Compound Protocol

[] Version 2.1

Constants

Constant Description

liquidationincentive

A multiplier representing the excess percent value that a user calling
liquidate receives, e.g. 1.05 for a 5% bonus. This discount applies to
the asset being seized (that is, what was used as collateral).

collateralFactor

A multiplier represtsenting the amount you can borrow against your
collateral, e.g. .9 to allow borrowing 90% of collateral value. Must be
between 0 and 1.

closeFactor

A number greater than 0.05 and less than or equal to 0.9 which is
multiplied by a given asset's borrowCurrent to calculate the maximum
repayAmount when liquidating a borrow for an underwater account.

maxAssets

The max number of assets a single account can participate in (borrow
or use as collateral). This does not affect accounts which mint,
redeem or transfer without borrowing.

reserveFactor

The portion of accrued interest that goes into reserves, between [0, 1],
and likely below 0.10.

Key Terms

Value Description

borrowCurrent The user’s borrow of a given asset, including accrued interest as of
the current block. This is the user's stored principal, times the
market's current interest index divided by the user's stored interest
index.

sumCollateral The collateral value of a user's supplied assets, including accrued

interest, in terms of ether. This is the sum over all assets of user's
token balance, times the (stored) underlying exchange rate of that
token, times the value of that asset in terms of eth, times the the
asset's collateralFactor.

Note: we use the stored exchange rate here, instead of calculating a
new exchange rate for each collateral asset. The delta should be small

and this is only used for account liquidity checks.

sumBorrow

The value of a users borrowed assets, including accrued interest, in
Ether. That is, the sum of borrowCurrent for each of a user's assets.

accountLiquidity

The sumCollateral value of a user’s account, denominated in Ether,
minus the sumBorrow (for the case where sumCollateral =
sumBorrow). This number may be below zero for unhealthy
accounts.

maxCloseValue

A user’s borrow balance in a given asset, multiplied by the
closeFactor; how much value can be repaid by a liquidator.

seizeTokens

The number of cTokens to transfer from the liquidated user to the
liquidator. This is the seizeAmount, times the liquidation incentive,
times the ratio of the oracle prices for the given asset pair, divided by
the exchange rate of the collateral asset.

totalBorrowBalance

The total borrow balance, with accrued interest, across all accounts
in a money market, as of the current block.

Note: totalBorrowBalance will be strictly larger than totalBorrows from
v, so the result of interest rate calculations will be different if we use
the same interest rate models.

assets

account

A set of markets that an account has participated in with a max size of
maxAssets

blocks

When calculating simple interest, blocks refers to the number of
blocks that have elapsed since the last time the interest index was
calculated. That most recent block is stored as

interestBlockNumber ,, and is stored whenever an interest index is
stored, and blocks is calculated as the current block's number minus

interestBlockN umberasset .

rate

When calculating simple interest, rate refers to the current interest
rate of the market. This was the previous rate that's been "in effect"
for blocks blocks.

Exchange Rate Stored

The last stored exchange rate for cTokens to underlying assets. This
value does not include borrowing interest since the last interest
accrual in this market.

Exchange Rate Current

The current exchange rate (including all trued up borrowing interest)
between cTokens and the underlying asset.

Exceptional States

We assume that in any error condition, either a) the protocol exits gracefully with an event
describing the error if no side-effects have yet occurred, or b) the transaction fails
completely. Any exceptions to this rule are noted, except as below.

A number of functions are split into two commands: accrue interest and a fresh action. The
goal is to separate two discrete events which should occur. First, every time we accrue
interest for a market, we help true up balances (and turn simple interest into compound
interest) for that market. Second, the fresh functions are only correct if the market's interest
has been fully accumulated as of this block. With updated interest, however, these fresh
functions have divergent concerns (often, significantly unrelated to interest accrual). We thus
build these functions as the sum of two actions to simplify the understanding and modelling
of these two separate acts. In practice, this means that even when a method fails gracefully,
the transaction may still accrue interest for that market (this is a good thing!).

Interest Rate Model Contract

For each asset, there is an interest index. We effectively track the growth of principal of an
arbitrary account over time. We use the ratio of that account's interest versus initial principal
to calculate the growth of any given account's interest over a subset of that time interval. The
interest model contract specifies the simple interest rate at any moment (which, when
compounded for each transaction becomes compound interest). We force this interest rate
model to be a pure function over the cash, borrows, and reserves of an asset in the market.
For more information, see Interest Index Calculation Appendix.

borrowRate(cToken, cash, borrows, reserves) returns

e Return the current interest rate for the market
e Note: cToken is the Compound cToken contract, not the underlying asset address.

Price Oracle Contract

The Compound Protocol uses prices from a smart contract called a price oracle. The
Comptroller and Liquidate Borrow functions reference the prices in this oracle. Multiple
oracles may exist for the different Compound markets.

getUnderlyingPrice(cToken) returns

e Return price of the underlying asset (as a mantissa)

cToken Contract

cTokens act as ERC-20 interfaces and will be the primary location where users interact with
the Compound Protocol. When a user mints, redeems, borrows, repays borrows, liquidates a
borrow, or transfers cTokens, she will do so on the cToken contract itself. The only actions
that a user performs on another contract are entering and exiting assets via the Comptroller
(see below for the Comptroller contract).

cTokens each reference an underlying. This is usually the underlying ERC-20 contract, though
it may be Ether itself or a complex asset. cTokens are the ultimate holders of that underlying
asset balance and each call to take in or send out assets originates in the cToken contract.
Initially, cEth (Compound Ether token) will be a unique asset, interacting with Ether instead
of ERC-20 assets.

