TRAL

875

Interchain Berlin, Interchain
Accounts Module

Security Assessment

December 17, 2021

Prepared for:
Sean King

Interchain Berlin

Prepared by:
Dominik Czarnota

Alex Useche

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world's most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Classification and Copyright

This report is confidential and intended for the sole internal use of Interchain Berlin.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and mutually agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or partners. As such, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in
the target system or codebase.

Trail of Bits 2 Interchain Berlin Security Assessment
CONFIDENTIAL

Table of Contents

About Trail of Bits

Notices and Remarks 2
Table of Contents 2
Executive Summary 5
Project Summary 6
Project Goals 7
Project Targets 8
Project Coverage 9
Summary of Findings 11
Detailed Findings 13
1. Outdated and vulnerable dependencies 13
2. Revision and client identifier regex formats accept newlines, which may be
unintended behavior 15
3. The IsValidAddr regex accepts 0-length and excessively long addresses 16
4. Invalid ConsensusStateWithHeight.ConsensusState struct tag could cause
incorrect or unexpected serialization results 18
5. Deserializing untrusted cosmos transactions with the legacy amino codec can
crash the program 20
6. Incorrectly formatted error string in OnChanOpenTry function 22
7. If the host fails to execute a single message, none of the messages sent by the
controller in a single packet are committed 23
8. logged targetClient object is always nil when error is returned 25

9. The validateEnabled implementations check only the passed-in variable type and

not its value, as some usages suggest it should

27

10. The host chain returns a single error instead of all aggregated errors for

executed messages

Summary of Recommendations

Trail of Bits

29

31

Interchain Berlin Security Assessment
CONFIDENTIAL

A. Vulnerability Categories

B. Example of Marshaling Malformed Struct Tags
C. Fuzzing the DeserializeCosmosTx Function

D. Semgrep Rules

E. Code Quality Recommendations

Trail of Bits 4

32
34
36
41

42

Interchain Berlin Security Assessment
CONFIDENTIAL

Executive Summary

Overview

Interchain Berlin engaged Trail of Bits to review the security of its Inter-Blockchain
Communication (IBC) protocol's interchain accounts module. From December 6 to
December 17, 2021, a team of two consultants conducted a security review of the
client-provided source code, with four person-weeks of effort. Details of the project's
timeline, test targets, and coverage are provided in subsequent sections of this report.

Project Scope

We focused our testing efforts on the identification of flaws that could resultin a
compromise or lapse of confidentiality, integrity, or availability of the target system. We
performed automated testing and a manual review of the code, in addition to reviewing the
specification and running tests and a demo application.

Summary of Findings

During the audit, we discovered a high-severity issue (TOB-IBCICA-5) involving the
possibility that untrusted cosmos transactions, when deserialized, could cause application
crashes and denials of service. In addition, we uncovered one low-severity and three
informational-severity issues regarding data validation and auditing and logging
mechanisms. Lastly, we identified four issues of undetermined severity that should be
addressed, as they could lead to vulnerabilities of significant impact. A summary of the
findings is provided below.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 1 Auditing and Logging 3
Low 1 Data Validation 4
Informational 3 Patching 1
Undetermined 4 Timing 1
Trail of Bits 5 Interchain Berlin Security Assessment

CONFIDENTIAL

Project Summary

Contact Information

The following managers were associated with this project:

Dan Guido, Account Manager Mary O'Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Dominik Czarnota, Consultant Alex Useche, Consultant
dominik.czarnota@trailofbits.com alex.useche@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date Event

December 6, 2021 Pre-project kickoff call

December 10, 2021 Status update meeting #1

December 17, 2021 Final meeting

January 3, 2022 Delivery of final report

Trail of Bits 6 Interchain Berlin Security Assessment

CONFIDENTIAL

mailto:dan@trailofbits.com
mailto:dominik.czarnota@trailofbits.com
mailto:alex.useche@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Interchain Berlin IBC
interchain accounts module. Specifically, we sought to answer the following non-exhaustive
list of questions:

e Does the software development kit (SDK) perform data validation?
e Are errors handled properly throughout the codebase?

e Does the codebase contain flawed logic that could cause panics, facilitating
denial-of-service attacks?

e Could a malicious controller chain take advantage of a host chain?
e Does the codebase reflect the documented desired properties?

e Does the version negotiation logic contain flaws that would allow deviations from
specification requirements?

e Is data safely serialized and deserialized?

Trail of Bits 7 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc/tree/master/spec/app/ics-027-interchain-accounts#desired-properties

Project Targets

The engagement involved a review and testing of the targets listed below.

ibc-go

Repository https://github.com/cosmos/ibc-go/

Version 22e87deacd35f287586d1e2d529e869ce1cfa208
Type Go

ics-027-interchain-accounts

Repository https://github.com/cosmos/ibc/spec/app/ics-027-interchain-accounts
Version 7046202b645c65b1a2b71293312bca5d651a13a4
Type Specification

Trail of Bits 8 Interchain Berlin Security Assessment

CONFIDENTIAL

https://github.com/cosmos/ibc-go/
https://github.com/cosmos/ibc/tree/7046202b645c65b1a2b7f293312bca5d651a13a4/spec/app/ics-027-interchain-accounts

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by

our high-level engagement goals. Our approaches and their results include the following:

ics-027-interchain-accounts: We reviewed the specification and the
implementation of the account manager standard as defined in the IBC
documentation. We also conducted research on topics like channel creation,
account registration, version negotiation, and controlling of the logic flow.

Handshake: We checked the handshake logic for error handling, data validation,
and correctness issues.

Keeper: We verified message validation and execution.

gRPC: We checked the logic responsible for handling gRPC requests for issues that
could result from insufficient data validation.

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage

limitations. During this project, we were unable to perform comprehensive testing of

certain system elements, which may warrant further review. The following is a summary of
the coverage limitations of the engagement:

The IBC-Go protocol is fairly complex. Issues of undetermined severity might require
additional testing and verification to ascertain their impact on the system.

Our ability to test dynamically was limited. While we conducted some dynamic
testing on the interchain-accounts project, additional components such as the
handshake process and the relayer logic could benefit from further focused testing.

