Using libcurl with SSH support in
Visual Studio 2008

Version 1.6

© Andrei Jakab (andrei.jakab@tut.fi)

Revision History

Revision Date By Comment
1.0 08 Dec. 2008 Andrei Jakab Initial version
1.1 07 Jan. 2009 Andrei Jakab e section 3.4, item 3.b.ii:
o replaced CURL_STATIC by
CURL_STATICLIB
o added CURL_DISABLE_LDAP
e section 4.3.2, item 4.b:
o removed widap32.lib
1.2 10 Mar. 2009 Andrei Jakab Updated the guide to reflect the latest versions
of libcurl (7.19.4), libSSH2 (1.0) and OpenSSL
(0.9.8)).
13 07 May 2009 Andrei Jakab Updated the guide to reflect the latest versions
of libSSH2 (1.1) and OpenSSL (1.0.0 Beta 2).
1.4 18 May 2009 Andrei Jakab Updated the guide for libcurl 7.19.5.
15 06 Jan. 2010 Andrei Jakab e Updated the guide to reflect the latest
versions of:
o ActivePerl (5.10.1.1006)
o libcurl (7.19.7)
o libSSH2 (1.2.2)
o NASM (2.8 RC 6)
o OpenSSL (1.0.0 Beta 4).
e New section added: ‘Appendix A -
Adding OpenSSL support directly to
libcurl
1.6 11 Nov. 2010 Andrei Jakab Updated the guide to reflect the latest versions

of:

ActivePerl (5.12.2)
libcurl (7.21.2)
libSSH2 (1.2.7)
NASM (2.09.03)
OpenSSL (1.0.0a)

O O O O O

Using libcurl with SSH support in Visual Studio 2008

Acknowledgements
| would like to thank the following people for helping me make this guide what it is today by
letting me know about typos and by suggesting improvements:

e Chengwei Lin

e Jon Woellhaf

e Philipp Leusmann
e Reinhard Gentz

e Jack Schmidt

Using libcurl with SSH support in Visual Studio 2008 3

Table of Contents

REVISION HISTORY
ACKNOWLEDGEMENTS

CONVENTIONS

1. INTRODUCTION

2. DOWNLOADING THE LATEST SOFTWARE

3. INSTALLATION / COMPILATION
3.1 ActivePerl

3.2 Netwide Assembler

3.3 OpensSL

3.4 libSSH2

3.5 libcurl

4. USING THE LIBCURL LIBRARY IN YOUR VISUAL STUDIO PROJECT
4.1 Preparing the project’s file structure
4.2 Creating the test project

4.3 How to use the libcurl library
4.3.1 Sample source code
4.3.2 Adding libcurl to the list of libraries
4.3.3 The test-drive

5. FINAL NOTES

APPENDIX A - ADDING OPENSSL SUPPORT DIRECTLY TO LIBCURL

Using libcurl with SSH support in Visual Studio 2008

11

13

15

15

16

19
19
22
24

25

26

Conventions
The following font conventions are used in this document:

e italic is used for filenames, directory names, and URLs

e constant width is used to indicate commands and code sections

e red, bold and underlined text indicates important items

e bold is used to represent GUI items (e.g. menus, menu items, list nodes etc.)

Using libcurl with SSH support in Visual Studio 2008

1. Introduction
Libcurl is a widely-used open-source library for transferring files. It supports many protocols
(e.g. FTP, HTTP, SFTP etc.) and it is very well designed.

One of libcurl’s strengths is its portability. You can build it on numerous platforms and you can
be sure that it will work the same way on all of them. This wide support also means that the
developers cannot constantly update the readme files for all the supported platforms. Thus, I
have decided to create this document in order to share my experiences while compiling a static
version of the curl library with SSH support in Visual Studio 2008.

This guide is inspired from Rosso Salmanzadeh's excellent “Using libcurl in Visual Studio”
guide.

Using libcurl with SSH support in Visual Studio 2008 6

2. Downloading the latest software

Libcurl requires two additional open-source libraries in order to provide the SSH functionality:
libSSH2 and OpenSSL. Also, since the compilation of OpenSSL makes use of Perl scripts, you
need to have a Perl distribution installed on your machine. | have chosen ActivePerl, a free
distribution by ActiveState, for this purpose. OpenSSL also requires the Netwide Assembler to
be present on your computer.

The OpenSSL and libSSH2 libraries are distributed as tarballs compressed using gzip. Hence,
you will need a utility to uncompress and subsequently open the tar file. | recommend the open-
source archiver 7-Zip.

In order to obtain the latest version of the Netwide Assembler, click on the link in the table
below and, on the webpage that appears, follow the link that takes you to the latest stable version
of NASM. You have the choice between downloading the source code or pre-compiled binaries.
| strongly encourage you to download the binary files since | will not cover the compilation of
NASM in this guide. The archives that contain the binary distributions are located in folders
named after their intended architecture e.g. win32, dos, 0s2 etc.

