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Abstract

Class cohesion or degree of the relations of class members is
considered as one of the crucial quality criteria. A class with
a high cohesion improves understandability, maintainability and
reusability. The class cohesion metrics can be measured quantita-
tively and therefore can be used as a base for assessing the quality
of design. The main objective of this paper is to identify impor-
tant research directions in the area of class cohesion metrics that
require further attention in order to develop more effective and
efficient class cohesion metrics for software engineering. In this
paper, we discuss the class cohesion assessing metrics (thirty-two
metrics) that have received the most attention in the research
community and compare them from different aspects. We also
present desirable properties of cohesion metrics to validate class
cohesion metrics.

Keywords: Cohesion, Class cohesion metrics, Software en-
gineering.

1 Introduction

Producing high quality software systems has always been one of the
main goals of software designers and developers. Many software fea-
tures have been identified that influence the quality of software, for
example complexity, coupling and cohesion. Cohesion is an important
software quality attribute and high cohesion is one of characteristics of
well-structured software design. In overall, module cohesion indicates
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relatedness in the functionality of a software module [1]. It shows to
which degree the elements within that module belong together or are
related to each other. Modules with high cohesion are usually robust,
reliable, reusable, and understandable while modules with low cohe-
sion are allied with undesirable characteristics such as being difficult
to understand, test, maintain, and reuse. Cohesion is usually expressed
as high cohesion or low cohesion. There are different types of module
cohesion; we can, therefore, create a nominal scale for cohesion mea-
surement. Table 1 shows an ordinal scale for cohesion measurement [1].

Table 1. An ordinal scale for cohesion measurement

Rank Cohesion type Quality

6 Functional cohesion Strongest (good)

5 Sequential cohesion

4 Communication cohesion

3 Procedural cohesion

2 Temporal cohesion

1 Logical cohesion

0 Coincidental cohesion Weakest (bad)

In Table 1, functional cohesion is judged to provide a strongest
relationship because all of the elements contribute to a single task.
Functional cohesion corresponds to single responsibility principle. Co-
incidental cohesion takes place when a module performs different and
unrelated tasks. The serious problem with these methods is that it
depends on subjective human assessment. It means that these metrics
specify that the module is cohesive or not cohesive, and do not capture
varying strengths of cohesion.

An object oriented program is made of many classes and each class
consists of members called methods and attributes. In an object-
oriented paradigm, a module can be a class, the data can be attributes,
and the methods can be elements. We are mainly interested in the co-
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hesion of object-oriented programs such as classes. Class cohesion can
be defined as a measure of the degree to which members (i.e., meth-
ods and attributes) of a class belong together. Cohesion is usually
measured on structural information extracted entirely from the source
code (e.g., attribute references in methods and method calls).

In this paper, most class cohesion assessing metrics that have been
presented in the literature are reviewed and categorized in both syntac-
tic and semantic relationships. We also outline directions for further
research in class cohesion assessing metrics, such as to define of better
class cohesion assessing metrics or the improvement and evaluation of
existing ones.

The structure of the paper is as follows. Section 2 presents three
different applications of existing class cohesion metrics in order to mo-
tivate the need for assessing class cohesion. An overview of the state
of the art for assessing class cohesion metrics is presented in Section 3.
In section 4, the class cohesion metrics are evaluated from theoretical
validation aspects. Section 5 introduces lack of discrimination anomaly
problem, so that this problem is addressed on some class cohesion met-
rics. Section 6 presents some desirable properties of cohesion assessing
metrics. Finally, Section 7 concludes the paper and open research chal-
lenges related to class cohesion are discussed in this section.

2 Class Cohesion Assessing Applications

Before we present the technical aspects of class cohesion metrics in
Section 3, we describe three cases where class cohesion metrics can be
used to solve important software engineering problems in the context
of program understandability, software maintainability, and Reuse. It
was argued that each module (class level) of well structured software
should be focused on a single purpose. This means that it should have
very few responsibilities. First, before addressing class cohesion met-
rics applications, we define a program’s class design principle related
with cohesion [2].
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Principle: The Single Responsibility Principle (SRP) - A class
should have one, and only one, reason to change.

