
Cohesion and Reuse in an Object-Oriented System�James M. Bieman and Byung-Kyoo KangDepartment of Computer ScienceColorado State UniversityFort Collins, Colorado 80523 USA(303) 491-7096, Fax: (303) 491-2466bieman@cs.colostate.edu, kang@cs.colostate.eduAbstractWe de�ne and apply two new measures of object-orientedclass cohesion to a reasonably large C++ system. We �ndthat most of the classes are quite cohesive, but that theclasses that are reused more frequently via inheritanceexhibit clearly lower cohesion.1 IntroductionSoftware developers aim for systems with high cohesionand low coupling. The value of these goals has not beenvalidated empirically [6]. Rather, they have been justi-�ed on the basis of intuition. The amount of reuse |the number of times that a component is reused | isan indicator of reusability. Of course, other factors suchas the usefulness of a component are also componentsof reusability.Cohesion refers to the \relatedness" of module com-ponents. A highly cohesive component is one with onebasic function. It should be di�cult to split a cohesivecomponent. Cohesion can be classi�ed using an ordinalscale that ranges from the least desirable category|coincidental cohesion|to the most desirable|functionalcohesion [7]. To apply this cohesion model to classes inobject-oriented software, we need to add a new classi�-cation, data cohesion [5].Bieman and Ott developed a set of functional co-hesion measures based on program slices [2]. Thesemeasures apply only to individual functions; their ap-plication to entire classes is not obvious. Chidamber�Research partially supported by NASA Langley ResearchCenter grant NAG1-1461.Appeared in Proc. ACM Symposium on SoftwareReusability (SSR'95), April, 1995. pp. 259-262Copyright c
1995 by the Association for ComputingMachinery, Inc. Permission to make digital or hardcopies of part of this work for personal or classroomuse is granted without fee provided that copies are notmade or distributed for pro�t or commercial advantageand that copies bear this notice and the full citation onthe �rst page or intial screen of the document. Copy-rights for components of this work owned by othersthan ACM must be honored. Abstracting with creditis permitted. To copy otherwise, to republish, to poston servers, or to redistribute to lists, requires prior spe-ci�c permission and/or a fee. Request permissions fromPublications Dept., ACM Inc., fax +1 (212) 869-0481,or permissions@acm.org.

and Kemerer developed a Lack of Cohesion in Meth-ods (LCOM) measure for object-oriented software [3].LCOM is e�ective at identifying the most non-cohesiveclasses, but it is not e�ective at distinguishing betweenpartially cohesive classes. LCOM indicates lack of co-hesion only when, compared pairwise, fewer than halfof the paired methods use the same instance variables.Cohesion measures that are sensitive to small changesare needed in order to evaluate the relationship betweencohesion and reuse. In this paper, we develop sensitiveclass cohesion measures and apply them to a reasonablylarge C++ system. We evaluate the relationship betweenclass cohesion and private reuse in this system.2 Class CohesionThe components of a class are the instance variables andmethods de�ned in the class plus those that are inher-ited. A method and an instance variable are related bythe way that an instance variable is used by the method.Two methods are related (connected) through instancevariable(s) if both methods use the instance variable(s).Class cohesion is de�ned in terms of the relative numberof connected methods in the class.2.1 Relations between Class ComponentsIndividual methods are tied together via two mecha-nisms. One mechanism, MIV relations, involves com-munication between methods through shared instancevariables. The other mechanism, call relations, involvesthe sending of messages directly (or indirectly) from onemethod to another.An MIV relation is created when two or more classmethods read or write to the same class instance vari-able. We treat shared instance variables as glue thatbinds the class methods together.Instance variables used by the server may also usedindirectly by the client when one method invokes an-other through message passing. Thus, a call relationcan be re
ected by the MIV relation; two methods witha call-relation are also connected through the instancevariables used by both methods. One method uses theinstance variable(s) directly and the other uses the in-stance variable(s) indirectly through the call relation.There is no MIV relation when a server method nei-ther writes nor reads instance variables. Call relationscan not always be determined statically, due to dynamic

 {size=s; array=new int[size]; top=0;}

class Stack{
 int *array, top, size;
public:
 Stack(int s)

 int Isempty()
 {return top==0;}
 int Size()
 {return size;}
 int Vtop()
 {return array[top-1];}
 void Push(int item)
 {if (top==size)
 printf("Empty stack.\n");
 else array[top++] = item;}
 int Pop()

 printf("Full stack.\n");
 else --top;}
};

