (“PCAP grep”) of session payloads

• Search for ASCII, hex codes or regular expression matches

• Apply “PCAP Files” view to sessions first

42

Data Source Correlation

• Search syntax is different between Arkime and Kibana
(and in some cases, so are field names)
• See search syntax comparison table, Malcolm and Arkime docs

• Despite considerable overlap, there are
differences in protocol parser support
between Zeek and Arkime
• Learning the strengths of each will help

you more effectively find the good stuff

44

Correlate Zeek Logs and Packet Payloads

• Correlate Zeek logs and Arkime sessions using common fields

• communityId fingerprints flows in both and can bridge the two

• rootId / zeek.uid filters Zeek logs for the same session

• Filter community ID OR’ed with Zeek UID to see all Arkime sessions
and Zeek logs for the same traffic

communityId == "1:r7tGG//fXP1P0+BXH3zXETCtEFI=" || rootId == "CQcoro2z6adgtGlk42"

45

File Analysis

• Zeek can “carve” file transfers from common protocols

• Malcolm can examine carved files and flag hits
• ClamAV – open source antivirus engine
• YARA – pattern matching swiss army knife
• Capa – portable executable capabilities analyzer
• VirusTotal – online database of file hashes

• requires API token and internet connection

• Triggering files can be saved to
zeek-logs/extract_files under Malcolm
directory for further analysis
• Be careful! Carved files may contain live malware!

47

Signatures

• Signatures dashboard in Kibana
shows scanned file hits

• Use zeek.fuid field in
Signatures – Logs table to pivot
to connection UID (zeek.uid)
and other logs with pertinent
session details

48

Search Tips

• Always check your search time frame

• “Zoom in” (apply filters) for a particular field value, pivot to another
field then “zoom out” (remove filters)

• Most UI controls can work with any data field (1000+)

• Filter on zeek.logType (e.g., conn to see conn.log)

• Filter on protocol or both Arkime and Zeek regardless of data source
(e.g., protocol:http in Kibana and protocols == http in Arkime)

• Use tags

49

Thank you!

Malcolm is Copyright © 2021 Battelle Energy Alliance, LLC, and is developed and
released as open-source software through the cooperation of the Cybersecurity and

Infrastructure Security Agency of the US Department of Homeland Security.

Visit Malcolm on GitHub to read
the docs, make suggestions,

report issues and st🌟r to show
your support!

https://github.com/idaholab/Malcolm
https://github.com/idaholab/Malcolm

Network Traffic Analysis with

Seth Grover, Malcolm developer • Cybersecurity R&D • Idaho National Lab

Network traffic analysis is all about getting to the “important stuff” as quickly
as possible.

There are many open source and proprietary tools available for analyzing raw
packet capture (PCAP) files: WireShark, Network Miner, GrassMarlin, etc.

Analyzing PCAP sets that are large (or from complex networks) with many of
these tools is difficult, as often they at best struggle and at worst outright fail to
handle packet captures larger than a few hundred megabytes.

Today we’re going to talk about the open source network traffic analysis tool
suite Malcolm, developed at the Idaho National Lab with support from the US
Department of Homeland Security. You may be familiar with some or all of the
open source tools which make up Malcolm: all are already available and in
general use. What Malcolm provides a is a framework of interconnectivity
which makes it greater than the sum of its parts, streamlining network traffic
analysis and bringing that “important stuff” to the foreground as painlessly as
possible.

This morning we’re going to talk about using Malcolm to gain insight into both
link-layer and application-layer network traffic.

1

Intrusion Detection Systems

 HIDS: Host Intrusion Detection Systems
 Agents run on individual hosts or devices on a

network
 Not what we’re talking about today

 NIDS: Network Intrusion Detection Systems
 Monitor and analyze network traffic for anomalies:

suspicious activity, policy violations, etc.
 Generally passive/out-of-band; otherwise it’s an

Intrusion Prevention System
 Detection methods

 Signature-based detection
 Statistical anomaly-based detection
 Stateful protocol analysis detection

comparitech.com

2

Before we jump into our discussion about Malcolm and some of its primary
components (like Zeek, the Elastic Stack and Arkime), let’s take a minute and talk
about intrusion detection systems so we can get an understanding of these tools
fit into the threat detection landscape.

When talking about Intrusion Detection Systems, you’re usually going to be talking
about tools in one of two categories:

• Host Intrusion Detection Systems utilize a native agent that runs locally on
individual hosts and network devices. These agents often monitor not only
network traffic at the device NIC level, but also track modifications to critical
system files, monitor user authentication events, or configuration changes, and
report these events to a central manager for alerting and reporting. Host Intrusion
Detection Systems are not what we are talking about today.

• Network Intrusion Detection Systems are generally passive or out-of-band
programs or devices that capture and analyze network traffic at strategic points
within the network in order to monitor traffic among devices in the network or
between network devices and the outside world.

• This monitoring and analysis can be done concurrently (in other words,
analyzing the traffic as it is captured), or the network traffic can be
captured with other tools for later offline analysis. We are taking the latter
of these approaches in this presentation.

• An IDS is generally passive, meaning that it should not alter the network
traffic as a side-effect of its analysis. Systems which actively drop suspicious
network traffic are called Intrusion Prevention Systems.

There are several different approaches to IDS, and each has its pro’s and con’s.
• Signature-based detection acts similarly to an anti-virus program, comparing the

contents of network traffic to predefined patterns to look for known malicious
behavior. While signature-based IDS is good for known attacks and is usually
efficient from a resource standpoint, it is not effective at detecting new attacks

• Statistical anomaly-based detection uses machine learning to create a baseline
for trusted network behavior and compares new behavior against that baseline.
This technique can be effective in detecting novel attacks, but can suffer from high
false-positive rates and is computationally expensive.

• Stateful protocol analysis detection uses knowledge of network protocols to look
for deviations from profiles of generally accepted definitions of normal activity

2

IDS: Types of Attacks
 Scanning Attack

 Determine network topology
 IDS highlights connections from one host

to many other hosts in the network, or connection
attempts to sequential IP addresses and/or ports

 Denial of Service Attack
 Interrupt service by flooding requests or flaws in protocol implementations
 IDS identifies large volume of traffic from or to a particular host or invalid connection

states (e.g., TCP SYN/ACK with no ACK)

 Penetration Attack
 Gain access to system resources by exploiting a software or configuration flaw
 Trickier, but IDS may detect vulnerable software versions or simply alert on unusual

operations (e.g., a “write” operation in an already-configured environment with mostly “read” operations)

3

What type of intrusions or attacks might we hope to uncover using intrusion
detection system?

A scanning attack is used to assimilate information about a system or network being
attacked. By attempting connections to a range of IP addresses within a network and
scanning for open ports (responding services) on those hosts, an attacker puts
together a map of the topology of the network: types of network traffic allowed
through a firewall, active hosts on the network, the operating system, kernel, and
software versions running on those hosts, etc. This information can then be used to
launch attacks aimed at specific exploits. A good IDS should be able to notice these
types of accesses (possibly seen as sequential connections from one host to a range
of IP address or ports) and alert that a host scan or port scan took place.