The SRP indicates high cohesion for a class, in other words highly
related, single responsibility, and strongly focused functionality for a
class; where a responsibility [2] is defined as “a reason for change”. For
addressing class cohesion assessing applications, the following classes
are considered: Class A performs three distinct operations (i.e., three
responsibilities) while Class B performs only one operation (i.e., single
responsibility); the cohesion of class B is higher than the class A.

Class A {
1. Init disk() {...}
2. Apply to college() {...}
3. Circle Area Calculation () {...}

}
Class B {

1. Method A part 1() {...}
2. Method A part 2 () {...}
3. Method A part 3 () {...}

}

2.1 Software Maintainability

In software engineering, maintainability is defined as the effort and
the ease required to change in one module (e.g., class), to repair or
to meet new requirements, maximize a product’s useful life, maximize
efficiency, reliability, and safety, cope with a changed environment, and
etc. Since class B has only single responsibility, therefore, changing it
is easier than changing class A; because changing a specific method in
class A may affect other methods, due to the use of shared attributes.
So, considering this side effect, it is a hard work to maintain a class.
Maintainable class is a class that exhibits high cohesion. Higher cohe-
sion and consequently higher maintainability means less time to make

47



H. Izadkhah, M. Hooshyar

a change. Class cohesion assessing metrics evaluate the cohesion of a
class for determining the level of maintainability of a class.

2.2 Program Understandability

From Eighty-Twenty Rule, 20% of the time is spent creating, and 80%
of the time is spent maintaining. Of the maintenance time, 20% is spent
changing, while 80% of the time is spent just trying to understand the
code. Therefore, understandability or program comprehension is one
of the important characteristics of software quality, because it concerns
the ways software engineers maintain the existing source code. In order
to maintain the software, the programmers need to comprehend the
source code. The understandability of the source code depends upon
the cohesion, coupling and complexity of the program. A class with
single responsibility is easier to understand compared to a class with
multiple responsibilities. Class cohesion assessing metrics evaluate the
cohesion of a class for determining the level of understandability of
a class; a class with higher cohesion is more understandable than a
class with low cohesion. For example, in our designed classes, since
the class B only does “one thing,” its interface usually has a small
number of methods that are fairly self explanatory. It should also have
a small number of member variables, thus it is more understandable
than class A.

2.3 Software Reusability

One of the most powerful characteristics of object-oriented program-
ming is code reuse. You can write a class and then reuse it many times.
High cohesion with loose coupling, information hiding makes code more
easily reusable, and decrease the cost and time of development. If a
class has multiple responsibilities, and only one of those is needed to
assemble new requirements in other programs, then the other redun-
dant responsibilities hinder reusability. Single responsibility implies
the reuse of a class anywhere without modification. In our designed
classes, class B is more reusable than class A.
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3 Class Cohesion Assessing Metrics

Using ordinal scale for cohesion measurement, comparing two cohesive
or two non-cohesive classes, or to know whether a code modification
increased or reduced the degree of cohesiveness is hard. In this paper,
we review the metrics for determining whether a module (class) is cohe-
sive or not cohesive and also the degree of its cohesiveness. Also, these
metrics would allow us to judge which module is better designed and
more cohesive. These metrics compute class cohesion using manipula-
tions of class elements. The key elements of a class C are its attributes
A1, ..., Aa, methods M1, ...,Mm, and the list of p parameter (or, argu-
ment) types of the methods P1, ..., Pm. Using class cohesion assessing
metrics for computing class cohesion, we need to show a class with
corresponding graph. Let a, b, c, d denote attributes and m1,m2,m3

show methods. Figure 1 shows a sample class with its corresponding
graph.