 {if (Isempty())Figure 1: An example of a class stack
toparray sizePush Pop

Stack

array

Stack Push

Vtop

top

Stack PopPush

Vtop Isempty

size

Stack

Push Size

Vtop Isempty Size

(a)

(b)Figure 2: MIV relations for class Stackbinding in object-oriented software. However, we haveobserved very few cases where dynamic binding a�ectsclass cohesion.Figure 1 shows a C++ class Stack and Figure 2(a)shows the MIV relations among class components ofStack in Figure 1. A link between a rectangle and anoval indicates that the method corresponding to therectangle uses the instance variable corresponding tothe oval. Figure 2(b) shows the connections for each in-stance variable. Here, the instance variable top is usedby the methods Stack, Push, Pop, Vtop, and Isempty.All of the methods that use the variable top are con-nected through the variable top.A class constructor (e.g., method Stack) is an ini-tialization function. It will generally access all instancevariables in the class, and thus, share instance variableswith virtually all other methods. Constructors createconnections between methods even if the methods donot have any other relationships. Thus, we remove con-

structor functions from our model and measures. Linksbetween the constructor Stack and instance variables inFigure 2 are represented as dashed lines. We also donot include destructor functions in our model.2.2 Visibility of Class ComponentsA client of a class can access only visible components ofthe class. Class cohesion refers the relatedness of vis-ible components of the class which represent its func-tionality. Class cohesion is the degree that those com-ponents are related. In our model of class cohesion,invisible components of a class are included only indi-rectly through the visible components. Therefore classcohesion is modeled as the MIV relations among all vis-ible methods (not including constructor or destructorfunctions) in the class.2.3 Inheritance and CohesionA subclass inherits methods and instance variables fromits superclass(es). We have several options for evaluat-ing cohesion of a subclass. We can (1) include all inher-ited components in the subclass in our evaluation, (2)include only methods and instance variables de�ned inthe subclass, or (3) include inherited instance variablesbut not inherited methods. The class cohesion measuresthat we develop can be applied using any one of theseoptions.3 Measuring Class CohesionThe MIV relation model includes the information tode�ne class cohesion. A method is represented as a setof instance variables directly or indirectly used by themethod. We call the representation of a method anabstracted method, AM.An instance variable is directly used by a method Mif the instance variable appears as a data token in themethod M . The instance variable may be de�ned inthe same class as M or in an ancestor class of the class.DU(M) is a set of instance variables directly used by amethod M .A direct/indirect call relation de�nes the indirect useof an instance variable. A method M 0 is directly calledby a method M if M is predecessor of M 0 in the callgraph. Indirect call relations are the transitive closure ofthe direct call relations. Thus, a methodM 0 is indirectlycalled by a method M if there is a path from M to M 0in the statically determined call graph.An instance variable is indirectly used by a methodM if (1) the instance variable is directly used by anothermethod M 0 which is called directly or indirectly by M ,and (2) the instance variable directly used by M 0 is insame object as M . IU(M) is a set of instance variablesindirectly used by method M . An instance variable isused by method M if the instance variable is directly orindirectly used by M .A class is represented as a collection of AM's whereeach AM corresponds to a visible method in the class.The representation of a class is called an abstractedclass, AC:AM(M) = DU(M) [IU(M)AC(C) = [[AM(M) j M 2 V(C)]]2