Denial of service attacks work by flooding a network or host with an overwhelming
number of connections or requests. This could be something as simple as sending a
large number of “ping” packets (ping flood), or by forging the initiation of a TCP
connection (SYN flood) causing the host to be unable to respond to legitimate
connections. Intrusion detection systems are good at categorizing traffic from or to a
particular host or service, and can often track things like connection state for various
network protocols, making identifying this type of attack easier to identify.

Finally, a penetration attack is any type of attack which give an unauthorized attacker
the ability to access system resources, privileges, or data by exploiting a
misconfigured system or a software flaw. These types of attacks are more difficult to
identify because once an attacker has a foothold on a system in a network it becomes
much easier for them to cover their tracks and mask commands as normal network
traffic. This is particularly true with custom, targeted, and “zero day” exploits for
which the attack vector is not previously known and there are not signatures or logic
to detect them. However, IDS systems are still valuable in identifying penetration
attacks when they are protocol-aware, allowing analysts to recognize changes in
pattern or unusual operations in the context of normal network traffic.

3

 Extensible, open-source passive network analysis
framework

 More than just an Intrusion Detection System:

• Packet capture (like)

• Traffic inspection (like)

• Intrusion detection (like)

• Log recording (like NetFlow and syslog)

• Scripting framework (like)

4

Zeek (formerly Bro) is one of two PCAP analyzing engines used by Malcolm to
generate ”metadata” about network traffic, which metadata is indexed and made
searchable through Malcolm’s visualization tools. Let’s discuss Zeek’s capabilities to
better understand what it offers analysts as a Malcolm data source.

So where does “Zeek” come into the picture? What is Zeek? While it’s sometimes
referred to as “Zeek IDS,” and it incorporates some of the techniques from the
previous slide, Zeek is more than just an intrusion detection system.

Zeek is an extensible open-source passive network analysis framework, featuring:
• packet capture
• traffic inspection
• intrusion detection
• Flow log recording
• a scripting and data structure framework for log enrichment

If I had to categorize Zeek itself into one of the three detection method categories
from the previous slide, I’d categorize it in the “Stateful protocol analysis detection”
camp: Zeek’s network traffic parsers examine network traffic at the application layer
and reports the behaviors of hosts communication over those protocols. These logs
can then be used to do more in-depth manual or automated analysis, as we’ll see
throughout our discussion.

4

5

Strengths 👍 Weaknesses 👎
● Analyzes both link-layer and

application-layer behavior
● Content extraction
● Behavioral analysis
● Session correlation
● Can add support for uncommon

protocols through scripts/plugins

● Session metadata only (not full
payload)

● Setup and configuration can be
complicated

● Produces flat textual log files
which can be unwieldy for in-
depth analysis

Zeek is fundamentally different from other IDS, in that it goes beyond pure signature
matching in favor of analyzing the application-layer behavior of hosts themselves
(although it does have also have signature matching capabilities similar to Yara or
Snort).

Zeek’s features can be combined in powerful ways to provide insight into network
traffic. With Zeek logs, a network analyst can perform:
• content extraction – for example, extract exfiltrated files from PCAPs for further

examination
• behavioral analysis and session correlation – as Zeek is highly stateful, extensively

tracking application-layer network state, it can be used to determine “what else”
took place in the communication between two hosts, or what preceded a
suspicious event

• extensible – support for uncommon protocols (for example, OT protocols) can be
added via scripts and plugin architecture

Zeek is a powerful tool commonly used in network traffic analysis, but it does have its
own set of hurdles. In a minute we’ll see how Malcolm helps overcome these
hurdles.

While Zeek does provide its own packet capture abilities (for example, sniffing for
traffic on an interface connected to a network tap on a switch), in the context of this
presentation we will be focusing on the use of Zeek (as a component of Malcolm) to
perform post-capture network analysis, i.e., against PCAP files gathered previously.

5

Zeek Log Files

 Network
Protocols

 Files
 Detection
 Network

Observations
corelight.com

6

As Zeek analyzes network traffic, it generates
a number of .log files containing the events it
detected.

6

Network Protocols

 conn – Network session tracking
 Identified by session 4-tuple (originating IP:port, responding

IP:port)
 One session (line in a log file) for every IP connection
 Unique identifier (UID) ties lines from other logs to a session

 http , modbus , ftp , dns, etc.
 Protocol-specific log files created as traffic is seen
 Contain application-layer metadata about network activities

7

• conn.log is the “backbone” of a Zeek analysis. Each line of this file represents a
unique network session, identified by a 4-tuple consisting of originating (i.e..,
source) IP and port and response (i.e.., destination) IP and port.

• Each connection in conn.log is assigned a random 18-character unique
identifier (UID).

• A particular session’s UID from conn.log will be referenced in any other
Zeek log files generated for that same PCAP.

• So, for example, in the case of an HTTP session between a web browser
and a web site, there may be one line representing the entire session in
conn.log, and many lines in http.log, each representing a different HTTP
request belonging to that same session, referencing that connection’s UID.

There are many protocol-specific log files Zeek will generate. Taking note of which log
files are generated from a network trace can provide insight into a potential breach
even before you begin analyzing the files’ contents.

For example, if ssh.log was generated for a PCAP captured on a network where no
SSH servers should be exposed, that could indicate that an attacker has opened an
SSH service as a backdoor into the network after having compromised it through
some other means.

The dhcp.log may provide useful in an assessment when identifying approved
network devices, particularly those that communicate wirelessly, by their MAC and
associated IP addresses.

7

Files

• files – File analysis results
• Each transferred file identified with FUID

• Associated with connection UID(s) over which file was transferred

• File name, mime type, file size, etc. provided when available

• pe – Analysis of Portable Executable (PE) files
• Target platform, architecture, OS, etc. for executables transferred

across the network

• x509 – Analysis of X.509 public key certificates

8

Zeek has a file analysis engine that attempts to detect and identify when
file transfers occur. Similar to connections, each file is assigned a random
file unique identifier (FUID) that can be referenced in other log files. For
example, a file transferred over HTTP may be referenced by its FUID in
http.log, then more information could be found in files.log about that file.
Entries in files.log may also be linked to the sessions during which they
were transferred in conn.log by connection UID.

When possible, Zeek will identify the filename, mime type, file size, and
other attributes of the file during file analysis.

Two specific types of files are Zeek out into their own log file: pe.log
contains entries for portable executable files (as these may be of special
interest when it comes to network security analyses), and x509.log which
contains information about X509-formatted public key certificates.

x509.log, along with ssl.log, and other log files detailing events occurring
over encrypted channels can help identify encryption schemes employed.