We could not properly test the solution against its functionality in practice, with a
proper authentication module and multiple parties and channels. A proper
authentication module was out of scope of this audit; we recommend conducting an
additional review of the project to test for cases in which an authentication module
is introduced to a blockchain using the interchain accounts module.

The solution would also benefit from testing of the entire system'’s logic with
multiple controller chains targeting a given host chain, as the current test cases test
only situations in which a single controller chain connects to a single host chain.

Trail of Bits 9 Interchain Berlin Security Assessment

CONFIDENTIAL

https://github.com/cosmos/ibc/tree/master/spec/app/ics-027-interchain-accounts
https://github.com/cosmos/ibc/tree/master/spec/app/ics-027-interchain-accounts
https://github.com/cosmos/ibc-go/tree/interchain-accounts

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID

10

Title

Outdated and vulnerable dependencies

Revision and client identifier regex formats accept
newlines, which may be unintended behavior

The IsValidAddr regex accepts 0-length and excessively
long addresses

Invalid ConsensusStateWithHeight.ConsensusState
struct tag could cause incorrect or unexpected
serialization results

Deserializing untrusted cosmos transactions with the
legacy amino codec can crash the program

Incorrectly formatted error string in OnChanOpenTry
function

If the host fails to execute a single message, none of the

messages sent by the controller in a single packet are
committed

logged targetClient object is always nil when error is
returned

The validateEnabled implementations check only the
passed-in variable type and not its value, as some
usages suggest it should

The host chain returns a single error instead of all
aggregated errors for executed messages

Trail of Bits 10

Type

Patching

Data
Validation

Data
Validation

Data
Validation

Data
Validation

Auditing
and
Logging

Timing

Auditing
and
Logging

Auditing
and
Logging

Auditing
and
Logging

Severity

Informational

Undetermined

Informational

Undetermined

High

Low

Undetermined

Informational

Undetermined

Low

Interchain Berlin Security Assessment

CONFIDENTIAL

Detailed Findings

1. Outdated and vulnerable dependencies

Severity: Informational
Type: Patching

Target: ibc-go/go.mod

Description

Difficulty: N/A

Finding ID: TOB-IBICA-1

The ibc-go repository contains outdated and vulnerable dependencies that can be
detected (e.g., with GitHub's Dependabot). We list these problematic packages in the table
below. This finding is of informational severity, as the listed bugs do not seem to impact the

current codebase.

Package

Vulnerability
and Severity

Bug

github.com/gin-gonic/gin
<1.7.90

CVE-2020-28483
(High)

"When gin is exposed directly to the
internet, a client's IP can be spoofed
by setting the X-Forwarded-For
header."” (source)

The problematic .ClientIp()
function is not called directly by the
ibc-go codebase.

github.com/opencontainers
/image-spec <1.0.2

CVE-2021-41190
and
GHSA-77vh-xp
mg-72qh (Low)

"In the OCI Image Specification version
1.0.1 and prior, manifest and index
documents are not self-describing and
documents with a single digest could
be interpreted as either a manifest or
an index."

github.com/opencontainers
/runc<1.0.3

CVE-2021-43784
(Moderate)

A malicious container configuration
could bypass the namespace
restrictions in an unintended way.

Exploit Scenario

Trail of Bits

11

Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/interchain-accounts/go.mod
https://github.com/dependabot
https://github.com/advisories/GHSA-h395-qcrw-5vmq
https://security.snyk.io/vuln/SNYK-GOLANG-GITHUBCOMGINGONICGIN-1041736
https://github.com/opencontainers/distribution-spec/security/advisories/GHSA-mc8v-mgrf-8f4m
https://github.com/opencontainers/image-spec/security/advisories/GHSA-77vh-xpmg-72qh
https://github.com/opencontainers/image-spec/security/advisories/GHSA-77vh-xpmg-72qh
https://github.com/advisories/GHSA-v95c-p5hm-xq8f

An attacker fingerprints the service, identifies an out-of-date package with a known
vulnerability, and uses a public exploit against the service.

Recommendations

Short term, update the Golang dependencies in the ibc-go repository, as this repository
depends on outdated packages with known vulnerabilities.

Trail of Bits 12 Interchain Berlin Security Assessment
CONFIDENTIAL

2. Revision and client identifier regex formats accept newlines, which may be
unintended behavior

Severity: Undetermined Difficulty: N/A
Type: Data Validation Finding ID: TOB-IBCICA-2

Target: ibc-go/modules/core/02-client/types/{height, keys}.go

Description

The IsRevisionFormat and IsClientIDFormat regular expressions (regexes)
implemented in the 82-client module use the "[~-]" regex element to ensure that two
components are delimited by only a single dash in the respective {chainID}-{revision}
and {client-type}-{N} formats. However, this regex element also accepts newline
characters, which could cause unwanted “revision” and “client identifier” formats to be
accepted.

// IsRevisionFormat checks if a chainID is in the format required for parsing revisions
// The chainID must be in the form: "~ {chainID}-{revision}

// 24-host may enforce stricter checks on chainID

var IsRevisionFormat = regexp.MustCompile(~.*[*-]-{1}[1-9][0-9]*$).MatchString

Figure 2.1: ibc-go/modules/core/02-client/types/height.go#L17-L26

// IsClientIDFormat checks if a clientID is in the format required on the SDK for
// parsing client identifiers. The client identifier must be in the form: "~ {client-type}-{N}
var IsClientIDFormat = regexp.MustCompile(~.*[*-]-[0-9]{1,20}%).MatchString

Figure 2.2: ibc-go/modules/core/82-client/types/keys.go#L34-L36

Recommendations

Short term, fix the IsRevisionFormat and IsClientIDFormat regexes by changing the
"[~-]"elementto "[A\n-]" so that newline characters are not accepted before the "-"
delimiter. Alternatively, if newline characters should be accepted, document this fact in the

code comment.

Long term, extend the TestParseClientIdentifier and TestParseChainID test cases
to check for client and chain IDs that contain newline characters before the "-" delimiter.

