
Using libcurl with SSH support in Visual Studio 2010 1

Using libcurl with SSH support in

Visual Studio 2010

Version 1.3

© Andrei Jakab (andrei.jakab@tut.fi)

Using libcurl with SSH support in Visual Studio 2010 2

Revision History

Revision Date By Comment

1.0 11 Jul 2011 Andrei Jakab Initial version

1.1 17 Jul 2012 Andrei Jakab Updated the guide to reflect the latest

versions of:

o ActivePerl (5.14.2.1402)

o libcurl (7.26.0)

o libSSH2 (1.4.2)

o NASM (2.10.01)

o OpenSSL (1.0.1c)

1.2 22 Sep 2012 Andrei Jakab Appendix A: corrected preprocessor

definitions

1.3 05 Feb 2013 Andrei Jakab Updated the guide to reflect the latest

versions of:

o ActivePerl (5.16.2.1602)

o libcurl (7.28.1)

o libSSH2 (1.4.3)

o NASM (2.10.07)

Using libcurl with SSH support in Visual Studio 2010 3

Acknowledgements
I would like to thank the following people for helping me make this guide what it is today by

letting me know about typos and by suggesting improvements:

 Chengwei Lin

 Jon Woellhaf

 Philipp Leusmann

 Reinhard Gentz

 Jack Schmidt

 Huu Minh Nguyen

Using libcurl with SSH support in Visual Studio 2010 4

Table of Contents

REVISION HISTORY 2

ACKNOWLEDGEMENTS 3

CONVENTIONS 5

1. INTRODUCTION 6

2. DOWNLOADING THE LATEST SOFTWARE 7

3. INSTALLATION / COMPILATION 8

3.1 ActivePerl 8

3.2 Netwide Assembler 9

3.3 OpenSSL 9

3.4 libSSH2 11

3.5 libcurl 13

4. USING THE LIBCURL LIBRARY IN YOUR VISUAL STUDIO PROJECT 15

4.1 Preparing the project’s file structure 15

4.2 Creating the test project 16

4.3 How to use the libcurl library 19

4.3.1 Sample source code 19

4.3.2 Adding libcurl to the list of libraries 22

4.3.3 The test-drive 24

5. FINAL NOTES 25

APPENDIX A – ADDING OPENSSL SUPPORT DIRECTLY TO LIBCURL 26

Using libcurl with SSH support in Visual Studio 2010 5

Conventions
The following font conventions are used in this document:

 italic is used for filenames, directory names, and URLs

 constant width is used to indicate commands and code sections

 red, bold and underlined text indicates important items

 bold is used to represent GUI items (e.g. menus, menu items, list nodes etc.)

Using libcurl with SSH support in Visual Studio 2010 6

1. Introduction
Libcurl is a widely-used open-source library for transferring files. It supports many protocols

(e.g. FTP, HTTP, SFTP etc.) and it is very well designed.

One of libcurl’s strengths is its portability. You can build it on numerous platforms and you can

be sure that it will work the same way on all of them. This wide support also means that the

developers cannot constantly update the readme files for all the supported platforms. Thus, I

have decided to create this document in order to share my experiences while compiling a static

version of the curl library with SSH support in Visual Studio 2010.

This document is based on my previous guide “Using libcurl with SSH support in Visual Studio

2008”, which was inspired from Rosso Salmanzadeh's excellent “Using libcurl in Visual Studio”

guide.

Using libcurl with SSH support in Visual Studio 2010 7

2. Downloading the latest software
Libcurl requires two additional open-source libraries in order to provide the SSH functionality:

libSSH2 and OpenSSL. Also, since the compilation of OpenSSL makes use of Perl scripts, you

need to have a Perl distribution installed on your machine. I have chosen ActivePerl, a free

distribution by ActiveState, for this purpose. OpenSSL also requires the Netwide Assembler to

be present on your computer.

The OpenSSL and libSSH2 libraries are distributed as tarballs compressed using gzip. Hence,

you will need a utility to uncompress and subsequently open the tar file. I recommend the open-

source archiver 7-Zip.

In order to obtain the latest version of the Netwide Assembler, click on the link in the table

below and, on the webpage that appears, follow the link that takes you to the latest stable version

of NASM. You have the choice between downloading the source code or pre-compiled binaries.

