
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220307725

Transitive-based	object-oriented	lack-of-
cohesion	metric

Article		in		Procedia	Computer	Science	·	December	2011

DOI:	10.1016/j.procs.2011.01.053	·	Source:	DBLP

CITATIONS

11

READS

30

1	author:

Jehad	Al	Dallal

Kuwait	University

60	PUBLICATIONS			637	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Jehad	Al	Dallal	on	30	August	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220307725_Transitive-based_object-oriented_lack-of-cohesion_metric?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220307725_Transitive-based_object-oriented_lack-of-cohesion_metric?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehad_Al_Dallal?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehad_Al_Dallal?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kuwait_University?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehad_Al_Dallal?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehad_Al_Dallal?enrichId=rgreq-155e834c3e7f918388132755282a5124-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMwNzcyNTtBUzoyNjgyMjI1MzY2MTM4ODhAMTQ0MDk2MDY0NDQ1NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Procedia - Social and Behavioral Sciences 00 (2010) 000–000

Procedia
Social and
Behavioral
Sciences

www.elsevier.com/locate/procedia

WCIT 2010

Transitive-based object-oriented lack-of-cohesion metric
Jehad Al Dallal a *

a Department of Information Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Abstract

Classes are the basic units in object-oriented programs. Therefore, the quality of a class has a great impact on the overall quality
of the software. Class cohesion is one of the important quality factors and it refers to the degree of relatedness of the class
attributes and methods. Several class cohesion metrics are proposed in the literature, and a few of them empirically address the
effect of considering transitive relations between class attributes and methods caused by method invocations. In this paper, we
address this issue for one of the most popular class cohesion metrics, referenced as Lack of Cohesion (LCOM). Our empirical
study involves applying the metric with and without considering transitive relations on classes of two open source Java
applications and statistically analyzing the results. The empirical study results show that the ability of LCOM in indicating class
quality improves when considering both direct and transitive relations in the LCOM computation.
© 2010 Published by Elsevier Ltd.

Keywords: object-oriented class; software quality; class cohesion metric; class cohesion; direct and transitive relations.

1. Introduction

A popular goal of software engineering is to develop the techniques and the tools needed to develop high-quality
applications that are more stable and maintainable. In order to assess and improve the quality of an application
during the development process, developers and managers use several metrics. These metrics estimate the quality of
different software attributes, such as cohesion, coupling, and complexity.

The cohesion of a module refers to the relatedness of the module components. A module that has high cohesion
performs one basic function and cannot be split into separate modules easily. Highly cohesive modules are more
understandable, modifiable, and maintainable [1].

Since the last decade, object-oriented programming languages, such as C++ and Java, have become widely used
in both the software industry and research fields. In an object-oriented paradigm, classes are the basic modules. The
members of a class are its attributes and methods. Therefore, class cohesion refers to the relatedness of the class
members.

Researchers have introduced several metrics to indicate class cohesion during high or low level design phases.
Lack of Cohesion (LCOM) [3] is proposed by Chidamber and Kemerer, and it counts the number of method pairs
that do not directly share attributes. Higher LCOM value indicates low cohesion and vice versa. LCOM is widely
applied and theoretically and empirically compared to other metrics (e.g., [1, 2, 3, 12, 13, 14, 21]). In these empirical
studies, the goodness of the metric in indicating cohesion is indirectly measured by statistically analyzing the

* Jehad Al Dallal
 E-mail address: j.aldallal@ku.edu.kw.

c⃝ 2010 Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of the Guest Editor.

