

Compound Protocol
[Final] Version 2.1

Constants

Constant Description

liquidationIncentive A multiplier representing the excess percent value that a user calling
liquidate receives, e.g. 1.05 for a 5% bonus. This discount applies to
the asset being seized (that is, what was used as collateral).

collateralFactor A multiplier represtsenting the amount you can borrow against your
collateral, e.g. .9 to allow borrowing 90% of collateral value. Must be
between 0 and 1.

closeFactor A number greater than 0.05 and less than or equal to 0.9 which is
multiplied by a given asset's borrowCurrent to calculate the maximum
repayAmount when liquidating a borrow for an underwater account.

maxAssets The max number of assets a single account can participate in (borrow
or use as collateral). This does not affect accounts which mint,
redeem or transfer without borrowing.

reserveFactor The portion of accrued interest that goes into reserves, between [0, 1],
and likely below 0.10.

Key Terms

Value Description

borrowCurrent The user’s borrow of a given asset, including accrued interest as of
the current block. This is the user's stored principal, times the
market's current interest index divided by the user's stored interest
index.

sumCollateral The collateral value of a user's supplied assets, including accrued
interest, in terms of ether. This is the sum over all assets of user's
token balance, times the (stored) underlying exchange rate of that
token, times the value of that asset in terms of eth, times the the
asset's collateralFactor.

Note: we use the stored exchange rate here, instead of calculating a
new exchange rate for each collateral asset. The delta should be small

and this is only used for account liquidity checks.

sumBorrow The value of a users borrowed assets, including accrued interest, in
Ether. That is, the sum of borrowCurrent for each of a user's assets.

accountLiquidity The sumCollateral value of a user’s account, denominated in Ether,
minus the sumBorrow (for the case where sumCollateral ≥
sumBorrow). This number may be below zero for unhealthy
accounts.

maxCloseValue A user’s borrow balance in a given asset, multiplied by the
closeFactor; how much value can be repaid by a liquidator.

seizeTokens The number of cTokens to transfer from the liquidated user to the
liquidator. This is the seizeAmount, times the liquidation incentive,
times the ratio of the oracle prices for the given asset pair, divided by
the exchange rate of the collateral asset.

totalBorrowBalance The total borrow balance, with accrued interest, across all accounts
in a money market, as of the current block.

Note: totalBorrowBalance will be strictly larger than totalBorrows from
v1, so the result of interest rate calculations will be different if we use
the same interest rate models.

assets account A set of markets that an account has participated in with a max size of
maxAssets

blocks When calculating simple interest, blocks refers to the number of
blocks that have elapsed since the last time the interest index was
calculated. That most recent block is stored as

 and is stored whenever an interest index isnterestBlockNumberi asset
stored, and blocks is calculated as the current block's number minus

.nterestBlockNumberi asset

rate When calculating simple interest, rate refers to the current interest
rate of the market. This was the previous rate that's been "in effect"
for blocks blocks.

Exchange Rate Stored The last stored exchange rate for cTokens to underlying assets. This
value does not include borrowing interest since the last interest
accrual in this market.

Exchange Rate Current The current exchange rate (including all trued up borrowing interest)
between cTokens and the underlying asset.

Exceptional States
We assume that in any error condition, either a) the protocol exits gracefully with an event
describing the error if no side-effects have yet occurred, or b) the transaction fails
completely. Any exceptions to this rule are noted, except as below.
A number of functions are split into two commands: accrue interest and a fresh action. The
goal is to separate two discrete events which should occur. First, every time we accrue
interest for a market, we help true up balances (and turn simple interest into compound
interest) for that market. Second, the fresh functions are only correct if the market's interest
has been fully accumulated as of this block. With updated interest, however, these fresh
functions have divergent concerns (often, significantly unrelated to interest accrual). We thus
build these functions as the sum of two actions to simplify the understanding and modelling
of these two separate acts. In practice, this means that even when a method fails gracefully,
the transaction may still accrue interest for that market (this is a good thing!).

Interest Rate Model Contract
For each asset, there is an interest index. We effectively track the growth of principal of an
arbitrary account over time. We use the ratio of that account's interest versus initial principal
to calculate the growth of any given account's interest over a subset of that time interval. The
interest model contract specifies the simple interest rate at any moment (which, when
compounded for each transaction becomes compound interest). We force this interest rate
model to be a pure function over the cash, borrows, and reserves of an asset in the market.
For more information, see Interest Index Calculation Appendix.

borrowRate(address cToken, amount cash, amount borrows, amount reserves) returns uint

● Return the current interest rate for the market
● Note: cToken is the Compound cToken contract, not the underlying asset address.

Price Oracle Contract
The Compound Protocol uses prices from a smart contract called a price oracle. The
Comptroller and Liquidate Borrow functions reference the prices in this oracle. Multiple
oracles may exist for the different Compound markets.

getUnderlyingPrice(CToken cToken) returns uint

● Return price of the underlying asset (as a mantissa)

cToken Contract
cTokens act as ERC-20 interfaces and will be the primary location where users interact with
the Compound Protocol. When a user mints, redeems, borrows, repays borrows, liquidates a
borrow, or transfers cTokens, she will do so on the cToken contract itself. The only actions
that a user performs on another contract are entering and exiting assets via the Comptroller
(see below for the Comptroller contract).

cTokens each reference an underlying. This is usually the underlying ERC-20 contract, though
it may be Ether itself or a complex asset. cTokens are the ultimate holders of that underlying
asset balance and each call to take in or send out assets originates in the cToken contract.
Initially, cEth (Compound Ether token) will be a unique asset, interacting with Ether instead
of ERC-20 assets.

