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Motivation

The effects of roll on ship performance became more
noticeable in the mid-19t" century when:

Sails were replaced by engines
Broad arranges changed to turrets

Many devices have been proposed leading
to interesting control problems

W. Froude (1819-1879)

Performance can easily fall short of expectations because of
deficiencies in control system design due to
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| - Ship Roll Control Devices

Performance,

Working Principles,

and Historical Aspects
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Ship Performance and Roll Motion
Ship roll motion

» Affects crew performance
» Can damage cargo
» May prevent the use of on-board equipment

ITAL FLORIDA
TRIESTE

From a ship operability point of view is necessary to
reduce not only roll angle but also roll accelerations.
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Bilge Keels

“ 10to 20% roll reduction (RMS)
“ Low maintenance

“ No control

“ No occupied space

“ Low price easy to install

“ Increase hull resistance when damping is not needed
“ Not every vessel can be fitted with them (ice-breakers)

_— /
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Bilge keel
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U-tanks

“ 40 to 50% roll reduction (RMS)
“ Active/Passive

“ Independent of the vessel speed
“ Anti heeling

“ Heavy

“ Occupy large spaces

“ Affects stability due free-surface

Intering Rolls-Royce
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Gyro-stabilisers

" 60% to 90% roll reduction (RMS)
“ Performance independent of the vessel speed

1906 1914 to 1925 1914,1924
Torpedo Boat active control Twin Gyros Today
Schlick Fieux Halcyon Time
(Germany) (France) Ferretti
Sea Gyro
Shipdynamics
Seakeeper

Japanese aircraft carrier ‘Hosho’ 95% RR with
Sperry Gyro ¢ w7

Conte di Savoia 1932
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Fin-stabilisers

" 60% to 90% roll reduction (RMS)
“ Performance depends on speed
“ Control is important for performance

“ Easy to damage

“ Most Expensive stabiliser

“ Can produce noise affecting sonar
“ Dynamic stall




Rudder Roll Stabilisers (RRS)

= 40% to 70% roll reduction (RMS)
“ Performance depends on speed
“ Control is important for performance

¢ [deg]

“ Special rudder machinery
“ Fundamental limitations in control due to
non-minimum phase dynamics (NMP)
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Historical Aspects

Year Device Ship Designer Type

1870 Bilge keels - Froude (GBr) Passive
1880 Tanks Inflexible Watt and Froude (GBr) Passive
1891 Weight Cecile Thornycroft (GBr) Active
1906 Gyro Sea-Bar Schlick (Ger) Passive
1909 Weight Steamer Crémieu (Fra) Passive
1910 U-tank Ypiranga Frahm (Ger) Passive
1915 Gyro Conte di Savoia Sperry Company (USA) Active
1924 Gyro (double wheel) Destroyer Fieux (Fra) Passive
1924 Fins (variable angle) Matsu Maru Motora (Jap) Active
1933 Fins (variable area) Awiso Estourdi Kefeli (Ita) Active
1836 Fins (variable angle) HMS Bittern Denny-Brown (GBr) Active
1939 U-tank Hamilton Minorsky (USA) Active
1972 Rudder M.S. Pegqy van Gunsteren (NdI) Active
1974 Rudder Manchester Concorde Cowley & Lambert (GBr) Active

T. Perez (2005) Ship Motion Control, Springer
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Il - Key Aspects of Ship Roll Dynamics
for Control Design

Models

Ocean Environment

Woave-induced motion
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Dynamics of Roll Motion

General model form to describe ship motion:

n 2 [pg”] =[N, B, D, 6,9, y]".

