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- body velocities:
- position and Euler angles:
- M, C and D denote the system inertia, 

Coriolis and damping matrices
- g is a vector of gravitational and buoyancy 

forces and moments

- q is a vector of joint angles
- is a vector of torque 
- M and C are the system inertia and Coriolis matrices  

Vectorial Representation for Ships
From robotics to ship modeling (Fossen 1991)
Consider the classical robot manipulator model:

Mqq̈  Cq, q̇q  

This model structure can be used as foundation to write the 6 DOF marine 
vessel equations of motion in a compact vectorial setting (Fossen 1994, 2002):

  u, v, w,p, q, rT

  x,y, z,, ,T

M̇  C  D  g  

It is here assumed that the 
hydrodynamic coefficients are 
frequency independent.
This will be relaxed later!

̇  J
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http://www.itk.ntnu.no/ansatte/Fossen_Thor/book/book.html
http://www.marinecybernetics.com/books.htm


Rigid-Body Equations of Motion 
Newtonian Formulation (Body Frame)

MRB 

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz

Rigid-body system inertia matrix

MRB ̇  CRB  RB

where

MRB rigid-body system inertia matrix
CRB rigid-body Coriolis/centripetal matrix

The generalized forces on a floating vessel are superpositioned:

RB  H  wave  wind   current   control

Hydrodynamic radiation-induced forces + viscous damping

See Fossen (1994, 2002) for parameterizations of CRB
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Forces on the body when the body is forced to oscillate with the 
wave excitation frequency and there are no incident waves
(Faltinsen 1990):

(1) Added mass due to the inertia of the surrounding fluid
(2) Radiation-induced (linear) potential damping due to the energy 

carried away by generated surface waves
(3) Restoring forces due to Archimedes (weight and buoyancy)

Faltinsen (1990). Sea Loads on Ships and Offshore Structures, Cambridge.

Radiation-Induced Hydrodyn. Forces

R  −MA̇ − CA
added mass

− DP
potential damping

− g  go
restoring forces

“hydrodynamic mass-damper-spring”
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Fluid Kinetic Energy
The concept of fluid kinetic energy: 

can be used to derive the added 
mass terms.

Any motion of the vessel will induce 
a motion in the otherwise stationary 
fluid. In order to allow the vessel to 
pass through the fluid, it must move 
aside and then close behind the 
vessel. 
Consequently, the fluid motion 
possesses kinetic energy that it 
would lack otherwise (Lamb 1932).