8

Detection

• notice – Zeek concept of “alarms,” notices draw extra
attention to an event
• Conn::Content_Gap, DNS::External_Name,
FTP::Bruteforcing, Heartbleed::SSL_Heartbeat_Attack,
HTTP::SQL_Injection_Attacker, Scan::Address_Scan,
Scan::Port_Scan, Software::Vulnerable_Version,
SSH::Password_Guessing, SSL::Certificate_Expired,
Weird::Activity, …

• https://docs.zeek.org/en/stable/zeek-noticeindex.html

9

The primary log file of interest from this list is notice.log.
• A “notice” is Zeek’s concept of an alarm: a way to draw extra

attention to an event.
• Notices can be generated from any other Zeek script as it is

processing traffic.
• Zeek currently implements about 50 notices by default, and

Malcolm adds several more, ranging from brute-force SSH login
attempts to SQL injection attacks to expired SSL certificates and
more.

9

Detection (cont.)

• weird – Unexpected network-level activity
• > 150 weirdness indicators across many protocols

• https://docs.zeek.org/en/stable/scripts/base/frameworks/notice/weird.zeek.
html#id1

• signatures – Signature matches, including hits from
enabled carved file scanners like ClamAV, YARA and capa

10

weird.log, along with notice.log, is often a good place to begin when
looking for anomalies in network traffic. This log’s contents is varied:
Zeek identifies over 150 types of “weird” behavior across many
protocols.

Of course, what is weird or invalid in one network may be perfectly
normal in another. As such, through setting script variables (covered in
a later slide) Zeek can be configured to ignore particular hosts or weird
entries if you have determined them to be false positives or normal
traffic.

signatures.log is used to flag hits from Zeek’s signature-based engine and
is also used by Malcolm to log hits from file scanning engines on
transferred files extracted by Zeek (more on that later).

10

Network Observations

• Periodic dump of entities seen over the last day
• known_certs – SSL certificates

• known_devices – MAC addresses

• known_hosts – Hosts with TCP handshakes

• known_modbus – Modbus masters and slaves

• known_services – Services (TCP “servers”)

• software – Software being used on the network (e.g., Apache,
OpenSSH, etc.)

• Could be used for identifying vulnerable versions of software or firmware

11

At a configurable interval (defaulting to one day), Zeek will dump summary
lists of various entities it has seen over the course of that period.

These lists may include SSL certificates, MAC addresses seen communicating
over the network, hosts that have performed TCP handshakes, modbus
hosts, and TCP services.

known_hosts.log, along with conn.log, is an essential part of using Zeek to
build a network diagram.

Zeek may also generate software.log when it can detect and identify software
communicating across the network, and, when possible, will indicate the
version of that software.

• Examples may include identifying Windows operating system versions and
clients and servers communicating over HTTP, FTP, SSH, SMTP, and MySQL
protocols.

• This may be particularly useful during an assessment to identify network
hosts or devices running software or firmware with known vulnerabilities,
and when identifying servers by operating system, type of application
running and version

11

12

Strengths 👍 Weaknesses 👎
● Large scale index packet capture

and search tool
● Packet analysis engine with

support for many common IT
protocols

● Web interface for browsing,
searching, analysis and PCAP
carving for exporting

● PCAP payloads (not just session
header/metadata) are viewable
and searchable

● No OT protocol support
● Adding new protocol parsers

requires C programming

Arkime (formerly Moloch) is the other PCAP analyzer
used to populate Malcolm’s network session metadata
database.

Arkime, similarly to Zeek, parses network traffic data to
generate network session metadata. These Arkime
”session” logs are written into an Elasticsearch database
where they are indexed and become searchable. What is
unique and powerful about Arkime is that these network
sessions are able to tie back into the original packet
payload. This allows for deeper packet inspection and
searching that is not just limited to packet headers.

12

Internet layer
Border Gateway Protocol (BGP)
Building Automation and Control (BACnet)
Bristol Standard Asynchronous Protocol (BSAP)
Distributed Computing Environment / Remote
Procedure Calls (DCE/RPC)
Dynamic Host Configuration Protocol (DHCP)
Distributed Network Protocol 3 (DNP3)
Domain Name System (DNS)
EtherCAT
EtherNet/IP / Common Industrial Protocol (CIP)
FTP (File Transfer Protocol)
Google Quick UDP Internet Connections (gQUIC)
Hypertext Transfer Protocol (HTTP)
IPsec
Internet Relay Chat (IRC)
Lightweight Directory Access Protocol (LDAP)

Kerberos
Modbus
MQ Telemetry Transport (MQTT)
MySQL
NT Lan Manager (NTLM)
Network Time Protocol (NTP)
Oracle
OpenVPN
PostgreSQL
Process Field Net (PROFINET)
Remote Authentication Dial-In User Service
(RADIUS)
Remote Desktop Protocol (RDP)
Remote Framebuffer (RFB / VNC)
S7comm / Connection Oriented Transport
Protocol (COTP)
Session Initiation Protocol (SIP)

Server Message Block (SMB) / Common Internet
File System (CIFS)
Simple Mail Transfer Protocol
Simple Network Management Protocol
SOCKS
Secure Shell (SSH)
Secure Sockets Layer (SSL) / Transport Layer
Security (TLS)
Syslog
Tabular Data Stream
Telnet / remote shell (rsh) / remote login (rlogin)
TFTP (Trivial File Transfer Protocol)
WireGuard
tunnel protocols (e.g., GTP, GRE, Teredo, AYIYA,
IP-in-IP, etc.)

https://github.com/idaholab/Malcolm

13

elastic stack CyberChef …

The components comprising Malcolm are industry-
standard open source tools, which makes it easy to
integrate Malcolm with other solutions in those tools’
respective ecosystems.

Malcolm can interpret network traffic across dozens of
application protocols, including several protocols
commonly seen in OT networks. Much of Malcolm’s
development is dedicated to improving Malcolm’s
coverage of protocols used by ICS devices.

13

https://github.com/idaholab/Malcolm

14

An uploaded PCAP file goes through several steps on its way to becoming
enriched, indexed and user-searchable.

Upon upload, Malcolm generates metadata for the network traffic represented
in a PCAP file using both Zeek and moloch-capture.

Arkime’s moloch-capture aggregates metadata for a particular network
connection into what it calls a “session” record, which written to
Elasticsearch for indexing.

Zeek generates several log files, primarily broken out by application protocol,
which contains metadata similar to that generated by moloch-capture.

Malcolm can also leverage Zeek’s ability to “carve” out files transferred over
the network. These files can be scanned (for example, by an antivirus tool)
or preserved for analysis with external tools.

The Zeek logs are forwarded by Filebeat to Logstash for further enrichment,
normalized to the same field schema as the corresponding Arkime sessions
and then indexed into Elasticsearch.

Once ingested by Elasticsearch, Malcolm provides two interfaces for visualizing
network traffic: Kibana and Arkime Viewer.