Procedia Computer Science 3 (2011) 1581–1587

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2010 Published by Elsevier Ltd.
doi:10.1016/j.procs.2011.01.053

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2011.01.053
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jehad Al Dallal / Procedia – Social and Behavioral Sciences 00 (2010) 000–000

2

relation between the cohesion values and the values of external software attributes such as the fault proneness of the
class (i.e., the extent to which a class is prone to faults). Most of the reported empirical results show that LCOM is
relatively weakly capable in predicting faulty classes. As a result, LCOM is suggested not to be a good cohesion
indicator. Originally, LCOM accounts only for direct relations. That is, two methods are considered to be related if
they directly use at least a common attribute. Directly using an attribute means that the attribute is explicitly
referenced within the method. If a method m1 calls another method m2 and m2 uses an attribute a, m1 is not
considered as directly referencing attribute a. Instead, in this case, m1 is considered transitively referencing the
attribute. The transitive referencing of an attribute is not considered in the original definition of LCOM. In this
paper, we extend the definition of LCOM to account for transitive relations as well as the direct relations, and we
refer to the extended metric as TLCOM (transitive LCOM). We perform an empirical study to support the validity of
our extended metric. The empirical study is applied on classes of two open source Java systems that have available
fault data repositories. The empirical study results show that accounting for transitive relations as well as direct
relations, in the computation of LCOM, improves its goodness in predicting faulty class. This indirectly, indicates
that our extension improves LCOM’s goodness in indicating class cohesion.

This paper is organized as follows. Section 2 provides an overview of the class cohesion metrics proposed in
literature. Section 3 proposes the extended LCOM metric. Section 4 illustrates an empirical case study and reports
and discusses its results. Finally, Section 5 concludes and discusses future work.

2. Related Work

Researchers have proposed several class cohesion metrics in the literature. These metrics can be applicable based
on high-level design (HLD) or low-level design (LLD) information. HLD class cohesion metrics rely on information
related to class and method interfaces. The more numerous LLD class cohesion metrics require an analysis of the
algorithms used in the class methods (or the code itself if available) or access to highly precise method
postconditions. Class cohesion metrics are based on the use or sharing of class attributes. For example, the LCOM
metric counts the number of method pairs that do not share instance variables [15]. Chidamber and Kemerer [16]
propose another version of the LCOM metric, which calculates the difference between the number of method pairs
that do and do not share instance variables. Li and Henry [17] use an undirected graph that represents each method
as a node and the sharing of at least one instance variable as an edge. They define lack-of-cohesion in methods as
the number of connected components in the graph. The graph is extended in [18] by adding an edge between a pair
of methods if one of them invokes the other. Hitz and Montazeri [18] introduce a connectivity metric to apply when
the graph has one component. In addition, Henderson-Sellers [19] proposes a lack-of-cohesion in methods metric
that considers the number of methods referencing each attribute.

Bieman and Kang [4] describe two class cohesion metrics, Tight Class Cohesion (TCC) and Loose Class
Cohesion (LCC), to measure the relative number of directly connected pairs of methods and the relative number of
directly or indirectly connected pairs of methods, respectively. TCC considers two methods to be connected if they
share the use of at least one attribute. A method uses an attribute if the attribute appears in the method’s body or the
method invokes another method, directly or indirectly, that has the attribute in its body. LCC considers two methods
to be connected if they share the use of at least one attribute directly or transitively. Badri [5] introduces two class
cohesion metrics, Degree of Cohesion-Direct (DCD) and Degree of Cohesion-Indirect (DCI), that are similar to TCC
and LCC, respectively, but differ by considering two methods connected also when both of them directly or
transitively invoke the same method. Briand et al. [3] propose a cohesion metric (called Coh) that computes
cohesion as the ratio of the number of distinct attributes accessed in methods of a class. Fernandez and Pena [6]
propose a class cohesion metric, called Sensitive Class Cohesion Metric (SCOM), that considers the cardinality of
the intersection between each pair of methods. In the metric presented by Bonja and Kidanmariam [7], the degree of
similarity between methods is used as a basis to measure class cohesion. The similarity between a pair of methods is
defined as the ratio of the number of shared attributes to the number of distinct attributes referenced by both
methods. Cohesion is defined as the ratio of the summation of the similarities between all pairs of methods to the
total number of possible pairs of methods. The metric is called Class Cohesion (CC). Al Dallal and Briand [1]
propose a metric based on measuring the degree of similarity between each pair of methods in terms of the number
of shared attributes.