Trail of Bits 13 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/height.go#L17-L20
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/keys.go#L34-L36
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/keys_test.go#L12-L46
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/height_test.go#L100-L121

3. The IsValidAddr regex accepts 0-length and excessively long addresses

Severity: Informational Difficulty: N/A
Type: Data Validation Finding ID: TOB-IBCICA-3

Target: ibc-go/modules/apps/27-interchain-accounts/types/version.go

Description

The IsValidAddr regex (figure 3.1) accepts 0-length addresses and addresses longer than
the DefaultMaxAddrLength, which are not valid. The ValidateAccountAddress
function mitigates this issue by erroring out if the address string length is @ or if it is longer
than the DefaultMaxAddrLength; however, because the regex is a public variable, other
developers could use this regex directly instead of calling the ValidateAccountAddress
function, introducing data validation bugs into the software.

// IsValidAddr defines a regular expression to check if the provided string consists of
// strictly alphanumeric characters
var IsValidAddr = regexp.MustCompile("~[a-zA-Z0-9]*$").MatchString

Figure 3.1:
ibc-go/modules/apps/27-interchain-accounts/types/version.go#L14-L16

// ValidateAccountAddress performs basic validation of interchain account addresses,
enforcing constraints
// on address length and character set
func ValidateAccountAddress(addr string) error {
if !IsValidAddr(addr) || len(addr) == @ || len(addr) > DefaultMaxAddrLength {
return sdkerrors.Wrapf(
ErrInvalidAccountAddress,
"address must contain strictly alphanumeric characters, not exceeding
%d characters in length",
DefaultMaxAddrLength,
)
}

return nil

Figure 3.2:
ibc-go/modules/apps/27-interchain-accounts/types/version.go#L55-L67

Recommendations
Short term, change the IsValidAddr regex to use a "+" quantifier instead of "*" so that it
will match 1 or more characters, rather than 8 or more characters, from the [a-zA-7Z0-9]

Trail of Bits 14 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/types/version.go#L14-L16
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/types/version.go#L55-L67

range. Additionally, consider either modifying the regex so that it takes
DefaultMaxAddrLength into account or lowercasing the regex's name to make it a private
variable. This will help prevent bugs in the future if someone uses the regex directly instead
of through the ValidateAccountAddress function.

Trail of Bits 15 Interchain Berlin Security Assessment
CONFIDENTIAL

4. Invalid ConsensusStateWithHeight.ConsensusState struct tag could cause
incorrect or unexpected serialization results

Severity: Undetermined Difficulty: N/A
Type: Data Validation Finding ID: TOB-IBCICA-4

Target: ibc-go/modules/core/02-client/types/client.pb.go:90:2

Description

Upon running go vet, we discovered that the protobuf-generated structure
ConsensusStateWithHeight has an invalid struct tag for its ConsensusState field. The
tag is missing a colon (:) character immediately after the yaml key. This invalid struct tag
may lead to incorrect or unexpected serialization of the ConsensusState field in all three
formats defined in the tag (protobuf, json, and yaml).

This problem is caused by the same typo (the missing colon character before yaml key) in
the protobuf source file, shown in figure 4.2. Appendix B provides an example of the
impact of this issue.

type ConsensusStateWithHeight struct {
// consensus state height
Height Height " protobuf:"bytes,1,opt,name=height,proto3” json:"height""
// consensus state
ConsensusState *types.Any
“protobuf:"bytes,2,opt,name=consensus_state, json=consensusState,proto3"
json:"consensus_state,omitempty"” yaml"consensus_state""

}

Figure 4.1: modules/core/02-client/types/client.pb.go#L86-L91

message ConsensusStateWithHeight {

// consensus state height

Height height = 1 [(gogoproto.nullable) = false];

// consensus state

google.protobuf.Any consensus_state = 2 [(gogoproto.moretags) = "yaml\"consensus_state\""];

}

Figure 4.2: ibc-go/proto/ibc/core/client/v1/client.proto#L20-L27

Recommendations
Short term, fix the invalid Go struct tag in the
ibc-go/proto/ibc/core/client/v1/client.proto file by adding the missing colon

Trail of Bits 16 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/client.pb.go#L86-L91
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/proto/ibc/core/client/v1/client.proto#L20-L27

(:) character immediately after the yaml key in the ConsensusState field of the
ConsensusStateWithHeight message format.

Long term, use the go vet tool in the CI/CD pipeline to detect issues with invalid struct tags
during the development process.

Trail of Bits 17 Interchain Berlin Security Assessment
CONFIDENTIAL

5. Deserializing untrusted cosmos transactions with the legacy amino codec
can crash the program

Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-IBCICA-5

Target: ibc-go/modules/apps/27-interchain-accounts/types/codec.go

Description
The DeserializeCosmosTx function can panic and crash the program if it is used with the
legacy amino codec and a specially crafted input.

We found this bug by fuzzing the DeserializeCosmosTx function with the legacy amino
and protobuf codecs. The fuzzing harness we developed and instructions on running it are
provided in Appendix C.

This problem can be reproduced with the test in figure 5.1, which can be added directly to
the ibc-go/modules/apps/27-interchain-accounts/types/codec_test.go file.
Figure 5.2 shows a stack trace from running this test.

func (suite *TypesTestSuite) TestDeserializeCosmosTxNotCrashes() {
cdc := codec.NewLegacyAmino()
marshaler := codec.NewAminoCodec(cdc)
types.DeserializeCosmosTx(marshaler, []byte{exl1e, ©})

Figure 5.1: A test that reproduces the DeserializeCosmosTx function crash

=== RUN TestTypesTestSuite/TestDeserializeCosmosTxNotCrashes
suite.go:63: test panicked: runtime error: invalid memory address or nil pointer
dereference
goroutine 51 [running]:
runtime/debug.Stack()
/usr/local/go/src/runtime/debug/stack.go:24 +0x65
github.com/stretchr/testify/suite.failOnPanic(0xc00057c1a0)
/home/dc/go/pkg/mod/github.com/stretchr/testify@vl.7.0/suite/suite.go:63
+0x3e
panic({0x15a9c80, 0x2811190})
/usr/local/go/src/runtime/panic.go:1038 +0x215
github.com/cosmos/cosmos-sdk/codec/types.AminoUnpacker.UnpackAny({0xc000d8f4e0},
0x40bb33, {0x14fc8a0, 0xc001121e40})
/1 (o)
--- FAIL: TestTypesTestSuite/TestDeserializeCosmosTxNotCrashes (0.06s)

Figure 5.2: A stack trace from the crash from running the test shown in figure 5.1

Trail of Bits 18 Interchain Berlin Security Assessment
CONFIDENTIAL

Exploit Scenario

Alice implements a blockchain that uses IBC's interchain accounts module and serializes
cosmos transactions using the legacy amino codec. Eve, who knows that Alice has done
this, creates a fake controller chain, connects it to Alice's chain via IBC relayers, and triggers
a denial-of-service attack on Alice's blockchain nodes by sending a malicious cosmos
transaction that causes the nodes to crash.