Note about cToken Money Markets

The Money Market was the core monolith of the Compound Protocol in the first version. The
functions that used to exist in the Money Market now exist in the cTokens, and the old Market
struct is flattened in to each cToken Market. Functions related to Policies and Liquidity are
deferred to the Comptroller contract.

Market Functions

borrowRatePerBlock()

e Returnsthe current per-block borrow interest rate mantissa for this cToken

supplyRatePerBlock()

e We calculate the supply rate:
o underlying = totalSupply % exchangeRate
o borrowsP er = totalBorrows + underlying
o supplyRate = borrowRate x (1 — reservel actor) x borrowsP er
e Returnsthe current per-block supply interest rate mantissa for this cToken

Accrue Interest()

We accrue interest and update the borrow index on every operation. This increases
compounding, approaching the true value, regardless of whether the rest of the operation
succeeds or not.

o totalCash = invoke getCashP rior()
o Note: likely makes an external call
e We get the interest rate (that was in effect since the last update):
o borrowRate = call interestM odel.borrowRate(this, total Cash, total Borrows, totalReserves)
o simplelnterestF actor = Ablocks * borrowRate
e We update borrowlndex:
o borrowlndexNew = borrowlndex % (1 + simplelnterestF actor)
e We calculate the interest accrued:
o interestAccumulated = totalBorrows % simplelnterestF actor
e We update borrows and reserves:
o totalBorrowsNew = totalBorrows + interestAccumulated
o totalReservesNew = totalReserves + interestAccumulated x reserveF actor
e We store the updates back to the blockchain:
o Set accrualBlockNumber = getBlockNumber()
o Set borrowlndex = borrowlIndexN ew
o Set totalBorrows = totalBorrowsN ew
o Set totalReserves = totalReservesN ew
e Emit an Accruelnterest event
Mint(mintAmount)
e Checkinvoke Accrue Interest() =0
e Return invoke Mint F resh(msg.sender, mintAmount)
Mint() payable
e Checkinvoke Accrue Interest() =0
e Return invoke Mint F resh(msg.sender, msg.value)
[Internal] Mint Fresh(minter, mintAmount)

User supplies assets from her own address into the market and receives a balance of cTokens
in exchange.

Failif call comptroller.mintAllowed(this, minter, mintAmount) + 0

Verify market's block number equals current block number

Fail if invoke checkTransferin(minter, mintAmount) fails

We get the current exchange rate and calculate the number of cTokens to be minted:
o exchangeRate = invoke Exchange Rate Stored()

o mintT okens = mintAmount + exchangeRate

m Note: divisions are rounded, as necessary, toward zero, thus it is possible
to mint 0 tokens
e We calculate the new total supply of cTokens and minter token balance:
o totalSupplyNew = totalSupply + mintT okens
m Fails on overflow
o accountT okensNew,,;,.., = accountT okens,,, .. + mintT okens
m Fails on overflow
e We have finished calculations. (If any calculations failed with an error, we have
already returned with a failure code). Now we can begin effects.
e We invoke doTransferin for the minter and the mintAmount
o Note: The cToken must handle variations between ERC-20 and ETH underlying.
o On success, the cToken holds an additional mintAmount of cash
o If doTransferln fails despite the fact we checked pre-conditions, we revert
because we can't be sure if side effects occurred
e We write previously calculated values into storage:
o Set totalSupply = cTokenSupplyNew
o Set accountT okens,,,,,, = accountT okensNew,,;,,,,
e Emit a Mint event with minter, mintAmount, mintT okens
e Emit a Transfer event from this to minter

e call comptroller.mintV erify(this, minter, mintAmount, mintT okens)

Redeem(redeemTokens)

e Checkinvoke Accrue Interest() =0

e Return invoke Redeem Fresh(msg.sender, redeemT okens, Q)

Redeem Underlying(uint redeemAmount)

e Checkinvoke Accrue Interest() =0

e Return invoke Redeem Fresh(msg.sender,0, redeemAmount)

[Internal] Redeem Fresh(redeemer, redeemTokensIn, redeemAmountln)

User relinquishes cTokens and receives the underlying ERC-20 asset from the protocol into
her own wallet.
® exchangeRate = invoke Exchange Rate Stored()
o If redeemT okensin> 0 :
o We get the current exchange rate and calculate the amount to be redeemed:
m redeemTokens = redeemT okensin
m redeemAmount = redeemT okensln x exchangeRate

e Else:

o We get the current exchange rate and calculate the amount to be redeemed:
m redeemTokens = redeemAmountln + exchangeRate
m redeemAmount = redeemAmountln
Failif call comptroller.redeemAllowed(this, redeemer, redeemT okens) + 0
Verify market's block number equals current block number
We calculate the new total supply and redeemer token balance:
o totalSupplyNew = totalSupply — redeemT okens
m Fails if redeemT okens > totalSupply
— redeemT okens

o accountT okensNew = accountT okens

redeemer redeemer

m Failsif redeemTokens > accountT okens,, ,omer
Fail gracefully if protocol has insufficient cash
We have finished calculations. (If any calculations failed with an error, we have
already returned with a failure code). Now we can begin side effects.
We invoke doTransferOut for the redeemer and the redeemAmount
o Note: The cToken must handle variations between ERC-20 and ETH underlying.
o On success, the cToken has redeemAmount less of cash
o If doTransferOut fails despite the fact we checked pre-conditions, we revert
because we can't be sure if side effects occurred
We write previously calculated values into storage
o Set totalSupply = totalSupplyNew
o Set accountT okens, g ,omer = accountT okensNew,., oomer
Emit a Redeem event with redeemer , redeemAmount , redeemT okens
Emit a Transfer event from redeemer to this

call comptroller.redeemV erify(this, redeemer, redeemAmount, redeemT okens)