Software URL Current Version
ActivePerl http://www.activestate.com/downloads/index.mhtml 5.12.2.1202
OpenSSL http://www.openssl.org/source 1.0.0a

libSSH2 http://www.libssh2.org 1.2.7

libcurl http://curl.haxx.se/download.html 7.21.2

Netwide Assembler http://www.nasm.us 2.09.03

7-Zip http://www.7-zip.org 9.19 beta

NOTE: This guide assumes that you already have successfully installed Microsoft Visual
Studio 2008 (VS2008) and the Windows SDK. The examples in this document were
built using version 9.0.30729.1 SP of VS2008 and Version 6.1 of the Windows SDK.

Using libcurl with SSH support in Visual Studio 2008 7

http://www.activestate.com/downloads/index.mhtml
http://www.openssl.org/source
http://www.libssh2.org/
http://curl.haxx.se/download.html
http://www.nasm.us/
http://www.7-zip.org/

3. Installation / Compilation

3.1 ActivePerl

Installing ActivePerl is fairly straightforward as long as you are logged in with an Administrator
account. Below are screenshots from each step of the installation process. Please pay particular
attention to Step 4 because choosing the wrong option there will make your life harder later.

) ActivePerl 5.12.2 Build 1202 Setup l@ 1] ActivePerl 5.12.2 Build 1202 License Agreement =)

o

ActiveState Welcome to the ActivePerl 5.12.2 Build 1202 End-User License Agreement

-
Setup Wizard Please read the following license agreement carefully Aml'es‘a‘e

The Setup Wizard will install ActivePer] 5.12.2
Build 1202 on your computer. Click Next to

- : - i
continue or Cancel to exit the Setup Wizard. ActivePerl License Agreement 3

ActivePerl is covered by the ActiveState Community License.

Using ActivePerl at work?
Please note: If you plan to redistribute ActivePerl you will need a
different license. For more information please visit
http://www.activestate.com/activeperl_oem.

Our ActivePerl Enterprise business solution is
a support and maintenance package for

organizations of all sizes that depend on Perl.
Safeguard your applications with guaranteed,

Active Perl"'I quality-assured ActivePerl binaries and mitigate ActivePerl Community License v2.2 -
risk with world-class support for your critical
Perl systems. @i accept the terms in the License Agreement
Www.activestate.com () I do not accept the terms in the License Agreement
—
L
Step 1 - Introduction Step 2 - EULA
15 ActivePerl 5.12.2 Build 1202 Setu =) 1 ActivePerl 5.12.2 Build 1202 Setu [
Custom Setup Choose Setup Options

- -
Select the way you want features to be installed. AﬂIUESla‘e Choose optional setup actions. Aml'es‘a‘e

Click on the icong in the tree below to change the way features will be installed.

B ActivePerl ActiveState ActivePerl is a
Bgv Perl quality-assured distribution of Create Perl file extension association

i =D~ | Perl ISAPL Perl and other value-additions...
~| PerlEx This feature requires OKE on Create .pl script mapping for Perl

=~ | Perlscript your hard drive. It has 2 of 4
Qv‘ BPM subfeatures selected. The Create .plx script mapping for Perl ISAPI

[¥] Add Perl to the PATH environment variable

. subfeatures require 22MEB on
¥ - | Documentation your hard drive.

* ~| Examples Create .plex script mapping for standard Perl script in PerlEx
Create .aspl script mapping for embedded Perl scripts in PerlEx
Location: C:\Perl\, Create I1S virtual directory for PerlEx examples
[Reset] [Diskgsage] [< Back][MNext =] l Cancel] [< Back][Next =] [Cancel
Step 3 - Customization 1 Step 4 - Customization 2
Note 1: The “Documentation” and “Examples” | NOTE: Make sure that there’s a checkmark
are only useful if you wish to learn how besides the “Add Perl to the PATH
to use ActivePerl; for the purposes of this environment variable” option.

document, these items are not needed.

Note 2: The default installation location is not in
the Program Files” Some clean freaks
(such as yours truly) might take offence
to this.

Using libcurl with SSH support in Visual Studio 2008 8

] activeper 5.12.2 Build 1202 Setup [1l ActivePerl 5.12.2 Build 1202 Setup (o]

Ready to Install

The Setup Wizard is ready to begin the Custom
installation

Click Install to begin the installation. If you want to review or change any

of your installation settings, click Back. Click Cancel to exit the wizard. Secure your critical systems with ActivePerl
Enterprise. ActivePerl Enterprise is a
comprehensive software, support and
maintenance package for organizations of all
sizes that depend on Perl.

A[:ti"‘aSlate mi"esmte g:{unglﬁggagéhe ActivePerl 5.12.2 Build 1202

Using ActivePerl at work?

