
Dripper Specification
 Compound Engineering

Overview
Comp will be distributed to the community through the Flywheel mechanism in the Comptroller.
To prevent the community from making a proposal to speed up the Flywheel (or simply gift the
Comp to some other address), we propose a Dripper that will give the Comptroller its Comp
tokens over a period of years. The Dripper will be a separate smart contract with a large Comp
balance and a mechanism to transfer that Comp to the Flywheel given some constraint on the
rate of transfer. We aim to make this contract as simple as possible.

Mechanism
We propose a mechanism that simply tracks how much Comp has been moved versus an
immutable rate function. Effectively, we take the following graph and track our previous
y-coordinate (Dripped). For each call to Drip(), we look at our expected y-coordinate (DripTotal),
subtract the previous Dripped value, and send that delta amount of Comp to the Flywheel.

This graph shows how much Comp should have been Dripped from some starting point (here
we start at block 10MM and we drip 2 Comp/Block).

Algorithm
Static Configuration:

● : A block number when dripping should startripStartD
● : Amount of Comp which should be dripped per blockripRateD
● : Address of Token to DistributeokenT
● : Target of DripperargetT

State:

● : Amount of Token that has already been transferred to FlywheelrippedD

Externals:

● : Dripper's own Token balanceoken.balanceOf (Dripper)T
● : Side-effecting function to transfer Token to Targetoken.transfer(Target, amount)T
● : Current Ethereum block numberlock()B

d
ef ine Initialize(DripRate , Token , Target)D * *

 SET Dripped = 0
 SET DripStart Block() =
 SET DripRate ripRate = D *

 ET Token TokenS = *
 ET Target Target S = *

ef ine Drip()D

 DripTotal ripRate Block() ripStart) = D × (− D
 DeltaDrip ripTotal ripped = D − D
 ToDript in(CALL Token.balanceOf (Dripper), DeltaDrip) = m
 Assert ToDrip ≥ 0
 SET Dripped ripped oDrip = D + T
 CALL Token.transfer(Target, ToDrip)

Correctness
To prove the previous algorithm correct, first we note that DripTotal is always the exact amount
that should have been dripped since the start of the contract as it matches the equation listed
above. Assume, for the moment, Dripper's balance of Comp is sufficiently large. We break into
an inductive proof. In the base case, Dripped is zero and we transfer exactly DripTotal tokens,
which is the correct amount. In the inductive case, we have already transferred Dripped tokens,
which we assert from inductive was the correct amount that should have been dripped. We are

now calculating the amount owed since the beginning and subtracting the amount we have
dripped. This is the exact amount we need to transfer to match DripTotal. This is thus also
correct and completes our proof.

A Quick Aside
First, we note that our inductive case will succeed even if Dripped was not the correct amount to
be dripped previously, so long as Dripped is less than or equal to DripTotal. That is, it doesn't
matter how much we previously dripped, so long as we haven't dripped too much, since the next
call to Drip will correct any issues.

With a Variable Comp Balance
Now we consider the case where the Comp balance is less than sufficient in some cases. Here,
we revise our proof using the aside above to realize that the proof still holds so long as we can
show that Dripped is never greater than DripTotal in our inductive case. We show this by our
min statement, which says that we never set ToDrip to be greater than DeltaDrip, though it may
be less than DeltaDrip. Finally, we relax the constraint in our proof that we always Drip to the
correct DripTotal and instead say that "given a sufficient Comp balance, we always Drip to the
correct DripTotal." This completes our (modified) proof.

Assertions
● - Blocks always increaselock() ripStartB ≥ D
● does not overflowripRate Block() ripStart)D × (− D
● Note: cannot overflow since it is strictly less than or equal toripTotal oDripD + T

DripTotal.