1582 J. Al Dallal / Procedia Computer Science 3 (2011) 1581–1587

Jehad Al Dallal / Procedia – Social and Behavioral Sciences 00 (2010) 000–000

3

Cohesion Among Methods in a Class (CAMC), Normalized Hamming Distance (NHD), Scaled NHD (SNHD),
Distance Design-based Direct Class Cohesion (D3C2), and Similarity-based Class Cohesion (SCC) are examples of
HLD metrics. CAMC [8], NHD, and SNHD [9] use the types of the method parameters to predict the interactions
between the methods and attributes. D3C2 [10] uses the relation between the types of the parameters and the types of
the attributes to predict the interactions between the methods and attributes. SCC [13] extends D3C2 by considering
more types of interactions including the interactions caused by method invocations modelled in UML diagrams.
Related work in the area of software cohesion can be found in [2, 11, 12, 14, 20, 21, 29, 30, 31].

3. Transitive LCOM

LCOM [3] is defined as the number of method pairs that do not “directly” share common attributes. A pair of
methods directly shares a common attribute when the common attribute is referenced within the body of each of the
two methods. For example, the Java sample class given in Figure 1 has three methods. The number of method pairs
is three and the number of method pairs that share a common attribute is one (i.e., m1 and m2 reference attribute a1).
As a result, LCOM value is 2 (i.e., two method pairs do not share common variables (m1,m3) and (m2,m3)).

Fig. 1: Java sample class

Transitive LCOM (TLCOM) is defined as the number of method pairs that directly or transitively share a
common attribute. A method transitively references an attribute when the method directly or indirectly calls another
method that directly references the attribute. A pair of methods “transitively” shares a common attribute when the
common attribute is referenced transitively by both methods or referenced transitively by one of the methods and
directly by the other. For example, method m3 given in Figure 1 transitively references both attributes a1 and a2
because it calls method m2 that directly references these two attributes. In this case, method m3 transitively shares
attribute a1 and a2 with method m2, and it transitively shares attribute a1 with method m1. Since all method pairs in
the sample class directly or transitively share common attributes, the value of TLCOM is zero (i.e., no pairs of
methods do not directly or transitively share common attributes).

4. Empirical Study

We chose two Java open source software systems from two different domains: Art of Illusion v.2.5 [22] and
JabRef v.2.3 beta 2 [23]. Art of Illusion consists of 481 classes and about 88 thousand lines of code (KLOC), and is
a 3D modeling, rendering, and animation studio system. JabRef consists of 569 classes and about 48 KLOC, and is a
graphical application for managing bibliographical databases. We chose these two open source systems randomly
from http://sourceforge.net.The restrictions taken into account in choosing these systems were that they (1) are
implemented using Java, (2) are relatively large in terms of the number of classes, (3) are from different domains,
and (4) have available source code and fault repositories. We excluded all classes that have less than two methods

class SampleClass {
int a1,a2;
void m1(){

a1=1;
}
void m2(){

a1=a2;
}
void m3(){

m2();
}

}

J. Al Dallal / Procedia Computer Science 3 (2011) 1581–1587 1583

Jehad Al Dallal / Procedia – Social and Behavioral Sciences 00 (2010) 000–000

4

because LCOM value is not defined for such classes. This implies excluding 39 classes from the first system and
133 classes from the second system. We applied the LCOM and TLCOM to the rest of the classes. We developed
our own Java tool to automate the cohesion measurement process for Java classes using LCOM and TLCOM. The
tool analyzed the Java source code, extracted the information required to build the models that represent the
cohesive interactions, and calculated the cohesion values using the two metrics. Table 1 shows descriptive statistics
for each cohesion measure including the minimum, 25% quartile, mean, median, 75% quartile, maximum value, and
standard deviation. Note that the following analyses do not take into account class inheritance. The impact of
inheritance on the study results is left as a subject for further research.