Note about cToken Money Markets

The Money Market was the core monolith of the Compound Protocol in the first version. The
functions that used to exist in the Money Market now exist in the cTokens, and the old Market
struct is flattened in to each cToken Market. Functions related to Policies and Liquidity are
deferred to the Comptroller contract.

Market Functions

borrowRatePerBlock()

● Returns the current per-block borrow interest rate mantissa for this cToken

supplyRatePerBlock()

● We calculate the supply rate:
○ nderlying otalSupply × exchangeRate u = t
○ orrowsPer otalBorrows ÷ underlying b = t
○ upplyRate orrowRate × (1 eserveFactor) × borrowsPer s = b − r

● Returns the current per-block supply interest rate mantissa for this cToken

Accrue Interest()

We accrue interest and update the borrow index on every operation. This increases
compounding, approaching the true value, regardless of whether the rest of the operation
succeeds or not.

● otalCash nvoke getCashPrior() t = i
○ Note: likely makes an external call

● We get the interest rate (that was in effect since the last update):
○ orrowRate all interestModel.borrowRate(this, otalCash, otalBorrows, otalReserves) b = c t t t
○ impleInterestFactor blocks orrowRate s = Δ × b

● We update :orrowIndex b
○ orrowIndexNew borrowIndex 1 impleInterestFactor) b = × (+ s

● We calculate the interest accrued:
○ nterestAccumulated otalBorrows impleInterestFactor i = t × s

● We update and :orrows b eserves r
○ otalBorrowsNew otalBorrows nterestAccumulated t = t + i
○ otalReservesNew otalReserves nterestAccumulated eserveFactor t = t + i × r

● We store the updates back to the blockchain:
○ Set ccrualBlockNumber etBlockNumber() a = g
○ Set orrowIndex orrowIndexNew b = b
○ Set otalBorrows otalBorrowsNew t = t
○ Set otalReserves otalReservesNew t = t

● Emit an AccrueInterest event

[CErc20] Mint(uint mintAmount)

● Check nvoke Accrue Interest() i = 0
● Return nvoke Mint Fresh(msg.sender, mintAmount) i

[CEther] Mint() payable

● Check nvoke Accrue Interest() i = 0
● Return nvoke Mint Fresh(msg.sender, msg.value) i

[Internal] Mint Fresh(address minter, uint mintAmount)

User supplies assets from her own address into the market and receives a balance of cTokens
in exchange.

● Fail if all comptroller.mintAllowed(this, minter, mintAmount) = c / 0
● Verify market's block number equals current block number
● Fail if invoke checkTransferIn(minter, mintAmount) fails
● We get the current exchange rate and calculate the number of cTokens to be minted:

○ xchangeRate nvoke Exchange Rate Stored() e = i
○ intTokens intAmount xchangeRate m = m ÷ e

■ Note: divisions are rounded, as necessary, toward zero, thus it is possible
to mint 0 tokens

● We calculate the new total supply of cTokens and minter token balance:
○ otalSupplyNew totalSupply intTokens t = + m

■ Fails on overflow
○ ccountTokensNew accountTokens intTokens a minter = minter + m

■ Fails on overflow
● We have finished calculations. (If any calculations failed with an error, we have

already returned with a failure code). Now we can begin effects.
● We invoke doTransferIn for the minter and the mintAmount

○ Note: The cToken must handle variations between ERC-20 and ETH underlying.
○ On success, the cToken holds an additional mintAmount of cash
○ If doTransferIn fails despite the fact we checked pre-conditions, we revert

because we can't be sure if side effects occurred
● We write previously calculated values into storage:

○ Set otalSupply cTokenSupplyNew t =
○ Set ccountTokens ccountTokensNew a minter = a minter

● Emit a Mint event with , , inter m intAmount m intTokens m
● Emit a Transfer event from this to minter
● all comptroller.mintV erify(this, minter, mintAmount, mintTokens) c

Redeem(uint redeemTokens)

● Check nvoke Accrue Interest() i = 0
● Return nvoke Redeem Fresh(msg.sender, redeemTokens, 0) i

Redeem Underlying(uint redeemAmount)

● Check nvoke Accrue Interest() i = 0
● Return nvoke Redeem Fresh(msg.sender, , redeemAmount) i 0

[Internal] Redeem Fresh(address redeemer, uint redeemTokensIn, uint redeemAmountIn)

User relinquishes cTokens and receives the underlying ERC-20 asset from the protocol into
her own wallet.

● xchangeRate nvoke Exchange Rate Stored() e = i
● If edeemTokensIn r > 0 :

○ We get the current exchange rate and calculate the amount to be redeemed:
■ edeemTokens redeemTokensIn r =
■ edeemAmount redeemTokensIn xchangeRate r = × e

● Else:

○ We get the current exchange rate and calculate the amount to be redeemed:
■ edeemTokens redeemAmountIn xchangeRate r = ÷ e
■ edeemAmount redeemAmountIn r =

● Fail if all comptroller.redeemAllowed(this, redeemer, redeemTokens) = c / 0
● Verify market's block number equals current block number
● We calculate the new total supply and redeemer token balance:

○ totalSupplyNew totalSupply edeemTokens= − r
■ Fails if edeemTokens totalSupply r >

○ accountTokensNew ccountTokens edeemTokensredeemer = a redeemer − r
■ Fails if edeemTokens accountTokens r > redeemer

● Fail gracefully if protocol has insufficient cash
● We have finished calculations. (If any calculations failed with an error, we have

already returned with a failure code). Now we can begin side effects.
● We invoke doTransferOut for the redeemer and the redeemAmount

○ Note: The cToken must handle variations between ERC-20 and ETH underlying.
○ On success, the cToken has redeemAmount less of cash
○ If doTransferOut fails despite the fact we checked pre-conditions, we revert

because we can't be sure if side effects occurred
● We write previously calculated values into storage

