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motivation for this seminar
Linear time-domain models of marine

structures are the basis of

 Training simulators.
 Hardware-in-the-loop (HIL) simulators.
 Motion control system design.
 Model-based fault detection and diagnosis.

Improvements in accuracy and speed can be
achieved by appropriate model representations.

Training Simulator

HIL Simulator
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motivation for this seminar
One simple way to obtain such models is to use potential theory

codes to compute non-parametric models hydrodynamic
(coefficients and frequency responses) and then

 make a direct implementation of the Cummins Equation, or

 use system identification to approximate the Cummins
equation by a Linear-time-invariant parametric models.

Approximations by LTI models in terms of state-space equations
result in much faster simulations.

Depending on the complexity of the model simulations can be up
to 80 times faster (Taghipour, Perez, and Moan, 2008).
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outline for this presentation
 linear dynamic models of marine structures

 equations of motion
 Cummins equation
 non-parametric models
 model properties derived from hydrodynamics

 parametric approximations
 consequence of the properties
 time-domain Identification
 frequency-domain identification
 dealing with 2D hydrodynamic data

 examples: container, semi-submersible, fpso
 Discussion
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equations of motion
Equations of Motion (rigid body):

← generalised displ. wrt equilibrium

← body-fixed generalised velocities

← body-fixed generalised forces
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linear equations
If we consider small deviations about the

equilibrium:

Superposition of forces (radiation, restoring
excitation):
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Cummins’s equation
Cummins studied the radiation potential problem in the time-

domain, within the linear assumption and found that:

Combining terms,

This equation form the basis of most time-domain simulators.
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Ogilvie’s relations
When considered in the frequency-domain, the radiation

forces and the response of the marine structure can be
expressed as:

Ogilvie found the relation between the Cummins parameters
and the above:
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non-parametric models
Time-domain:

Frequency-domain:

These relationships are key since they are the starting point
for the identification process by which parametric models
are obtained.
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convolution replacement
The convolution term is inconvenient to implement simulation tools, and

also to analyse and design motion control systems.

It is more convenient to seek a replacement by a state-space model:

 Different methods have been reported in the literature over the
past 20 years.

 Due to Markovian properties of the SS-model significant gains
in simulation speed can be obtained.
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identification
Different proposals have appeared in the literature:

Time-domain identification:

 LS-fitting of the impulse response (Yu & Falnes, 1998)
 Realization theory (Kristiansen & Egeland, 2003)

Frequency-domain identification:

 LS-fitting of the frequency response (Jeffreys, 1984),(Damaren 2000).
 LS-fitting of added mass and damping (Soding 1982), (Xia et. al 1998),

(Sutulo & Guedes-Soares 2006).
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properties of retardation functions
The following properties derive from the hydrodynamics, and have

implications on the parametric models:

This prior knowledge, and should be used in the
identification process to refine the search for

approximating models.



 time-domain methods

 identification from the impulse-response
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time-domain methods

 Impulse response curve fitting ( Yu & Falnes, 1995, 1998)

 Realization theory (Kristiansen & Egeland, 2003)

Both these methods use the frequency domain data
to compute the retardation functions in the time
domain and then perform the system
identification.
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distortion of non-param. models

The computation of the retardation function from the
damping introduces distortion, which can affect
the identification:

The maximum frequency is related to the size of the
panels. One can use asymptotic tails to extend the
computations:
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example containership (Taghipour et al., 2007a)

The panel sizing was done to be able to compute frequencies up to 2.5 rad/s.

From experience characteristic panel length < 1/8-1/10 min wave length for low
order panel methods (Faltinsen, 1993).
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distortion of non-param. models



11 July 2008 ARC Centre of Excellence for CDSC 19

distortion of non-param. models

The distortion can be expressed as the convolution of the true
impulse response and the IFT of an ideal low-pass filter.

This is a disadvantage for time-domain methods.

We can think the limited freq. damping as a product of the real daming with a
rectangular window:

Product in the freq.-domain ⇔ convolution in the time-domain (FT property):
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impulse response curve fitting

 Optimisation problem non-linear in the parameters. Algorithms can be
trapped in local minima. A good guess of the initial parameters is
crucial for the success of the optimisation.

 The structure of the state-space model adopted plays an important
role--there are infinite ways of doing this.

 The order of the model and the initial parameters are not easy to
guess from the impulse response.

 Make no use of the prior knowledge.
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realization theory
Discrete-time approximation:

!
Steps:

1)  Form a Hankel matrix with the impulse response samples.
2)  Do a singular value decomposition (SVD).
3)  Obtain the order from the number of non-zero singular values.
4) Obtain the model matrices via factoriastion.
5) Convert the model to continuous time.
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order detection via SVD

The quality of the impulse response affects the order selection.