Figure 1. Class with corresponding graph

Class cohesion metrics can be broadly classified into two groups:
1. Interface-based metrics compute class cohesion from informa-
tion in method signatures. Table 2 shows most interface-based met-
rics. Advantage of these metrics is that they can be calculated early in
the design stage. Disadvantage of them can be concluded as from only
design model, it is impossible to determine what exactly a method is
doing (e.g., it may be using class attributes, or calling other methods
on its class);
2. Code-based metrics also can be classified into two groups of con-
ceptual metrics and structural metrics. Conceptual metrics use infor-
mation retrieval methods for class cohesion measurement. Information

49



H. Izadkhah, M. Hooshyar

retrieval methods are based on the extraction the concepts of source
code. In conceptual cohesion if methods of one class are conceptually
related, then class is considered cohesive. Conceptual metrics of co-
hesion are introduced in the Tables 3 and 4. Many structural metrics
have been proposed for cohesion measurement from research commu-
nity. These metrics use the structural data that are extracted from the
source code. The differences among structural metrics are based on
the definition of the relationships between methods. Structural met-
rics compute class cohesion (method-method invocation) in terms of
attribute accesses by methods (operations sharing attributes) and op-
erations invocating other operations. The latter have the strongest
cohesion compared to the former ones. We can further classify struc-
tural base cohesion metrics into four sub-types based on the methods
of quantification of cohesion:

• Disjoint component-based metrics count the number of disjoint
sets of methods or attributes in a given class. These metrics are
addressed in Table 5.

• Pairwise connection-based metrics compute cohesion as a func-
tion of number of connected and disjoint method pairs. These
metrics are addressed in Tables 6 and 7.

• Connection magnitude-based metrics count the accessing meth-
ods per attribute and indirectly find an attribute-sharing index in
terms of the count (instead of computing direct attribute-sharing
between methods). These metrics are addressed in Tables 8-11.

• Decomposition-based metrics compute cohesion in terms of re-
cursive decompositions of a given class. The decompositions are
generated by removal of pivotal elements that keep the class con-
nected. These metrics are addressed in Table 12.
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Table 2. Interface-based metrics

Class Cohesion Definition/Formula
Metrics

CAMC [3] CAMC =
a

kl
,

where,
l is the number of distinct parameter types, k is
the number of methods and a is the summation
of the number of distinct parameter types of each
method in the class.

NHD [4] Let k and l have the same definitions as above
for CAMC, and xj be the number of methods
that have a parameter of type j. Then,

NHD = 1−
2

lk(k − 1)

∑l
j=1 xj(k − xj).

MMAC [5] Let xi be the number of methods that have a
parameter or a return of type i.

MMAC(C) =















0 k = 0 or l = 0

1 k = 1
∑i=l

i=1
xi(xi−1)

lk(k−1) otherwise
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Table 3. Conceptual metrics

Class Cohesion
Metrics

Definition/Formula

LORM [6] LORM=Total number of relations in the class /
Total number of possible relations to the class,
where,
Total number of relations in the class = num-
ber of pairs of methods in the class for which
one method contains conceptual relations form-
ing external links out of the set of concepts that
belong to the method to or from the set of con-
cepts belonging to another method in the class.
N= total number of member functions (methods)
in the class.

Total number of possible relations =
N(N − 1)

2
.

C3 [7] Let M(C) = {m1, ...,mn} be the set of methods
of class, Vmi

and Vmj
be the vectors correspond-

ing to the mi,mj ∈ M(C). Then

C3 =

{

ACSM, if ACSM > 0

0 otherwise
,

where

CSM(mi,mj) =
V t
mi

.Vmj

|Vmi
|×|Vmj

|

ACSM = 1
N

∑N
i=1 CSM(mi,mj)

N = C2
n

LCSM [7] Let Mi = {mj |CSM(mi,mj) >

ACSM(C),mi 6= mj} and
P = (Mi,Mj)|Mi ∩Mj = ∅ and
Q = (Mi,Mj)|Mi ∩Mj 6= ∅
Then,

LCSM(C)=

{

|P | − |Q|, if |P | > |Q|

0 otherwise
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Table 4. Conceptual metrics (continuation of Table 3)

Class Cohesion
Metrics

Definition/Formula

MWE [8] MWE = max1<i<|t|(O(ti)×D(ti))

where,

O(ti) =
∑n

d=1
pdti

n

D(ti) =
∑n

d=1
−qdti

×log(qdti
)

logn

qdti =
pdti∑n

d=1
pdti

pdti=the probability of topic ti in a method d
|t|=number of topics
n=number of methods

Table 5. Disjoint component-based metrics

Class Cohesion
Metrics

Definition/Formula

LCOM1 [9] Number of pairs of methods that do not share
attributes.