Recommendations

Short term, investigate and fix the issue that causes the DeserializeCosmosTx function
to panic and crash the program when it is used with the legacy amino codec and called with
untrusted input. Alternatively, if the function is not intended to be used with untrusted
input, add a documentation string that explains this intention and the risks associated with
passing untrusted input to this function.

Long term, run the fuzzing harness in Appendix C for a longer period of time to ensure that
the codebase does not contain similar cases. Additionally, consider implementing fuzzing
for other parts of the system.

Trail of Bits 19 Interchain Berlin Security Assessment
CONFIDENTIAL

6. Incorrectly formatted error string in OnChanOpenTry function
Severity: Low Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-IBCICA-6

Target: ibc-go/../27-interchain-accounts/host/keeper/handshake.go

Description

The OnChanOpenTry function in the host validates the passed counterpartyVersion. If
the value is invalid, the function returns an incorrectly formatted error string. This string
indicates that the function checked the value of the version string argument rather than
the value of the counterpartyVersion string argument. This error may be confusing for
users.

func (k Keeper) OnChanOpenTry (version, counterpartyVersion string) error {

if counterpartyVersion != icatypes.VersionPrefix {
return sdkerrors.Wrapf(icatypes.ErrInvalidVersion, "expected %s, got %s",
icatypes.VersionPrefix, version)

}
Figure 6.1:
ibc-go/modules/apps/27-interchain-accounts/host/keeper/handshake.go#L54-
L56

Exploit Scenario

Eve wants to integrate with the IBC interchain accounts module. She sends the
ChanOpenTry message from a controller to the host chain with an incorrect
counterpartyVersion string. She then loses a lot of time investigating why she received
an error stating that the provided version string, rather than the counterpartyVersion
string, is invalid.

Recommendations

Short term, in the OnChanOpenTry function in the host/keeper/handshake.go file, fix
the formatted error message that returns when a user passes an incorrect
counterpartyVersion. The error should indicate that the counterpartyVersion,
instead of the version, is incorrect. This will prevent confusion in users who incorrectly
use the interchain accounts API.

Long term, extend the test suite to check for error cases and assert the received error
messages.

Trail of Bits 20 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/host/keeper/handshake.go#L54-L56
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/host/keeper/handshake.go#L54-L56

7. If the host fails to execute a single message, none of the messages sent by
the controller in a single packet are committed

Severity: Undetermined Difficulty: Medium
Type: Timing Finding ID: TOB-IBCICA-7

Target: ibc-go/modules/core/keeper/msg_server.go

Description

The executeTx function, which validates and executes the received messages on the host
chain, errors out if the validation or execution of any message fails; if the function errors
out for this reason, it does not commit any of the state changes. While this behavior may
be desirable, it could allow an attacker to cancel the execution of all messages sent to the
host by front-running the execution of the messages to trigger a failure.

This finding is of undetermined severity, as we have not fully confirmed whether the
described exploit scenario is possible.

func (k Keeper) executeTx(ctx sdk.Context, sourcePort, destPort, destChannel string, msgs
[1sdk.Msg) error {
/1 (o)
cacheCtx, writeCache := ctx.CacheContext()
for _, msg := range msgs {
if err := msg.ValidateBasic(); err != nil {
return err
}
if _, err := k.executeMsg(cacheCtx, msg); err != nil {
return err
¥
}
writeCache()
return nil
}

Figure 7.1:
ibc-go/modules/apps/27-interchain-accounts/host/keeper/relay.go#L36-L57

Exploit Scenario
1. Alice sends two messages, A and B, which execute certain transactions on behalf of
an interchain account that she owns.

Trail of Bits 21 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/host/keeper/relay.go#L36-L57

2. The A and B messages do not interfere with each other. However, A depends on the
chain state and may fail if it is front-run with a specific transaction; B is expected to
succeed, as it depends only on a state that is controlled only by Alice.

3. Eve observes the messages initiated by Alice on the controller chain and wants the B
transaction to fail. Eve cannot influence the B transaction directly; however, she can
send a transaction that will change an on-chain state that the A transaction depends
on, causing the A transaction to fail.

4. Eve front-runs the A transaction with her own state-changing transaction.

5. The host chain executes Alice's messages, and due to Eve's transaction, the
execution stops after the failure of Alice's A transaction.

6. Since the host chain does not proceed with executing the remaining messages,
Alice's B transaction is not executed at all.

Note that the order in which the A and B messages are sent and executed does not matter
here, as the executeTx function commits the modified chain state only if it successfully
executes all messages.

Recommendations

Short term, investigate the system's behavior when it fails to execute a single message.
Modify the message execution logic so that the system proceeds with executing messages
after a failure occurs, or so that the system’s handling of messages is configurable by the
sender. Alternatively, leave the message execution logic “as is,” but document this issue.
Inform blockchain developers of the risks of sending multiple interchain account messages
at once rather than one at a time.

Long term, test the interchain accounts execution logic against front-running scenarios.