Borrow(borrowAmount)

e Checkinvoke Accrue Interest() =0

e Return invoke Borrow Asset F'resh(msg.sender, borrowAmount)

[Internal] BorrowFresh(borrower, borrowAmount)

User borrows assets from the protocol.

e Failif call comptroller.borrowAllowed(this, borrower, borrowAmount) # 0

e Verify market's block number equals current block number
e We calculate the new borrower and total borrow balances:

o accountBorrows = invoke Borrow Balance Stored(borrower)
o accountBorrowsNew = accountBorrows + borrowAmount
m Fails on overflow

o totalBorrowsNew = totalBorrows + borrowAmount
m Fails on overflow
e Fail gracefully if protocol has insufficient cash
e We have finished calculations. (If any calculations failed with an error, we have
already returned with a failure code). Now we can begin side effects.
e We invoke doTransferOut for the borrower and the borrowAmount
o Note: The cToken must handle variations between ERC-20 and ETH underlying
o On success, the cToken has borrowAmount less of underlying cash
o If doTransferOut fails despite the fact we checked pre-conditions, we revert
because we can't be sure if side effects occurred
e We write the previously calculated values into storage:
o Set accountBorrowsy,,, ..., = {accountBorrowsNew, borrowlndex}
o Set totalBorrows = totalBorrowsNew
e Emita Borrow event with borrower , borrowAmount , accountBorrowsNew ,
totalBorrowsN ew

e call comptroller.borrowV erify(this, borrower, borrowAmount)

Repay Borrow(repayAmount)

e Checkinvoke Accrue Interest() =0

e return invoke Repay Borrow Fresh(msg.sender, msg.sender, repayAmount)

Repay Borrow() payable

e Checkinvoke Accrue Interest() =0

e return invoke Repay Borrow Fresh(msg.sender, msg.sender, msg.value)

Repay Borrow Behalf{ borrower, repayAmount)

Repays a borrow on behalf of another user. The message sender is still the payer, but you can
specify a different account to pay against.
e Checkinvoke Accrue Interest() =0

e Return invoke Repay Borrow Fresh(msg.sender, borrower, repayAmount)

Repay Borrow Behalf(borrower) payable

Repays a borrow on behalf of another user. The message sender is still the payer, but you can
specify a different account to pay against.
e Checkinvoke Accrue Interest() =0

e Return invoke Repay Borrow Fresh(msg.sender, borrower, msg.value)

[Internal] Repay Borrow Fresh(payer, borrower, repayAmount)

Borrows are repaid by the payer (possibly the same as the borrower).

Fail if call comptroller.repayBorrowAllowed(this, payer, borrower, repayAmount) + 0
e Verify market's block number equals current block number
e We fetch the amount the borrower owes, with accumulated interest:
o accountBorrows = invoke Borrow Balance Stored(borrower)
o If repayAmount = —1
o repayAmount = accountBorrows
e Failif checkTransferin(underlying, payer, repayAmount) fails
e We calculate the new borrower and total borrow balances:
o accountBorrowsNew = accountBorrows — repayAmount
m Failsif repayAmount > accountBorrows
o totalBorrowsNew = totalBorrows — repayAmount
m Fails if repayAmount > totalBorrows
e We have finished calculations. (If any calculations failed with an error, we have
already returned with a failure code). Now we can begin effects.
e We call doTransferin for the payer and the repayAmount
o Note: The cToken must handle variations between ERC-20 and ETH underlying
o On success, the cToken holds an additional repayAmount of cash
o If doTransferin fails despite the fact we checked pre-conditions, we revert
because we can't be sure if side effects occurred
e We write the previously calculated values into storage:
o Set accountBorrowsy,,, ..., = taccountBorrowsNew, borrowlIndex}
o Set ftotalBorrows = totalBorrowsNew
e Emit RepayBorrow event with payer , borrower , repayAmount ,accountBorrowsNew ,
totalBorrowsN ew

® call comptroller.repayBorrowV erify(this, payer, borrower, repayAmount)

Liquidate Borrow(borrower, cTokenCollateral, repayAmount)

e Checkinvoke Accrue Interest() =0
e Checkcall cTokenCollateral Accrue Interest() = 0
e return

invoke Liquidate Borrow Fresh(msg.sender, borrower, repayAmount, cT okenCollateral)

Liquidate Borrow(borrower, cTokenCollateral) payable

e Checkinvoke Accrue Interest() =0

e Checkcall cTokenCollateral Accrue Interest() = 0
e return
invoke Liquidate Borrow Fresh(msg.sender, borrower, msg.value, cT okenCollateral)
[Internal] Liquidate Borrow Fresh(liquidator, borrower, repayAmount,

cTokenCollateral)