Contact us today for more information by email
sales@activestate.com or phone 1.866.510.2914

H = (toll-free in Morth America) or 1.778.786.1101.
ActivePerl

I < Back ” Install | I Cancel J = Back Cance

étep 5 - Installation Confirmation étep 6 - Installation Complete

3.2 Netwide Assembler

1.

Extract the nasm-2.09.03 folder from the zip file and place it in the C: root directory

3.3 OpenSSL
Compiling the OpenSSL library is a bit tricky. The following step-by-step guide should help you
get through the compilation process as quickly and as painlessly as possible.

1.
2.
3.

Extract the openssl-1.0.0a.tar file from the gzip file to a temporary directory
Extract the openssl-1.0.0a folder from the tar file and place it in the C: root directory

Close the VS2008 IDE and open a Visual Studio 2008 command prompt (if you’ve
installed VS 2008 with the default settings, the command prompt shortcut should be
located in Start -> All Programs -> Microsoft Visual Studio 2008 -> Visual Studio
Tools -> Visual Studio 2008 Command Prompt)

Add the NASM executable to the PATH environment variable:
path = $PATH%;C:\nasm-2.09.03

Create the directory where the output of the compilation process will be stored:
mkdir c:\openssl 1lib

Change the working directory to the OpenSSL directory:
cd /D c:\openssl-1.0.0a

Configure the OpenSSL installation with:

perl Configure VC-WIN32 --prefix=c:/openssl 1lib

where the ——prefix argument specifies where OpenSSL header and library files will

be copied at the end of the compilation process.

NOTE: The path that is passed to the —-prefix argument must be in the UNIX
format i.e. forward slashes are used to separate directories and not backward
slashes like it is customary in Windows.

Using libcurl with SSH support in Visual Studio 2008 9

10.
11.

12.

13.

Note:

The output of this command should look like this:

Conf iguring for UC-UIN32

no—gmp [default]l OPENSSL_HNHO_GHMP {skip dir>
no—jpake [experimentall OPENSSL_HO_JPAKE {skip dird>
no—krhs [krbh5—f lavor not specified] OPEMSSL_NO_KRES
no—md2 [default]l OPENSSL_NO_MDZ <(skip dir>
no—rch [default]l OPENSSL_NO_RCS <(skip dir>
no—rfc37??? [default]l OPENSSL_NO_RFC377? (skip dir>
no—shared [default]

3 [experimentall OPENSSL_MNO_STORE {(skip dird

[default]

LAG =—DOPENSEL_THREADS -DDSO_WIN32 -W3 -WX —Gs@ -GF -Gy —nologo -DOPH
NSSL_SYSNAME_WIN32 -DWIN32_LEAN_AND_MEAN —DL_ENDIAN -D_CRT_SECURE_NO_DEPRECATE
DOPENSSL_BN_ASM_PART_WORDS -DOPEMSSL_IA32_SSE2 —DOPENSSL_BM_ASM_MONT -DSHAL_ASM
—DSHA256_ASM —-DSHAS12_ASM -DMD5_ASM -DRMD166A_ASM -DAES_ASM —DWHIRLPOOL_ASM

=xB86cpuid.o
=bn—-586.0 co-586.0 x8B6—mont.o
Lt —532.0 crypth86.o

-0

=hf-586.

=cast-586.0

=rc4-586.0

=rch-586.0

=md5—-586.0

=shal-586.0 sha256-586.0 shab12-586.0
=rmid—586.0

=cmll-x86.0

=true

PERL =perl
THIRTY_TWO_BIT mode
BN_LLONG mode
RC4_INDEX mode
RC4_CHUNK is undefined

[Conf igured for UC—WIN3Z.

Create the required assembly files:

ms\do nasm

Note: Using assembly files makes the execution of library functions much faster. If you
do not wish to use assembly files, use the following command instead and jump to
step 8:
ms\do ms

Compile the static library:
nmake —-f ms\nt.mak

The compilation process takes a while so you can go grab some coffee/tea at this point.

If all is well, at the end of the compilation you will have some libraries and a number of
executables in d:\openssl-1.0.0a\out32

The library contains some built in tests that allow you to check if everything has
compiled properly and if the library is in working order:

nmake -f ms\nt.mak test

If the library has compiled properly, you should obtain a “passed all tests” message once
this command finishes executing.

To install OpenSSL to the location you specified in step 6, run:
nmake -f ms\nt.mak install

You can find additional compiling instructions in C:\openssl-1.0.0a\INSTALL.W32; this
file also contains a troubleshooting section that could help you out if something goes
wrong during the compilation process.

Using libcurl with SSH support in Visual Studio 2008 10

3.4 libSSH2
1. Extract the libssh2-1.2.7.tar file from the gzip file to a temporary directory.
2. Extract the libssh2-1.2.7 directory from the tar file and place it in the C: root directory.