TLCOM [10] Number of method pairs that do not directly or
transitively share a common attribute.

LC0M3 [11] Number of connected components in the graph
that represents each method as a node and the
sharing of at least one attribute as an edge.

LCOM4 [12] Similar to LCOM3, where graph G additionally
has an edge between vertices representing meth-
ods mi and mj, if mi invokes mj or vice-versa.
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Table 6. Pairwise connection-based metrics

Class Cohesion Definition/Formula
Metrics

LCOM2 [9] Let P be the number of pairs of methods that
do not share attributes and Q be the number of
pairs of methods that share attributes. Then,

LCOM2(C) =

{

|P | − |Q|, if |P | > |Q|

0 otherwise

TCC [13] Let NDC be the number of pairs of directly con-
nected methods and NP be the maximum pos-
sible number of direct or indirect connection.
Then, TCC is difined as:

TCC =
NDC

NP
.

LCC [13] Let NIC be the number of pairs of indirect con-
nection in the class. Then,

LCC=
NDC +NIC

NP
.

DCD [14] Fraction of directly connected pairs of methods,
where two methods are directly connected if they
satisfy the condition mentioned above for TCC
or if the two methods directly or transitively in-
voke the same method.

DCI [14] Fraction of directly or transitively connected
pairs of methods, where two methods are tran-
sitively connected if they satisfy the condition
mentioned above for LCC or if the two methods
directly or transitively invoke the same method.
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Table 7. Pairwise connection-based metrics (continuation of Table 6)

Class Cohesion Definition/Formula
Metrics

CCM [15] CCM(C) = NC(C)
NMP (C).NCC(C) ,

where NC(C) is the number of actual connec-
tions among the methods of class, NMP(C) is the
number of the maximum possible connections
among the methods of the class C, NCC(C) is
the number of connected components of the con-
nection graph Gc that represents each method as
a node and two methods A and B are connected
in the connection graph if A and B access one
or more attributes in common or method A in-
vokes method B or vice versa or methods A and
B invoke one or more methods in common.

Table 8. Connection magnitude-based metrics

Class Cohesion Definition/Formula
Metrics

LCOM5 [16] Let l be the number of attributes, k be the num-
ber of methods and a be the summing of the
number of distance attributes that are accessed
by each method in a class, then

LCOM5 =
a− kl

l − kl
.

Coh [17] Let a, k and l have the same definitions as above,
then,

Coh =
a

kl
.
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Table 9. Connection magnitude-based metrics

Class Cohesion Definition/Formula
Metrics

OCC [18] Consider a set of methods M={m1, ...,mn} and
a set of attributes A within the class. Let S =
{(mi,mj) ∈ M ×M |mi invokes mj},
S∗ = {(mi,mj) ∈ M × M |(mi = mj) ∨
(∨n≥1miS

nmj)},
ac(mi, a) ⇐⇒ ∃mj ∈ M s.t [(miS

∗mj) ∧
(mj accesses a)]
Rw(mi)=set of methods which are reachable by
Gw(V,E)
Gw(V,E)=weak-connection graph, where V=M(
number of methods)
and E is given by:
E = {(mi,mj) ∈ M ×M |∃a ∈ A s.t (ac(mi, a)∧
ac(mj , a))}
Then,

OCC(C)=

{

maxi=1,...,n[
|Rw(mi)|

n−1 ] n > 1

0 n=1

PCC [19] PCC(C) =

{

maxi=1,...,n[
|Rs(mi)|

n−1 ] n > 1

0 n=1

where, Rs(mi)=set of methods which are reach-
able by Gs(V,E)
Gs(V,E)=strong-connection graph, where
V=M( number of methods)
and E is given by:
E = {(mi,mj) ∈ M×M |∃a ∈ A s.t (wr(mi, a)∧
re(mj , a))}
wr(mi, a) ⇐⇒ ∃mj ∈ M s.t [(miS