The liquidator repays an amount of the underlying asset in this market, on behalf of an
underwater borrower, and seizes the appropriate number of tokens in the collateral market.

seize(

Fail if call comptroller liquidateBorrowAllowed(this, ...arguments) # 0
Verify market's block number equals current block number
Verify cTokenCollateral market's block number equals current block number

o Failifcall cTokenCollateral.accrualBlockNumber() # block.number
Fail if liguidator = borrower
Fail if repayAmount =0
Fail if repayAmount =— 1
We calculate the number of collateral tokens that will be seized:

o seizeT okens = call comptroller.liquidateCalculateSeizeT okens

(this, cTokenCollateral, repayAmount)

Fail if seizeT okens > cT okenCollateral.balanceOf(borrower)
Fail if invoke Repay Borrow Fresh(liquidator, borrower, repayAmount) # 0
Revertif call cTokenCollateral.seize(liquidator, borrower, seizeT okens) # 0
Emit a LiquidateBorrow event with liguidator, borrower, repayAmount,
cTokenCollateral , seizeT okens

call comptroller.liquidateBorrowV erify(this, ...arguments, ...state)

liquidator, borrower, seizeTokens) returns
Fail if
call comptroller.seizeAllowed(this, msg.sender, liquidator, borrower, seizeT okens) # 0
o Note: It’s critical that the collateral contract uses msg.sender as the address of
the borrowed CToken which it verifies with the Comptroller. If a parameter
were used, then anyone would be able to spoof this call.
Fail if borrower = liquidator
We calculate the new borrower and liquidator token balances:
o borrowerT okensNew = accountT okens|borrower] — seizeT okens
m Fail on underflow
o liquidatorT okensNew = accountT okens|liquidator] + seizeT okens
m Failon overflow
We write the previously calculated values into storage:

o accountT okens[borrower]| = borrowerT okensN ew
o accountT okens|liquidator] = liquidatorT okensN ew
e Emit a Transfer event
® call comptroller.seizeV erify(this, msg.sender, liquidator, borrower, seizeT okens)

Administrative Functions

constructor(underlying, interestRateModel, comptroller, scaled
initialExchangeRate)

Set admin to msg.sender

Set underlying to underlying

Set initialExchangeRate to initialExchangeRate

Set marketBlockNumber to block number

Set market borrow index to 1e18

Set reserve factor to 0

invoke _setM arketInterestRateM odelF resh(interestRateM odel)

invoke _setM arketComptroller(comptroller)

_setReserveFactor(newReserveFactor)

e Checkinvoke Accrue Interest() =0
e Return_setReserveFactorFresh(newReserveFactor)

[internal] _setReserveFactorFresh(newReserveFactor)

Check caller is admin

We verify market's block number equals current block number
Check newReserveF actor < maxReserveF actor

Store reserveFactor with value newReserveFactor

Emit NewReserveFactor(oldReserveFactor, newReserveFactor)

_reduceReserves(amount)

e Checkinvoke Accrue Interest() =0
e Return _reduceReservesFresh(amount)

[internal] _reduceReservesFresh(reduceAmount)

e Check calleris admin
o We verify market's block number equals current block number
e Check amount < reserves,

Fail gracefully if protocol has insufficient underlying cash

Store reserves,,, = reserves, — reduceAmount

invoke doTransferOut(underlying, reduceAmount, admin)
o Note: we revert on the failure of this command

Emit NewReserves(admin, reduceAmount, reserves,,,)

_setPendingAdmin(newPendingAdmin)

Check calleris admin
Store pendingAdmin with value newPendingAdmin
Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)

_acceptAdmin()

Check caller is pendingAdmin and pendingAdmin # address(0)
Store admin with value pendingAdmin

Unset pendingAdmin

Emit NewAdmin(oldAdmin, newAdmin)

Emit NewPendingAdmin(oldPendingAdmin, 0)

_setInterestRateModel(newlInterestRateModel)

Check invoke Accrue Interest() = 0
return _setFreshinterestModelFresh(newinterestRateModel)

[Internal] _setInterestRateModelFresh(newlInterestRateModel)

Check caller is admin

We assert market's block number equals current block number

Track the market's current interest rate model

Ensure call newlInterestRateM odel.isInterestRateM odel() returns true

Set the interest rate model to new/nterestRateModel

Emit NewlInterestRateModel(oldInterestRateModel, newinterestRateModel)

_setComptroller(newComptroller)

Check calleris admin

Track asset's current comptroller as oldComptroller
Ensure call comptroller.isComptroller() returns true

Set comptroller to newComptroller

Emit NewComptroller(o/dComptroller, newComptroller)

Token Functions

name() returns

® Return name

symbol() returns

e Return symbol

decimals() returns

e Return decimals

[External] getCash() returns

e Return call getCashP rior()

transfer(to, amount) returns

® invoke transferT okens(msg.sender, msg.sender, to, amount)
o Revertif not successful
o Emit Transfer(msg.sender, to, tokens)

transferFrom(from, to, amount) returns

® invoke transferT okens(msg.sender, from, to, amount)
o Revertif not successful
o Emit Transfer(from, to, tokens)