○ Set otalSupply totalSupplyNew t =
○ Set ccountTokens ccountTokensNew a redeemer = a redeemer

● Emit a Redeem event with , , edeemer r edeemAmount r edeemTokens r
● Emit a Transfer event from redeemer to this
● all comptroller.redeemV erify(this, redeemer, redeemAmount, redeemTokens) c

Borrow(uint borrowAmount)

● Check nvoke Accrue Interest() i = 0
● Return nvoke Borrow Asset Fresh(msg.sender, borrowAmount) i

[Internal] BorrowFresh(address borrower, uint borrowAmount)

User borrows assets from the protocol.
● Fail if all comptroller.borrowAllowed(this, borrower, borrowAmount) = c / 0
● Verify market's block number equals current block number
● We calculate the new borrower and total borrow balances:

○ ccountBorrows nvoke Borrow Balance Stored(borrower) a = i
○ ccountBorrowsNew ccountBorrows orrowAmount a = a + b

■ Fails on overflow

○ otalBorrowsNew otalBorrows orrowAmount t = t + b
■ Fails on overflow

● Fail gracefully if protocol has insufficient cash
● We have finished calculations. (If any calculations failed with an error, we have

already returned with a failure code). Now we can begin side effects.
● We invoke doTransferOut for the borrower and the borrowAmount

○ Note: The cToken must handle variations between ERC-20 and ETH underlying
○ On success, the cToken has borrowAmount less of underlying cash
○ If doTransferOut fails despite the fact we checked pre-conditions, we revert

because we can't be sure if side effects occurred
● We write the previously calculated values into storage:

○ Set ccountBorrows accountBorrowsNew, borrowIndex} a borrower = {
○ Set otalBorrows totalBorrowsNew t =

● Emit a Borrow event with , , ,orrower b orrowAmount b ccountBorrowsNew a
otalBorrowsNew t

● all comptroller.borrowV erify(this, borrower, borrowAmount) c

[CErc20] Repay Borrow(uint repayAmount)

● Check nvoke Accrue Interest() i = 0
● return nvoke Repay Borrow Fresh(msg.sender, msg.sender, repayAmount) i

[CEther] Repay Borrow() payable

● Check nvoke Accrue Interest() i = 0
● return nvoke Repay Borrow Fresh(msg.sender, msg.sender, msg.value) i

[CErc20] Repay Borrow Behalf(address borrower, uint repayAmount)

Repays a borrow on behalf of another user. The message sender is still the payer, but you can
specify a different account to pay against.

● Check nvoke Accrue Interest() i = 0
● Return nvoke Repay Borrow Fresh(msg.sender, borrower, repayAmount) i

[CEther] Repay Borrow Behalf(address borrower) payable

Repays a borrow on behalf of another user. The message sender is still the payer, but you can
specify a different account to pay against.

● Check nvoke Accrue Interest() i = 0
● Return nvoke Repay Borrow Fresh(msg.sender, borrower, msg.value) i

[Internal] Repay Borrow Fresh(address payer, address borrower, uint repayAmount)

Borrows are repaid by the payer (possibly the same as the borrower).
● Fail if all comptroller.repayBorrowAllowed(this, ayer, orrower, epayAmount) = c p b r / 0
● Verify market's block number equals current block number
● We fetch the amount the borrower owes, with accumulated interest:

○ ccountBorrows nvoke Borrow Balance Stored(borrower) a = i
● If epayAmount 1 r = −

○ epayAmount ccountBorrows r = a
● Fail if checkTransferIn(underlying, payer, repayAmount) fails
● We calculate the new borrower and total borrow balances:

○ ccountBorrowsNew ccountBorrows epayAmount a = a − r
■ Fails if epayAmount ccountBorrows r > a

○ otalBorrowsNew otalBorrows epayAmount t = t − r
■ Fails if epayAmount otalBorrows r > t

● We have finished calculations. (If any calculations failed with an error, we have
already returned with a failure code). Now we can begin effects.

● We call doTransferIn for the payer and the repayAmount
○ Note: The cToken must handle variations between ERC-20 and ETH underlying
○ On success, the cToken holds an additional repayAmount of cash
○ If doTransferIn fails despite the fact we checked pre-conditions, we revert

because we can't be sure if side effects occurred
● We write the previously calculated values into storage:

○ Set ccountBorrows accountBorrowsNew, borrowIndex} a borrower = {
○ Set otalBorrows otalBorrowsNew t = t

● Emit RepayBorrow event with , , , ,ayer p orrower b epayAmount r ccountBorrowsNew a
otalBorrowsNew t

● all comptroller.repayBorrowV erify(this, payer, borrower, repayAmount) c

[CErc20] Liquidate Borrow(address borrower, CToken cTokenCollateral, uint repayAmount)

● Check nvoke Accrue Interest() i = 0
● Check all cTokenCollateral.Accrue Interest() c = 0
● return

nvoke Liquidate Borrow Fresh(msg.sender, borrower, repayAmount, cTokenCollateral) i

[CEther] Liquidate Borrow(address borrower, CToken cTokenCollateral) payable

● Check nvoke Accrue Interest() i = 0

● Check all cTokenCollateral.Accrue Interest() c = 0
● return

nvoke Liquidate Borrow Fresh(msg.sender, borrower, msg.value, cTokenCollateral) i

[Internal] Liquidate Borrow Fresh(address liquidator, address borrower, uint repayAmount,
CToken cTokenCollateral)

The liquidator repays an amount of the underlying asset in this market, on behalf of an
underwater borrower, and seizes the appropriate number of tokens in the collateral market.