I strongly encourage you to download the binary files since I will not cover the compilation of

NASM in this guide. The archives that contain the binary distributions are located in folders

named after their intended architecture e.g. win32, dos, os2 etc.

Software URL Current Version

ActivePerl http://www.activestate.com/activeperl/downloads 5.16.2.1602

OpenSSL http://www.openssl.org/source 1.0.1c

libSSH2 http://www.libssh2.org 1.4.3

libcurl http://curl.haxx.se/download.html 7.28.1

Netwide Assembler http://www.nasm.us 2.10.07

7-Zip http://www.7-zip.org 9.20

NOTE: This guide assumes that you already have successfully installed Microsoft Visual

Studio 2010 (VS2010). The examples in this document were built using version

10.0.40219.1 SP1 of VS2010.

http://www.activestate.com/activeperl/downloads
http://www.openssl.org/source
http://www.libssh2.org/
http://curl.haxx.se/download.html
http://www.nasm.us/
http://www.7-zip.org/

Using libcurl with SSH support in Visual Studio 2010 8

3. Installation / Compilation

3.1 ActivePerl

Installing ActivePerl is fairly straightforward as long as you are logged in with an Administrator

account. Below are screenshots from each step of the installation process. Please pay particular

attention to Step 4 because choosing the wrong option there will make your life harder later.

Step 1 - Introduction

Step 2 - EULA

Step 3 - Customization 1

Note 1: The “Documentation” and

“Examples” are only useful if you

wish to learn how to use ActivePerl;

for the purposes of this document,

these items are not needed.

Note 2: The default installation location is not

in the Program Files folder. Make sure

to change this if you like to keep your

C: folder tidy.

Step 4 - Customization 2

NOTE: Make sure that there’s a checkmark

besides the “Add Perl to the PATH

environment variable” option.

Using libcurl with SSH support in Visual Studio 2010 9

Step 5 - Installation Confirmation

Step 6 - Installation Complete

3.2 Netwide Assembler

1. Extract the nasm-2.10.07 folder from the zip file and place it in the C: root directory

3.3 OpenSSL
Compiling the OpenSSL library is a bit tricky. The following step-by-step guide should help you

get through the compilation process as quickly and as painlessly as possible.

1. Extract the openssl-1.0.1c.tar file from the gzip file to a temporary directory

2. Extract the openssl-1.0.1c folder from the tar file and place it in the C: root directory

3. Close the VS2010 IDE and open a Visual Studio 2010 command prompt. If you’ve

installed VS 2010 with the default settings, the command prompt shortcut should be

located in Start -> All Programs -> Microsoft Visual Studio 2010 -> Visual Studio

Tools -> Visual Studio Command Prompt (2010)

4. Add the NASM executable to the PATH environment variable:

path = %PATH%;C:\nasm-2.10.07

5. Create the directory where the output of the compilation process will be stored:

mkdir c:\openssl_lib

6. Change the working directory to the OpenSSL directory:

cd /D c:\openssl-1.0.1c

7. Configure the OpenSSL installation with:

perl Configure VC-WIN32 --prefix=c:/openssl_lib

where the --prefix argument specifies where OpenSSL header and library files will

be copied at the end of the compilation process.

NOTE: The path that is passed to the --prefix argument must be in the UNIX

format i.e. forward slashes are used to separate directories and not backward

slashes like it is customary in Windows.

Using libcurl with SSH support in Visual Studio 2010 10

The output of this command should look like this:

8. Create the required assembly files:

ms\do_nasm

Note: Using assembly files makes the execution of library functions much faster. If you

do not wish to use assembly files, use the following command instead and jump to

step 8:

 ms\do_ms

9. Compile the static library:

nmake -f ms\nt.mak

10. The compilation process takes a while so you can go grab some coffee/tea at this point.

11. If all is well, at the end of the compilation you will have some libraries and a number of

executables in C:\openssl-1.0.1c\out32

12. The library contains some built in tests that allow you to check if everything has

compiled properly and if the library is in working order:

nmake -f ms\nt.mak test

If the library has compiled properly, you should obtain a “passed all tests” message once

this command finishes executing.