Trail of Bits 22 Interchain Berlin Security Assessment
CONFIDENTIAL

8. logged targetClient object is always nil when error is returned
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-IBCICA-8

Target: ibc-go/modules/core/keeper/msg_server.go

Description

The Keeper .ConnectionOpenTry function calls clienttypes.UnpackClientState to
obtain a target client (figure 8.1). When clienttypes.UnpackClientState returns an
error, the received targetClient object is indicated in the error logs. However,
clienttypes.UnpackClientState’s errors always indicate nil for the first returned
value (figure 8.2). As a result, the returned error will always indicate a <nil> target client.
This reduces the utility of the error. Moreover, based on the error message format (and the
%Vv format specifier), it appears that the developers may have intended the function to log
the msg.ClientState instead of the targetClient.

func (k Keeper) ConnectionOpenTry(goCtx context.Context, msg
*connectiontypes.MsgConnectionOpenTry) (*connectiontypes.MsgConnectionOpenTryResponse,
error) {

ctx := sdk.UnwrapSDKContext(goCtx)

targetClient, err := clienttypes.UnpackClientState(msg.ClientState)
if err = nil {
return nil, sdkerrors.Wrapf(err, "client in msg is not exported.ClientState.
invalid client: %v.", targetClient)

}

Figure 8.1: ibc-go/modules/core/keeper/msg_server.go#L159-L165

func UnpackClientState(any *codectypes.Any) (exported.ClientState, error) {
if any == nil {
return nil, sdkerrors.Wrap(sdkerrors.ErrUnpackAny, "protobuf Any message cannot be nil")

}

clientState, ok := any.GetCachedValue().(exported.ClientState)

if lok {
return nil, sdkerrors.Wrapf(sdkerrors.ErrUnpackAny, "cannot unpack Any into ClientState
%T", any)
}
return clientState, nil
}
Trail of Bits 23 Interchain Berlin Security Assessment

CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/keeper/msg_server.go#L159-L165

Figure 8.2: ibc-go/modules/core/02-client/types/codec.go#L70-L83

Recommendations
Short term, correct the Keeper .ConnectionOpenTry function so that, on error, it returns
a message with the intended object.

Long term, include Semgrep and the rule in Appendix D to the CI/CD process to catch these
issues when the code is pushed to the IBC-Go repository.

Trail of Bits 24 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/codec.go#L70-L83

9. The validateEnabled implementations check only the passed-in variable
type and not its value, as some usages suggest it should

Severity: Undetermined Difficulty: Undetermined
Type: Auditing and Logging Finding ID: TOB-IBCICA-9

Target: Various

Description

There are three instances of the validateEnabled function defined in separate types
packages. Despite this function’s name and usage throughout the codebase, the function
checks only whether the passed-in parameter, a generic interface type, is a boolean. Given
its implementation, the function returns a nil error as long as its only argument is a
boolean, regardless of whether that boolean is true or false.

The duplicated validateEnabled implementations are in the following files:

ibc-go/modules/apps/transfer/types/params.go#L58-L65
ibc-go/modules/apps/27-interchain-accounts/controller/types/param
S.go#L52-1L59

e ibc-go/modules/apps/27-interchain-accounts/host/types/params.go#L
61-L68

In certain locations, this function is called with a boolean variable, suggesting either that
the function should check the value of the variable (not only its type) or that the calls are
unnecessary. Figure 9.2 shows an example of a problematic call to validateEnabled, and
figure 9.3 shows all the calls to validateEnabled in the codebase.

func validateEnabled(i interface{}) error {
_, ok := 1i.(bool)
if lok {
return fmt.Errorf("invalid parameter type: %T", i)

}

return nil

Figure 9.1: ibc-go/modules/apps/transfer/types/params.go#L58-L65

func (p Params) Validate() error {

Trail of Bits 25 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/transfer/types/params.go#L58-L65
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/controller/types/params.go#L52-L59
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/controller/types/params.go#L52-L59
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/host/types/params.go#L61-L68
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/host/types/params.go#L61-L68
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/transfer/types/params.go#L58-L65

// Note: the p.ControllerEnabled is bool and this check never returns an error
if err := validateEnabled(p.ControllerEnabled); err != nil {
return err

}
return nil
}
Figure 9.2:
ibc-go/modules/apps/27-interchain-accounts/controller/types/params.go#L3
6-L43

validateEnabled

if err := (p.HostEnabled); err != nil {
paramtypes.NewParamSetPair(KeyHostEnabled, p.HostEnabled,
(i interface{}) error {

3= (p.ControllerEnabled); err != nil {
paramtypes.NewParamSetPair(KeyControllerEnabled, p.ControllerEnabled,

(i interface{}) error {

if err := (p.SendEnabled); err != nil {
return (p.ReceiveEnabled)
paramtypes.NewParamSetPair(KeySendEnabled, p.SendEnabled,
paramtypes.NewParamSetPair(KeyReceiveEnabled, p.ReceiveEnabled,
(1 interface{}) error {

Figure 9.3: The locations in which validateEnabled is called

Exploit Scenario

A developer uses the validateEnabled function, believing that it checks whether a
variable such as p.ControllerEnabled is set to true. However, because the function
simply checks whether the passed-in value is a boolean, the resulting logic is flawed,
leading to unexpected results and invalid logic.

Recommendations

Short term, correct the implementation of the validateEnabled function. Furthermore,
avoid repeating the same logic throughout the codebase; rather, define the same function
in a single package so that it can be used anywhere that it is needed in the codebase.

Trail of Bits 26 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/controller/types/params.go#L36-L43
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/27-interchain-accounts/controller/types/params.go#L36-L43

10. The host chain returns a single error instead of all aggregated errors for
executed messages

Severity: Low Difficulty: Undetermined
Type: Auditing and Logging Finding ID: TOB-IBCICA-10

Target: Various

Description

When the host chain validates and executes the received messages in the
AuthenticateTx and executeTx functions (figure 10.1), it returns early if it encounters an
error for any message. As a result, the user of this logic will not get all the errors resulting
from the processing of sent messages.

func (k Keeper) AuthenticateTx(ctx sdk.Context, msgs []sdk.Msg, portID string) error {
interchainAccountAddr, found := k.GetInterchainAccountAddress(ctx, portID)
if Ifound {
return sdkerrors.Wrapf(icatypes.ErrInterchainAccountNotFound, "failed to
retrieve interchain account on port %s", portID)

}

allowMsgs := k.GetAllowMessages(ctx)
for _, msg := range msgs {
if Itypes.ContainsMsgType(allowMsgs, msg) {
return sdkerrors.Wrapf(sdkerrors.ErrUnauthorized, "message type not
allowed: %s", sdk.MsgTypeURL(msg))
}

for _, signer := range msg.GetSigners() {
if interchainAccountAddr != signer.String() {
return sdkerrors.Wrapf(sdkerrors.ErrUnauthorized, "unexpected
signer address: expected %s, got %s", interchainAccountAddr, signer.String())