14

Configuring and Running Malcolm

• Runs natively in Docker or
in a Virtual Machine

• 16+GB RAM, 4+ cores,
“enough” disk for PCAP and
logs suggested

• Documentation and source
code on GitHub:
github.com/idaholab/Malcolm

• Walkthroughs on YouTube:
search “Malcolm Network
Traffic Analysis”

15

Malcolm can be installed and run on any system that supports
Docker, a containerization platform for software services.

Most modern commodity hardware (including laptops, desktops
and servers) are configured with the resources needed to run
Malcolm. Available system memory tends to be the most
crucial, with 12GB as a bare minimum and 16GB or more
recommended.

This presentation does not cover installation and configuration
of Malcolm. Please refer to the documentation and examples
found at the links provided.

15

Identifying Network Hosts and Subnets

• Assign custom names to
network hosts and subnets
prior to PCAP import

• Allows identification of
cross-segment traffic and
name-based search and filter

• Define in text file(s) or via
web interface

• https://localhost/name-map-ui

16

The Host and Network Segment Name Mapping interface allows you to assign
names for network segments and hosts based on IP and/or MAC addresses
in Zeek logs.

As Zeek logs are processed into Malcolm's Elasticsearch instance, the log's
source and destination IP and MAC address fields (zeek.orig_h, zeek.resp_h,
zeek.orig_l2_addr, and zeek.resp_l2_addr, respectively) are compared
against the list of “host” addresses provided. When a match is found, a new
field is added to the log: zeek.orig_hostname or zeek.resp_hostname,
depending on whether the matching address belongs to the originating or
responding host. For traffic matching the list of “segment” addresses
provided, zeek.orig_segment and zeek.resp_segment fields are added. If
both zeek.orig_segment and zeek.resp_segment are added to a log, and if
they contain different values, the tag cross_segment will be added to the
log's tags field for convenient identification of cross-segment traffic.

If the "required tag" field is specified, a log must also contain that value in its
tags field in addition to matching the IP or MAC address specified in order
for the corresponding name assignment to be made.

These mappings can also be defined in a delimited format in cidr-map.txt and
host-map.txt in the Malcolm installation directory.

16

Importing Traffic
Captures for Analysis
• Specify tags for search

and filter

• Enable Zeek analysis
and file extraction
• Or configure as global

default

• Upload PCAP files or
archived Zeek logs
• pcapng not supported yet

• https://localhost/upload
17

Malcolm must be provided with captured network traffic to
interpret, index and present for analysis. While this may be
accomplished by dedicated network sensors, more often in
assessments PCAP files will have been previously captured and
provided for analysis.

PCAP files can be uploaded into Malcolm for processing by accessing
/upload on the host on which Malcolm is running.

Prior to starting the upload, “tags” may be added which will allow
the data from the PCAP file(s) being uploaded to be searchable
using those tags later on. Other behavior relating to how the
PCAP file is parsed can also be customized on this page.

17

Data Tagging and Enrichment

• Logstash enriches Zeek log data
• MAC addresses to hardware

vendor
• GeoIP and ASN lookups
• Internal/external traffic based

on IP ranges
• Reverse DNS lookups
• DNS query and hostname

entropy analysis
• Connection fingerprinting (JA3 for

TLS, HASSH for SSH, Community ID
for flows)

● tags field
• Populated for both Arkime sessions

and Zeek logs with tags provided
on upload and words extracted
from PCAP filenames

• internal_source,
internal_destination,
external_source,
external_destination,
cross_segment

18

Before taking a harder look at the Kibana and Arkime UIs, let’s talk a
moment about fields Logstash can use to enrich log data before it
is written to the database.

• MAC addresses are mapped to hardware manufacturers where
possible (to indicate, for example, whether a device was
manufactured by Schneider Electric, Schweitzer Engineering or
Rockwell Automation)

• GeoIP, ASN and (optionally) reverse DNS lookups are performed
for routable IP addresses

• Character frequency analysis is performed for DNS responses and
some other hostnames to detect DGA (domain generation
algorithm) hostnames often used by malware

• Community-standard fingerprinting algorithms are applied where
applicable to allow Malcolm’s data to be cross-referenced with
other tools

18

• Front end for Zeek logs

• Prebuilt visualizations for all
protocols Malcolm parses

• WYSIWYG editors to create
custom visualizations and
dashboards

• Drill down from high-level
trends to specific items of
interest

• https://localhost/kibana

19

Kibana is one of Malcolm’s two user interfaces for visualizing log
data.

Where Kibana really shines is in providing intuitive interactive
representations of log data that simplify the process of
recognizing and narrowing in on important network events:
starting from a high-level overview and being able to quickly
“drill-down” to the traffic of an individual host or connection of
interest.

Malcolm comes with dozens of prebuilt visualizations specifically for
data ingested from Zeek logs. Its dashboards fall into two
categories: overview dashboards and protocol-specific
dashboards. We’ll review some of these in a moment.

Aside from its prebuilt offerings, Kibana provides an easy drag-and-
drop WYSIWYG editor for creating new visualizations on the fly.

19

Kibana Filters and Search

• Time filter: define
search time frame

• Query bar: write queries
in Lucene or KQL syntax

• Filter bar: define filters
using a UI
• Pin filters as you move

across dashboards

• Save queries and filters
for reuse

20

The first step to analyzing network traffic with Kibana is to identify the
time range of interest. This can be done using the time filter controls in
the upper right-hand corner of the interface.

The query bar allows you to specify search constraints, using Lucene
query syntax. Modifying the contents of this bar and hitting Enter or
clicking the Search icon to the right will run the search and update the
results displayed. The “Search Syntax Comparison” table in a few slides
gives some examples of the syntax that can be used in the query bar.

The filter bar is another way of specifying search constraints, although it
provides more of a GUI-type interface to do so. In most cases there’s not
really a meaningful distinction between putting query terms in via the
query bar vs. the filter bar, although using the filter bar does allow you to
more easily pin filters across different dashboards and is somewhat more
intuitive. Filters may also be populated by clicking on values in charts and
graphs and choosing the magnifying glass icon with either the plus sign
(+) or minus sign (-) to restrict to or exclude that value from the result
set.

A future release of Kibana will merge them into a single search
component. 20

Overview
Dashboards
• High-level view of trends,

sessions and events

• Populated from logs across all
protocols

• Good jumping-off place for
investigation

21

The dashboards under the General section of Malcolm’s Kibana
navigation panel provide a high-level overview of network traffic
from across all of the logs generated by Zeek. These dashboards
are a good jumping-off point for investigation when trying to get
a “feel” for the network and the application protocols used by
the hosts that comprise it.