V(C) is a set of all visible methods in class C and theancestor classes of C. The AM's of di�erent methodscan be identical, thus there can be duplicate elementsin AC. Therefore, AC is a multi-set; \[[" and \]]" denotea multi-set. A local abstracted class (LAC) is a collectionof AM's where each AM corresponds to a visible methodde�ned only within the class:LAC(C) = [[AM(M) j M 2 LV(C)]]LV(C) are the visible methods de�ned within class C.The abstracted class of the Stack of Figure 1 isAC(Stack) = LAC(Stack) =[[ftopg; fsizeg; farray; topg; farray; top; sizeg; fpopg]]AC(Stack) = LAC(Stack) since class Stack does not havea superclass.3.1 Connectivity between methodsThe direct connectivity between methods is determinedfrom the class abstraction. If there exists one or morecommon instance variables between two method abstrac-tions then the two corresponding methods are directlyconnected.Two methods that are connected through other di-rectly connected methods are indirectly connected. Theindirect connection relation is the transitive closure ofdirect connection relation. Thus, a method M1 is indi-rectly connected with a methodMn if there is a sequenceof methods M2, M3, . . ., Mn�1 such thatM1 �M2; � � � ;Mn�1 �Mnwhere Mi �Mj represents a direct connection.Figure 2(a) shows that methods Size and Pop areindirectly connected; Size is connected directly to Pushwhich is in turn connected directly to Pop.3.2 De�nition of MeasuresWe de�ne two measures of class cohesion based on thedirect and indirect connections of method pairs. LetNP(C) be the total number of pairs of abstracted meth-ods in AC(C). NP is the maximum possible numberof direct or indirect connections in a class. If thereare N methods in a class C, NP(C) is N � (N � 1)=2.Let NDC(C) be the number of direct connections andNIC(C) be the number of indirect connections in AC(C).Tight class cohesion (TCC) is the relative number ofdirectly connected methods:TCC(C) = NDC(C)=NP (C)Loose class cohesion (LCC) is the relative number ofdirectly or indirectly connected methods:LCC(C) = (NDC(C) +NIC(C))=NP (C)The value of LCC is always greater than or equal to thevalue of the corresponding TCC. For the Stack exampleof Figure 1, the class cohesion measures are:TCC(Stack) = 7=10 = 0:7LCC(Stack) = 10=10 = 1

The TCCmeasure indicates that 70% of the visible meth-ods in class Stack are directly related. The LCCmeasureshows that all visible methods of class Stack are relateddirectly or indirectly.TCC and LCC indicate the degree of connectivity be-tween visible methods in a class. These visible meth-ods are those de�ned within the class or inherited tothe class. However, class cohesion measures for visiblemethods de�ned only within the class are also useful,because the measures are not a�ected by the cohesionof a superclass.Local class cohesion measures are de�ned by usingthe local abstracted class (LAC) rather than the ab-stracted class (AC). The instance variables used andmethods called by the visible methods for local class co-hesion may include inherited variables. The local classcohesion measures for class Stack are equal to the classcohesion measures since class Stack does not use inher-itance.We have built a tool that takes the class cohesionmeasures for C++ source programs. We speci�ed ourmeasures in the GENOA tool speci�cation language [4].We used GEN++ from AT&T Bell Laboratories, anapplication generator for creating code analyzers fromGENOA speci�cations, to implement our tool.4 Measuring OO reuseWe focus on private reuse|reuse within one softwaresystem [5]. We evaluate reuse from the server perspec-tive, since this is the best orientation for evaluatingreusability [1]. We are interested in two di�erent formsof class reuse, reuse via instantiation and reuse via in-heritance. A class is reused by being instantiated inother classes or by being inherited to them. Instantia-tion reuse of a class is measured as the number of classeswhere the class is instantiated. Inheritance reuse of aclass is the number of classes which inherit the class,i.e., the number of descendents (both direct and indi-rect descendents).5 Applying the Cohesion & Reuse MeasuresWe applied the class cohesion measures to the Inter-Views system, a reasonably large C++ system, devel-oped at Stanford University. InterViews is a systemfor window-based applications which provides a set ofclasses that de�ne the behavior of user interface objects.It consists of more than 25,000 non-commented lines ofcode. 14% of the classes in InterViews do not have anymethods; these classes were excluded from our measure-ments.We also removed all virtual methods with emptybodies. Such methods do not use instance variablesor call other methods. Overloaded methods within thesame class are treated as one method.Wemeasured instantiation reuse and inheritance reusefor all classes. We found no relationship between classcohesion and instantiation reuse in the InterViews sys-tem. However, we found signi�cant relationships be-tween cohesion and inheritance reuse.The class cohesion of a subclass is a�ected by theclass cohesion of its superclass. To remove the e�ects of3

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0 1~9 10~29 >29

0 1~9 10~29 >29 0 1~9 10~29 >29

0 1~9 10~29 >29

No. of Descendents

No. of Descendents No. of Descendents

M
ea

n
of

 L
C

C
s

M
ea

n
of

 T
C

C
s

M
ed

ia
n

of
 T

C
C

s
M

ed
ia

n
of

 L
C

C
s

(a) (b)

(c) (d)