T MRB RB
=1/2 ν ν

T

Kinetic energy of fluid: T MA A=1/2 ν νT

TA  1
2 

MA

Added Mass and Inertia

MA  −

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

03/09/2007 One-day Tutorial, CAMS'07, Bol, Croatia 5



6 DOF Body-Fixed Representation for Added Mass 
(Includes Coriolis/Centripetal Terms due to Added Mass)

XA  Xu̇u̇  Xẇẇ  uq  Xq̇q̇  Zẇwq  Zq̇q2

 Xv̇v̇  Xṗṗ  Xṙṙ − Yv̇vr − Yṗrp − Yṙr2

− Xv̇ur − Yẇwr
 Yẇvq  Zṗpq − Yq̇ − Zṙqr

YA  Xv̇u̇  Yẇẇ  Yq̇q̇
 Yv̇v̇  Yṗṗ  Yṙṙ  Xv̇vr − Yẇvp  Xṙr2  Xṗ − Zṙrp − Zṗp2

− Xẇup − wr  Xu̇ur − Zẇwp
− Zq̇pq  Xq̇qr

ZA  Xẇu̇ − wq  Zẇẇ  Zq̇q̇ − Xu̇uq − Xq̇q2

 Yẇv̇  Zṗṗ  Zṙṙ  Yv̇vp  Yṙrp  Yṗp2

 Xv̇up  Yẇwp
− Xv̇vq − Xṗ − Yq̇pq − Xṙqr

KA  Xṗu̇  Zṗẇ  Kq̇q̇ − Xv̇wu  Xṙuq − Yẇw2 − Yq̇ − Zṙwq  Mṙq2

 Yṗ v̇  Kṗṗ  Kṙṙ  Yẇv2 − Yq̇ − Zṙvr  Zṗvp − Mṙr2 − Kq̇rp

 Xẇuv − Yv̇ − Zẇvw − Yṙ  Zq̇wr − Yṗwp − Xq̇ur
 Yṙ  Zq̇vq  Kṙpq − Mq̇ − Nṙqr

MA  Xq̇u̇  wq  Zq̇ẇ − uq  Mq̇q̇ − Xẇu2 − w2 − Zẇ − Xu̇wu
 Yq̇v̇  Kq̇ṗ  Mṙṙ  Yṗvr − Yṙvp − Kṙp2 − r2  Kṗ − Nṙrp
− Yẇuv  Xv̇vw − Xṙ  Zṗup − wr  Xṗ − Zṙwp  ur
− Mṙpq  Kq̇qr

NA  Xṙu̇  Zṙẇ  Mṙq̇  Xv̇u2  Yẇwu − Xṗ − Yq̇uq − Zṗwq − Kq̇q2

 Yṙv̇  Kṙṗ  Nṙṙ − Xv̇v2 − Xṙvr − Xṗ − Yq̇vp  Mṙrp  Kq̇p2

− Xu̇ − Yv̇uv − Xẇvw  Xq̇  Yṗup  Yṙur  Zq̇wp
− Xq̇  Yṗvq − Kṗ − Mq̇pq − Kṙqr

d
dt

∂T
∂1

 S2
∂T
∂1

 1

d
dt

∂T
∂2

 S2
∂T
∂2

 S1
∂T
∂1

 2

Kirchhoff's Equations (1869)

TA  1
2 

MA

d
dt
∂TA
∂u  r ∂TA

∂v −q
∂TA
∂w −XA

d
dt
∂TA
∂v  p ∂TA

∂w −r
∂TA
∂u −YA

d
dt
∂TA
∂w  q ∂TA

∂u −p
∂TA
∂v −ZA

d
dt
∂TA
∂p  w ∂TA

∂v −v
∂TA
∂w r ∂TA

∂q −q
∂TA
∂r e − KA

d
dt
∂TA
∂q  u ∂TA

∂w −w
∂TA
∂u p ∂TA

∂r −r
∂TA
∂p −MA

d
dt
∂TA
∂r  v ∂TA

∂u −u
∂TA
∂v q ∂TA

∂p −p
∂TA
∂q −NA

kinetic energy due
to the fluid

MA CA(ν) 
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In addition to potential damping we have to include other 
dissipative viscous terms like skin friction, wave drift damping etc:

Total hydrodynamic damping matrix:

The hydrodynamic forces and moments       can be now be 
written as the sum of                 :

Viscous Hydrodynamic Damping

D  − DS
skin

friction

− DW
wave drift

damping

− DM
damping due to

vortex shedding

D : DP  DS  DW  DM

H  −MA̇ − CA − D − g  go
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M̇  C  D  g  wave  wind   current   control

Equations of Motion

M  MRB  MA

C  CRB  CA

The resulting model is (frequency-independent coefficients):

M 

m− Xu̇ −Xv̇ −Xẇ

−Xv̇ m− Yv̇ −Yẇ

−Xẇ −Yẇ m− Zẇ

−Xṗ −mzg−Yṗ myg−Zṗ

mzg−Xq̇ −Yq̇ −mxg−Zq̇

−myg−Xṙ mxg−Yṙ −Zṙ

−Xṗ mzg−Xq̇ −myg−Xṙ

−mzg−Yṗ −Yq̇ mxg−Yṙ

myg−Zṗ −mxg−Zq̇ −Zṙ

Ix−Kṗ −Ixy−Kq̇ −Izx−Kṙ

−Ixy−Kq̇ Iy−Mq̇ −Iyz−Mṙ

−Izx−Kṙ −Iyz−Mṙ Iz−Nṙ

System inertia matrix including added mass

Linear mass-damper-spring
(frequency-independent)
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In classical manoeuvring theory, the forces are modelled at a 
general non-linear function:

A particular affine parameterization is then used, and the 
coefficients are estimated linear regression from the data.

The disadvantage of this model representation to a energy-based 
(Lagrangian) approach is that model reduction, 
symmetry/skew-symmetry properties, positive matrices, etc.  
are difficult to exploit in simulation and control design.