21

Notices

• Zeek notices are things
that are odd or
potentially bad

• In addition to Zeek’s
defaults, Malcolm
raises notices for
recent critical
vulnerabilities and
attack techniques

22

As discussed earlier, Zeek notices are the tool’s way of raising some event to the forefront of
an analyst’s attention. To quote the Zeek notice framework’s documentation:

Zeek ships with a large number of policy scripts which perform a wide variety of analyses.
Most of these scripts monitor for activity which might be of interest for the user. However,
none of these scripts determines the importance of what it finds itself. Instead, the scripts
only flag situations as potentially interesting, leaving it to the local configuration to define
which of them are in fact actionable. This decoupling of detection and reporting allows Zeek
to address the different needs that sites have. Definitions of what constitutes an attack or
even a compromise differ quite a bit between environments, and activity deemed malicious at
one site might be fully acceptable at another.
(https://docs.zeek.org/en/current/frameworks/notice.html)

Zeek currently implements about 50 notices by default, and Malcolm adds several more,
ranging from brute-force SSH login attempts to SQL injection attacks to expired SSL
certificates and more. A list of Zeek’s built-in notices can be found at
https://docs.zeek.org/en/stable/zeek-noticeindex.html.

The third-party Zeek plugins used by Malcolm are listed in the Malcolm README at
https://github.com/idaholab/Malcolm#Components. They include, but are not limited to,
notices generated for:
• cleartext passwords detected in in HTTP POST requests
• noncompliant HTTP requests (like those used for smuggling)
• XOR-obfuscated file transfers
• Behavior/techniques categorized according to the MITRE ATT&CK framework
• Various other CVEs and vulnerabilities, including

• Bad Neighbor (CVE-2020-16898)
• CallStranger (CVE-2020-12695)
• SIGRed (CVE-2020-1350)
• Zerologon (CVE-2020-1472)
• CVE-2020-0601 ECC certificate validation
• CVE-2020-13777 GnuTLS unencrypted session ticket detection
• the Eternal* family of SMBv1 Windows exploits (EternalBlue, EternalSynergy,

EternalRomance, DoublePulsar and other SMBv1 exploits)
• Ripple20

The developers of Malcolm endeavor to stay abreast of developments in the threat
landscape and, when possible, release updates adding new Zeek detection scripts for
vulnerabilities and exploits as they are discovered by cybersecurity researchers.

22

Security & ICS/IoT Security Overview

23

The Security Overview and ICS/IoT Security Overview
dashboards highlight events that may be of particular interest
from a security standpoint, including Zeek notices, signatures
triggered from file scans, clear-text transmission of passwords,
outdated or insecure versions of application protocols, traffic
originating from or directed to public IP addresses, file transfers
and more.

These dashboards are a good place to start when looking for
indicators of compromise or vulnerabilities in network traffic.

23

Actions and
Results
• Malcolm normalizes

“action” (e.g., write,
read, create file, logon,
logoff, etc.) and “result”
(e.g., success, failure,
access denied, not
found) across protocols

24

Where possible, Malcolm correlates common fields from across different
protocols to allow you to view one device’s or application’s network
traffic in the context of the other traffic occurring around it.

For example, multiple failed HTTP authentication attempts, followed by a
successful authenticated HTTP POST operation followed by successful
reads and writes to a file server could indicate that a foothold was
obtained in an HTTP server that allowed an adversary to pivot to another
service in the network.

A good example of this is the Actions and Results dashboard, in which
actions (such as “a file was written,” “a logon was attempted,” “a web
page was requested”) and “results” (“success,” “access denied,” “page
not found”) can be inspected together regardless of protocol.

24

Protocol Dashboards

25

● Highlight application-specific fields of
interest

● Grouped by common IT protocols and
ICS/IoT protocols

● OT protocols
● BACnet
● BSAP
● DNP3
● EtherCAT
● EtherNet/IP
● Modbus
● MQTT
● PROFINET
● S7comm
● TDS

In addition to the overview dashboards, Malcolm
provides dozens of dashboards tailored to specific
application protocols, including protocols commonly
used in industrial control systems networks.

25

Discover
• Field-level details of logs matching filter criteria

• Create and view saved searches and column configurations

• View other events just before and after an event

26

The Discover view enables you to view events on a record-by-record basis,
similar to a session record in Arkime, which we’ll discuss in a moment, or to an
individual line from a Zeek log.

The data table in the Discover view can be customized to display only the fields
relevant to the traffic you’re interested in: for example, a “play-by-play” of an
HTTP session could be reviewed by filtering on zeek.logType:http, sorting by
Time and including the following fields in the table:
• srcIp
• zeek_http.user_agent
• zeek_http.referrer
• dstIp
• zeek_http.host
• zeek_http.uri
• zeek_http.status_msg

This configuration could be stored as a saved search and returned to for future
investigation.

26

Custom Visualizations

• Create new visualizations from scratch or
based on existing charts or dashboards

27

The visualizations page allows you to view and manage
visualization components, which are like “graphical
building blocks” to be used in dashboards. Kibana
includes many different kinds of charts, tables, and maps
for displaying your data.

27

Search Syntax Comparison

30

Arkime Kibana (Lucene) Kibana (KQL)

Field exists
zeek.logType == EXISTS! _exists_:zeek.logType zeek.logType:*

Field does not exist
zeek.logType != EXISTS!

NOT
exists:zeek.logType

NOT zeek.logType:*

Field matches a value
port.dst == 22 dstPort:22 dstPort:22

Field does not match
a value port.dst != 22 NOT dstPort:22 NOT dstPort:22

Field matches at least
one of a list of values

tags ==
[external_source,

external_destination]

tags:(external_source OR
external_destination)

tags:(external_source or
external_destination)

Field range (inclusive) http.statuscode >= 200
&& http.statuscode <=

300

http.statuscode:[200 TO
300]

http.statuscode >= 200
and http.statuscode <=

300

As Malcolm is a collection of open source tools, an
analyst must be aware of and become familiar with
the query languages understood by its varied
components.

This table compares common types of query
strings across Arkime, Lucene and Kibana Query
Language syntaxes.

30

Search Syntax Comparison (cont.)

31

Arkime Kibana (Lucene) Kibana (KQL)

Field range
(exclusive)

http.statuscode > 200 &&
http.statuscode < 300

http.statuscode:{200 TO
300}

http.statuscode > 200
and http.statuscode <

300

Field range (mixed
exclusivity)

http.statuscode >= 200 &&
http.statuscode < 300

http.statuscode:[200 TO
300}

http.statuscode >=
200 and

http.statuscode < 300

Match all search
terms (AND)

(tags == [external_source,
external_destination]) &&
(http.statuscode == 401)

tags:(external_source OR
external_destination) AND

http.statuscode:401

tags:(external_source
or

external_destination)
and

http.statuscode:401

Match any search
terms (OR)

(zeek_ftp.password ==
EXISTS!) ||

(zeek_http.password ==
EXISTS!) || (zeek.user ==

"anonymous")

exists:zeek_ftp.password
OR

exists:zeek_http.password
OR zeek.user:"anonymous"

zeek_ftp.password:*
or

zeek_http.password:*
or

zeek.user:"anonymous"

31

Search Syntax Comparison (cont.)