[Internal] transferTokens(spender, src, dst, amount) returns

Transfer amount cTokens from source to dest.
e Failif call comptroller.redeemAllowed(this, src, amount) returns false
e Fail unless spenderis source or cT okenAllowed|src][spender] > amount
e Failif accountT okens[src] < amount
® accountT okens[src] —= amount
o Underflow is impossible due to check above
e accountT okens[dst] += amount
o Fail on overflow
e Unless spender = src V cT okenAllowed|src][spender] = maxUint

o cTokenAllowed|src][spender] — amount

totalSupply() returns

e Return totalSupply

allowance(owner, spender) returns

e Return cTokenAllowed[owner][spender]

balanceOf{(account) returns

e Return accountT okens[account]

balanceOfUnderlying(account) returns

e Return accountT okens[account] % invoke Exchange Rate Current()

approve(spender, amount) returns

e Overwrite cTokenAllowed|msg.sender][spender] = amount
e Emit Approval(msg.sender, spender, amount)

Exchange Rates

Exchange Rate Current() returns

® invoke Accrue Interest()
e return invoke Exchange Rate Stored()

Exchange Rate Stored|()

e Note: we do not assert that the market is up to date.
e |[fthere are no tokens minted:
O exchangeRate = initial exchange rate
e Otherwise:
o totalCash = invoke getCash()
m Note: likely makes an external call

totalCash +total Borrows—totalReserves

O exchangeRate = totalSupply

e Return exchangeRate

Borrow Balances

Total Borrows Current(account) returns

® invoke Accrue Interest()

e return totalBorrows

Borrow Balance Current(account) returns

® invoke Accrue Interest()
e return invoke Borrow Balance Stored()

Borrow Balance Stored(borrower)

e Note: we do not assert that the market is up to date.
o We get from storage from the cToken:
o borrowBalancey,, ... = accountBorrows[borrower|
o borrowlndex;,,, ., = accountBorrowlndex[borrower]
e |If borrowBalance,,,,,,.., = 0then borrowlndexy,,, .., 1S likely also 0. Rather than
failing the calculation with a division by 0, we immediately return 0 in this case.

borrowBalancey,,,, ..., *borrowlndex,, .,

® recentBorrowBalance borrower — Porrowlnder, ored

e Return recentBorrowBalancey,,,,pyer

Safe Token

[Internal] checkTransferIn(account, underylingAmount) returns

e call EIP20(underlying).allowance(account, address(this)))
o Failifresultis less than underlyingAmount

e call EIP20(underlying).balanceOf(account))
o Failif resultis less than underlyingAmount

e Return

[Internal] doTransferIn(account, underlyingAmount)

e Revertif msg.value > 0 since there is no valid use case for sending value by default
o call EIP20(underlying).transferF rom(account, address(this), underlyingAmount)
o Revertunless true
o *Note: should handle non-standard ERC-20 tokens

[Internal] getCashPrior() returns

e Return call EIP20(underlying).balanceOf(address(this)))

[Internal] doTransferOut(account, underlyingAmount)

e call EIP20(underlying).transfer(account, underlyingAmount)
o Revertunless true

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

o *Note: should handle non-standard ERC-20 tokens

Safe Token (cETH)

In order to implement cETH, we add a fallback function that does invoke mint(msg.value) .
In addition, we override the Safe Token methods as follows:

[Internal] checkTransferIn(account, underylingAmount) returns

e Failif msg.sender # account
e Failif msg.value # underlyingAmount
e Return

[Internal] doTransferIn(account, underlyingAmount)

e Failif msg.value # underlyingAmount
o We just sanity check, checkTransferin should have already been called

[Internal] getCashPrior() returns

e Returnthis.balance — msg.value
o Ensure we avoid underflow

[Internal] doTransferOut(account, underlyingAmount)

® invoke account.transfer(underlyingAmount)
o Ensure minimum gas is attached to transfer

Comptroller Contract

The Comptroller implements the Liquidity Checker API specification. Most important of these
are liquidityChecker. redeemAllowed(), liquidityChecker. borrowAllowed(), and
liquidityChecker. liquidateBorrowAllowed().

The Comptroller also implements a defense hook mechanism to protect against unforeseen
future vulnerabilities. These *Verify functions are currently no-ops, but provide a last resort

to potentially revert any protocol transaction which would violate the intended behavior of
the protocol and therefore put user assets at risk.

Note: In order to seamlessly upgrade the Comptroller without changing the Comptroller
address referenced by the cToken markets, we sometimes use a technique known as
delegate calls.

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

User Market Functions

These two functions (enter markets and exit market) will be called by the end-users directly.
This will only be a requirement for users who wish to borrow. That is, token holders that do
not borrow will not need to (and should not) call these functions.

Enter Markets(cTokens) returns

The sender includes a list of asset addresses that should be used when calculating account
liquidity. Before borrowing an asset, one or more supplied assets must be added in this way
to provide collateral. Any asset to be borrowed must be added in this way before borrowing
is allowed. The return value is a list of mapping the assets passed in to whether the user is
ultimately in that market.

e Foreach cToken given as an argument:

o We check if the user is already in the cToken, if so, collect true, otherwise,
proceed

o We check if the user has reached maxAssets, if so, collect false, otherwise,
proceed

o We check if the cToken is listed, if not, collect false, otherwise, proceed.

o We check oraclePrice,,+# 0

o We add the asset to assets,.,, by pushing it into user’s assets list and setting

memberships to true, and collect true

cT oken,user

o Proceed to the next asset, noting that the size of the list was increased if the
previous item added to the list and the maxAssets comparison must occur
against storage

o Emit MarketEntered(cToken, msg.sender)

e Return the collected answers of whether the user is currently in the passed cTokens