}

return nil

}

func (k Keeper) executeTx(ctx sdk.Context, sourcePort, destPort, destChannel string, msgs
[]sdk.Msg) error {
if err := k.AuthenticateTx(ctx, msgs, sourcePort); err != nil {
return err

Trail of Bits 27 Interchain Berlin Security Assessment
CONFIDENTIAL

/7 (o)
cacheCtx, writeCache := ctx.CacheContext()
for _, msg := range msgs {
if err := msg.ValidateBasic(); err != nil {
return err

}

if _, err := k.executeMsg(cacheCtx, msg); err != nil {
return err

¥
}

writeCache()

return nil

Figure 10.1: ibc-go/modules/apps/transfer/types/params.go#L58-L65

Exploit Scenario

Alice sends two messages from the controller chain to the host chain. Both messages are
invalid, but the host chain returns only the error for the first message. Alice corrects her
error and resends the two messages with the corrected first message. The host chain
returns the second error. Alice corrects her second message and resends the two corrected
messages. The host chain executes both messages. As a result of having to resend the
messages multiple times, Alice has wasted funds.

Recommendations

Short term, consider calculating and aggregating all message validation errors in the
AuthenticateTx and executeTx functions so that the users of this logic are aware of all
issues with the sent messages.

Trail of Bits 28 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/apps/transfer/types/params.go#L58-L65

Summary of Recommendations

Trail of Bits recommends that Interchain Berlin address the findings detailed in this report
and take the following additional steps prior to deployment:

e Expand the unit testing suite, and focus on testing functions with unexpected input.

e Consider incorporating property-based testing tools such as Gopter into the testing
strategy. Property-based testing can aid in constructing tests that verify the desired
properties of the IBC protocol.

e Fuzz complex parsing, serialization, and deserialization logic to catch issues such as
TOB-IBCICA-5, which could cause application crashes.

e If any of the code paths associated with the findings in this report are refactored,
perform an additional internal review of the invariants.

e Regularly run static analysis tools such as go vet and Semgrep to uncover common
correctness issues, such as those described in TOB-IBCICA-4 and TOB-IBCICA-9, and
incorporate these tools into the CI/CD pipeline.

Trail of Bits 29 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/leanovate/gopter
https://semgrep.dev/

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits

Description

Insufficient authorization of users or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
Breach of the confidentiality or integrity of data

Exposure of sensitive information

Improper reliance on the structure or values of data
System failure with an availability impact

Insecure or insufficient reporting of error conditions
Outdated software package or library

Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions, locking, or other order-of-operations flaws

Undefined behavior triggered within the system

30 Interchain Berlin Security Assessment
CONFIDENTIAL

Severity Levels
Severity

Informational

Undetermined

Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices or defense in depth.

The extent of the risk was not determined during this engagement.

The risk is relatively small or is not a risk the client has indicated is
important.

Individual users’ information is at risk; exploitation could pose reputational,
legal, or moderate financial risks to the client.

The issue could affect numerous users and have serious reputational, legal,
or financial implications for the client.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is commonly exploited; public tools for its exploitation exist or can
be scripted.

An attacker must write an exploit or will need in-depth knowledge of a
complex system.

An attacker must have privileged insider access to the system, may need to
know extremely complex technical details, or must discover other
weaknesses to exploit this issue.

31 Interchain Berlin Security Assessment
CONFIDENTIAL

B. Example of Marshaling Malformed Struct Tags

This appendix provides an example of the problem described in finding TOB-IBCICA-4, in

which the structure tags were malformed.

Figure B.1 shows a code snippet with structures containing valid and invalid tags. The
structures are marshaled to JSON and printed as strings. In figure B.2, we can see the
output of this example, which shows that the malformed tags were not used.

package main

import (
"fmt"
"encoding/json"
)

type ProperTag struct {
SomeKey string ~json:"some_key""

}

type MissingQuotationInvalidTag struct {
SomeKey string ~json:"some_key"

}

type RedundantSpaceInvalidTag struct {
SomeKey string ~json:||"some_key""

type RedundantSpaceOmitemptyInvalidTag struct {
SomeKey string ‘json:"some_key,lomitempty

// Valid tags

// Invalid: missing end " character

// Invalid: redundant space after 'json:'

// Invalid: redundant space after ',

type ProperOmitemptyTag struct {

SomeKey string ~json:"some_key,omitempty"” // Valid tag

}

func Print(jsondata []byte, _ error) {
fmt.Println(string(jsondata))
}

func main() {
Print(json.Marshal(ProperTag { "a" }))
Print(json.Marshal(MissingQuotationInvalidTag { "a" }))
Print(json.Marshal(RedundantSpacelInvalidTag { "a" }))
Print(json.Marshal(RedundantSpaceInvalidTag { "" }))
Print(json.Marshal(ProperOmitemptyTag { "" }))

Figure B.1: Example of malformed struct tags

$ go run main.go

{"some_key":"a"} // Tag: "~ json:"some_key""
{"SomeKey":"a"} // Tag: "~ json:"some key"

Trail of Bits 32

Interchain Berlin Security Assessment

CONFIDENTIAL

{"SomeKey":"a
{llsomeKeyll : IIII}

{}

}

// Tag: "~ json: "some_key""

// Tag: "~ json:"some_key, omitempty""

// Tag: "~ json:"some_key,omitempty

Figure B.2: The output of the code in figure B.1 (the yellow highlight is our comment)

Trail of Bits

33 Interchain Berlin Security Assessment

CONFIDENTIAL

C. Fuzzing the DeserializeCosmosTx Function

During the audit, Trail of Bits used fuzzing, an automated testing technique in which code
paths are executed with random data to find bugs resulting from the incorrect handling of
unexpected data. We used dvyukov/go-fuzz, an in-process coverage-guided fuzzer for
Golang, to develop fuzzing harnesses for the DeserializeCosmosTx function. These
harnesses helped us to find the issue in TOB-IBCICA-5, in which untrusted input passed to
the DeserializeComsosTx function can crash the program if the legacy amino codec is
used.