● Fail if all comptroller.liquidateBorrowAllowed(this, ..arguments) = c . / 0
● Verify market's block number equals current block number
● Verify cTokenCollateral market's block number equals current block number

○ Fail if all cTokenCollateral.accrualBlockNumber() = lock.number c / b
● Fail if iquidator orrower l = b
● Fail if epayAmount r = 0
● Fail if epayAmount − r = 1
● We calculate the number of collateral tokens that will be seized:

○ eizeTokens all comptroller.liquidateCalculateSeizeTokens s = c
 (this, cTokenCollateral, repayAmount)

● Fail if eizeTokens TokenCollateral.balanceOf (borrower) s > c
● Fail if nvoke Repay Borrow Fresh(liquidator, borrower, repayAmount) ≠ 0 i
● Revert if all cTokenCollateral.seize(liquidator, borrower, seizeTokens) ≠ 0 c
● Emit a LiquidateBorrow event with , ,iquidator, borrower l epayAmount r

, TokenCollateral c eizeTokens s
● all comptroller.liquidateBorrowV erify(this, ...arguments, ...state) c

seize(address liquidator, address borrower, uint seizeTokens) returns uint

● Fail if
all comptroller.seizeAllowed(this, msg.sender, iquidator, orrower, eizeTokens) = c l b s / 0
○ Note: It’s critical that the collateral contract uses msg.sender as the address of

the borrowed CToken which it verifies with the Comptroller. If a parameter
were used, then anyone would be able to spoof this call.

● Fail if orrower iquidator b = l
● We calculate the new borrower and liquidator token balances:

○ orrowerTokensNew ccountTokens[borrower] eizeTokens b = a − s
■ Fail on underflow

○ iquidatorTokensNew ccountTokens[liquidator] eizeTokens l = a + s
■ Fail on overflow

● We write the previously calculated values into storage:

○ ccountTokens[borrower] orrowerTokensNew a = b
○ ccountTokens[liquidator] iquidatorTokensNew a = l

● Emit a Transfer event
● all comptroller.seizeV erify(this, msg.sender, iquidator, orrower, seizeTokens) c l b

Administrative Functions

constructor(EIP20 underlying,address interestRateModel, address comptroller, scaled
initialExchangeRate)

● Set admin to msg.sender
● Set underlying to underlying
● Set initialExchangeRate to initialExchangeRate
● Set marketBlockNumber to block number
● Set market borrow index to 1e18
● Set reserve factor to 0
● nvoke _setMarketInterestRateModelF resh(interestRateModel) i
● nvoke _setMarketComptroller(comptroller) i

_setReserveFactor(scaled newReserveFactor)

● Check nvoke Accrue Interest() i = 0
● Return _setReserveFactorFresh(newReserveFactor)

[Internal] _setReserveFactorFresh(scaled newReserveFactor)

● Check caller is admin
● We verify market's block number equals current block number
● Check ewReserveFactor ≤ maxReserveFactor n
● Store reserveFactor with value newReserveFactor
● Emit NewReserveFactor(oldReserveFactor, newReserveFactor)

_reduceReserves(uint amount)

● Check nvoke Accrue Interest() i = 0
● Return _reduceReservesFresh(amount)

[Internal] _reduceReservesFresh(uint reduceAmount)

● Check caller is admin
● We verify market's block number equals current block number
● Check amount ≤ eserves r n

● Fail gracefully if protocol has insufficient underlying cash
● Store eserves reserves reduceAmount r n+1 = n −
● nvoke doT ransferOut(underlying, reduceAmount, admin) i

○ Note: we revert on the failure of this command
● Emit NewReserves(admin, ,)educeAmount r eserves r n+1

_setPendingAdmin(address newPendingAdmin)

● Check caller is admin
● Store pendingAdmin with value newPendingAdmin
● Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)

_acceptAdmin()

● Check caller is pendingAdmin and pendingAdmin ≠ address(0)
● Store admin with value pendingAdmin
● Unset pendingAdmin
● Emit NewAdmin(oldAdmin, newAdmin)
● Emit NewPendingAdmin(oldPendingAdmin, 0)

_setInterestRateModel(address newInterestRateModel)

● Check nvoke Accrue Interest() i = 0
● return _setFreshInterestModelFresh(newInterestRateModel)

[Internal] _setInterestRateModelFresh(address newInterestRateModel)

● Check caller is admin
● We assert market's block number equals current block number
● Track the market's current interest rate model
● Ensure returns trueall newInterestRateModel.isInterestRateModel() c
● Set the interest rate model to newInterestRateModel
● Emit NewInterestRateModel(oldInterestRateModel, newInterestRateModel)

_setComptroller(address newComptroller)

● Check caller is admin
● Track asset's current comptroller as oldComptroller
● Ensure returns trueall comptroller.isComptroller() c
● Set comptroller to newComptroller
● Emit NewComptroller(oldComptroller, newComptroller)

Token Functions

name() returns string

● Return name

symbol() returns string

● Return symbol

decimals() returns uint

● Return decimals

[External] getCash() returns uint

● Return all getCashPrior() c

transfer(address to, uint amount) returns bool

● nvoke transferTokens(msg.sender, msg.sender, to, amount) i
○ Revert if not successful
○ Emit Transfer(msg.sender, to, tokens)

transferFrom(address from, address to, uint amount) returns bool

● nvoke transferTokens(msg.sender, f rom, to, amount) i
○ Revert if not successful
○ Emit Transfer(from, to, tokens)

[Internal] transferTokens(address spender, address src, address dst, uint amount) returns uint

Transfer amount cTokens from source to dest.
● Fail if returns falseall comptroller.redeemAllowed(this, src, amount) c
● Fail unless spender is source or TokenAllowed[src][spender] mount c ≥ a
● Fail if ccountTokens[src] mount a < a
● ccountTokens[src] = mount a − a