13. To install OpenSSL to the location you specified in step 6, run:

nmake -f ms\nt.mak install

Note: You can find additional compiling instructions in C:\openssl-1.0.1c\INSTALL.W32; this

file also contains a troubleshooting section that could help you out if something goes

wrong during the compilation process.

Using libcurl with SSH support in Visual Studio 2010 11

3.4 libSSH2

1. Extract the libssh2-1.4.3.tar file from the gzip file to a temporary directory.

2. Extract the libssh2-1.4.3 directory from the tar file and place it in the C: root directory.

3. Open C:\libssh2-1.4.3\win32\libssh2.dsp in the Visual Studio 2010 IDE. Since this

project file was created using an older version of Visual Studio, the following message

box will appear:

Click on “Yes”. Once the conversion is completed, you should see the following in the

Solution Explorer window:

Using libcurl with SSH support in Visual Studio 2010 12

4. Set the LIB Debug as the active solution configuration. On the Build menu in Visual

Studio, click Configuration Manager… and in the window that appears select LIB

Debug from the Active solution configuration drop-down list. Close the Configuration

Manager.

5. Next, you must tell the compiler and the librarian where the OpenSSL library is located

and how to compile the library:

a. Right-click on the libssh2 project in the Solution Explorer window and select

Properties from the pop-up menu.

b. Expand the Configuration Properties node, click on the C/C++ node

i. Select General, choose the Additional Include Directories property and

add the following:

;C:\openssl_lib\include

(the semicolon needed since other paths are already present)

ii. Next, click on Code Generation and in the Runtime Library field, select

the Multi-threaded Debug DLL (/MDd) option.

c. Also in the Configuration Properties node, expand the Librarian node, and

select General.

i. Change the Output File property to:

Debug_lib\libssh2.lib

ii. Click on the Additional Dependencies property and set it to:

libeay32.lib;ssleay32.lib

iii. Choose the Additional Library Directories and add the following path:

C:\openssl_lib\lib

d. Click on the OK button.

6. Now we are ready to compile. Right-click on the libssh2 project and select Build from

the pop-up menu. VS2010 will prompt you to save the solution file that was created for

this project. Once you save it, compilation will begin.

7. The compiler might display a couple of security warnings and/or “possible loss of data”

warnings. Also the linker might display a number of LNK4221 warnings. For our

purposes, both of these types of warnings can be safely ignored.

Using libcurl with SSH support in Visual Studio 2010 13

3.5 libcurl
1. Extract the curl-7.28.1 folder from the archive and place it in the C: root directory. For

our purposes, we will need the files located in the lib and include directories.

2. Open C:\curl-7.28.1\lib\libcurl.vcproj in the Visual Studio 2010 IDE. Since this is a

Visual Studio 2005 project file, the “Visual Studio Conversion Wizard” will appear. The

wizard should not encounter any problems converting the project to the VS2010 format

but will generate a couple of warnings, which can be safely ignored.

3. Next, you must tell the compiler and the librarian to use the libSSH2 library and where

this library is located:

a. Right-click on the libcurl project in the Solution Explorer window and select

Properties from the pop-up menu.

b. Expand the Configuration Properties node, then the C/C++ node.

i. Click on the General node. Next to Additional Include Directories, add

the following:

;C:\libssh2-1.4.3\include

(the semicolon is needed since there are already two additional include

directories specified)

ii. Select the Preprocessor node and click on the Preprocessor Definitions

property. Add in the following to the existing definitions:

;CURL_STATICLIB;USE_LIBSSH2;CURL_DISABLE_LDAP;HAVE_

LIBSSH2;HAVE_LIBSSH2_H;LIBSSH2_WIN32 ;LIBSSH2_LIBRARY

c. In the Configuration Properties node, expand the Librarian node, and select

General.

i. Select Additional Dependencies and type in:

libssh2.lib

ii. Next to Additional Library Directories, type in the path:

C:\libssh2-1.4.3\win32\Debug_lib

d. Click on the OK button.

4. After all this work, we are finally ready to compile the libcurl library. Right-click on the

curllib project in the Solution Explorer and select Build from the pop-up menu. VS2010

will prompt you to save the solution file that was created for this project. Once you save

it, compilation will begin:

1>------ Build started: Project: libcurl, Configuration: Debug Win32 ------

1> wildcard.c

1> warnless.c

1> version.c

1> url.c

1> transfer.c

Using libcurl with SSH support in Visual Studio 2010 14

1> timeval.c

…

1> curl_darwinssl.c

1> curl_addrinfo.c

1> cookie.c

1> content_encoding.c

1> Generating Code...