32

Arkime Kibana (Lucene) Kibana (KQL)

Global string
search (anywhere
in the document)

all Arkime search expressions
are field-based

microsoft microsoft

Wildcards
host.dns == "*micro?oft*"
(? for single character, * for

any characters)

dns.host:*micro?oft*
(? for single character, * for

any characters)

dns.host:*micro*ft*
(* for any characters)

Regex host.http
== /.*www\.f.*k\.com.*/

zeek_http.host:
/.*www\.f.*k\.com.*/

Kibana Query Language
does not currently

support regex

IPv4 values ip == 0.0.0.0/0 srcIp:"0.0.0.0/0" OR
dstIp:"0.0.0.0/0"

srcIp:"0.0.0.0/0" OR
dstIp:"0.0.0.0/0"

IPv6 values
(ip.src == EXISTS! ||
ip.dst == EXISTS!) &&
(ip != 0.0.0.0/0)

(_exists_:srcIp AND NOT
srcIp:"0.0.0.0/0") OR

(_exists_:dstIp AND NOT
dstIp:"0.0.0.0/0")

(srcIp:* and not
srcIp:"0.0.0.0/0") or

(dstIp:* and not
dstIp:"0.0.0.0/0")

32

Search Syntax Comparison (cont.)

33

Arkime Kibana (Lucene) Kibana (KQL)

GeoIP information
available

country == EXISTS! _exists_:zeek.destination_geo
OR _exists_:zeek.source_geo

zeek.destination_geo:*
or zeek.source_geo:*

Zeek log type zeek.logType == notice zeek.logType:notice zeek.logType:notice

IP CIDR Subnets ip.src ==
172.16.0.0/12 srcIp:"172.16.0.0/12" srcIp:"172.16.0.0/12"

Search time frame
Use Arkime time

bounding controls under
the search bar

Use Kibana time range controls in
the upper right-hand corner

Use Kibana time range
controls in the upper

right-hand corner

GeoIP information
available

country == EXISTS! _exists_:zeek.destination_geo
OR _exists_:zeek.source_geo

zeek.destination_geo:*
or zeek.source_geo:*

33

• Front end for both enriched Zeek logs and Arkime sessions
• Malcolm’s custom Arkime Zeek data source adds full support for Zeek logs to

Arkime, including ICS protocols

• Filter by Zeek logs or Arkime sessions; or, view both together

• “Wireshark at scale”: full PCAP availability for
• viewing packet payload
• exporting filtered and joined PCAP sessions
• running deep-packet searches

• https://localhost

34

While Kibana is great for “at-a-glance” views and for creating custom
visualizations, Arkime (formerly Moloch) provides another interface
for examining network traffic that may be better suited to in-depth
analysis and network forensics.

Earlier when we talked about the Malcolm PCAP processing pipeline, we
mentioned two metadata representations of the same network traffic:
the logs generated by Zeek and the session records generated by
Arkime’s moloch-capture. While Malcolm’s Kibana dashboards are
focused on the Zeek logs, its instance of Arkime can be used to view
both Zeek logs and Arkime sessions together in the same interface.

Another strength of Arkime is its ability to tie the session metadata back
to the original packets’ payloads, allowing you to view, search and
export the data deeper in the PCAP that may not be referenced in the
metadata. Arkime is able to efficiently deal with very large PCAP file
sets, something that Wireshark struggles to do.

34

Arkime Filters and Search

35

• Time filter: define search time frame

• Map filter: restrict results to geolocation

• Query bar: write queries in Arkime syntax

• Views : overlay previously-specified filters on current search👁

The Arkime interface has various controls for applying
time, geographic and field value filters to narrow the set
of matching sessions.

In addition, Arkime’s views (indicated by the eyeball 👁
icon) allow overlaying additional previously-specified
filters onto the current sessions filters. For convenience,
Malcolm provides several Arkime preconfigured views
including several on the zeek.logType field.

35

Sessions

• Field-level details
of sessions/logs
matching filters

• Similar to
Kibana’s Discover

36

Arkime’s Sessions tab provides low-level details of the sessions
being investigated (similar to Kibana’s Discover interface),
whether they be Arkime sessions created from PCAP files or
Zeek logs mapped to the Arkime session database schema.

The set of fields present in the sessions table can be also
customized, saved and later recalled.

36

Packet Payloads
• Displayed for Arkime sessions with full PCAP (i.e., not Zeek logs)

• File carving on the fly

• Download session PCAP

• Examine payload with CyberChef

37

As mentioned, Arkime’s ability to tie a session record back to its
original packet(s) is one of its greatest strengths. Details for
individual sessions/logs can be expanded by clicking the plus ➕
icon on the left of each row. For Arkime session records, an
additional Packets section will be visible underneath the metadata
sections.

When the details of a session of this type are expanded, Arkime will
read the packet(s) comprising the session for display here. Various
controls can be used to adjust how the packet is displayed (enabling
natural decoding and enabling Show Images & Files may produce
visually pleasing results), and other options (including PCAP
download, carving images and files, applying decoding filters, and
examining payloads in CyberChef) are available.

37

Save and Export PCAP

• Creates a new PCAP file from filtered sessions

• Include open, visible or all matching sessions

• Apply “PCAP Files” view to sessions first

• Narrow as much as possible prior to exporting (huge PCAP files are a pain)

38

Clicking the down arrow icon to the far right of the search bar ▼
presents a list of actions including PCAP Export.

When full PCAP sessions are displayed, the PCAP Export feature
allows you to create a new PCAP file from the matching Arkime
sessions, including controls for which sessions are included
(open items, visible items, or all matching items) and whether or
not to include linked segments. Click Export PCAP button to
generate the PCAP, after which you'll be presented with a
browser download dialog to save or open the file.

Note that depending on the scope of the filters specified this
might take a long time (or, possibly even time out).

38

SPIView

• Explore “top n” and field cardinality
for all fields of both Arkime sessions
and Zeek logs

• Apply filters or pivot to Sessions or
SPIGraph view for field values of
interest

• Limit search to ≤ 1
week before using
(it runs many queries)

39

Arkime's SPI (Session Profile Information) View provides a quick and easy-to-use
interface for exploring session/log metrics. The SPIView page lists categories for
general session metrics (e.g., protocol, source and destination IP addresses, sort
and destination ports, etc.) as well as for all of various types of network
understood by Arkime and Zeek. These categories can be expanded and the top n
values displayed, along with each value's cardinality, for the fields of interest they
contain.

Click the the plus icon to the right of a category to expand it. The values for ➕
specific fields are displayed by clicking the field description in the field list
underneath the category name. The list of field names can be filtered by typing
part of the field name in the Search for fields dialog to display in this category text
input. The Load All and Unload All buttons can be used to toggle display of all of
the fields belonging to that category. Once displayed, a field's name or one of its
values may be clicked to provide further actions for filtering or displaying that
field or its values. Of particular interest may be the Open [fieldname] SPI Graph
option when clicking on a field's name. This will open a new tab with the SPI
Graph populated with the field's top values.