This model can, however, be related to the Lagrangian model: as 
shown by Ross et al. 2007:
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Manoeuvring Hydrodynamics

τg(ηνD(ννC(ννM =+++ )))&

τηννf(νM += ),,&&
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Parameterisations

Two types of parameterisations for the hydrodynamic forces are 
generally used in classical manoeuvring theory:

Truncated Taylor-series expansions:
Davison and Shiff (1946): 1st-order (linear) terms.
Abkowitz (1964): odd terms up to 3rd order.

2nd -order modulus
Fedyaevsky and Sobolev (1963)
Norrbin (1970)



Parameterisations

2nd -order modulus Taylor-series
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Parameterisations
As commented by Clarke (2003), 

Taylor expansions give rise to a smooth 
representation of the forces, but have no 
physical meaning.

2nd-order modulus expansions represent well the 
hydrodynamic forces at angles of incidence: 
cross-flow drag.
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Taylor-Series Expansions

Where the partial derivatives are taken at an 
equilibrium: 
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Model of Abkowitz (1964) 

The coefficients are 
called hydrodynamic 
derivatives.

Many terms are set to 
zero by exploiting 
physically properties. 
If not, there will 
thousands of 
coefficients.



Model of Norrbin (1970)
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2nd-Order Modulus
From Blanke and Christiansen (1986):
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Measurement of Hydrodynamic Derivatives
Experiments with model tests.
Full scale sea trials and system identification.
Theoretical prediction methods.
Regression analysis results from similar designs.

Model tests that can be performed

Straight line in a towing tank,
Rotating arm,
Planar motion mechanism PMM,
Oscillator tests,
Free running (radio controlled).

PMM



Experimental Methods

Model testing in Peerlesspool in London
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Measurement of Hydrodynamic Derivatives

Rotating arm
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Typical Tests
Pure Sway:

Pure yaw:

Drift and yaw:

Different tests are used to 
fit different parts of the 
model.
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During the model tests, the 
model is forces to move 
and forces velocities and 
accelerations are recorded.

Then the hydrodynamic 
derivatives are estimated 
from regression analysis.

Measurement of Hydrodynamic Derivatives
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A Novel 4 DOF Manoeuvring Model
Ross et. al. (2007)  has reassessed the manoeuvring models in the 

literature, and formulated a novel 4 DOF (surge, sway, roll, yaw) 
Lagrangian model using first principles and superposition of: 

Potential (added mass)
Circulation effects: lift and drag
Effect of roll on circulation effects
Cross-flow drag.

The advantage of the Lagrangian model is its vector representation 
which is tailor made for energy-based control design (Lyapunov).  
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Added Mass and Coriollis

The 4 DOF solution of Kirchhoff’s equations can be 
expressed as (Fossen, 2002)

Added mass Added mass Coriollis and 
Centripetal terms
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Model of Ross et al. (2007)
Circulation effects (lift and drag), effect of roll on circulation effects and cross-
flow drag (modulus representation) are derived in Ross et al. (2007):

where the components are:
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Manoeuvring Model
Combining all the terms in a matrix  for, we obtain 

the manoeuvring equations in Lagrangian form 
(Fossen 1994, 2002).
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Model Validation with PMM Data

To validate the model, Ross et al. (2007) used 
data of several PMM tests, and perform a 
regression based on the model structure 
derived.

Then compared the fit with that of a model fitted 
by a tank testing facility to the same dataset. 
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Fitting Using PMM Data @ 30kt
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Validation in Full Scale (Perez et al.,2007)

Perez et al. (2007) fitted a simplified model to data 
recorded on full scale manoeuvres of Austal’s 
Trimaran Hull 260.

The parameters were fitted with data of a 20-20 zig-
zag test, and then the model validated with data of a 
10-10 zig-zag test.
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Simplified Model
The model was simplified according to the that of Blanke (1981). 

This was done because the excitation signal was not rich 
enough to estimate all the parameters—the zig-zag test is not 
designed for system identification!
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Model Fitting (20-20 ZZ)
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Model Validation (10-10 ZZ)
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Effects of Currents

The current has to effects, which are represented with the 
velocity of the vessel relative to the current velocity:

Potential: The Munk moment is incorporated in the added 
mass Coriollis-Centripetal terms.

Viscous: eddy making and skin friction. These are 
incorporated in the cross-flow drag.

cr

rrArrARBARB

ννν
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In some applications, where positioning is important, 
the effects of current must be considered:
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