We ran the harnesses for a limited period of time. We recommend running them further,
such as until the fuzzer does not find input generating new coverage for a few hours or
longer. In such a case, we recommend investigating the coverage of all corpus input that
the fuzzer generated by creating a small program that executes the fuzzed function with a
given payload and instrumenting it for code coverage. This could help to find code paths
that were not executed and to manually craft or modify the corpus to achieve higher
coverage and find new bugs.

In the sections below, we introduce the go-fuzz fuzzer that we used and show the fuzzing
harnesses that we developed.

Fuzzing with dvyukov/go-fuzz 101

The dvyukov/go-fuzz package provides an AFL-like mutational fuzzing interface, in which
testing harnesses can be built entirely in Go. This framework is typically used when a library
implemented in Go parses, interprets, or otherwise interacts with blobs of data. An
example of such a use case can be seen in figure C.1, in which a harness for the Go
standard library's image-processing library is defined.

package png

import (
"bytes"
"image/png"
)

func Fuzz(data []byte) int {
png.Decode(bytes.NewReader(data))
return 0

}
Figure C.1: An example test harness for the png . Decode function, shown in the official readme

Trail of Bits 34 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)

In this example, the function Fuzz accepts an array of bytes for data, which is then
converted into a Reader for the png.Decode function to read from. When Fuzz is
compiled and invoked, it is executed repeatedly, using data as the input generated for
each test case execution.

Optimizing go-fuzz's generation of test case input requires an understanding of return
values. Typically, a panic indicates a crash with a given test case input. However, when no
crash occurs, but instead no errors are raised, or errors are raised gracefully, return values
can be used to help guide go-fuzz to mutate input appropriately.

e Avreturnvalue of 1 indicates the input generator should increase the priority of a
given input during subsequent fuzzing.

e Areturn value of -1 indicates the input generator should never be added to the
corpus, despite added coverage.

e |n all other cases, the function should return 0.

Installing and Running dvyukov/go-fuzz

To build and run this example, you must have Go and the go-fuzz package installed. You
can then navigate to the directory in which the test harness in figure C.1 is stored and
execute go-fuzz-build (figure C.2). Assuming the harness builds correctly, it will produce
a Zip file for use with the go-fuzz executor. To start the fuzzing harness, you can execute
go-fuzz in the same directory as the Zip file produced by go-fuzz-build (figure C.3).
This will create three directories, if they do not already exist.

user@host:~/Desktop/png_fuzz$ 1ls
png_harness.go
user@host:~/Desktop/png_fuzz$ go-fuzz-build
user@host:~/Desktop/png_fuzz$ 1s
png-fuzz.zip png_harness.go

Figure C.2: The generated png-fuzz.zip package used by go-fuzz

user@host:~/Desktop/png_fuzz$ go-fuzz

2019/09/14 16:00:37 workers: 2, corpus: 30 (@s ago), crashers: 0, restarts: 1/0, execs: 0
(0/sec), cover: @, uptime: 3s

2019/09/14 16:00:40 workers: 2, corpus: 31 (2s ago), crashers: 0, restarts: 1/0, execs: ©
(0/sec), cover: 205, uptime: 6s

2019/09/14 16:00:43 workers: 2, corpus: 31 (5s ago), crashers: 0, restarts: 1/6092, execs:
48742 (5415/sec), cover: 205, uptime: 9s

2019/09/14 16:00:46 workers: 2, corpus: 31 (8s ago), crashers: @, restarts: 1/7829, execs:
101779 (8481/sec), cover: 205, uptime: 12s

Trail of Bits 35 Interchain Berlin Security Assessment
CONFIDENTIAL

2019/09/14 16:00:49 workers: 2, corpus: 31 (11ls ago), crashers: @, restarts: 1/8147, execs:
146656 (9777/sec), cover: 205, uptime: 15s

2019/09/14 16:00:52 workers: 2, corpus: 31 (14s ago), crashers: @, restarts: 1/8851, execs:
203582 (11310/sec), cover: 205, uptime: 18s

2019/09/14 16:00:55 workers: 2, corpus: 31 (17s ago), crashers: 0, restarts: 1/8950, execs:
259563 (12360/sec), cover: 205, uptime: 21s

~C2019/09/14 16:00:56 shutting down...

Figure C.3: The CLI output of running go-fuzz with the png-fuzz.zip package

The created directories contain suppressions, crashers, and a corpus, respectively (figure
C.4). The suppressions are used to prevent the same message values from being collected
every time the fuzzer runs, polluting your crasher samples. The crashers are the program'’s
crashdumps—the STDOUT and STDERR of the program when the test case input causes an
error. Finally, the corpus directory stores the test case inputs used throughout the test
harness's execution. This directory will collect mutated versions of each input as necessary.

user@host:~/Desktop/png_fuzz$ 1ls -R

corpus crashers png-fuzz.zip png_harness.go suppressions
./corpus:

21339f0e4b8b5a8e0cb5471f191907d1917be50-6
215d99d@c7acdec5ad4c5aa8bec96al71b9ffae0-8

22f545ac6b50163ce39bac49094c3164e0858403-11
/7 ()

./crashers:

./suppressions:

Figure C.4: The directory and file output produced by go-fuzz

While running the harness on a single machine typically produces good results, go-fuzz
also supports a clustered mode, allowing test harness execution to scale horizontally
across an arbitrary number of worker nodes. More information on this functionality can be
found within the repository’'s readme.

Fuzzing Harnesses for the DeserializeCosmosTx Function

Figure C.5 shows the fuzzing harnesses developed for the DeserializeCosmosTx function
that helped us to find the bug described in TOB-IBCICA-5. These harnesses can be run with
the following steps:

1. Install the go-fuzz fuzzer, as described in the previous section.
2. Create a ibc-go/modules/apps/27-interchain-accounts/types/fuzz.go
file with the content in figure C.5.