Exit Market(cToken) returns

The sender provides an asset that they no longer wish to be included in account liquidity
calculations. Since all borrowed assets must be included, the purpose of the function is to
remove an asset from the user’s collateral list. The return value is a boolean indicating if the
user is not in the market after the call.

e Get sender tokensHeld and amountOwed underlying from the cToken
e Failif the sender has a borrow balance

o i.e.amountOwed # 0
e Failif the sender is not permitted to redeem all of their tokens

O i.e. invoke redeemAllowed(cT oken, msg.sender, tokensHeld) # 0
Return true if the sender is not already ‘in’ the market
Set cToken account membership to false
Delete cToken from the account’s list of assets
Emit MarketExited(cToken, msg.sender)
Return true, indicating the user is no longer in the market

Policy Hook Functions

These functions are core to verifying if a given action by a user is allowed. This should be
based on a combination of factors. One or more of the factors will be checked by the
following functions.

1. cToken must be a known "supported" asset. This applies to all functions and must
always be checked.

2. User must remain sufficiently liquid after the function were to complete. For instance,
a user cannot redeem tokens if she has too many outstanding borrows.

3. User must declare all assets she intends to borrow (and use as collateral).

4. User must pass all KYC-type checks and other policy rules.

5. For liquidation, caller must be the asset itself (the borrowed cToken contract).

mintAllowed(cToken, minter, mintAmount) returns

e Fail if cToken not listed
® *may include Policy Hook-type checks
e Return otherwise

mintVerify(cToken, minter, mintAmount, mintTokens) returns

e Does nothing, but could revert in the future as a defense hook

redeemAllowed(cToken, redeemer, redeemTokens) returns
e Failif cToken not listed
e *may include Policy Hook-type checks
e Return if redeemer does not have membership in asset
o Let (error, liquidity, shortfall) =

invoke getHypotheticalAccountLiquidityInternal(redeemer, cT oken, redeemT okens, Q)
Failif error #0 orif shortfall > 0
® Return . otherwise

redeemVerify(cToken, redeemer, redeemAmount, redeemTokens)
returns

e Does nothing, but could revert in the future as a defense hook

borrowAllowed(cToken, borrower, borrowAmount) returns
e FailifcToken not listed
® *may include Policy Hook-type checks
e Fail if borrower does not have membership in asset
e Failif oraclePrice,,, = 0
o Let (error, liquidity, shortfall) =

invoke getHypothetical AccountLiquidityInternal(borrower, cT oken, 0, borrowAmount)
Failif error #0 or shortfall > 0
e Return ¢ otherwise

borrowVerify(cToken, borrower, borrowAmount)

e Does nothing, but could revert in the future as a defense hook

repayBorrowAllowed(cToken, payer, borrower, repayAmount)
returns

e Failif cToken not listed

® *may include Policy Hook-type checks
e Return ; otherwise

repayBorrowVerify(cToken, payer, borrower, repayAmount)

e Does nothing, but could revert in the future as a defense hook

liquidateBorrowAllowed(cTokenBorrowed, cTokenCollateral,
borrower, liquidator, repayAmount) returns

Fail if cTokenBorrowed or cTokenCollateral not listed
*may include Policy Hook-type checks
Let (error, liquidity, shortfall) = invoke getAccountLiquiditylnternal(borrower)
Failif error #0 or shortfall =0
o The borrower must have shortfall in order to be liquidatable

e borrowBalance,,,,,, = call cT okenBorrowed.Borrow Balance Stored|()

o Thisvalue is strictly up-to-date due to accumulating interest prior to this call
e We calculate maxCloseValue, the total that can be closed for this borrow:

o maxCloseV alue = borrowBalance,,,,,,, closeF actor

e Failif repayAmount > maxCloseV alue
e Return ¢ otherwise

liquidateBorrowVerify(cTokenBorrowed, cTokenCollateral,
borrower, liquidator, repayAmount, seizeTokens)

e Does nothing, but could revert in the future as a defense hook

seizeAllowed(cTokenCollateral, cTokenBorrowed, borrower,
liquidator, seizeTokens) returns
e Failif cTokenCollateral or cTokenBorrowed is not listed
e *may include Policy Hook-type checks
e Failcall cTokenCollateral.comptroller() # call cT okenBorrowed.comptroller()
e Return ; otherwise

seizeVerify(cTokenCollateral, cTokenBorrowed, borrower,
liquidator, seizeTokens)

e Does nothing, but could revert in the future as a defense hook

transferAllowed(cToken, src, dst, transferTokens) returns

e ReturnredeemAllowed(cT oken, src, transferT okens)

transferVerify(cToken, src, dst, transferTokens)

e Does nothing, but could revert in the future as a defense hook

Liquidity / Liquidation Calculations

getAssetsIn(account) returns

e Return list of assets you are in

checkMembership(account, cToken) returns

e Returnstrueif userisin asset

getAccountLiquidity(account) returns

e Return invoke getHypotheticalAccountLiquidity(account, CT oken(0), 0, 0)

getHypotheticalAccountLiquidity(account, cToken, redeemTokens,
borrowAmount) returns (uint, uint)