No. of Descendents

Figure 3: Number of descendents and Class Cohesionthe superclass, we use only local cohesion|we do notinclude inherited methods in our measurement.Figure 3 shows the relationship between the numberof descendents and local class cohesion. Average valuesof tight class cohesion and loose class cohesion are pro-vided for four di�erent categories based on the numberof descendents. Figure 3 clearly shows that the classesthat are reused more frequently exhibit lower cohesion.Table 1 shows that this relationship holds generally forall levels of depth in the inheritance hierarchy.We applied a T-test and the Wilcoxon rank-sum testto evaluate the signi�cance of our results. A T-test canbe used for data with a normal distribution and an inter-val scale, and the Wilcoxon rank-sum test can be usedif there is a question concerning distributions or if thedata is ordinal. Both tests shows that the relationshipwe see in Figure 3 and Table 1 is signi�cant (to the .05level) and not due to chance.6 Discussion of ResultsIf a class is designed in ad hoc manner and unrelatedcomponents are included in the class, the class repre-sents more than one concept and does not model anentity. A class designed so that it is a model of morethan one entity will have more than one group of con-nections in the class. The cohesion value of such a classis likely to be less than 0.5. For example, if �ve of thesix methods in a class are connected and the remainingmethod has no connections, the TCC and LCC of theclass are both 0.67. If three of the six methods in a classare connected, and the other three are also connectedwith no connection between those two groups, both theTCC and LCC of the class are 0.40. Therefore, the classcohesion measures can be used to locate the classes thatmay have been designed inappropriately.Most of the classes in InterViews are quite cohesive.The mean TCC is 0.75 and median is 1.0; the LCC

Table 1: Depth, Descendents, & Class CohesionNo. of TCC LCCD Descendents N Mean Med Mean Med1 n = 0 367 0.91 1.00 0.94 1.001 1 � n < 10 20 0.69 0.88 0.75 1.001 10 � n 7 0.58 0.48 0.61 0.512 n = 0 190 0.53 0.61 0.57 0.712 1 � n < 10 27 0.53 0.64 0.59 0.712 10 � n 7 0.24 0.14 0.32 0.143 n = 0 112 0.68 0.78 0.75 1.003 1 � n < 10 28 0.78 1.00 0.84 1.003 10 � n 6 0.46 0.52 0.58 0.704 n = 0 84 0.81 1.00 0.90 1.004 1 � n < 10 37 0.76 0.83 0.87 1.004 10 � n 10 0.59 0.56 0.71 0.785 n = 0 98 0.72 0.86 0.79 1.005 1 � n < 10 31 0.70 0.69 0.79 1.005 10 � n 6 0.67 0.85 0.67 0.856 n = 0 85 0.77 0.87 0.81 1.006 1 � n < 10 17 0.75 0.74 0.79 0.856 10 � n 5 0.50 0.52 0.52 0.607 n = 0 35 0.84 1.00 0.87 1.007 1 � n < 10 18 0.67 0.71 0.75 0.827 10 � n 2 0.08 0.17 0.08 0.178 n = 0 51 1.00 1.00 0.84 1.008 1 � n < 10 11 0.72 0.75 0.81 0.829 n = 0 14 0.86 1.00 0.93 1.00D is the depth in the inheritance hierarchy.mean is 0.8 and median is 1.0. The classes have an av-erage of about six local visible methods. If the LCC ofa class is 0.8 and the class has six local visible methods,then 80% of the pairs of methods in the class are con-nected, i.e., among 15 pairs of methods 12 pairs are con-nected. Thus, we know that most of InterViews classesare quite cohesive and were designed carefully.Our results show that the classes that are heavilyreused via inheritance exhibit lower cohesion. We ex-pected to �nd that the most reused classes would bethe most cohesive ones. Studies of additional softwaresystems are needed to con�rm these results.References[1] J. Bieman. Deriving measures of software reuse in object-oriented systems. Proc. BCS-FACS Workshop FormalAspects of Measurement, pp. 79-82. Springer 1992.[2] J. Bieman & L. Ott. Measuring functional cohesion.IEEE Trans. Software Engineering, 20(8):644{657, Aug.1994.[3] S. Chidamber and C. Kemerer. A metrics suite for ob-ject oriented design. IEEE Trans. Software Engineering,20(6):476{493, June 1994.[4] P. Devanbu. GENOA a customizable, language- andfront-end independent code analyzer. Proc. ICSE-14, pp.307{317, 1992.[5] N. Fenton. Software Metrics - A Rigorous Approach.Chapman and Hall, London, 1991.[6] N. Fenton, S.L. P
eeger, and R. Glass. Science and sub-stance: a challenge to software engineers. IEEE Software,11(4):86{95, July 1994.[7] E. Yourdon and L. Constantine. Structured Design.Prentice-Hall, Englewood Cli�s, NJ, 1979.4