3. Open C:\libssh2-1.2.7\win32\libssh2.dsp in the Visual Studio 2008 IDE. Since this
project file was created using an older version of Visual Studio, the following message
box will appear:

Visual C++ Project ﬁ

The project 'libssh2.dsp’ must be converted to the current Visual C++
project format. After it has been converted, you will not be able to edit
this project in previcus versions of Visual Studio.

Convert and open this prc-ject?l

| Yes || No || VesToal | | NoToan |

Click on “Yes To All”. Once the conversion is completed, you should see the following

in the Solution Explorer window:
[5A Selution 'libssh2' (1 project)

R <] ibssh2

=~ | Header Files
..... 1] channel.h
..... \h] comp.h
.....] libgerypt.h
..... 1] libssh2_config.h
..... 1] libssh2_priv.h
.....] mac.h
.....] misc.h
.....] opensslh
.....] packet.h
.....] session.h
.....] transport.h
.....] userauth.h
= L& Source Files
..... &4 agent.c
..... ¢+ channel.c
..... € comp.c
..... ¢ erypt.c
..... ¢+ global.c
..... & hostkey.c
..... ¢+ keepalive.c
..... E:] kex.c
..... & knownhost.c
..... ¢ libgerypt.c
..... €4 mac.c
..... €+ misc.c
..... ¢+ openssl.c
..... & packet.c
..... ¢ pem.c
..... ¢+ publickey.c
..... Ej sCp.C
..... €+ session.c
..... €+ sftp.c
..... €+ transport.c
..... €+ userauth.c

----- €] version.c

Using libcurl with SSH support in Visual Studio 2008 11

4. If you do not wish to use the zlib compression library, open libssh2_config.h and
comment out line 38:
//#define LIBSSH2 HAVE ZLIB 1

5. Set the LIB Debug as the active solution configuration. On the Build menu in Visual
Studio, click Configuration Manager... and in the window that appears select LIB
Debug from the Active solution configuration drop-down list. Close the Configuration
Manager.

6. Next, you must tell the compiler and the librarian where the OpenSSL library is located
and how to compile the library:

a. Right-click on the libssh2 project in the Solution Explorer window and select
Properties from the pop-up menu.

b. Expand the Configuration Properties node, click on the C/C++ node and select
General. Choose the Additional Include Directories property and add the
following:

,C:\openssl_lib\include
(the comma is needed since other paths are already present)
c. Also in the Configuration Properties node, expand the Librarian node, and
select General.
i. Change the Output File property to:

Debug_lib\libssh2.lib

ii. Click on the Additional Dependencies property and set it to:
libeay32.lib ssleay32.lib

iii. Choose the Additional Library Directories and add the following path:
C:\openssl_lib\lib

d. Click on the OK button.

7. Now we are ready to compile. Right-click on the libssh2 project and select Build from
the pop-up menu. VS2008 will prompt you to save the solution file that was created for
this project. Once you save it, compilation will begin.

8. The compiler might display a couple of security warnings and/or “possible loss of data”
warnings. For our purposes, both of these types of warnings can be safely ignored.

Using libcurl with SSH support in Visual Studio 2008 12

3.5 libcurl
1. Extract the curl-7.21.2 folder from the archive and place it in the C: root directory. For
our purposes, we will need the files located in the lib and include directories.

2. Open C:\curl-7.21.2\lib\libcurl.vcproj in the Visual Studio 2008 IDE. Since this is a
Visual Studio 2005 project file, the “Visual Studio Conversion Wizard” will appear. The
wizard should not encounter any problems converting the project to the VS2008 format.
You will only get a warning concerning the User Account Control (UAC) feature of
Windows Vista. Since we are building a library and not an executable, we can safely
ignore this warning.

3. Next, you must tell the compiler and the librarian to use the libSSH2 library and where
this library is located:
a. Right-click on the libcurl project in the Solution Explorer window and select
Properties from the pop-up menu.
b. Expand the Configuration Properties node, then the C/C++ node.

i. Click on the General node. Next to Additional Include Directories, add

the following:

,C:\libssh2-1.2.7\include

(the comma is needed since there are already two additional include
directories specified)

ii. Select the Preprocessor node and click on the Preprocessor Definitions
property. Add in the following to the existing definitions:
;CURL_STATICLIB;USE_LIBSSH2;CURL_DISABLE_LDAP;HAVE_
LIBSSH2;HAVE_LIBSSH2 H;LIBSSH2 WIN32 ;LIBSSH2 LIBRARY

c. In the Configuration Properties node, expand the Librarian node, and select
General.

i. Select Additional Dependencies and type in:
libssh2.lib

ii. Nextto Additional Library Directories, type in the path:
C:\libssh2-1.2.7\win32\Debug_lib

d. Click on the OK button.

4. After all this work, we are finally ready to compile the libcurl library. Right-click on the
curllib project in the Solution Explorer and select Build from the pop-up menu. VS2008
will prompt you to save the solution file that was created for this project. Once you save
it, compilation will begin:

1>------ Build started: Project: libcurl, Configuration: Debug Win32 ------
1>Compiling...