Table 1: Descriptive statistics for the cohesion measures
Art of Illusion System JabRef System Statistic LCOM TLCOM LCOM TLCOM

Min 0 0 0 0
Max 3401 3077 2707 2598
25% 4 3 0 0
Med 19 17 6 5
Mean 103.7 91.4 48.5 43.4
75% 85 66 27 23
Std. Dev. 301 270 192 182

Expectedly, the descriptive statistics results show that accounting for transitive relations reduces LCOM values.
This is because accounting for transitive relations increases the number of pairs of methods that share common
attributes. Hence, this decreases the number of method pairs that do not share common attribute and consequently
decreases LCOM values.

To study the relationship between the values of the collected metrics and the extent to which a class is prone to
faults, we applied logistic regression [24], a standard and mature statistical method based on maximum likelihood
estimation. This method is widely applied to predict fault-prone classes (e.g., [3, 25, 26, 27]). In logistic regression,
explanatory or independent variables are used to explain and predict dependent variables. A dependent variable can
only take discrete values and is binary in the context where we predict fault-prone classes. The logistic regression
model is univariate if it features only one explanatory variable and multivariate when including several explanatory
variables. In this case study, the dependent variable indicates the presence of one or more faults in a class, and the
explanatory variables are the cohesion metrics. Univariate regression is applied to study the fault prediction of each
metric separately, whereas multivariate regression is applied to study the fault prediction of different combinations
of metrics to determine the best model. In this paper, we focus on comparing the results for the metrics in terms of
their individual fault prediction power, and therefore, we consider only univariate regression.

We collected fault data for the classes in the considered software systems from publicly available fault
repositories. The developers of the considered systems used an on-line Version Control System (VCS) to keep track
of the changes performed on the source code of the system. The changes, called revisions, are due to either detected
faults or required feature improvements. Each revision is associated with a report including the revision description
and a list of classes involved in this change. Two research assistants, one with a B.Sc. in computer science and six
years of experience in software development activities and another with a B.Sc. and Master both in computer
science; each alone, manually traced the description of each revision and identified the ones performed due to
detected faults. Author of this paper compared the manual results and rechecked the results in which the two
assistants differ to choose the correct one. Finally, we used the lists of classes involved in changes due to detected
faults to count the number of faults in which each class is involved. We classified each class as being fault-free or as
having at least one fault. Ideally, class cohesion should be measured before each fault occurrence and correction,
and used to predict this particular fault occurrence. However, not only this would mean measuring cohesion for
dozens of versions (between each fault correction) for each system, but we would not be able to study the statistical
relationships of a set of faults with a set of consistent cohesion measurements for many classes. Our cohesion
measurement is based on the latest version of the source code, after fault corrections, and is therefore an
approximation. This is however quite common in similar research endeavors (e.g., [3,25,26,27]) and is necessary to
enable statistical analysis.

1584 J. Al Dallal / Procedia Computer Science 3 (2011) 1581–1587

Jehad Al Dallal / Procedia – Social and Behavioral Sciences 00 (2010) 000–000

5

The results of the univariate regression study are reported in Table 2. Estimated regression coefficients are
reported. The larger the absolute value of the coefficient is, the stronger the impact (positive or negative, according
to the sign of the coefficient) of the metric on the probability of a fault being detected in a class. The considered
metrics have different standard deviations as shown in Table 1. Therefore, to help compare the coefficients, we
standardized the explanatory variables by subtracting the mean and dividing by the standard deviation and, as a
result, they all have an equal variance of 1 and the coefficients reported in Table 2 are also standardized. These
coefficients represent the variation in standard deviations in the dependent variable when there is a change of one
standard deviation in their corresponding independent variable. The p-value is the probability of the coefficient
being different from zero by chance, and is also an indicator of the accuracy of the coefficient estimate. We use a
typical significance threshold (=0.05) to determine whether a metric is a statistically significant fault predictor.