o Let assets, ..., be the active list of assets (from storage) that a user has entered
e We calculate the user’s sumCollateral and sumBorrowP lusEffects
o Note that we calculate the exchangeRateStored for each collateral cToken
using stored data, without calculating accumulated interest
e Initialize sumCollatera =0, sumBorrowP lusEffects = 0
e Foreach asset € assets, . om -
o We get:
m cTokenBalance,,,,, = call cToken.balanceOf(account)
m borrowBalance,.,,,, = call cT oken.Borrow Balance Stored(account)
m exchangeRate = call cT oken.Exchange Rate Stored()
m collateralF actor = markets|asset].collateralF actor
m oraclePrice = call oracle.getUnderlying P rice(asset)
e Failif oraclePrice =0
o tokensToDollars = collateralF actor - exchangeRate - oraclePrice
o sumCollateral += tokensToDollars - cT okenBalance,,,.,,,,
o sumBorrowP lusEffects += oraclePrice - borrowBalance,,.,,;
o |If asset = cToken (i.e.looking at the affected market):
m Account for the potential effect of redeeming:
o sumBorrowP lusEffects += tokensToDollars - redeemT okens
m Account for the potential effect of borrowing:
o sumBorrowP lusEffects += oraclePrice - borrowAmount
o If sumCollateral > sumBorrowP lusEffects
o liguidity = sumCollateral — sumBorrowP lusEffects
o shortfall = 0

o liguidity = 0
o shortfall = sumBorrowP lusEffects — sumCollateral
e Return two unsigned values, liquidity and shortfall

liquidateCalculateSeizeTokens(cTokenBorrowed, cTokenCollateral,
repayAmount) returns
e Read oracle prices for borrowed and collateral markets:
O priceyyowed = Call oracle.getUnderlying P rice(cT okenBorrowed)

O price,yjuera = call oracle.getUnderlyingPrice(cT okenCollateral)

o Failifeither pricey,, owed = 0 OF Price yyaerar = 0

e Getthe exchange rate and calculate the number of collateral tokens to seize:

o exchangeRate,,j; 10ra = call cT okenCollateral.Exchange Rate Stored()

: rice, »
o seizeAmount = repayAmount % liquidationlncentive,,,, i—rice”””””“’
h collateral

o seizeTokens = seizeAmount + exchangeRate,;,10ra1

Return seizeT okens

Comptroller Admin Functions

constructor()

Set admin to caller

_setPendingAdmin(newPendingAdmin) returns

Check caller is admin
Store pendingAdmin with value newPendingAdmin
Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)

_acceptAdmin() returns

Check caller is pendingAdmin and pendingAdmin # address(0)
Store admin with value pendingAdmin

Unset pendingAdmin

Emit NewAdmin(oldAdmin, newAdmin)

Emit NewPendingAdmin(oldPendingAdmin, 0)

_setPriceOracle(newOracle)

Check caller is admin OR caller is currentimplementation and origin is admin
Ensure invoke newOracle.isP riceOracle() returns true

Set the comptroller's oracle to newOracle

Emit NewPriceOracle(o/dOracle, newOracle)

_setLiquidationIncentive(newlIncentive)

Check caller is admin OR caller is currentimplementation and origin is admin
Check de-scaled 1 < newLiquidationDiscount < 1.5

Set liquidation incentive to newlncentive

Emit NewLiquidationincentive(oldincentive, newlncentive)

_setCollateralFactor(cToken, newFactor) returns

Check caller is admin OR caller is currentimplementation and origin is admin
Verify market is listed

Check newFactor<0.9

If newFactor >0, fail if oracle.getUnderlying P rice(cT oken)#0

Set market's collateral factor to newFactor

Emit NewCollateralFactor(cToken, oldFactor, newFactor)

_setCloseFactor(newCloseFactor) returns

e Check calleris admin OR caller is currentimplementation and origin is admin
e Check0.05 <newCloseFactor=<0.9

e Set close factor to newCloseFactor

e Emit NewCloseFactor(oldCloseFactor, newCloseFactor)

_setMaxAssets(newMaxAssets) returns

e Check calleris admin OR caller is currentimplementation and origin is admin
e Set maxAssets to newMaxAssets
e Emit NewMaxAssets(oldMaxAssets, newMaxAssets)

_supportMarket(cToken) returns

e Check callerisadmin

Verify asset is not isListed

Ensure call cT oken.isCT oken() returns true
Set market is listed to true

Append cToken to markets list.

Emit MarketListed(cToken)

Implementation Upgrade Functions

The comptroller is designed as an upgradeable proxy inspired by patterns described by
zeppelinOS. In short, the pattern is

1. Deploy new implementation

2. call comptroller. setP endinglmplementation(newlImplementation)

3. call newImplementation.becomeBrains(comptroller, ...)

_setPendingImplementation(newPendingImplementation) returns

e Check calleris admin

https://blog.zeppelinos.org/proxy-patterns/

e Store pendingComptrollerimplementation with value newPendingimplementation
e Emit NewPendinglmplementation(o/dPendingAdminimplementation,
newPendinglmplementation)

_acceptImplementation() returns

e Check calleris pendingComptrollerimplementation and
pendingComptrollerimplementation # address(0)

Store comptrollerimplementation with value pendingComptrollerimplementation
Unset pendingComptrollerimplementation

Emit Newlmplementation(oldimplementation, newlmplementation)

Emit NewPendinglmplementation(oldPendingimplementation, 0)

Note: _becomeBrains is called on the implementation address, where the other functions are
all called on the active comptroller.