Using libcurl with SSH support in Visual Studio 2008 13

1>connect.c
1>content_encoding.c
1>cookie.c

1>timeval.c

1>transfer.c

1>url.c

1>version.c

1>warnless.c

1>wildcard.c

1>base64.c

1>Generating Code...

1>Creating library...

1>Creating browse information file...

1>Muicrosoft Browse Information Maintenance Utility Version 9.00.21022
1>Copyright (C) Microsoft Corporation. All rights reserved.

1>Build log was saved at file://c:\curl-7.21.2\lib\Debug\BuildLog.htm
1>libcurl - 0 error(s), 1 warning(s)

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

By default, the output directory is C:\curl-7.21.2\lib\Debug. In order to create an
application that uses the libcurl library, we only need the libcurl.lib file from the output
directory and the C:\curl-7.21.2\include\curl directory, which contains the library’s
header files.

Using libcurl with SSH support in Visual Studio 2008 14

4. Using the libcurl library in your Visual Studio project

In this section we will create a test project, which will at the same time test the library’s
functionality and demonstrate how to integrate libcurl into one of your projects. | suggest that
you follow the example step by step (i.e. use the same project names, paths etc.) so that you
obtain the same figures as the ones shown below. This will make your life easier in case you
encounter any problems along the way.

4.1 Preparing the project’s file structure
Create the following folder structure in you C: root directory:

= [} custom libraries
|20 inchade
I lib_dbg

Copy the curl folder from the C:\curl-7.21.2\include directory into the C:\Projects\custom
libraries\include directory. The curl directory should contain the following files:

ﬂ curl.h 18.9.2010 23:00 C/C++ Header T8 KB
ﬂ curlbuild.h 13.10.2010 0:04 C/C++ Header 22 KB
| curlbuild.h.cmake 18.9.2010 23:00 CMAKE File TKB
|| eurlbuild.h.in 13.10.2010 0:04 IM File TKB
ﬂ curlrules.h 18.9.2010 23:00 C/C++ Header S KB
ﬂ curlver.h 13.10.2010 0:04 C/C++ Header 3KE
n easy.h 15.9.2010 23:00 C/C++ Header 4 KB
|| Makefile.am 18.9.2010 23:00 AM File 1KB
|| Makefile.in 1.10.2010 22:49 IM File 16 KB
0] mprintf.h 18.9.2010 23:00 C/C++ Header JKE
] multih 18.9.2010 23:00 C/C++ Header 13 KB
il stdcheaders.h 18.9.2010 23:00 C/C++ Header 2KB
] typecheck-gee.h 18.9.2010 23:00 C/C++ Header 36 KE
] types.h 20.3.2010 23:51 C/C++ Header 1KE

Notice that there are also 4 make files in this directory. We won’t need them so they can be
safely deleted, if you wish.

Finally, you need to copy liburl.lib from C:\curl-7.21.2\lib\Debug to C:\Projects\custom
libraries\lib_dbg.

Using libcurl with SSH support in Visual Studio 2008 15

4.2 Creating the test project
The libcurl library can be used in any type of application. In order to keep things simple, we will
create a simple Win32 console application.

1. Fire up VS2008 and go to: File -> New -> Project...
2. First expand the Visual C++ node, then select the Win32 node and click on the Win32
Console Application item in the Templates panel:

Projeck bypes: Templates: ‘NET Framewark 2,0 [v] |§|
=) Wisual C++ Yisual Studio installed templates
ATL
CLR E Win3Z2 Console Application EWiHSZ Project
General
MFC My Templates
Test _
Winaz ~ii Search Online Templates. ..

COther Languages
Cther Project Types
Test Projects

& project for creating a Win32 console application

Mame: test_curl
Location: Ci\Projects
Solution Mame: kest_curl Create directory For solution

[Ok] [Cancel

3. Typein “test_curl” for the project name. The project location should be:
C:\Projects
Make sure that the checkbox Create directory for solution is checked and click on OK.

Using libcurl with SSH support in Visual Studio 2008 16

4. The Win32 Application Wizard will appear. In the first window click on Next:

Win32 Application Wizard = test"conl E 1

Welcome to the Win32 Application Wizard

These are the current project settings:
+ Console application

Crvervien
Application Settings
Click Finish from any window to accept the current settings.

After you create the project, see the project’s readme. txt file for information
about the project features and files that are generated.

Next >][Finish H Cancel

5. In the following window:
a. Make sure that Console application is selected from the Application type: list

b. In Additional options, uncheck the Precompiled header option.
c. Ensure that both ATL and MFC are unchecked in the Add common header files

for: list.
Now you can press on the Finish button and wait for VS2008 to set up your project.