Note that because the SPIView page can potentially run many queries, SPIView limits
the search domain to seven days (in other words, seven

indices, as each index represents one day's worth of data). When using SPIView, you
will have best results if you limit your search time frame to less than or equal to
seven days.

39

SPIGraph

• View “top n” field values chronologically and geographically

• Identify trends and patterns in network traffic

40

Arkime's SPI (Session Profile Information) Graph visualizes the
occurrence of some field's top n values over time, and (optionally)
geographically. This is particularly useful for identifying trends in a
particular type of communication over time: traffic using a particular
protocol when seen sparsely at regular intervals on that protocol's
date histogram in the SPIGraph may indicate a connection check,
polling, or beaconing (for example, see the llmnr protocol in the
screenshot).

Controls can be found underneath the time bounding controls for
selecting the field of interest, the number of elements to be
displayed, the sort order, and a periodic refresh of the data.

40

Connections

• Visualize logical
relationship
between hosts

• Use any
combination of
fields for source and
destination nodes

• Compare current vs.
previous (baseline)
traffic

41

The Connections page presents network communications via a force-directed graph, making
it easy to visualize logical relationships between network hosts.

Controls are available for specifying the query size (where smaller values will execute more
quickly but may only contain an incomplete representation of the top n sessions, and larger
values may take longer to execute but will be more complete), which fields to use as the
source and destination for node values, a minimum connections threshold, and the method
for determining the "weight" of the link between two nodes. As is the case with most other
visualizations in Arkime, the graph is interactive: clicking on a node or the link between two
nodes can be used to modify query filters, and the nodes themselves may be repositioned by
dragging and dropping them. A node's color indicates whether it communicated as a
source/originator, a destination/responder, or both.

While the default source and destination fields are Src IP and Dst IP:Dst Port, the
Connections view is able to use any combination of any of the fields populated by Arkime
and Zeek. For example:
• Src OUI and Dst OUI (hardware manufacturers)
• Src IP and Protocols
• Originating Network Segment and Responding Network Segment
• Originating GeoIP City and Responding GeoIP City
• or any other combination of these or other fields.

A recent addition to this feature (and one developed specifically for Malcolm and then
contributed back upstream to the Arkime project) is the ability to specify a “baseline” time
frame in the Connections view to visualize changes to a network over time (e.g., new hosts
or protocols appearing in your network). This feature is mainly useful if you have prior long-
term packet captures available in orde to establish baseline against which current traffic may
be compared.

41

Packet Search (“Hunt”)

• Deep-packet search (“PCAP grep”) of session payloads

• Search for ASCII, hex codes or regular expression matches

• Apply “PCAP Files” view to sessions first

42

Arkime's Hunt feature allows an analyst to search within the packets themselves
(including payload data) rather than simply searching the session metadata. The
search string may be specified using ASCII (with or without case sensitivity), hex
codes, or regular expressions. Once a hunt job is
complete, matching sessions can be viewed in the Sessions view.

Clicking Create a packet search job on the Hunt page will allow you to specify the
following parameters for a new hunt job:
• a packet search job name
• a maximum number of packets to examine per session
• the search string and its format (ascii, ascii (case sensitive), hex, regex, or hex

regex)
• whether to search source packets, destination packets, or both
• whether to search raw or reassembled packets

Click the ➕ Create button to begin the search. Arkime will scan the source PCAP files
from which the sessions were created according to the search criteria. Note that
whatever filters were specified when the hunt job is executed will apply to the hunt
job as well; the number of sessions matching the current filters will be displayed
above the hunt job parameters with text like " Creating a new packet search job will ⓘ
search the packets of # sessions.”

Once a hunt job is submitted, it will be assigned a unique hunt ID (a long unique
string of characters like yuBHAGsBdljYmwGkbEMm) and its progress will be updated
periodically in the Hunt Job Queue. More details for the hunt job can be viewed by
expanding its row with the plus icon on the left.➕

When the hunt job is complete (and a minute or so has passed, as the huntId must
be added to the matching session records in the database), click the folder icon on
the right side of the hunt job row to open a new Sessions tab with the search bar
prepopulated to filter for sessions with packets matching the search criteria. From
this list of filtered sessions you can expand session details and explore packet
payloads which matched the hunt search criteria.

The hunt feature is available only for sessions created from full packet capture data,
not Zeek logs. This being the case, it is a good idea to click the eyeball icon and 👁
select the PCAP Files view to exclude Zeek logs from candidate sessions prior to using
the hunt feature.

42

Data Source Correlation

• Search syntax is different between Arkime and Kibana
(and in some cases, so are field names)
• See search syntax comparison table, Malcolm and Arkime docs

• Despite considerable overlap, there are
differences in protocol parser support
between Zeek and Arkime
• Learning the strengths of each will help

you more effectively find the good stuff

44

Although Malcolm’s Kibana and Arkime interfaces provide two different
views into the same network data, there are a few notable differences
between the two:

• The Arkime and Kibana search syntax is different.
• Arkime uses its own field names in its user interface: for example,

searching protocols == http in Arkime is equivalent to searching
protocol:http in Kibana. Enabling Display Database Fields in the Fields
section of Arkime’s help can help you map them.

• Despite considerable overlap, there are differences in protocol parser
support between Zeek and Arkime. In particular, Malcolm’s
configuration of Zeek parses many more ICS protocols than Arkime.

44

Correlate Zeek Logs and Packet Payloads

• Correlate Zeek logs and Arkime sessions using common fields

• communityId fingerprints flows in both and can bridge the two

• rootId / zeek.uid filters Zeek logs for the same session

• Filter community ID OR’ed with Zeek UID to see all Arkime sessions
and Zeek logs for the same traffic

communityId == "1:r7tGG//fXP1P0+BXH3zXETCtEFI=" || rootId == "CQcoro2z6adgtGlk42"

45

As previously discussed, Arkime generates session records containing metadata
about network connections. Zeek generates similar session metadata, linking
network events to sessions via a connection UID. Malcolm aims to facilitate
analysis of Zeek logs by mapping values from Zeek logs to the Arkime session
database schema for equivalent fields, and by creating new "native" Arkime
database fields for all the other Zeek log values for which there is not currently an
equivalent in Arkime. The Fields section of Arkime’s help provides a list of known
fields across both the Arkime and Zeek data sources.

In this way, when full packet capture is an option, analysis of PCAP files can be
enhanced by the additional information Zeek provides. When full packet capture
is not an option, similar analysis can still be performed using the same interfaces
and processes using the Zeek logs alone. The values of records created from Zeek
logs can be expanded and viewed like any native Arkime session by clicking the
plus icon to the left of the record in the Sessions view. However, note that ➕
when dealing with these Zeek records the full packet contents are not available,
so buttons dealing with viewing and exporting PCAP information will not behave
as they would for records from PCAP files. Other than that, Zeek records and their
values are usable in Malcolm just like native PCAP session records.