∗mj) ∧
(mj writes data on to a)],
re(mi, a) ⇐⇒ ∃mj ∈ M s.t [(miS

∗mj) ∧
(mj reads data from a)] and S, S∗,M,A, have
the same definitions above.
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Table 10. Connection magnitude-based metrics

Class Cohesion Definition/Formula
Metrics

CC [19] Let Ii and Ij be the sets of attributes that are
referenced by methods mi and mj, respectively.
CC is the ratio of the summation of the simi-
larities between all pairs of methods to the to-
tal number of pairs of methods. The similar-
ity between methods mi and mj is defined as:

Similarity(i, j) =
|Ii ∩ Ij|

|Ii ∪ Ij|
.

SCOM [20] Ratio of the summation of the similarities be-
tween all pairs of methods to the total num-
ber of pairs of methods. The similarity be-
tween methods mi and mj is defined as:

Similarity(mi,mj) =
|Ii ∩ Ij |

min(|Ii|, |Ij |)
.
|Ii ∪ Ij|

l
.

PCCC [21] PCCC=











0 l = 0 and k > 1

1 l > 0 and k = 0
NSP (Gc)
NSP (FGc)

otherwise

where,
l=number of attributes
k=number of methods
NSP=number of simple paths in graph Gc

FGc= corresponding fully connected graph.

LSCC [22] LSCC(C)=























0 l = 0 and k > 1

1 l > 0 and k = 0

1 k = 1
∑i=l

i=1
xi(xi−1)

lk(k−1) otherwise

where, l is the number of attributes, k is the
number of methods, and xi is the number of
methods that reference attribute i.
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Table 11. Connection magnitude-based metrics

Class Cohesion Definition/Formula
Metrics

CC [23] Consider a set of methods {mi}(i=1,...,m) ac-
cessing a set of attributes {Vj}(j=1,...,n). Let
µ(Vj) be the number of methods that share the

attribute Vj of a class. Then, CC =

∑n
1 CVj

n
,

where CVj =
µ(Vj)

m
.

CO [24] CO = 2.
|E| − (|V | − 1)

(|V | − 1).(|V | − 2)
where, E and V are the edges and vertices of G
from LCOM4.

CBAMU [25] Let a be the number of attributes in the class, m
be the number of methods in the class, µ(Ai) be
the number of methods that access Ai and µ(Mj)
be the number of methods that invoke method
Mj , then,

CBAMU =
1

2
(AU(C) +MU(C)), where,

AU(C)=

{

0 a = 0 orm = 0
1
am

∑a
i=1 µ(Ai) otherwise

and

MU(C)=

{

0 m = 0 or 1
1

m(m−1)

∑m
j=1 µ(Mj) otherwise

RCI [26] Let CI(C) be the set of all data-data interactions
and data-method interactions and Max(C) to be
the set of all possible data-data interactions and
data-method interactions. Then,

RCI(C) = |CI(C)|
|Max(C)| .
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Table 12. Decomposition-based metrics

Class Cohesion Definition/Formula
Metrics

CBMC [27] Let Fc(G) =
M(G)

N(G)
and

Fs(G) =
1

n

∑n
i=1 CBMC(Gi) where,

M(G)=the number of glue methods in graph G,
N(G)=the number of non-special methods in
graph G
Gi = one of children of the structure tree.Then,
CBMC(G) = Fc(G) × Fs(G).

ICBMC [28] ICBMC(G) = Fc(G) × Fs(G) where,

Fc(G) =
|Q|

|Nm(G)| × |Nv(G)|
and

Fs(G) =
1

2

∑n
i=1 ICBMC(Gi)

Q=number of edges in the cut set of G
Nm(G)= number of non-special methods in
graph G
Nv(G)= number of attributes in graph G.