○ Underflow is impossible due to check above
● ccountTokens[dst] = mount a + a

○ Fail on overflow
● Unless pender rc TokenAllowed[src][spender] axUint s = s ⋁ c = m

○ TokenAllowed[src][spender] = mount c − a

totalSupply() returns uint

● Return otalSupply t

allowance(address owner, address spender) returns uint

● Return TokenAllowed[owner][spender] c

balanceOf(address account) returns uint256

● Return ccountTokens[account] a

balanceOfUnderlying(address account) returns uint

● Return ccountTokens[account] × invoke Exchange Rate Current() a

approve(address spender, uint256 amount) returns bool

● Overwrite TokenAllowed[msg.sender][spender] amount c =
● Emit Approval(msg.sender, spender, amount)

Exchange Rates

Exchange Rate Current() returns uint

● nvoke Accrue Interest() i
● return nvoke Exchange Rate Stored() i

Exchange Rate Stored()

● Note: we do not assert that the market is up to date.
● If there are no tokens minted:

○ xchangeRate nitial exchange rate e = i
● Otherwise:

○ otalCash nvoke getCash() t = i
■ Note: likely makes an external call

○ xchangeRate e = totalSupply

totalCash +totalBorrows−totalReserves

● Return xchangeRate e

Borrow Balances

Total Borrows Current(address account) returns uint

● nvoke Accrue Interest() i

● return otalBorrows t

Borrow Balance Current(address account) returns uint

● nvoke Accrue Interest() i
● return nvoke Borrow Balance Stored() i

Borrow Balance Stored(address borrower)

● Note: we do not assert that the market is up to date.
● We get from storage from the cToken:

○ orrowBalance ccountBorrows[borrower] b borrower = a
○ orrowIndex ccountBorrowIndex[borrower] b borrower = a

● If then is likely also 0. Rather thanorrowBalance b borrower = 0 orrowIndex b borrower
failing the calculation with a division by 0, we immediately return 0 in this case.

● ecentBorrowBalancer borrower = borrowIndexborrower
borrowBalance ×borrowIndexborrower stored

● Return ecentBorrowBalance r borrower

Safe Token

[Internal] checkTransferIn(address account, uint underylingAmount) returns uint

● all EIP20(underlying).allowance(account, address(this))) c
○ Fail if result is less than underlyingAmount

● all EIP20(underlying).balanceOf (account)) c
○ Fail if result is less than underlyingAmount

● Return 👍

[Internal] doTransferIn(address account, uint underlyingAmount)

● Revert if since there is no valid use case for sending value by defaultsg.value m > 0
● all EIP20(underlying).transferF rom(account, address(this), underlyingAmount) c

○ Revert unless true
○ *Note: should handle non-standard ERC-20 tokens

[Internal] getCashPrior() returns uint

● Return all EIP20(underlying).balanceOf (address(this))) c

[Internal] doTransferOut(address account, uint underlyingAmount)

● all EIP20(underlying).transfer(account, underlyingAmount) c
○ Revert unless true

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

○ *Note: should handle non-standard ERC-20 tokens

Safe Token (cETH)

In order to implement cETH, we add a fallback function that does .nvoke mint(msg.value) i
In addition, we override the Safe Token methods as follows:

[Internal] checkTransferIn(address account, uint underylingAmount) returns uint

● Fail if sg.sender ≠ account m
● Fail if sg.value ≠ underlyingAmount m
● Return👍

[Internal] doTransferIn(address account, uint underlyingAmount)

● Fail if sg.value ≠ underlyingAmount m
○ We just sanity check, checkTransferIn should have already been called

[Internal] getCashPrior() returns uint

● Return his.balance sg.value t − m
○ Ensure we avoid underflow

[Internal] doTransferOut(address account, uint underlyingAmount)

● nvoke account.transfer(underlyingAmount) i
○ Ensure minimum gas is attached to transfer

Comptroller Contract
The Comptroller implements the Liquidity Checker API specification. Most important of these
are redeemAllowed(), borrowAllowed(), andiquidityChecker. l iquidityChecker. l

liquidateBorrowAllowed().iquidityChecker. l

The Comptroller also implements a defense hook mechanism to protect against unforeseen
future vulnerabilities. These *Verify functions are currently no-ops, but provide a last resort
to potentially revert any protocol transaction which would violate the intended behavior of
the protocol and therefore put user assets at risk.

Note: In order to seamlessly upgrade the Comptroller without changing the Comptroller
address referenced by the cToken markets, we sometimes use a technique known as
delegate calls.

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

User Market Functions

These two functions (enter markets and exit market) will be called by the end-users directly.
This will only be a requirement for users who wish to borrow. That is, token holders that do
not borrow will not need to (and should not) call these functions.

Enter Markets(address[] cTokens) returns bool[]

The sender includes a list of asset addresses that should be used when calculating account
liquidity. Before borrowing an asset, one or more supplied assets must be added in this way
to provide collateral. Any asset to be borrowed must be added in this way before borrowing
is allowed. The return value is a list of mapping the assets passed in to whether the user is
ultimately in that market.

● For each cToken given as an argument:
○ We check if the user is already in the cToken, if so, collect true, otherwise,

proceed
○ We check if the user has reached maxAssets, if so, collect false, otherwise,

proceed
○ We check if the cToken is listed, if not, collect false, otherwise, proceed.
○ We check racleP rice ≠ 0 o asset
○ We add the asset to assetsuser , by pushing it into user’s assets list and setting

 to true, and collect trueembershipsm cToken,user
○ Proceed to the next asset, noting that the size of the list was increased if the

previous item added to the list and the maxAssets comparison must occur
against storage

○ Emit MarketEntered(cToken, msg.sender)
● Return the collected answers of whether the user is currently in the passed cTokens

Exit Market(address cToken) returns bool

The sender provides an asset that they no longer wish to be included in account liquidity
calculations. Since all borrowed assets must be included, the purpose of the function is to
remove an asset from the user’s collateral list. The return value is a boolean indicating if the
user is not in the market after the call.