Win32 ApphcationWizard'=test_curl E w

Application Settings

Cveryiem Application type: Add common header files for:
application Settings O Windaws application Can

(*) Console application Cmrc

Cou

() Staticlibrary

Additional options:
[Empty project

[Precompiled header

) [

Using libcurl with SSH support in Visual Studio 2008 17

6. In the Solution Explorer window you should see the following project structure:

Salution Explarer

'_: sk _curl 1 project)
= 2 test_curl
= = Header Files
b stdafax.h

h] targetver.h
[Resource Files
= | Source Files
'-'rj stdafx.cpp
'-'rj kest_curl.cpp
[Z] readMe.bxt

Double-click on test curl.cpp to open it (if VS2008 didn’t already do so for you). The
source code should look like this:

test_curl.cpp

{ialobal Scope) [Vl
1E /s test_curl.cpp : Defines the entry point for the console application.
zi| A
3
4| #include "stdafx.h"

5

6 L

YiElint _tmwaini(int arge, TCHAR® argv[])
SH |

=l return 0;

106 ¥

11

1zib

Using libcurl with SSH support in Visual Studio 2008 18

4.3 How to use the libcurl library
4.3.1 Sample source code
Replace all the code in test_curl.cpp with this code:

// headers

#include "stdafx.h"
#include <conio.h>
#include <curl/curl.h>
#include <windows.h>

// prototypes
int libcurl progress callback (void * clientp, double dltotal,
double dlnow, double ultotal,
double ulnow) ;
size t libcurl read callback(void * pBuffer, size t size, size t nmemb,
void * hFile);
void SSHUpload(char * strFileName, char * strFilePath);

int tmain(int argc, TCHAR* argvl([])
{
SSHUpload ("test.txt", "C:\\");
printf ("Press any key to continue...");
_getch();

return 0;

}

void SSHUpload(char * strFileName, char * strFilePath)
{
char strBuffer([1024];
CURL * hCurl;
CURLcode ccCurlResult = CURL LAST;
curl off t cotFileSize;
HANDLE hFile;
LARGE_INTEGER liFileSize;

// check parameters

if((strFileName == NULL || strlen(strFileName) == 0) ||
(strFilePath == NULL || strlen(strFilePath) == 0))
return;

// parse file path
if (strFilePath[strlen(strFilePath) - 1] == "\\"'")

sprintf s(strBuffer, 1024, "%s%s", strFilePath, strFileName);
else

sprintf s(strBuffer, 1024, "%s\\%s", strFilePath, strFileName);

// create a handle to the file

hFile = CreateFileA (strBuffer, // file to open
GENERIC READ, // open for reading
FILE SHARE READ, // share for reading
NULL, // default security
OPEN_EXISTING, // existing file only
FILE ATTRIBUTE NORMAL, // normal file
NULL) ; // no attr. template

Using libcurl with SSH support in Visual Studio 2008

if (hFile != INVALID HANDLE VALUE)
{
// global libcurl initialisation
ccCurlResult = curl global init (CURL_GLOBAL WIN32) ;
if (ccCurlResult == 0)
{
// start libcurl easy session
hCurl = curl easy init();
if (hCurl)
{
// enable verbose operation
curl easy setopt (hCurl, CURLOPT VERBOSE, TRUE) ;

// enable uploading
curl easy setopt (hCurl, CURLOPT UPLOAD, TRUE);

// inform libcurl of the file's size
GetFileSizeEx (hFile, &liFileSize);
cotFileSize = liFileSize.QuadPart;
curl easy setopt (hCurl,
CURLOPT INFILESIZE LARGE,
cotFileSize);

// enable progress report function
curl easy setopt (hCurl, CURLOPT NOPROGRESS, FALSE) ;
curl easy setopt (hCurl,

CURLOPT PROGRESSFUNCTION,

libcurl progress callback);

// use custom read function

curl easy setopt (hCurl,
CURLOPT READFUNCTION,
libcurl read callback);

// specify which file to upload
curl easy setopt (hCurl, CURLOPT READDATA, hFile);

// specify full path of uploaded file (i.e. server

// address plus remote path)

sprintf s (strBuffer,
1024,
"sftp://123.123.123.123/home/user/%s",
strFileName) ;

curl easy setopt (hCurl, CURLOPT URL, strBuffer);

// set SSH server port
curl easy setopt (hCurl, CURLOPT PORT, 22);

// set SSH user name and password in libcurl in this
// format "user:password"
curl easy setopt (hCurl,

CURLOPT USERPWD,

"user:password") ;

// set SSH authentication to user name and password

Using libcurl with SSH support in Visual Studio 2008

curl easy setopt (hCurl,
CURLOPT SSH AUTH TYPES,
CURLSSH_AUTH PASSWORD) ;

// execute command
ccCurlResult = curl easy perform(hCurl);

// end libcurl easy session
curl easy cleanup (hCurl);

}

// release file handle
CloseHandle (hFile) ;