The containership example suggests  K55(s) order 2 to 5
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example containership (DOF33)

Reconstruction of damping and
added mass from the
parametric approximation:

Model not passive
B33(w)<0!
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realization theory

 relatively easy to implement.
 do not require initial parameter estimates.
 allows order detection.
 requires conversion to continuous time (distortion).
 poor model quality.
 make no use of prior knowledge.



 frequency-domain methods

identification from the frequency-response
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frequency-response LS-fitting

Then we can estimate the parameters via LS optimization using the frequency
response computed using the data generated by hydrodynamic code:

The i,k entry of K(s) can be approximated by a rational transfer function:

This problem is non-linear in the parameters, but it can be linearised.
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quasi-linear regression

Levi (1959) proposed a linearisation by choosing

This is equivalent to choose the following weights in the original problem
above:

 This problem is linear in the parameters, a standard linear LS problem.
 It does not always give a good fit if data spans a large range of frequencies.

for the non-linear problem
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 iterative quasi-linear regression
Sanathanan and Koerner  (1963),  proposed an iterative solution via a

sequence of linear LS problems:

This results in the following problem at each iteration k>1:

After a few iterations                  and we recover the original nonlinear problem.
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prior knowledge: constraints

Adding prior knowledge is important to refine
the search for models, and thus obtain
better quality models.

Prior knowledge usually derives from the
physics of the underlying problem; in this
case, from the hydrodynamics.
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prior knowledge: constraints
For the transfer functions related to the convolution terms, we

know

1. Relative degree 1
2. Hik(s)=0 for s=0
3. Stable
4. Passive
5. Minimum order approximation is 2

Some of these properties can be enforced in the structure of
the model and its parameters without complicating the
optimisation.
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prior knowledge: constraints
Model:

 Zero at s=0

 Relative degree =1 → Constrain r =n-1

→

Redefine the problem:
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prior knowledge: constraints

 Passivity: Also not enforced by LS. Low-order models are
usually passive, hence if not passive try reducing the
order.

 Stability: The LS optimisation does not ensure
stability, this is one way to force it after identification:

 Minimum order: The 2nd order approximation is the lowest
order approximation that can satisfy all the properties of
the retardation functions:
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 example container (dof 33)
Realization Theory FD-Id with constraints

By imposing constraints on the model structure and parameters,
we obtain a model that satisfy all the properties of the
retardation functions and have a better quality.
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 example semi-sub

Data from www.marinecontrol.org
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example semi-sub: surge (ord. 5)



11 July 2008 ARC Centre of Excellence for CDSC 36

 example semi-sub: sway (ord. 7)
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example semi-sub: heave (ord. 8)



11 July 2008 ARC Centre of Excellence for CDSC 38

 example semi-sub: roll (ord. 6)
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example semi-sub: roll-sway (ord 8)

 Couplings are
not necessarily
passive B(w)<0
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Frequency-domain methods
 Work directly in the FD, hence, there is no need to compute a

distorted impulse response by going to time-domain.

 No need to compute data at very-low or very-high frequency. We
can concentrate in the important range and compute many points.

 They can incorporate prior knowledge, and thus the models satisfy
the physical characteristics of the problem. Good quality models.

 Order selection: one can start with the minimum order n=2 and
increase it if necessary to improve the fit. (check passivity.)

 Parameter estimation method is simple: a sequence of Linear
Least-Squares problems.



 frequency-domain
identification with 2D-data
(strip-theory codes)

joint identification of infinite-frequency
added mass and memory models
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indirect FD identification
If we do not have access to A∞, as in the case of strip theory

codes, we can identify it together with the K(s).

The non-parametric radiation force models in the frequency
domain can be expressed as

From the parametric approximations, this
can also be expressed as
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indirect FD identification
Then we can define the complex coefficient:

And fit to it a rational approximation

⇔

 with the constraint
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indirect FD identification
Once the R(s) and S(s) are obtained, we can obtain the added

mass and fluid memory model from

 The coefficient               is the coefficient of the
higher-order term of                 if                 is monic.
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example FPSO

Data from www.marinecontrol.org
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example FPSO (dof 33)
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example FPSO (dof 35,53)



11 July 2008 ARC Centre of Excellence for CDSC 48

example FPSO (dof 55)
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example FPSO

Similar accuracy is obtained for the other couplings.

Infinite-frequency added mass coefficients.
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Summary and Conclusions
 We have revisited different methods to the identification of

time-domain models based on frequency domain
computations.

 Time-domain methods
 Require forming the impulse response function (distortion).
  Make no use of prior knowledge (affects model quality).
 Realization Theory is relatively easy to implement.
 Applicable to 2D and 3D data.

 Frequency-domain methods
 Simple to implement and use.
 Incorporate  prior knowledge as constraints (improved model

quality).
 Applicable 2D and 3D data.
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This presentation
 This presentation summarizes the discussions in

 Perez and Fossen (2008a) Time- vs frequency-domain
Identification of parametric radiation force models for marine
structures at zero speed. Modeling, Identification and Control
Vol. 29 No.1, pp1-19.

 Perez and Fossen (----) Joint Identification of Infinite-frequency
Added Mass and Fluid-Memory Models of Marine Structures.
Modeling, Identification and Control. Under review.

 Perez and Fossen (----) Identification of Seakeeping Models
from Frequency-response data Enforcing Model structure and
parameter Constraints. To be submitted at Ocean Engineering