T

npb
v = bb/n — [u7 v, w, p, q, 7“] .

wb/n

()”
.\y
Earth Frame

{n}

( )
Kinematic model: 7] = J(’n)l/

Kinetic model: M2 +C(v)v +DWw)v +g(n) =1

- /
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Models for Control Design

For control design, output disturbance models are usually adopted:
Motion Time
series
Control
IDOF 4DOF ——( )——

Force to motion

/For roll motion control problems this model is simplified to )
1DOF: roll
4DOF: surge, roll, sway, and yaw )
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Dynamics of Roll Motion—1DOF Model

Consider only roll motion,

Kinematic model: ¢ — D,

Kinetic model: [:U:I: p — Kh + KC e Kd
\ - = <

Hydrodynamic Control Disturbance
moments moments moments

Hydrodynamic Moments:

Ky =~ Kyp+ Kyp + Kppp plp| + K(9)

Potential Viscous Hydrostatic
Effects Effects Effects
TTTTTTTTTTTTTTT DTU
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Dynamics of Roll Motion—4DOF
n=[oy]",

Motion Variables:

Kinematic model:

Kinetic model:

Th = —My v —Ca(v)v — Dv)v — K(¢)

v=[uvpr

X, Y; K; N;|*,

T

I

¢ = p,

¢:Tcos¢z7“

\

\MRB v+ Crp(v)v =T +Tc+ de
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Ocean Environment

Usual assumptions for sea surface elevation (t):
Zero-mean

v v

Gaussian (depth dependent)

v

Narrow banded

>

All necessary information is then in the wave elevation power spectral
density (Sea Spectrum):

Stationary (20min to 3 hours)




Sailing Condition and Encounter Spectrum

-

\

Sailing Condition

» Speed

» Encounter angle
- /

Wave profile Beam seas
90deg
---------- Bow seas

18

\\\ Head seas
\ 180deg

Ih

Encounter Frequency

Bow seas
A Head seas
we Beam seas
, w= =i
We = 177 Cgb(\) T H / Feosty)
W = 57— 'g w -
2l coslx) \ Following seas
Quartering seas
/
w2U
We = W — cos(x)
9
D¢ (w)
De¢(we) = T
‘1 — = cos(x)‘
N /
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Woave-induced Motion Motion

Seakeeping Model

Motion spectrum

S () }‘—{ Fjwnl) F—f GiwL) F—{ Sy (W)
Wave spectrum Wave to force FRF Force to motion FRF

F(jw,x) = [F1(jw, X), -, Fs(jw, x)]"

(Gi11(jw,U) -+ Gi(jw) |
G(jw,U) = : : = (—[Mgg + A(w)]w? + jwB(w) + G)™!
_G61(jw U) G66(]w U)
RolRaO:  Hy(jw, x, U E G (Jw, U)F(jw, x,U)
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Example Roll RAOs Naval Vessel @ | 5kt

6
H4(jCU,X, U) — Z’Gélk(jwa U)Fk(Jw7X7 U)

—<7— 30deg
—4A— 45deg
—5— 60deg
—— 75deg
—=— 90deg
105deg

L : B —— 120deg
8 —%— 135deg
‘ I | —e—

DTU
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lll — Motion Control Design

Obijectives,

Performance Limitations,

and Control Strategies
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Control Design and Performance Limitations

From the ship performance point of view, the control objectives are
» Reduce roll angle

» Reduce roll accelerations
¢ol
K. .
—{ Actuators ]——{ Ship }——>©—’—> ¢cl
u (
| Control }
Output sensitivity Roll spectrum relations

A chl(S)
S(S) B ¢0l(8)
DTU
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Control Design and Performance Limitations

If the closed-loop system is stable minimum phase and strictly proper,
the following Bode integral constraint applies

/OO log |S(jw)| dw = 0
0
Py (w) = |S(jw>|2q)ol(w>

_ Dot (Jw)| —| Per(Jw)]
‘¢0l(jw)|

DTU
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Example Performance Limitations

Gyrostabiliser (Perez & Steinmann, 2009)

x107° H(s) = Roll Ang / wave moment

Roll Reduction
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Non-minimum phase Dynamics

In some cases, the location of the actuators may result in NMP
dynamics (with a real zero at s=q.)