OLn [29] The average strength of the attributes, wherein
the strength of an attribute is the average
strength of the methods that reference that at-
tribute. n is the number of iterations that are
used to compute OL.
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Now, we evaluate these metrics and compare them through three
given examples. Let ai and mi denote attributes and methods, respec-
tively, the first example (Fig. 2) shows four sample classes including
linking methods of a class with their attributes. The cohesion of these
classes increase from C1 to C4, indeed class C1 has the lowest cohesion
and class C2 has the highest cohesion. Table 13 shows the cohesion
value for some these metrics.

Figure 2. Example cases for capturing degree of cohesion

In Table 13, in the last column, sign (-) means that its correspond-
ing metrics does not give the correct result about cohesion and sign
(+) means that the result is acceptable. As it can be seen in Table
13, only LCOM4, TCC, DCD, DCI and CBAMU metrics can find the
class cohesion correctly.

The second example (Fig. 3) shows three other classes (C1-C3)
with different degrees of cohesion. In this figure, class C3 has the high-
est cohesion and class C1 has the lowest cohesion. In Table 14, the
cohesion values for some of these metrics are presented. As it can be
seen in Table 14, only LCOM1, LCOM2, LCOM5, Coh, TCC, CBMC,
CCM, CC, SCOM, LSCC, CC and CBAMU metrics can find the class
cohesion correctly.
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Table 13. Cohesion values for Fig. 2

Metric C1 C2 C3 C4

LCOM1 5 4 4 5 -
LCOM2 4 2 2 4 -
LCOM3 3 2 2 3 -
LCOM4 3 2 2 1 +
LCOM5 0.91 0.83 0.83 0.91 -
Coh 0.31 0.37 0.37 0.31 -
TCC 0.16 0.33 0.33 0.5 +
LCC 0.16 0.33 0.5 0.5 -
DCD 0.16 0.33 0.33 0.66 +
DCI 0.16 0.33 0.5 0.66 +
CC 0.5 1 1 0.5 -
SCOM 0.5 1 1 0.5 -
LSCC 0.04 0.08 0.08 0.04 -
CC 0.31 0.37 0.37 0.31 -
CBAMU 0.15 0.18 0.18 0.23 +

Figure 3. Example cases for capturing degree of cohesion

61



H. Izadkhah, M. Hooshyar

Table 14. Cohesion values for Fig. 3

Metric C1 C2 C3

LCOM1 7 6 0 +
LCOM2 3 2 0 +
LCOM3 2 1 1 -
LCOM4 2 1 1 -
LCOM5 0.81 0 .75 0.43 +
CCM 1 0.4 1 +
OCC 0.75 1 1 -
DCD 0.3 0.4 0.4 -
DCI 0.6 1 1 -
Co 0 1 -
CC 1.33 1.66 5.33 +
SCOM 1.37 1.75 6.08 +
Coh 0.35 0.4 0.65 +
LSCC 0.75 0.1 0.42 +
TCC 0.3 0.4 1 +
CC 0.35 0.4 0.65 +
LCC 0.6 1 1 -
CBAMU 0.17 0.2 0.32 +
CBMC 0 0.13 0.6 +
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For the third example, consider classes in Fig. 4. In this figure,
class C1 has the highest cohesion and class C4 has the lowest cohesion.
The cohesion values for some of the metrics are shown in Table 15. As
it can be seen in Table 15, only SCOM metrics can find the class cohe-
sion correctly. Note that the SCOM metrics cannot find right cohesion
for classes in Fig. 2.

Figure 4. Examples for capturing degree of cohesion

Table 15. Cohesion values for Fig. 4

Metric C1 C2 C3 C4

TLCOM 0 0 0 1 -
LCOM2 0 0 0 0 -
TCC 1 1 1 0.67 -
SCOM 1 0.89 0.61 0.39 +
CBAMU 0.5 033. 0.27 0.27 -
CBMC 1 0.67 0.67 0.33 -
ICBMC 0.33 0.139 0.069 0.069 -
CCM 1 1 1 0.66 -
PCCC 1 0.2 0.11 0.11 -
RCI 1 0.5 0.41 0.41 -
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From our designed different eleven classes with different cohesion,
our experiment (Tables 13-15) shows that the described cohesion as-
sessing metrics for all our designed classes in these examples do not
show the right cohesion. Indeed, these metrics cannot calculate class
cohesion on some classes correctly.