1> Compiling...

1> connect.c

1> base64.c

1> axtls.c

1> asyn-thread.c

1> asyn-ares.c

1> amigaos.c

1> Generating Code...

1>libssh2.lib(ecp_nistputil.obj) : warning LNK4221: This object file does not define any

previously undefined public symbols, so it will not be used by any link operation that

consumes this library

1>libssh2.lib(ecp_nistp521.obj) : warning LNK4221: This object file does not define any

previously undefined public symbols, so it will not be used by any link operation that

consumes this library

1>libssh2.lib(ecp_nistp256.obj) : warning LNK4221: This object file does not define any

previously undefined public symbols, so it will not be used by any link operation that

consumes this library

1>libssh2.lib(ecp_nistp224.obj) : warning LNK4221: This object file does not define any

previously undefined public symbols, so it will not be used by any link operation that

consumes this library

1>libssh2.lib(fips_ers.obj) : warning LNK4221: This object file does not define any

previously undefined public symbols, so it will not be used by any link operation that

consumes this library

1> libcurl.vcxproj -> C:\curl-7.28.1\lib\.\Debug\libcurl.lib

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

The LNK4221 warnings can be safely ignored.

By default, the output directory is C:\curl-7.28.1\lib\Debug. In order to create an

application that uses the libcurl library, we only need the libcurl.lib file from the output

directory and the C:\curl-7.28.1\include\curl directory, which contains the library’s

header files.

Using libcurl with SSH support in Visual Studio 2010 15

4. Using the libcurl library in your Visual Studio project
In this section we will create a test project, which will at the same time test the library’s

functionality and demonstrate how to integrate libcurl into one of your projects. I suggest that

you follow the example step by step (i.e. use the same project names, paths etc.) so that you

obtain the same figures as the ones shown below. This will make your life easier in case you

encounter any problems along the way.

4.1 Preparing the project’s file structure
Create the following folder structure in you C: root directory:

Copy the curl folder from the C:\curl-7.28.1\include directory into the C:\Projects\custom

libraries\include directory. The curl directory should contain the following files:

Notice that there are also 4 make files in this directory. We won’t need them so they can be

safely deleted, if you wish.

Finally, you need to copy liburl.lib from C:\curl-7.28.1\lib\Debug to C:\Projects\custom

libraries\lib_dbg.

Using libcurl with SSH support in Visual Studio 2010 16

4.2 Creating the test project
The libcurl library can be used in any type of application. In order to keep things simple, we will

create a simple Win32 console application.

1. Fire up VS2010 and go to: File -> New -> Project…

2. First expand the Visual C++ node, then select the Win32 node and click on the Win32

Console Application item in the middle panel:

3. Type in “test_curl” for the project name. The project location should be:

C:\Projects

Make sure that the checkbox Create directory for solution is checked and click on OK.

Using libcurl with SSH support in Visual Studio 2010 17

4. The Win32 Application Wizard will appear. In the first window click on Next:

5. In the following window:

a. Make sure that Console application is selected from the Application type: list

b. In Additional options, uncheck the Precompiled header option.

c. Ensure that both ATL and MFC are unchecked in the Add common header files

for: list.

Now you can press on the Finish button and wait for VS2010 to set up your project.

Using libcurl with SSH support in Visual Studio 2010 18

6. In the Solution Explorer window you should see the following project structure:

Double-click on test_curl.cpp to open it (if VS2010 didn’t already do so for you). The

source code should look like this:

Using libcurl with SSH support in Visual Studio 2010 19

4.3 How to use the libcurl library

4.3.1 Sample source code

Replace all the code in test_curl.cpp with this code:

// headers

#include "stdafx.h"

#include <conio.h>

#include <curl/curl.h>

#include <windows.h>

// prototypes

int libcurl_progress_callback (void * clientp, double dltotal,

 double dlnow, double ultotal,

 double ulnow);

size_t libcurl_read_callback(void * pBuffer, size_t size, size_t nmemb,

 void * hFile);

void SSHUpload(char * strFileName, char * strFilePath);

int _tmain(int argc, _TCHAR* argv[])