// global libcurl cleanup
curl global cleanup () ;

if (ccCurlResult == CURLE OK)
printf ("File uploaded successfully.\n");
else
printf ("File upload failed. Curl error: %d\n",
ccCurlResult) ;

else
printf ("File upload failed! Could not open local file");

}

size t libcurl read callback(void * pBuffer, size t size,
size t nmemb, void * hFile)

{
DWORD dwNumberOfBytesRead = 0;

BOOL bResult = ReadFile ((HANDLE) hFile, pBuffer, size * nmemb,
&dwNumberOfBytesRead, NULL) ;

return dwNumberOfBytesRead;
}

int libcurl progress callback (void * clientp, double dltotal, double dlnow,
double ultotal, double ulnow)

{
printf ("Uploaded: %d / %d\n", (int) ulnow, (int) ultotal);

return 0;

}

NOTE: You must replace some of the information in the sample code:
e line17: enter a file name to be uploaded and its location on your computer
e line 93: type in your server’s IP address and the remote path where the file should
be stored (here | assume that you have access to a computer that is
running a SSH server)
e line 104: the login credentials for the SSH server

Using libcurl with SSH support in Visual Studio 2008 21

4.3.2 Adding libcurl to the list of libraries
Now let’s tell the compiler where to find the libcurl header files and the library itself:

1. In the Solution Explorer window, right-click on the test_curl project window and select
Properties from the pop-up menu.
2. Expand the Configuration Properties node.
3. Expand the C/C++ node
a. Select the General node, choose the Additional Include Directories property
and add the path:
"C:\Projects\custom libraries\include™

test_cur Property Pages E 1

Configuration: | Al Configurations [PlatForm: | Active(Wwin3z) [[Configuration Managet...]
Common Properties s] Additional Include Directaries "C:\Projects'custom libraries’include™ (|
[=)- Configuration Praperties] Resolve #using References

General Debug Information Format
Debugging Suppress Startup Banner Y¥es (/nologo)
o+ \Warning Lewvel Level 3 {/W3)
General Detect 54-bit Portability Issues Ho
Optirmization Treat Warnings As Errars Mo
Eroeclljerfic:ns:?artion Ise UMICODE Response Files fes
Language =
Precampiled Headers |
Cutput Files
Browse Information
Advanced
Command Line
(=) Linker
General
Inpuk
Manifest File
Debugging
Syskerm
Optirnization
Embedded DL Additional Include Directories
advanced [Specifies one or more direckories ko add ko the include path; use semi-colon delimited list if more than one,
va = > (/I[path])
i [874 i [Cancel] [apply]

NOTE: While you might be tempted to include the "C:\Projects\custom
libraries\include\curl" directory instead, we must add the parent directory
since some libcurl files use #include statements like this one: “#include
<curl/curlbuild.h>".

Using libcurl with SSH support in Visual Studio 2008 22

b. Select the Preprocessor node and click on the Preprocessor Definitions
property. Add in the following to the existing definitions:

;CURL_STATICLIB

test_curl Property Pages Z 1

Configuration: | Debug

Common Properties

[=- Configuration Properties
General
Debugging

=TT+
General
Cptimization

Code Generation
Language
Precompiled Headers
Qukput Files
Erowse Information
Advanced
Command Line

[=- Linker
General
Input

Manifest File
Debugging
Swskem
Opkimization
Embedded IDL
Advanced [v]

(<] |2

[V] Platform: | Active(Win3z)

Preprocessor Definitions
Ignore Standard Include Path
Generate Preprocessed File
Keep Comments

Preprocessor Definitions
Specifies one or more preprocessor defines,

[V] Configuration Manager ...

WIN32;_DEBUG;_CONSOLE;CURL_STATICLIB
Mo
Mo
Mo

{D[macro])

I OK l [Cancel

I

Apply

4. Expand the Linker node.

a. Select the General node, chose the Additional Library Directories property and

add the path:

"C:\Projects\custom libraries\lib_dbg"

test_curl Property Pages

Configuration: | Debug

Cormion Properties
[=- Configuration Properties
General
Debugging
CIC+H+
(=) Linker
General
Inpuk
Manifest File
Debugging
Syskemn
Opimization
Embedded IDL
Advanced
Command Line
Marifest Tool
#ML Document Generatar
Browese Information
Euild Events
Custom Build Step

[V] Platform: | Active{Win32)

Cutput File

Show Progress

‘Wersion

Enable Incremental Linking
Suppress Startup Banner
Ignore Import Library
Register Cukpuk

Per-user Redirection

Additional Library Directories
Link Library Dependencies

Use Library Dependency Inputs
Use UNICODE Response Files

Additional Library Directories

Specifies one or more additional paths to search For libraries; configuration specific; use semi-colon
{ILIEPATH: [dir])

delirnited list if mare than one,

2|
[V] Configuration Manager. ..
F{OutDir\${ProjectMame). exe
Mot Set
Yes {/INCREMENTAL)
Yes [{NOLOGD)
Mo
Mo
Mo
“C:hProjects’ custom librarieslib_dbg™ E]
s
Mo
ies
I [o]4 l [Canicel] [Apply