4 Theoretical Validations of Cohesion Metrics

For theoretical validation of the class cohesion assessing metrics a
framework proposed in [17]. At this framework, four properties are
presented for validation of metrics that measure cohesion values. If
cohesion metrics is a true metrics, it should satisfy these properties.
These four properties are:
Property 1: non-negativity and normalization: non-negative in-
dicates that the measured class cohesion fits to a specific interval [0,
Max], and using normalization the designer can compare the cohesion
of different classes.
Property 2: null value and maximum value: the cohesion of a
class is equal to 0 if the class has no cohesive interactions; the cohesion
is equal to Max if all possible interactions within the class are present.
Property 3: monotonicity: adding cohesive interactions to the mod-
ule cannot decrease its cohesion.
Property 4: cohesive modules: merging two unrelated modules
into one module does not increase the individual modules cohesion.
Therefore, given two classes, C1 and C2, the cohesion of the merged
class C must satisfy the following condition:
cohesion(C) ≤ max{cohesion(C1), cohesion(C2)}
These four properties (indicated by P1-P4) for the presented metrics
(Tables 2-12) are addressed in Table 16. The sign (-) means that its
corresponding metrics does not satisfy the property and sign (+) means
that it satisfies the property.
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Table 16. Theoretical validation results of cohesion metrics

Metric P1 P2 P3 P4 Metric P1 P2 P3 P4

LCOM1 - + + + PCC + + + +
TLCOM - + + + DCI + + + +
LCOM2 - + + + CC + + - +
LCOM3 - - + + MMAC + + + +
LCOM4 - - + + SCOM + + - +
CO - - + + LSCC + + + +
LCOM5 - + + - CC + + + +
Coh + + + + CAMC - + +
TCC + + + + NHD - - -
LCC + + + + CBAMU + + + +
DCD + + + + ICBMC + + + +
CBMC + + - + PCCC + + + +
CCM + + + + RCI + + + +
OCC + + + + OLn + + + +

5 Lack of Discrimination Anomaly

Some class cohesion metrics use normalization operation to allow for
easy comparison of the cohesion of different classes, so it is possible
that they get the same cohesion values for different classes that have
the same number of methods and attributes but different interactions
[30]. In these cases, two classes incorrectly are considered same in
terms of cohesion. This leads to lack of discrimination anomaly (LDA)
problem [30]. A good class cohesion metrics should avoid the LDA
problem. If there is the LDA problem in a metrics, the probability
that the metrics will distinguish between different classes cohesion is
low; thus, the metrics is imprecise. Tables 17 and 18 show some class
cohesion metrics and their LDA problems [30].
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Table 17. Some class cohesion metrics and their LDA problems

Metrics When LDA problem occur?

LCOM1 1. when the number of method pairs that share
common attributes is the same in both classes,
regardless of the number of shared attributes.
2. when the number of method pairs that share
common attributes is the same in both classes,
regardless of which attributes are shared.

LCOM2 1. same two LDA cases indicated for LCOM1
2. the two classes will have the same LCOM2
value, if P ≤ Q. In this case, the value of
LCOM2 is zero, regardless of the magnitude of
the difference between P and Q in each of the
two classes.

LCOM3 and 1. same first LDA indicated for LCOM1
LCOM4 2. if the number of disjoint components is the

same in both classes regardless of the interac-
tions of each of the disjoint components.

LCOM5 and
Coh

- two classes have the same number of attributes
referenced by methods, regardless of the distri-
bution of these references.

CAMC - if the two classes have the same number of dis-
tinct types of parameters in their methods, re-
gardless of the distribution of these cohesive in-
teractions.

TCC and
DCD

- same two LDA cases indicated for LCOM1

LCC and
DCI

1. same two LDA cases indicated for LCOM1
2. the two classes have the same number of con-
nected methods, regardless whether the methods
are connected directly or transitively.
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Table 18. Some class cohesion metrics and their LDA problems (con-
tinuation of Table 17)

Metrics When LDA problem occur?