Trail of Bits 36 Interchain Berlin Security Assessment
CONFIDENTIAL

3. Inthe same directory as the fuzz.go file, execute the go-fuzz-build command
to build the fuzzing Zip archive.

4. Run the harnesses by using the commands in figure C.6, which also shows the final
log line from our runs of the harnesses. You could run these harnesses on a
dedicated server in a tmux or screen session to be able to detach from the terminal
and let the fuzzer run in background.

package types

import (
"github.com/cosmos/cosmos-sdk/codec"
"github.com/cosmos/cosmos-sdk/codec/types"

)

func FuzzDeserializeCosmosTxAmino(data []byte) int {
cdc := codec.NewLegacyAmino()
marshaler := codec.NewAminoCodec(cdc)
DeserializeCosmosTx(marshaler, data)
return ©

}

func FuzzDeserializeCosmosTxProto(data []byte) int {
interfaceRegistry := types.NewInterfaceRegistry()

marshaler := codec.NewProtoCodec(interfaceRegistry)
DeserializeCosmosTx(marshaler, data)
return ©

Figure C.5: The developed fuzzing harnesses for the DeserializeCosmosTx function

$ ~/go/bin/go-fuzz -bin types-fuzz.zip -workdir FuzzDeserializeCosmosTxProto -procs 2 -func
FuzzDeserializeCosmosTxProto

/] (..0)

2021/12/10 07:07:32 workers: 2, corpus: 178 (3m50s ago), crashers: 0, restarts: 1/9998,
execs: 83234512 (4829/sec), cover: 396, uptime: 4h47m

$ ~/go/bin/go-fuzz -bin types-fuzz.zip -workdir FuzzDeserializeCosmosTxAmino -procs 2 -func
FuzzDeserializeCosmosTxAmino

/1 (o)

2021/12/10 07:07:43 workers: 2, corpus: 99 (1h2é6m ago), crashers: 1, restarts: 1/680, execs:
25583828 (1482/sec), cover: 1091, uptime: 4h47m

Figure C.6: The log from our runs of the fuzzing harnesses (note that we ran them with only two
CPUs and by setting their workdirs, so all metadata like crasher files will appear in those
directories)

Getting Initial Corpus Files for the DeserializeCosmosTx Function

To help the fuzzer discover more paths into the DeserializeCosmosTx function, we also
made a small and temporary modification to the function's code, shown in figure C.7, so

Trail of Bits 37 Interchain Berlin Security Assessment
CONFIDENTIAL

https://linuxize.com/post/getting-started-with-tmux/
https://linuxize.com/post/how-to-use-linux-screen/

that it saves all its inputs to a temporary directory. We then ran all the unit tests in the
codebase and got a few input files that we used as an initial corpus for the fuzzing

harnesses in figure C.5. (The modifications were removed before compiling the fuzzing
harnesses).

func DeserializeCosmosTx(cdc codec.BinaryCodec, data []byte) ([]sdk.Msg, error) {
f, err := os.CreateTemp("/tmp/cosmostx/", fmt.Sprintf("%s.*", reflect.TypeOf(cdc)))

if err I= nil { panic("err: CreateTemp") }
_, err = f.Write(data)
if err l= nil { panic("err: f.Write") }

if f.Close() != nil { panic("err: f.Close") }

Figure C.7: Modifications made to the DeserializeCosmosTx function to save initial corpus
files

Trail of Bits 38 Interchain Berlin Security Assessment

CONFIDENTIAL

D. Semgrep Rules

This appendix lists Semgrep rules that we used to discover the issues described in this
report.

Invalid Usage of Modified Variables
The following rule was used to discover TOB-IBCICA-8.

rules:
- id: invalid-usage-of-modified-variable
patterns:
- pattern-either:
- pattern: |
$X, err = ...
if err != nil {
<ovw $FOO(..., $X, ...) ..>
}
message: $X is likely modified and later used on error
languages: [go]
severity: WARNING

Figure D.1: Semgrep rule to find potentially invalid usage of modified variables

Trail of Bits 39 Interchain Berlin Security Assessment
CONFIDENTIAL

E. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

e Intheproto/ibc/core/channel/v1/tx.proto#L59-L61 file, the
MsgChannelOpenTry message has an incorrect comment. This comment was most
likely copied from the MsgChannelOpenInit message:

// MsgChannelOpenInit defines a msg sent by a Relayer to try to open a channel
// on Chain B.
message MsgChannelOpenTry {

We recommend fixing this comment so that it does not confuse developers who
read it.

e modules/light-clients/07-tendermint/types/misbehaviour_handle.go
contains a clienttypes.IsRevisionFormat(chainID) check that guards a
clienttypes.SetRevisionNumber(...) call, which performs the same check:

if clienttypes.IsRevisionFormat(chainID) {
chainID, _ = clienttypes.SetRevisionNumber(chainID,

header.GetHeight().GetRevisionNumber())
¥

ibc-go/modules/light-clients/07-tendermint/types/misbehaviour_hand
le.go#L132-L134

func SetRevisionNumber(chainID string, revision uint64) (string, error) {
if !IsRevisionFormat(chainID) {
return "", sdkerrors.Wrapf(
sdkerrors.ErrInvalidChainID, "chainID is not in revision
format: %s", chainlD,
)
¥
/7 ()
ibc-go/modules/core/02-client/types/height.go#L152-L157

We recommend refactoring the misbehaviour_handle.go#L132-L134 and
update.go#L215-L217 files. The logic should call the SetRevisionNumber
function unconditionally and handle the potential error result instead of only

Trail of Bits 40 Interchain Berlin Security Assessment
CONFIDENTIAL

https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/proto/ibc/core/channel/v1/tx.proto#L59-L61
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/light-clients/07-tendermint/types/misbehaviour_handle.go#L132-L134
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/light-clients/07-tendermint/types/misbehaviour_handle.go#L132-L134
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/light-clients/07-tendermint/types/misbehaviour_handle.go#L132-L134
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/core/02-client/types/height.go#L152-L157
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/light-clients/07-tendermint/types/misbehaviour_handle.go#L132-L134
https://github.com/cosmos/ibc-go/blob/22e87deacd35f287586d1e2d529e869ce1cfa208/modules/light-clients/07-tendermint/types/update.go#L215-L217

performing the IsRevisionFormat check (which is done in the call to
SetRevisionNumber).

Trail of Bits 41 Interchain Berlin Security Assessment
CONFIDENTIAL