Using libcurl with SSH support in Visual Studio 2008

23

b. Select the Input node, click on the Additional Dependencies property and set it

to:
libcurl.lib ws2_32.lib
[test_curl Property Pages lili‘]
Configuration: |Acti\re(Debug] | Platform: |Active(Win32) v| | Configuration Manager... |
Common Properties > Additional Dependencies libcurLlib ws2_32.lib
a Configuration Properties Ignore All Default Libraries No
General Ignore Specific Library
Debugging Module Definition File
CfC+s Add Module to Assembly
4 Linker Embed Managed Rescurce File
General Force Symbol References
lnput] Delay Loaded DLLs
MamfesF File Assembly Link Resource
Debugging
System =
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
AML Document Genera
Browse Information
Build Events
Custom Build Step Additional Dependencies
(Eod:e.An.al}rs‘irs . - | | Specifies additional items to add to the link line (2x: kernel32.lib); configuration specific.
4 nr 3
| 0K | | Cancel

5. Click on the OK button.

4.3.3 The test-drive
Now we are finally ready to reap the fruits of our labor: compile and run the program. Depending
on the size of the file you chose to upload, the output should look similar to this:

c:\Projectsitest_curl\Debughtest_curl.exe

About to connectd} to port 22 CHA>
Trying * connected
Connected to L > port 22 CHEM
S%H authentication methods availahle: publickey,password
Initialized password authentication
Authentication complete
ploaded: 8 ~ 4893
ploaded: 4893 ~ 4893
ploaded: 4893 ~ 4893
pleoaded: 4893 ~ 4893
pleoaded: 4893 ~ 4893
ploaded: 4893 ~ 4893
Connection #@ to host left intact
Closing connection H#HA
File uploaded successfully.
rezs any key to continue..._

Using libcurl with SSH support in Visual Studio 2008 24

5. Final Notes

Congratulations! You are now ready to use libcurl in your own projects. If you run into trouble
down the road, don’t hesitate to post a message on libcurl’s very active mailing list:
http://cool.haxx.se/mailman/listinfo/curl-library. However, please take a moment and read the
mailing list etiquette (http://curl.haxx.se/mail/etiquette.html) before posting.

Using libcurl with SSH support in Visual Studio 2008 25

http://cool.haxx.se/mailman/listinfo/curl-library
http://curl.haxx.se/mail/etiquette.html

Appendix A - Adding OpenSSL support directly to libcurl

Some of you might find it useful to have SSL/TLS support directly built into libcurl. In this case,
compilation procedure that was presented in section 3.5 is identical with the exception of step 3,
which must be replaced with the following:

3. Next, you must tell the compiler and the librarian to use the libSSH2 library and where
this library is located:
a. Right-click on the libcurl project in the Solution Explorer window and select
Properties from the pop-up menu.
b. Expand the Configuration Properties node, then the C/C++ node.

i. Click on the General node. Next to Additional Include Directories, add
the following:
,C:\libssh2-1.2.7\include,c:\openssl_lib\include\,c:\openssl_lib\include\openssl
(the comma is needed since there are already two additional include directories
specified)

ii. Select the Preprocessor node and click on the Preprocessor Definitions
property. Add in the following to the existing definitions:
CURL_STATICLIB;USE_LIBSSH2;CURL_DISABLE_LDAP;HAVE_L
IBSSH2;HAVE_LIBSSH2_H;LIBSSH2_WIN32
;LIBSSH2_LIBRARY;USE_SSLEAY

c. In the Configuration Properties node, expand the Librarian node, and select
General.

i. Select Additional Dependencies and type in:
libssh2.lib libeay32.lib ssleay32.lib

ii. Next to Additional Library Directories, type in the path:
C:\libssh2-1.2.7\win32\Debug_lib,c:\openssl_lib\lib

Since the OpenSSL library was already included as part of the libSSH2 compilation, at the end
of the libcurl compilation, the linker will present a whole bunch of “second definition ignored”
warnings, which can be safely ignored.

	Revision History
	Acknowledgements
	Table of Contents
	Conventions
	1. Introduction
	2. Downloading the latest software
	3. Installation / Compilation
	3.1 ActivePerl
	3.2 Netwide Assembler
	3.3 OpenSSL
	3.4 libSSH2
	3.5 libcurl

	4. Using the libcurl library in your Visual Studio project
	4.1 Preparing the project’s file structure
	4.2 Creating the test project
	4.3 How to use the libcurl library
	4.3.1 Sample source code
	4.3.2 Adding libcurl to the list of libraries
	4.3.3 The test-drive

	5. Final Notes
	Appendix A – Adding OpenSSL support directly to libcurl