● Get sender tokensHeld and amountOwed underlying from the cToken
● Fail if the sender has a borrow balance

○ i.e. mountOwed ≠ 0 a
● Fail if the sender is not permitted to redeem all of their tokens

○ i.e. nvoke redeemAllowed(cToken, msg.sender, tokensHeld) = i / 0
● Return true if the sender is not already ‘in’ the market
● Set cToken account membership to false
● Delete cToken from the account’s list of assets
● Emit MarketExited(cToken, msg.sender)
● Return true, indicating the user is no longer in the market

Policy Hook Functions

These functions are core to verifying if a given action by a user is allowed. This should be
based on a combination of factors. One or more of the factors will be checked by the
following functions.

1. cToken must be a known "supported" asset. This applies to all functions and must
always be checked.

2. User must remain sufficiently liquid after the function were to complete. For instance,
a user cannot redeem tokens if she has too many outstanding borrows.

3. User must declare all assets she intends to borrow (and use as collateral).
4. User must pass all KYC-type checks and other policy rules.
5. For liquidation, caller must be the asset itself (the borrowed cToken contract).

mintAllowed(CToken cToken, address minter, uint mintAmount) returns uint

● Fail if cToken not listed
● *may include Policy Hook-type checks
● Return 👍 otherwise

mintVerify(CToken cToken, address minter, uint mintAmount, uint mintTokens) returns
uint

● Does nothing, but could revert in the future as a defense hook

redeemAllowed(CToken cToken, address redeemer, uint redeemTokens) returns uint

● Fail if cToken not listed
● *may include Policy Hook-type checks
● Return 👍 if redeemer does not have membership in asset
● Let error, liquidity, shortfall) (=

nvoke getHypotheticalAccountLiquidityInternal(redeemer, cToken, redeemTokens, 0) i
● Fail if or if rror = e / 0 hortfall s > 0
● Return 👍 otherwise

redeemVerify(CToken cToken, address redeemer, uint redeemAmount, uint redeemTokens)
returns uint

● Does nothing, but could revert in the future as a defense hook

borrowAllowed(CToken cToken, address borrower, uint borrowAmount) returns uint

● Fail if cToken not listed
● *may include Policy Hook-type checks
● Fail if borrower does not have membership in asset
● Fail if racleP rice 0 o asset =
● Let error, liquidity, shortfall) (=

nvoke getHypotheticalAccountLiquidityInternal(borrower, cToken, 0, borrowAmount) i
● Fail if or rror = e / 0 hortfall s > 0
● Return 👍 otherwise

borrowVerify(CToken cToken, address borrower, uint borrowAmount)

● Does nothing, but could revert in the future as a defense hook

repayBorrowAllowed(CToken cToken, address payer, address borrower, uint repayAmount)
returns uint

● Fail if cToken not listed
● *may include Policy Hook-type checks
● Return 👍 otherwise

repayBorrowVerify(CToken cToken, address payer, address borrower, uint repayAmount)

● Does nothing, but could revert in the future as a defense hook

liquidateBorrowAllowed(CToken cTokenBorrowed, CToken cTokenCollateral, address
borrower, address liquidator, uint repayAmount) returns uint

● Fail if cTokenBorrowed or cTokenCollateral not listed
● *may include Policy Hook-type checks
● Let error, liquidity, shortfall) nvoke getAccountLiquidityInternal(borrower) (= i
● Fail if or rror = e / 0 hortfall s = 0

○ The borrower must have shortfall in order to be liquidatable
● orrowBalance all cTokenBorrowed.Borrow Balance Stored() b account = c

○ This value is strictly up-to-date due to accumulating interest prior to this call
● We calculate maxCloseValue, the total that can be closed for this borrow:

○ axCloseV alue borrowBalance ⋅closeFactor m = account

● Fail if epayAmount axCloseV alue r > m
● Return 👍 otherwise

liquidateBorrowVerify(CToken cTokenBorrowed, CToken cTokenCollateral, address
borrower, address liquidator, uint repayAmount, uint seizeTokens)

● Does nothing, but could revert in the future as a defense hook

seizeAllowed(CToken cTokenCollateral, CToken cTokenBorrowed, address borrower,
address liquidator, uint seizeTokens) returns uint

● Fail if cTokenCollateral or cTokenBorrowed is not listed
● *may include Policy Hook-type checks
● Fail all cTokenCollateral.comptroller() = all cTokenBorrowed.comptroller() c / c
● Return 👍 otherwise

seizeVerify(CToken cTokenCollateral, CToken cTokenBorrowed, address borrower, address
liquidator, uint seizeTokens)

● Does nothing, but could revert in the future as a defense hook

transferAllowed(CToken cToken, address src, address dst, uint transferTokens) returns uint

● Return edeemAllowed(cToken, src, transferTokens) r

transferVerify(CToken cToken, address src, address dst, uint transferTokens)

● Does nothing, but could revert in the future as a defense hook

Liquidity / Liquidation Calculations

getAssetsIn(address account) returns address[]

● Return list of assets you are in

checkMembership(address account, CToken cToken) returns bool

● Returns true if user is in asset

getAccountLiquidity(address account) returns int

● Return nvoke getHypotheticalAccountLiquidity(account, CToken(0), 0, 0) i

getHypotheticalAccountLiquidity(address account, CToken cToken, uint redeemTokens, uint
borrowAmount) returns (uint, uint)