A few fields of particular mention that help limit returned results to those Zeek logs
and Arkime session records generated from the same network connection are
Community ID and Zeek's connection UID (zeek.uid), which Malcolm maps to
Arkime’s rootId field.

Community ID is a specification for standard flow hashing published by Corelight with
the intent of making it easier to pivot from one dataset (e.g., Arkime sessions) to
another (e.g., Zeek conn.log entries). In Malcolm both Arkime and Zeek populate
this value, which makes it possible to filter for a specific network connection and
see both data sources' results for that connection.

The rootId field is used by Arkime to link session records together when a particular
session has too many packets to be represented by a single session. When
normalizing Zeek logs to Arkime's schema, Malcolm piggybacks on rootId to store
Zeek's connection UID to crossreference entries across Zeek log types. The
connection UID is also stored in zeek.uid.

Filtering on community ID OR'ed with zeek UID (e.g., communityId ==
"1:r7tGG//fXP1P0+BXH3zXETCtEFI=" || rootId == "CQcoro2z6adgtGlk42") is an
effective way to see both the Arkime sessions and Zeek logs generated by a
particular network connection.

45

File Analysis

• Zeek can “carve” file transfers from common protocols

• Malcolm can examine carved files and flag hits
• ClamAV – open source antivirus engine

• YARA – pattern matching swiss army knife
• Capa – portable executable capabilities analyzer
• VirusTotal – online database of file hashes

• requires API token and internet connection

• Triggering files can be saved to
zeek-logs/extract_files under Malcolm
directory for further analysis
• Be careful! Carved files may contain live malware!

47

As mentioned earlier, Zeek has the ability to “carve” files from a variety of protocols
in observed network traffic. Malcolm leverages this feature to submit these carved
files to a number of file scanning tools:
• ClamAV – an open source antivirus engine to scan for known malware signatures
• YARA – pattern matching swiss army knife using a curated list of security-related

signatures or your own custom signatures
• Capa – portable executable capabilities analyzer
• VirusTotal – online database of file hashes (requires API token and internet

connection)

This can be set globally as the default behavior (by modifying a configuration file in
the Malcolm install directory prior to starting up) or on a per-PCAP basis when
uploading using the upload web UI interface.

Malcolm can be configured to preserve files carved from network traffic (either all
files or just “suspicious” ones that trigger the scanning engines) for further
examination.

47

Signatures

• Signatures dashboard in Kibana
shows scanned file hits

• Use zeek.fuid field in
Signatures – Logs table to pivot
to connection UID (zeek.uid)
and other logs with pertinent
session details

48

If Zeek file carving is enabled, questionable files will be
written to the signatures log and reported in the
signatures dashboard.

The Zeek connection UID (zeek.uid) and file UID
(zeek.fuid) fields in these logs can be used to cross
reference to other visualizations to provide the
context for how file was transferred.

48

Search Tips

• Always check your search time frame

• “Zoom in” (apply filters) for a particular field value, pivot to another
field then “zoom out” (remove filters)

• Most UI controls can work with any data field (1000+)

• Filter on zeek.logType (e.g., conn to see conn.log)

• Filter on protocol or both Arkime and Zeek regardless of data source
(e.g., protocol:http in Kibana and protocols == http in Arkime)

• Use tags

49

Finally, here are a few tips for effective searching in Kibana and Arkime:
• Always check your search time frame. If you’re not seeing the data

you’re expecting to see, often it’s because the data lies outside of the
window of time you’re searching.

• An effective technique for investigating is to “zoom in” (for example,
narrowing in on a particular file type transferred), pivot to another
field (select the source IP address that transferred the file) then “zoom
out” (removing the file type filter to see what other activity that source
IP was involved in).

• Most elements in both Kibana and Arkime are interactive and can be
configured to work with any of the more than 1000+ data fields
Malcolm knows about.

• Learn how to filter on common fields like Zeek log type and network
application protocol.

• Utilize the tags field in your searches, including prepopulated tags like
based on public/private IP address space, tags populated based on the
host and segment mapping you’ve configured and tags populated
based on PCAP filenames.

49

Thank you!

Malcolm is Copyright © 2021 Battelle Energy Alliance, LLC, and is developed and
released as open-source software through the cooperation of the Cybersecurity and

Infrastructure Security Agency of the US Department of Homeland Security.

Visit Malcolm on GitHub to read
the docs, make suggestions,

report issues and st🌟r to show
your support!

	Slide 1
	Intrusion Detection Systems
	IDS: Types of Attacks
	Slide 4
	Zeek Pros and Cons
	Zeek Log Files
	Network Protocols
	Files
	Detection
	Detection (cont.)
	Network Observations
	Slide 12
	Slide 13
	Slide 14
	Configuring and Running Malcolm
	Identifying Network Hosts and Subnets
	Importing Traffic Captures for Analysis
	Data Tagging and Enrichment
	Slide 19
	Kibana Filters and Search
	Overview Dashboards
	Notices
	Security & ICS/IoT Security Overview
	Actions and Results
	Protocol Dashboards
	Discover
	Custom Visualizations
	Search Syntax Comparison
	Search Syntax Comparison (cont.)
	Search Syntax Comparison (cont.)
	Search Syntax Comparison (cont.)
	Slide 34
	Arkime Filters and Search
	Sessions
	Packet Payloads
	Save and Export PCAP
	SPIView
	SPIGraph
	Connections
	Packet Search (“Hunt”)
	Data Source Correlation
	Correlate Zeek Logs and Packet Payloads
	File Analysis
	Signatures
	Search tips
	Slide 51
	Slide 1
	Intrusion Detection Systems
	IDS: Types of Attacks
	Slide 4
	Zeek Pros and Cons
	Zeek Log Files
	Network Protocols
	Files
	Detection
	Detection (cont.)
	Network Observations
	Slide 12
	Slide 13
	Slide 14
	Configuring and Running Malcolm
	Identifying Network Hosts and Subnets
	Importing Traffic Captures for Analysis
	Data Tagging and Enrichment
	Slide 19
	Kibana Filters and Search
	Overview Dashboards
	Notices
	Security & ICS/IoT Security Overview
	Actions and Results
	Protocol Dashboards
	Discover
	Custom Visualizations
	Search Syntax Comparison
	Search Syntax Comparison (cont.)
	Search Syntax Comparison (cont.)
	Search Syntax Comparison (cont.)
	Slide 34
	Arkime Filters and Search
	Sessions
	Packet Payloads
	Save and Export PCAP
	SPIView
	SPIGraph
	Connections
	Packet Search (“Hunt”)
	Data Source Correlation
	Correlate Zeek Logs and Packet Payloads
	File Analysis
	Signatures
	Search tips
	Slide 51