Then, we have a Poisson-integral constrain:

/ " log 1S(jw)| W (g, w)dw = 0

q=04+ 70

:
1% =4
(q,w) o7 1 2

-
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Non-minimum phase Dynamics

150

RRD wave sensitivity (NORM - S@3):havk:2610

o5F

Example Blanke
et al (2000)
0
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Energy of Wave Excitation

The energy of the wave excitation changes with the sea-
state and sailing conditions (speed and heading)

For example a change in encounter angle can shift
the energy significantly:

X = 45 deg X = 90 deg x = 135 deg
30 - 30 : 30 -
20 20 ﬂ 20
@ 10 | E 10 | @ 10 |
3 =3 =3
= NNV WW\E of < o
-~ . <
~"10 o} 10
-
—20 | 1 20} —20 |
-30 - -30 : -30 -
50 100 0 50 100 0 50 100
t[s] t[s] t[s]
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Fin Stabilisers (minimum phase case)

IDOF model including fin forces:

¢ =p,
Ipe + Kp)lp+ (Kp + 27, K U)p+ Ky ¢ = Ky — 2U° K,

Control issues:
Parametric uncertainty

- Sensitivity-integral constraints

Control strategies:
PID, Hinf
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Fin Stabilisers and NMP Dynamics

If the response from the fins is NMP, then the IDOF cannot be used, in
this case roll-sway-yaw interactions need to be considered to avoid
large roll amplifications at low frequencies.

Observations about fin NMP dynamics were made by Lloyd (1989).
DTU
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Fin Stabilisers — Dynamic Stall

Experimental results of Galliarde (2002) (MARIN, Ned)

=l

a [deg]

hnear behaviour
ol lin and roll lnear bahaviour of it and roll




Fin Stabilisers

Perez & Goodwin (2003): MPC constraints effective angle of attack.

Fin stabilized chip. At 15kt; top SS3 in beam seas.

Fum stabilized shup. At 15kt; top SS3 m beam seas. —— Closed loop

@ [deg]
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Rudder Roll Damping

Potential discovered from autopilot without wave filter (Taggart 1970)
Results reported by van Gunsteren in 1972 (the Netherlands)
Cowley & Lambert (1972) used roll fbk, reported yaw interference.
Carley & Duberley (1972) integrated rudder-fin control

Carley (1975) & Lloyd (1975) recognise limitations of NMP dynamics
Baitis et al.(1983) highlighted need of adaptation

Advent of Computers in 1980 resulted in several successful results

Hearns & Blanke (1998) limitations using the Poisson Integral

Perez (2003) analysed min variance and RR vs yaw interference
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Performance Limitations (Hearns & Blanke, 1998)

A 5 Ll Ll Ll Ll Ll Ll Ll Ll Ll
|S(3w)
1S ()l | BE\ ap =01 g1 = 0.187 [rad/s] il
1+ oo s w2 = 2.5 [rad/s] i
| 3 O (wi.ws)
? 15 ) 1 7'r_@o‘(‘-‘)la('u?) 7
3 It = (o)
2 “ 1
a1 25
1k
) = 0.5
w1 w2 w3 15 '_\ -
1 1 1 1 1

If the controller does not
adapt, we can easily
have roll amplification

w1 [rad/s]

AAAAAAAAA
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Performance Limitations — Perez et al. (2003)

Limiting Optimal Control with full knowledge of wave spectrum:

J=EM" + (1 = N)(¥ — ¢a)]

Minimum variance case (A=1): E[¢2] > 2 q (I)gbqb(Q)

|34
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1
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= 4+ :
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tations on RRD

Imi

Actuator |

» Actuator rate limits may affect performance
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AGC —Van Amerongen et al (1982)

Qe & _
> o - (Y] =
L !
dmax -
max Y
g_t abs
Memory Function
Y
—{ U (t) = ay(t — 1)
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Performance Limitations — Perez et al. (2003)

IVC OCP: Rudder angle RMS limited to 15deg

Heading 90deg SS5 (HS=4m T=Tsec)
!