● Let be the active list of assets (from storage) that a user has enteredssets a account
● We calculate the user’s and umCollateral s umBorrowP lusEf fects s

○ Note that we calculate the exchangeRateStored for each collateral cToken
using stored data, without calculating accumulated interest

● Initialize , umCollatera s = 0 umBorrowP lusEf fects s = 0
● For each :sset ssets a ∈ a account

○ We get:
■ TokenBalance all cToken.balanceOf (account) c account = c
■ =orrowBalance b account all cToken.Borrow Balance Stored(account) c
■ xchangeRate all cToken.Exchange Rate Stored() e = c
■ ollateralFactor arkets[asset].collateralFactor c = m
■ racleP rice all oracle.getUnderlyingP rice(asset) o = c

● Fail if racleP rice o = 0
○ okensToDollars ollateralFactor xchangeRate racleP rice t = c · e · o
○ umCollateral = okensToDollars TokenBalance s + t · c account
○ umBorrowP lusEf fects = oracleP rice orrowBalance s + · b account
○ If (i.e. looking at the affected market):sset Token a = c

■ Account for the potential effect of redeeming:
● umBorrowP lusEf fects = tokensToDollars edeemTokens s + · r

■ Account for the potential effect of borrowing:
● umBorrowP lusEf fects = oracleP rice orrowAmount s + · b

● If umCollateral sumBorrowP lusEf fects s >
○ iquidity umCollateral sumBorrowP lusEf fects l = s −
○ hortfall 0 s =

● Else
○ iquidity 0 l =
○ hortfall umBorrowP lusEf fects sumCollateral s = s −

● Return two unsigned values, and liquidity hortfall s

liquidateCalculateSeizeTokens(CToken cTokenBorrowed, CToken cTokenCollateral, uint
repayAmount) returns uint

● Read oracle prices for borrowed and collateral markets:
○ rice all oracle.getUnderlyingP rice(cTokenBorrowed) p borrowed = c
○ rice all oracle.getUnderlyingP rice(cTokenCollateral) p collateral = c

○ Fail if either or rice p borrowed = 0 rice p collateral = 0
● Get the exchange rate and calculate the number of collateral tokens to seize:

○ xchangeRate all cTokenCollateral.Exchange Rate Stored() e collateral = c
○ eizeAmount repayAmount iquidationIncentives = × l stored × pricecollateral

priceborrowed

○ eizeTokens seizeAmount ÷ exchangeRate s = collateral
● Return eizeTokens s

Comptroller Admin Functions

constructor()

● Set admin to caller

_setPendingAdmin(address newPendingAdmin) returns uint

● Check caller is admin
● Store pendingAdmin with value newPendingAdmin
● Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)

_acceptAdmin() returns uint

● Check caller is pendingAdmin and pendingAdmin ≠ address(0)
● Store admin with value pendingAdmin
● Unset pendingAdmin
● Emit NewAdmin(oldAdmin, newAdmin)
● Emit NewPendingAdmin(oldPendingAdmin, 0)

_setPriceOracle(address newOracle)

● Check caller is admin OR caller is currentImplementation and origin is admin
● Ensure returns truenvoke newOracle.isP riceOracle() i
● Set the comptroller's oracle to newOracle
● Emit NewPriceOracle(oldOracle, newOracle)

_setLiquidationIncentive(scaled newIncentive)

● Check caller is admin OR caller is currentImplementation and origin is admin
● Check de-scaled 1 ≤ newLiquidationDiscount ≤ 1.5
● Set liquidation incentive to newIncentive
● Emit NewLiquidationIncentive(oldIncentive, newIncentive)

_setCollateralFactor(CToken cToken, scaled newFactor) returns uint

● Check caller is admin OR caller is currentImplementation and origin is admin
● Verify market is listed
● Check newFactor ≤ 0.9
● If newFactor > 0, fail if racle.getUnderlyingP rice(cToken)≠0 o
● Set market's collateral factor to newFactor
● Emit NewCollateralFactor(cToken, oldFactor, newFactor)

_setCloseFactor(scaled newCloseFactor) returns uint

● Check caller is admin OR caller is currentImplementation and origin is admin
● Check 0.05 < newCloseFactor ≤ 0.9
● Set close factor to newCloseFactor
● Emit NewCloseFactor(oldCloseFactor, newCloseFactor)

_setMaxAssets(uint newMaxAssets) returns uint

● Check caller is admin OR caller is currentImplementation and origin is admin
● Set maxAssets to newMaxAssets
● Emit NewMaxAssets(oldMaxAssets, newMaxAssets)

_supportMarket(CToken cToken) returns uint

● Check caller is admin
● Verify asset is not isListed
● Ensure returns trueall cToken.isCToken() c
● Set market is listed to true
● Append cToken to markets list.
● Emit MarketListed(cToken)

Implementation Upgrade Functions

The comptroller is designed as an upgradeable proxy inspired by patterns described by
zeppelinOS. In short, the pattern is

1. Deploy new implementation
2. all comptroller._setP endingImplementation(newImplementation) c
3. all newImplementation.becomeBrains(comptroller, ...) c

_setPendingImplementation(address newPendingImplementation) returns uint

● Check caller is admin

https://blog.zeppelinos.org/proxy-patterns/

● Store pendingComptrollerImplementation with value newPendingImplementation
● Emit NewPendingImplementation(oldPendingAdminImplementation,

newPendingImplementation)

_acceptImplementation() returns uint

● Check caller is pendingComptrollerImplementation and
pendingComptrollerImplementation ≠ address(0)

● Store comptrollerImplementation with value pendingComptrollerImplementation
● Unset pendingComptrollerImplementation
● Emit NewImplementation(oldImplementation, newImplementation)
● Emit NewPendingImplementation(oldPendingImplementation, 0)

Note: _becomeBrains is called on the implementation address, where the other functions are
all called on the active comptroller.