_becomeBrains(unitroller, oracle, closeFactor, maxAssets) returns

Check caller is admin of unitroller

Ensure call unitroller. acceptimplementation() returns true
Ensure call unitroller. setM arketP riceOracle(oracle)=0
Ensure call unitroller. setCloseF actor(closeF actor) =0
Ensure call unitroller. setM axAssets(maxAssets) = 0

Ensure call unitroller. setLiquidationIncentive(liquidationIncentiveMinM antissa) = 0

Maximillion Contract

For cErc20 contracts, we support repaying a borrow fully using the special ‘-1’ amount. Since
the CToken contract is approved to transfer what it needs, it can determine the borrow
amount and then transfer the exact amount, post-interest accrual, directly within the
repayBorrow function.

For cEther, things work a bit differently. Since ‘-1’ is actually UINT_MAYX, it’s practically
impossible for anyone to transfer this amount to the repay function. In order to completely
repay a borrow in cEther, we deploy a separate contract to handle the details of collecting
more than enough Ether to repay the borrow plus recent interest, and then refunding the
overpay amount.

Repay Behalf{ borrower) payable

e Remember the amount of Ether received:
o received = msg.value
e Read the current borrow balance with interest accrued:
o borrows = invoke cEther.borrowBalanceCurrent(borrower)
o If received > borrows , repay the exact borrow balance and refund:
o invoke cEther.repayBorrowBehalf value(borrows)(borrower)
o Refund received — borrows
e Otherwise, just repay the amount of Ether provided:
o invoke cEther.repayBorrowBehalf value(received)(borrower)

Appendix

Market States

A given asset may be in one of four states, which affect which functions are available and
how the asset is utilized above.

e Unsupported - An asset is not part of the “listedAssets” set. It is not used when
calculating sumCollateral and all operations, aside of “supportMarket” for that asset
should fail.

e Listed - An assetis part of the “listedAssets” set. It is not used when calculating
sumCollateral and only “supply”, “withdraw” and “repayBorrow” operations on that
asset should functional normally. The asset must have an interest rate model
associated with it.

e Borrow - An asset is part of the “listedAssets” set. It is not used when calculating
sumCollateral and all operations on that asset should functional normally. The asset
must have a non-zero price and interest rate model associated with it. A listed market
with non-zero price allows that market to be borrowed from.

e Collateral - An asset is part of the “listedAssets” set. It is used when calculating
sumCollateral and all operations on that asset should functional normally. The asset
must have a non-zero price, non-zero collateral factor and interest rate model
associated with it. A borrow market with a non-zero collateral factor is both
borrowable and can be used as collateral.

Regarding membership, listed S borrow < collateral and (listed N unsupported) = @
Regarding available functionality, listed 2 borrow 2 collateral and unsupported = ©

Interest Index Calculation

The interest index tracks the interest owed on $1 (or some constant initial amount) of debt
since the protocol’s deployment. That is, the interest on a fixed amount of the borrowed
asset over time.

Whenever the interest rate changes, the index applies the simple interest formula, to
snapshot the effect of the prior interest rate since that time:

index, =c, c >0

index; apiocrs = index;- (1 + Ablocks x rate;)

Whenever the index is updated, we also update the total borrow (and reserves) amount, to
capture the effect on all the currently borrowed (reserved) units of the asset since the last
update:

borrows;, apjocks = borrows; - (1 + Ablocks x rate;)

The total borrow amount is used to manage the market’s ledger, and is updated often to
maintain accurate current information. On the other hand, each individual borrow is only
updated when an action related to that specific borrow is taken.

When a borrow is created, we store with it the principal amount and the interest index at that
time. Whenever an action which affects the principal of the borrow is initiated, we first
calculate a new principal, based on the interest that has accumulated since the last event.

In order to determine how much interest has accumulated, we take the current index value
and compare it to the interest index at the time of the last event which was stored in the
borrow balance. The ratio of these values yields the change in $1 of debt since the principal
was last recorded, for which we then calculate a new principal amount to store with the new
index.

The ratio borrowlndex;,,/borrowlndex; is the simple interest rate over the period, which we
apply for the whole period in order to accrue interest on the principal:

effectiveRate = borrowlIndex;, ppjpers | bOrrowlndex;

principal; apioeks = pPrincipal; - (1 + Ablocks - effectiveRate) + A

borrowlndex;, ppjoers = borrowlIndex;

Mint / Redeem exchange rate remains the same when minting and redeeming
coins

Let

A = assets = cash + borrows held by the protocol

L = liabilities = tokens minted and not redeemed

dA = change in assets = cash supplied|\withdrawn or borrows sent|repaid
dL = change in liabilities = tokens to mint|redeem

R = exchangerate = A/ L

A' = nextassets = A + dA

L' = next liabilities = L + dL

R’ = next exchange rate = A'/ L'
Prove that R" = R, wheneverthereisachangein d4,where d4/dL = R = A/ L.
dL = dA/R=L * dA/ A

R =A4"/L

= (A4 +dA)/ (L + dL)

= A +dA)/(L + L *xdA/A)

= (A +dA)/ (L * (1 +dA/A))

= A +dA)/ (L * (A/A + dA /] A))
(A + dA)/ (L * (A4 + dA)/ A)
1/L/A4
AlL
= R

g.e.d.