To evaluate the performance of a prediction model regardless of any particular threshold, we used the receiver
operating characteristic (ROC) curve [28]. In a fault prediction context, the ROC curve is a graphical plot of the
ratio of classes correctly classified as faulty versus the ratio of classes incorrectly classified as faulty at different
thresholds. The area under the ROC curve shows the ability of the model to correctly rank classes as faulty or non-
faulty. A 100% ROC area represents a perfect model that correctly classifies all classes. The larger the ROC area,
the better the model in terms of classifying classes. The results for all the coefficients and for all considered metrics
are reported in Table 2.

Table 2: Univariate logistic regression results
Art of Illusion System JabRef System

LCOM TLCOM LCOM TLCOM
Std. Coeff. 0.50 0.52 0.98 1.07
p-value <0.0001 <0.0001 0.001 <0.0001
ROC area 65.4% 66.2% 69.7% 70.1%

The results in Table 2 lead to the following conclusions:
1. Both the original LCOM and the extended metric are statistically significant at =0.005 (i.e., their coefficients

are significantly different from 0).
2. As expected, the estimated regression coefficients for the inverse cohesion measures LCOM and TLCOM are

positive. This indicates an increase in the predicted probability of fault detection as the lack of cohesion of the
class increases.

3. In both systems, the results of the standard coefficient and the area under the ROC curve are improved when
considering transitive relations as well as the direct ones in the computation of LCOM.

As a result, the empirical results above show that the extended LCOM that accounts for transitive relations
predicts faulty classes more accurately than the original LCOM that accounts only for direct relations. These results
indirectly indicate that the ability of LCOM in indicating class cohesion improves when accounting for both
transitive and direct cohesive relations.

5. Conclusions and Future Work

This paper extends LCOM, a widely referenced class cohesion metric. The extension considers the transitive
cohesive relations caused by method invocation. The original and extended versions of the metric are empirically
compared by applying them on classes of two open source systems. The results show that the extended version of
the metric predicts faulty classes, and thus indicates cohesion, better than the original version of the metric.

In the future, we plan to empirically address the accounting for transitive cohesive relations in the computation of
other class cohesion metrics. In addition, we intend to empirically study the impact of considering other factors
when applying cohesion metrics such as inheritance and access methods.

J. Al Dallal / Procedia Computer Science 3 (2011) 1581–1587 1585

Jehad Al Dallal / Procedia – Social and Behavioral Sciences 00 (2010) 000–000

6

Acknowledgements

The author would like to acknowledge the support of this work by Kuwait University Research Grant WI04/08.

References

1. J. Al Dallal and L. Briand, A precise method-method interaction-based cohesion metric for object-oriented
classes, ACM Transactions on Software Engineering and Methodology (TOSEM), In press, 2010.

2. J. Al Dallal, Mathematical validation of object-oriented class cohesion metrics, International Journal of
Computers, 2010, Vol. 4, No. 2, pp. 45-52.

3. L. C. Briand, J. Daly, and J. Wuest, A unified framework for cohesion measurement in object-oriented systems,
Empirical Software Engineering - An International Journal, Vol. 3, No. 1, 1998, pp. 65-117.

4. J. M. Bieman and B. Kang, Cohesion and reuse in an object-oriented system, Proceedings of the 1995
Symposium on Software reusability, Seattle, Washington, United States, pp. 259-262, 1995.

5. L. Badri and M. Badri, A Proposal of a new class cohesion criterion: an empirical study, Journal of Object
Technology, Vol. 3, No. 4, 2004..

6. L. Fernández, and R. Peña, A sensitive metric of class cohesion, International Journal of Information Theories
and Applications, Vol. 13, No. 1, 2006, pp. 82-91.

7. C. Bonja and E. Kidanmariam, Metrics for class cohesion and similarity between methods, Proceedings of the
44th Annual ACM Southeast Regional Conference, Melbourne, Florida, 2006, pp. 91-95.

8. J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A class cohesion metric for object-oriented designs, Journal of
Object-Oriented Program, Vol. 11, No. 8, pp. 47-52. 1999.