10 | ! | | ! ! | |
. _ A=1 mem {nconst
_@” A= m (st
) Limit = 2.0 deg RMS Limit = 6.3 deg RMS
% -
3
53 & A=0
O | | | | | | | L S —
2 3 4 5 7 8 10 11 12
RM S roll[deg]
08 1 | | I
=== )nd ord Approx
06 m— PSD |
©
©
n
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Performance Limitations — Perez et al (2003)

IVC OCP: Rudder angle RMS limited to 15deg

Heading 45deg SS4 (HS=2.5m T=7.5sec)

15 T T T
_ A=1 me Jnconst
& we Const
i 10+ Limit = 1.6 deg RMS x
g
o s A=1 i
= - A=0
g Limit = 1.33 deg RMS
0 | | | | e
1 15 2 25 3 35 -
RM S roll[deg)]
0.04 T T T 1 T I
=== Ind ord Approx
0.03 PSD x
<
<
w 0.02 i
0.01 .
0 ——— 1
15 2 25 3 35
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Performance Limitations

» At low encounter frequencies,

RR vs yaw interference can be large
MNP dynamics limits RR achievable performance.

» At high encounter frequencies,

Limitations of rudder machinery usually dominate RR
achievable performance.
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Performance Limitations (quatering seas RR 40%)

ITTC spectrum, Hs: 4 [m]. T: 7.5 [sec]. Speed: 15 [ki]. Enc. Angle:45 [deg]
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Performance Limitations (beam seas RR 64%)

ITTC spectrum. Hs: 2.5 [m]. T: 7.5 [sec]. Speed: 15 [kt]. Enc. Angle: 90 [deg]

0 [deg]

0 [deg/s*]

1 [deg]

=0 20 .
D
= o}
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0 SIO l(;O 1510 2(;0 2510 300
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Control Strategies

PID,

Hinf

Loop shaping

Adaptive LQG

Model Predictive Control
Switched control
Nonlinear control

TTTTTTTTTTTTTTT 4
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Changes with Speed (Blanke & Christiansen 1993)
Cps(1+ 5721)(1 = )

» Rudder to Roll TF:  Gys5(s) = >
(1+ s7p1)(1 + STpg)(Z—g + 2ij—p + 1)

RHP zero LHP zero
0.2f T : .
- -0.2
0.18f g o
0.16} . -0.25 R
. . el S~
Changes in dynamic 014 03 L
response due to speed 012| ’
. . -0.35 N
coupled with changes in 01k o .
8 9 10 11 8 9 10 11
disturbance spectrum spoed ] spoed ml]
results in a strong need mhilsad . P pole2
. -0.025} -0
for adaptation. L 035 .
~0.035} B N o B N
Q N -0.45 & N
-0.04} N 05 T
-0.045{ RN -0.55 REN N
8 9 10 11 8 9 10 11
speed [m/s] speed [m/s]
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H2 — Optimal Design

D o(w) = Hj(jw) Ha(je)
E(¢") = [[Hi—QV]z V= HaGsg

e H—]_H— )
Cso(s) = (Gj) ™"
5¢(S) ( 5gb) 1 S_|_qH lH—
\ 514
=+ S
Gasls) = Gos(s) = Hule) 72 d = Hi () + HE(5)

This shows the strong dependency on sea state, sailing conditions and
changes in the vessel model --- adaptation is required.
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Direct Sensitivity Specification (Blanke et al. 2000)

Targeted (Desired) Sensitivity:

S+ 2a s + 1
d

Sq(s) = 1+ 5Zd)(1 N f—j) S(s)=(1+ C(Scp(S)G(p(S(S))_l
S —1 1 1 - 3 1
Csp(s) = (Sals)™" = 1)G g5 1+ s P(s)
q
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Direct Sensitivity Specification (Blanke et al. 2000)