CC - if the ratio of shared attributes between each
pair of methods to the distinct number of at-
tributes referenced by each of the corresponding
pair of methods is the same, regardless of the
number of shared attributes.

LSCC 1. when each attribute in Class C1 is refer-
enced by the same number of methods that ref-
erence the corresponding attributes in Class C2,
regardless of the distribution of these methods
and their connectivity with other methods.
2. if the result of

∑n
i=1 xi(xi− 1) is the same for

both classes, where n is the number of attributes
and xi is the number of methods that reference
attribute i, regardless of the distributions or the
number of references.

NHD 1. same first LDA indicated for LSCC
2. if the result of

∑n
i=1 xi(n−xi) is the same for

both classes, where n is the number of distinct
parameter types and xi is the number of methods
that reference parameter type i, regardless of the
distributions or the number of references.
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6 Desirable Properties of Cohesion Metrics

The addressed class cohesion metrics can be evaluated both empiri-
cally and theoretically. In the empirical validation it is determined
whether the predicted value is consistent with the measured value.
In [21], [26], [31]–[38] several methods are proposed to empirically vali-
date class cohesion metrics.

In the theoretical validation it is determined whether the metrics
holds the required properties. In addition to the four main properties
proposed in [17] (see section 4), in literature, several properties are
introduced to validate software metrics theoretically, as summarized
below.
I. Monotonicity: adding interactions to the class must not decrease
its cohesion. It means that after adding an interaction to the class, the
modified class cohesion value will be the same as or higher than the
cohesion value of the original class.
II. Representation condition of measurement theory: The
metrics obtains a value that yields the same order as intuition. It
means there should not be inconsistencies between empirical relations
and numerical relations such that the empirical relations preserve and
are preserved by the numerical relations.
III. Lack of discrimination anomaly: as described in section 5.
IV. Sensitivity: adding or removing interactions to a class should
change the cohesion of the class. Sensitivity is expected to increase as:
1) the number of distinct cohesion values increases and
2) the number of classes with repeated cohesion values decreases
V. Normalization: allows for easy comparison of the cohesion of
different classes
VI. Prescription: The metrics indicates how to enhance the mea-
sured element.
VII. No equivalence of interaction: Given three classes x, y, and
z, if x and y display the same cohesion value, the classes resulting from
merging z with each of x and y can show different cohesion values.
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The class cohesion metrics that does not have LDA problem and
satisfies the other properties is expected to be a well-defined metrics.
We suggest the newly introduced metrics that, first, is evaluated from
LDA problem point of view. If the metrics is found to have LDA prob-
lem, the researcher may decide to revise the metrics formula to solve
the LDA problem. Software developers are advised to apply cohesion
metrics that does not have LDA problem because such metrics is ex-
pected to be more reliable in indicating cohesion.

7 Conclusion and open research problem

This paper presented the state of the art in the development and evalu-
ation of class cohesion metrics. Most existing structural class cohesion
metrics is addressed and evaluated from different aspects such as on
our eleven designed classes, theoretical validations, and LDA problem.
Our experimental results showed that whereas important progresses
have already taken place, but there is no comprehensive and reliable
class cohesion metrics. Therefore, there are still many possibilities for
further research that will benefit software engineers everywhere. Fol-
lowing cases can be considered as a research problem:
1. There are no standard benchmarks for evaluating the class cohesion
metrics. Researcher needs comprehensive benchmarks for evaluating
the new designed metrics and comparing it with other metrics.
2. We believe the four properties described in section 4 should be re-
vised. For example, due to LDA problem, using the normalization and
monotonicity properties, a designer necessarily cannot distinguish the
cohesion level of different classes.
3. Information theory based formulas are not addressed in this area.
We think that class cohesion can be assessed in terms of information
loss. It seems a class with low information loss to have high cohesion.
However, this is a research question.
4. The combination of structural and semantic information from a class
for cohesion assessing can be considered as a research problem.
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