_becomeBrains(address unitroller, address oracle, uint closeFactor, uint maxAssets) returns
uint

● Check caller is admin of unitroller
● Ensure returns trueall unitroller._acceptImplementation() c
● Ensure = 0all unitroller._setMarketP riceOracle(oracle) c
● Ensure all unitroller._setCloseFactor(closeFactor) c = 0
● Ensure all unitroller._setMaxAssets(maxAssets) c = 0
● Ensure all unitroller._setLiquidationIncentive(liquidationIncentiveMinMantissa) c = 0

Maximillion Contract
For cErc20 contracts, we support repaying a borrow fully using the special ‘-1’ amount. Since
the CToken contract is approved to transfer what it needs, it can determine the borrow
amount and then transfer the exact amount, post-interest accrual, directly within the
repayBorrow function.

For cEther, things work a bit differently. Since ‘-1’ is actually UINT_MAX, it’s practically
impossible for anyone to transfer this amount to the repay function. In order to completely
repay a borrow in cEther, we deploy a separate contract to handle the details of collecting
more than enough Ether to repay the borrow plus recent interest, and then refunding the
overpay amount.

Repay Behalf(address borrower) payable

● Remember the amount of Ether received:
○ eceived sg.value r = m

● Read the current borrow balance with interest accrued:
○ orrows nvoke cEther.borrowBalanceCurrent(borrower) b = i

● If , repay the exact borrow balance and refund:eceived orrows r > b
○ nvoke cEther.repayBorrowBehalf .value(borrows)(borrower) i
○ Refund eceived orrows r − b

● Otherwise, just repay the amount of Ether provided:
○ nvoke cEther.repayBorrowBehalf .value(received)(borrower) i

Appendix

Market States

A given asset may be in one of four states, which affect which functions are available and
how the asset is utilized above.

● Unsupported - An asset is not part of the “listedAssets” set. It is not used when
calculating sumCollateral and all operations, aside of “supportMarket” for that asset
should fail.

● Listed - An asset is part of the “listedAssets” set. It is not used when calculating
sumCollateral and only “supply”, “withdraw” and “repayBorrow” operations on that
asset should functional normally. The asset must have an interest rate model
associated with it.

● Borrow - An asset is part of the “listedAssets” set. It is not used when calculating
sumCollateral and all operations on that asset should functional normally. The asset
must have a non-zero price and interest rate model associated with it. A listed market
with non-zero price allows that market to be borrowed from.

● Collateral - An asset is part of the “listedAssets” set. It is used when calculating
sumCollateral and all operations on that asset should functional normally. The asset
must have a non-zero price, non-zero collateral factor and interest rate model
associated with it. A borrow market with a non-zero collateral factor is both
borrowable and can be used as collateral.

Regarding membership, and isted orrow ollateral l ⊆ b ⊆ c listed nsupported) (⋂ u = ⊘
Regarding available functionality, and isted orrow ollateral l ⊇ b ⊇ c nsupported u = ⊘

Interest Index Calculation

The interest index tracks the interest owed on $1 (or some constant initial amount) of debt
since the protocol’s deployment. That is, the interest on a fixed amount of the borrowed
asset over time.

Whenever the interest rate changes, the index applies the simple interest formula, to
snapshot the effect of the prior interest rate since that time:

ndex , c i 0 = c > 0
ndex ndex ⋅ (1 △blocks ate) i i+△blocks = i i + × r i

Whenever the index is updated, we also update the total borrow (and reserves) amount, to
capture the effect on all the currently borrowed (reserved) units of the asset since the last
update:

orrows orrows ⋅ (1 △blocks ate) b i+△blocks = b i + × r i

The total borrow amount is used to manage the market’s ledger, and is updated often to
maintain accurate current information. On the other hand, each individual borrow is only
updated when an action related to that specific borrow is taken.

When a borrow is created, we store with it the principal amount and the interest index at that
time. Whenever an action which affects the principal of the borrow is initiated, we first
calculate a new principal, based on the interest that has accumulated since the last event.

In order to determine how much interest has accumulated, we take the current index value
and compare it to the interest index at the time of the last event which was stored in the
borrow balance. The ratio of these values yields the change in $1 of debt since the principal
was last recorded, for which we then calculate a new principal amount to store with the new
index.

The ratio is the simple interest rate over the period, which weorrowIndex /borrowIndex b i+b i
apply for the whole period in order to accrue interest on the principal:

f fectiveRate orrowIndex / borrowIndex e = b i+△blocks i
rincipal rincipal ⋅ (1 △blocks ⋅ ef fectiveRate) ∆ p i+△blocks = p i + +

orrowIndex orrowIndex b i+△blocks = b i

Mint / Redeem exchange rate remains the same when minting and redeeming
coins

Let
 assets cash borrows held by the protocol A = = +
L liabilities tokens minted and not redeemed = =
A change in assets cash supplied|withdrawn or borrows sent|repaid d = =

 L change in liabilities tokens to mint|redeem d = =
 exchange rate A / L R = =
 next assets A dA A′ = = +
 next liabilities L dL L′ = = +
 next exchange rate A / L R′ = = ′ ′

Prove that , whenever there is a change in , where . R R′ = Ad A / dL R A / L d = =

L dA / R L dA / A d = = *

 A / L R′ = ′ ′

 (A dA) / (L dL) = + +
 (A dA) / (L L dA / A) = + + *
 (A dA) / (L (1 dA / A)) = + * +
 (A dA) / (L (A / A dA / A)) = + * +
 (A dA) / (L (A dA) / A) = + * +
 1 / L / A =
 A / L =
 R =

q.e.d.