-~

-

C§¢(S) =

\

82 S
ks w2 7200, T 1 (14 s70) (1 + s7p0)

CpsWd j—% +2Ca 2 + 1 (T+s721)(1+ ¢)

Successful performance

was demonstrated for the
SF300 patrol boat of the
Danish Navy

46

RRD wave sensitivity (NORM — S@3):havk:2610

1.5

roll angle reduction

0.5

waveperiod [sec]
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Gyro Stabilisation

Spin angular momentum

K, = 15w

Tw, ¢

Ii4d + Biy¢ + Byl olo + Cuagp = 7y — Kgdicos o,
N’

I,a0+ Byjo+ Cgsina = Kgq.bcosoz ST

~

Tg

N———
Tm, /
TTTTTTTTTTTTTTT DTU
8th IFAC CAMS, Sept |5th-17th, Rostock, Germany NEWCASTE oo (@) NTNU



Gyro as a Damper
Tp i R QP

|

1140 + (BSy + nK Q)¢ + Caatd = Ty

!

Increase of roll damping

n- number of gyros due to the gyrostabiliser
g-constant
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Gyro-control Design

Gyro full state control: 7y — —K&Oz — KTCV

Roll to precession Transfer function:

G(s) = a(s) _ oz(s) _ K,s B, =DB,+K,,
o(s)  o(s) 1482+ Bls+Cl C! =Cy+K,

The control design objective becomes:

Tp dzqgﬁﬁ G(w)| = q,
Vw € O arg G(Jw) = 0
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Irregular Sea Performance (Perez & Steinamnn 2009)

Roll Reduction in RMS: 82%
Vessel displacement: 360 ton
Gyro unit weight: 13 ton

JONSWAP, Hs[m]=2 TO[s]=7 Speed[m/s]=0.00 Enc Angl[deg]=90
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IV - Research Outlook

New Devices

Unsolved Problems
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New Devices

Flapping fins (Fang et al. 2009 Ocean Engineering 36)
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New Devices

Rotor Stabiliser (Quantumhydraulic.com)

7
o
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Typical Vessel Length* 25-40m (80-130ft)

Maximum Underway Operating Speed 14 knots

Rotor Length 1500mm (39”)

Rotor Diameter 217mm (8.5")

Angular Travel (total mechanical) 150°

Length (inside vessel after installation)*” 920mm (36")

Width* 450num (187)

Height (overall)™* 1110mm (44")

Height (inside vessel, retracted)™* 890mm (35")
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Parametric roll

Parametric roll is an auto-parametric resonance phenomenon
whose onset causes a sudden rise in roll oscillations.

Measured roll. Reference time (1=0) is 2004-02-03 15:58:11UTC
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Conditions for PR

The following conditions can trigger the effect:

Hull designs with significant bow flare and hanged stern
Sailing in longitudinal waves

Wave length close to the length of the vessel
Encounter frequency is twice the roll natural frequency
Low roll damping

Parametric roll is particular of modern container ships,
cruise ships, car ferries, and fishing vessels.
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Restoring in VWaves — Dynamic Stability

K(¢) =pgV GZ(9)

Wave trough amidships

Wave crest \ GZ(¢, x.)
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Videos

DTU
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Conclusion

» For over 100 years different devices have been proposed to control

roll motion (reduction)

» Most of these devices require control systems to work

» Control design is not trivial due to

Fundamental limitations
Widely-varying disturbance characteristics
Actuator limited authority
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Current State and Research Outlook

New developments are being put forward by yacht industry

Navies are still considering RRD

Submarines need roll control at low speeds when in the surface

Research outlook

Adaptation to sea state and sailing conditions still remains an issue
New devices with interesting hydrodynamics

Integrated vessel and roll control design (performance prediction)
Parametric roll
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