9. S. Counsell , S. Swift , and J. Crampton, The interpretation and utility of three cohesion metrics for object-
oriented design, ACM Transactions on Software Engineering and Methodology (TOSEM), Vol. 15, No. 2, 2006,
pp.123-149.

10.J. Al Dallal, A design-based cohesion metric for object-oriented classes, International Journal of Computer
Science and Engineering, 2007, Vol. 1, No. 3, pp. 195-200.

11.J. Al Dallal, Software similarity-based functional cohesion metric, IET Software, 2009, Vol. 3, No. 1, pp. 46-57.
12.J. Al Dallal, Theoretical validation of object-oriented lack-of-cohesion metrics, proceedings of the 8th WSEAS

International Conference on Software Engineering, Parallel and Distributed Systems (SEPADS 2009),
Cambridge, UK, February 2009.

13.J. Al Dallal and L. Briand, An object-oriented high-level design-based class cohesion metric, Information and
Software Technology, In press, 2010.

14.J. Al Dallal, Measuring the discriminative power of object-oriented class cohesion metrics, IEEE Transactions
on Software Engineering, In press, 2010.

15.S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-Oriented Design, Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), Special Issue of SIGPLAN Notices, Vol. 26,
No. 10, 1991, pp. 197-211.

16.S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented Design, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, 1994, pp. 476-493.

17.W. Li and S.M. Henry, Maintenance metrics for the object oriented paradigm. In Proceedings of 1st
International Software Metrics Symposium, Baltimore, MD, 1993, pp. 52-60.

18.M. Hitz and B. Montazeri, Measuring coupling and cohesion in object oriented systems, Proceedings of the
International Symposium on Applied Corporate Computing, 1995, pp. 25-27.

19.B. Henderson-Sellers, Software Metrics, Prentice Hall, Hemel Hempstaed, U.K., 1996.
20.J. Al Dallal, Efficient program slicing algorithms for measuring functional cohesion and parallelism,

International Journal of Information Technology, Vol. 4, No. 2, 2007, pp. 93-100.
21.J. Al Dallal, Improving the applicability of object-oriented class cohesion metrics, submitted for publication in

Information and Software Technology, 2010.
22.Illusion, http://sourceforge.net/projects/aoi/, July 2010.
23.JabRef, http://sourceforge.net/projects/jabref/, July 2010.

1586 J. Al Dallal / Procedia Computer Science 3 (2011) 1581–1587

Jehad Al Dallal / Procedia – Social and Behavioral Sciences 00 (2010) 000–000

7

24.D. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley Interscience, 2000, 2nd edition.
25.L. C. Briand, J. Wüst, and H. Lounis, Replicated Case Studies for Investigating Quality Factors in Object-

Oriented Designs, Empirical Software Engineering, 6(1), 2001, pp. 11-58.
26.T. Gyimothy, R. Ferenc, and I. Siket, Empirical validation of object-oriented metrics on open source software

for fault prediction, IEEE Transactions on Software Engineering, 3(10), 2005, pp. 897-910.
27.A. Marcus, D. Poshyvanyk, and R. Ferenc, Using the conceptual cohesion of classes for fault prediction in

object-oriented systems, IEEE Transactions on Software Engineering, 34(2), 2008, pp. 287-300.
28.J. A. Hanley and B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC)

curve, Radiology, 143(1), 1982, pp. 29-36.
29.J. Al Dallal, The Impact of accounting for special methods in the measurement of object-oriented class

cohesion, submitted for publication in Information and Software Technology, 2010.
30.J. Al Dallal, Fault prediction and the discriminative powers of connectivity-based object-oriented class cohesion

metrics, submitted for publication in IEEE Transactions on Software Engineering, 2010.
31.J. Al Dallal, The Incorporating transitive relations in low-level design-based class cohesion measurement,

submitted for publication in Journal of Systems and Software, 2010.

J. Al Dallal / Procedia Computer Science 3 (2011) 1581–1587 1587

View publication statsView publication stats

https://www.researchgate.net/publication/220307725