{

 SSHUpload("test.txt", "C:\\");

 printf("Press any key to continue...");

 _getch();

 return 0;

}

void SSHUpload(char * strFileName, char * strFilePath)

{

 char strBuffer[1024];

 CURL * hCurl;

 CURLcode ccCurlResult = CURL_LAST;

 curl_off_t cotFileSize;

 HANDLE hFile;

 LARGE_INTEGER liFileSize;

 // check parameters

 if((strFileName == NULL || strlen(strFileName) == 0) ||

 (strFilePath == NULL || strlen(strFilePath) == 0))

 return;

 // parse file path

 if(strFilePath[strlen(strFilePath) - 1] == '\\')

 sprintf_s(strBuffer, 1024, "%s%s", strFilePath, strFileName);

 else

 sprintf_s(strBuffer, 1024, "%s\\%s", strFilePath, strFileName);

 // create a handle to the file

 hFile = CreateFileA(strBuffer, // file to open

 GENERIC_READ, // open for reading

 FILE_SHARE_READ, // share for reading

 NULL, // default security

 OPEN_EXISTING, // existing file only

 FILE_ATTRIBUTE_NORMAL, // normal file

 NULL); // no attr. template

Using libcurl with SSH support in Visual Studio 2010 20

 if(hFile != INVALID_HANDLE_VALUE)

 {

 // global libcurl initialisation

 ccCurlResult = curl_global_init(CURL_GLOBAL_WIN32);

 if(ccCurlResult == 0)

 {

 // start libcurl easy session

 hCurl = curl_easy_init();

 if(hCurl)

 {

 // enable verbose operation

 curl_easy_setopt(hCurl, CURLOPT_VERBOSE, TRUE);

 // enable uploading

 curl_easy_setopt(hCurl, CURLOPT_UPLOAD, TRUE);

 // inform libcurl of the file's size

 GetFileSizeEx(hFile, &liFileSize);

 cotFileSize = liFileSize.QuadPart;

 curl_easy_setopt(hCurl,

 CURLOPT_INFILESIZE_LARGE,

 cotFileSize);

 // enable progress report function

 curl_easy_setopt(hCurl, CURLOPT_NOPROGRESS, FALSE);

 curl_easy_setopt(hCurl,

 CURLOPT_PROGRESSFUNCTION,

 libcurl_progress_callback);

 // use custom read function

 curl_easy_setopt(hCurl,

 CURLOPT_READFUNCTION,

 libcurl_read_callback);

 // specify which file to upload

 curl_easy_setopt(hCurl, CURLOPT_READDATA, hFile);

 // specify full path of uploaded file (i.e. server

 // address plus remote path)

 sprintf_s(strBuffer,

 1024,

 "sftp://123.123.123.123/home/user/%s",

 strFileName);

 curl_easy_setopt(hCurl, CURLOPT_URL, strBuffer);

 // set SSH server port

 curl_easy_setopt(hCurl, CURLOPT_PORT, 22);

 // set SSH user name and password in libcurl in this

 // format "user:password"

 curl_easy_setopt(hCurl,

 CURLOPT_USERPWD,

 "user:password");

 // set SSH authentication to user name and password

Using libcurl with SSH support in Visual Studio 2010 21

 curl_easy_setopt(hCurl,

 CURLOPT_SSH_AUTH_TYPES,

 CURLSSH_AUTH_PASSWORD);

 // execute command

 ccCurlResult = curl_easy_perform(hCurl);

 // end libcurl easy session

 curl_easy_cleanup(hCurl);

 }

 }

 // release file handle

 CloseHandle(hFile);

 // global libcurl cleanup

 curl_global_cleanup();

 if (ccCurlResult == CURLE_OK)

 printf("File uploaded successfully.\n");

 else

 printf("File upload failed. Curl error: %d\n",

 ccCurlResult);

 }

 else

 printf("File upload failed! Could not open local file");

}

size_t libcurl_read_callback(void * pBuffer, size_t size,

 size_t nmemb, void * hFile)

{

 DWORD dwNumberOfBytesRead = 0;

 BOOL bResult = ReadFile((HANDLE) hFile, pBuffer, size * nmemb,

 &dwNumberOfBytesRead, NULL);

 return dwNumberOfBytesRead;

