Boyer-Moore

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Exact matching: slightly less naive algorithm

P: word
I: There would have been a time for such a word

We match w and 0, then mismatch (r # u)

Mismatched text character (U) doesn’t occurin P

.. since U doesn't occur in P, we can skip the next two alignments

P: word
T: There would have been a time for such a word

-------- WOPrd =--mmmmmmmm e >

skip!
skip!
word
JOHNS HOPKINS
WHITING SCHOOL

of ENGINEERING

Boyer-Moore

Use knowledge gained from character comparisons to skip future
alignments that definitely won't match:

1. If we mismatch, use knowledge of the

: .1 “Bad character rule”
mismatched text character to skip alignments

2. If we match some characters, use knowledge

. “Good suffix rule”
of the matched characters to skip alignments

3. Try alignments in one direction, then try

: : 1 : For longer skips
character comparisons in opposite direction

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-77 2.

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Bad character rule

Upon mismatch, let b be the mismatched characterin T. Skip
alignments until (a) b matches its opposite in P, or (b) P moves past b.

b
\4
Step 1: T: GCTTOTGCTACCTTTTGCGCGCGCGCGGAA
P: COTTTTGC Case (a)
€-mmmmm-
7
Step 2: 7?GCIﬁCTGCTCkCTTTTGCGCGCGCGCGGAA
P: 1 CCTTTTAG Case (b)
T — X ...
Step 3: T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P CCTTTTGC
A L L L
(etc)

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Bad character rule

Step 1: T GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
PHCCTTTTGC
Step 2: THGCTTkTGdT%CCTTTTGCGCGCGCGCGGAA
P qCTTﬂTpc
Step 3: THGCTTCTGCTACCTTTTGCGCGCGCGCGGAA
= R I CCTTTTGC
L S O O

We skipped 8 alignments

In fact, there are 5 characters in T we never looked at

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Bad character rule preprocessing

T: GCTTOTGCTACCTTTTGCGCGCGCGCGGAA
P: COTTTTGC
N\ "

As soon as Pis known, build a | 2 |-by-n table. Say b is the character in T that

mismatched and i is the mismatch’s offset into P. The number of skips is given
by element in bth row and ith column.

Gusfield 2.2.2 gives space-efficient alternative.

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Good suffix rule

Let t be the substring of T that matched a suffix of P. Skip alignments
until (a) t matches opposite characters in P, or (b) a prefix of P
matches a suffix of t, or (c) P moves past t, whichever happens first

Fo----- 1

Step 1: I: CGTGCCTAOQTTACTTACTTACTTACGCGAA
P: CTITACTTAC Case (a)
be--e----- t -------- i
Step 2: I: CGTGCCITACTTACTTACTTACTTACGCGAA
P: CTTACTTAC Case (b)
Step 3: I: CGTGCCTACTTACTTACTTACTTACGCGAA
P: CTTACTTAC

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Good suffix rule

Like with the bad character rule, the number of skips possible using the good
suffix rule can be precalculated into a few tables (Gusfield 2.2.4 and 2.2.5)

Rule on previous slide is the weak good suffix rule; there is also a strong good
suffix rule (Gusfield 2.2.3)

Fe----- 1

I: CTTGCCTACTTACTTACT

P. CTTAC|TITAC
Weak: CCTITACTTAC
guaranteec{ Strong CTTACTTAC

mismatch!

With the strong good suffix rule (and other minor modifications), Boyer-Moore
is O(m) worst-case time. Gusfield discusses proof.

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Putting it together

After each alignment, use bad character or good suffix rule, whichever skips more

Bad character rule: Good suffix rule:
Upon mismatch, let b be the mismatched Let t be the substring of T that matched a suffix of P.
character in T. Skip alignments until (a) b Skip alignments until (a) t matches opposite characters
matches its opposite in P, or (b) P moves past b. in P, or (b) a prefix of P matches a suffix of t, or (c) P
b moves past t, whichever happens first.
\
Step 1 I: GTTATAGC(T)GATCGCGGCGTAGCGGCGAA
) . . . Part (a) of bad
P: GAGCGGCG e bC:6, 9510 (poracter rule
Step 2: I: GTTATAGCTGAT(JGCGGCGTAGCGGCGAA
P: GTAGIJGGca bc:0, gs:2 Lot l@orgood
Qk ---------- t --------- 1
Step3: | GTTATAGCTGAT(JGCGGCGTAGCGGCGAA
Cp \GTAGCGGCG be:2, g5 7 Lo b ofgood
Step 4: I: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P GTAGCGGCG

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Putting it together

I: GTTATAGCTGATCGCGGCGTAGCGGCGAA

Step 1:
P: GTAGCGGCG
Step 2: IF GTTATAGCTGATCGCGGCGTAGCGGCGAA
P: GTAGCGGCG
Step 3: lF GTTATAGCTGATCGCGGCGTAGCGGCGAA
- P GTAGCGGCG
Step 4: I: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P GTAGCGGCG

Up to now: 15 alignments skipped, 11 text characters never examined

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Boyer-Moore: Worst and best cases

Boyer-Moore (or a slight variant) is O(m) worst-case time

What's the best case?

Every character comparison is a mismatch, and bad character
rule always slides P fully past the mismatch

How many character comparisons? floor(m / n)

Contrast with naive algorithm

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Performance comparison

Comparing simple Python implementations of naive exact matching and
Boyer-Moore exact matching:

Naive matching Boyer-Moore
character . # character :
. wall clock time . wall clock time
comparisons comparisons

P:“tomorrow”
17 matches

I: Shakespeare’s| 5:906,125 2.90's 785,855 1545 | o

complete works

P: 50 nt string

from Alu repeat*]
336 matches

T Hurman 307,013,905 137s | 32,495,111 555 | 7= 549 M

reference (hg19)

chromosome 1

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGLGGG
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