}

int libcurl_progress_callback (void * clientp, double dltotal, double dlnow,

 double ultotal, double ulnow)

{

 printf("Uploaded: %d / %d\n", (int) ulnow, (int) ultotal);

 return 0;

}

NOTE: You must replace some of the information in the sample code:

 line 17: enter a file name to be uploaded and its location on your computer

 line 93: type in your server’s IP address and the remote path where the file should

be stored (here I assume that you have access to a computer that is

running a SSH server)

 line 104: the login credentials for the SSH server

Using libcurl with SSH support in Visual Studio 2010 22

4.3.2 Adding libcurl to the list of libraries

Now let’s tell the compiler where to find the libcurl header files and the library itself:

1. In the Solution Explorer window, right-click on the test_curl project window and select

Properties from the pop-up menu.

2. Expand the Configuration Properties node.

3. Expand the C/C++ node

a. Select the General node, choose the Additional Include Directories property

and add the path:

C:\Projects\custom_libraries\include

NOTE: While you might be tempted to include the "C:\Projects\custom

libraries\include\curl" directory instead, we must add the parent directory

since some libcurl files use #include statements like this one: “#include

<curl/curlbuild.h>”.

Using libcurl with SSH support in Visual Studio 2010 23

b. Select the Preprocessor node and click on the Preprocessor Definitions

property. Add in the following to the existing definitions:

;CURL_STATICLIB

4. Expand the Linker node.

a. Select the General node, chose the Additional Library Directories property and

add the path:

C:\Projects\custom_libraries\lib_dbg

Using libcurl with SSH support in Visual Studio 2010 24

b. Select the Input node, click on the Additional Dependencies property and add

the following to the existing list of libraries:

;libcurl.lib;ws2_32.lib

5. Click on the OK button.

4.3.3 The test-drive

Now we are finally ready to reap the fruits of our labor: compile and run the program. Depending

on the size of the file you chose to upload, the output should look similar to the figure on the

next page.

Using libcurl with SSH support in Visual Studio 2010 25

5. Final Notes
Congratulations! You are now ready to use libcurl in your own projects. If you run into trouble

down the road, don’t hesitate to post a message on libcurl’s very active mailing list:

http://cool.haxx.se/mailman/listinfo/curl-library. However, please take a moment and read the

mailing list etiquette (http://curl.haxx.se/mail/etiquette.html) before posting.

http://cool.haxx.se/mailman/listinfo/curl-library
http://curl.haxx.se/mail/etiquette.html

Using libcurl with SSH support in Visual Studio 2010 26

Appendix A – Adding OpenSSL support directly to libcurl
Some of you might find it useful to have SSL/TLS support directly built into libcurl. In this case,

compilation procedure that was presented in section 3.5 is identical with the exception of step 3,

which must be replaced with the following:

3. Next, you must tell the compiler and the librarian to use the OpenSSL library and where

this library is located:

a. Right-click on the libcurl project in the Solution Explorer window and select

Properties from the pop-up menu.

b. Expand the Configuration Properties node, then the C/C++ node.

i. Click on the General node. Next to Additional Include Directories, add

the following:

;C:\libssh2-1.4.3\include;c:\openssl_lib\include\;c:\openssl_lib\include\openssl

(the semicolon is needed since there are already two additional include

directories specified)

ii. Select the Preprocessor node and click on the Preprocessor Definitions

property. Add in the following to the existing definitions:

;CURL_STATICLIB;USE_LIBSSH2;CURL_DISABLE_LDAP;HAVE_

LIBSSH2;HAVE_LIBSSH2_H;LIBSSH2_WIN32

;LIBSSH2_LIBRARY;USE_SSLEAY;USE_OPENSSL

c. In the Configuration Properties node, expand the Librarian node, and select

General.

i. Select Additional Dependencies and type in:

libssh2.lib;libeay32.lib;ssleay32.lib

ii. Next to Additional Library Directories, type in the path:

C:\libssh2-1.4.3\win32\Debug_lib;c:\openssl_lib\lib

Since the OpenSSL library was already included as part of the libSSH2 compilation, at the end

of the libcurl compilation, the linker will present a whole bunch of “second definition ignored”

warnings, which can be safely ignored.

