18/09/2007

Seakeeping Models In the
Frequency Domain

(Module 6)

Dr Tristan Perez Prof. Thor | Fossen

Centre for Complex Dynamic Department of Engineering
Systems and Control (CDSC)  Cybernetics

THE UNIVERSITY OF @ NTN
NEWCASTLE [J

AUSTRALIA . %
Det skapende universitet

One-day Tutorial, CAMS'07, Bol, Croatia



Linear hydrodynamic forces in waves

Linear theory can describe hydrodynamic loads to a great extent in
low to medium sea states (depending on the size of the ship)

Linear means that the loads and the motion are proportional to the
wave amplitudes.

Linearity means superposition: the loads and responses due to
irregular seas can be obtained by linear combination of responses to
regular or sinusoidal seas.

Also due to the linearity assumption, the study can be performed
either in time or frequency domain.
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Linear hydrodynamic forces

waves

T Texc

Thyd — Trad + Trest

/

- Motion

Some of the loads depend on the excitation due to the
waves, while other depend on the motion of the vessel
itself.

The second type of loads give the system a feedback
structure.
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‘ Adding nonlinear forces

Once we have a linear time-domain model, nonlinear loads can be
added due to the assumption of force superposition:

waves = > Motion

So, the linear model should not be seen as a limitation; rather as a
basis upon which we can build nonlinear models based on the
assumption of force superposition.
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Linear hydrodynamic analysis

Due to linearity, we can study the problem for sinusoidal excitation and then
use these results to obtain solutions to non-sinusoidal cases via
superposition.

The hydrodynamic problem of obtaining loads and motion for sinusoidal waves
can be separated into two sub-problems:

: The ship is restrained from moving and kept in its mean
position, and the excitation loads are obtained as a result of changes in
pressure due to the incoming waves.

: The ship is forced to oscillate in calm water in each DOF
with a frequency equal to the wave excitation frequency.

Excitation Load Radiation Load Total Load
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Radiation forces

Radiation loads appear due to the motion of the ship—
the change in momentum of the fluid due to the
motion of the hull changes the pressure on the hull,
which induce the loads.

These loads have two components

o Proportional to the accelerations
o Proportional to the velocities
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Radiation forces

Boundary conditions:

o*d oD
—+g-—=0 for: z=0

ot oz

oD
—=0 for: z=-h

Oz

oD

—_—= (x,y,z,r)

Cn

Regular outgoing waves

are observed at large distance
from the vessel

;Floating body
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Computing forces

Forces and moments are obtained by
integrating the pressure over the average
wetted surface Sw:

Radiation forces and
moments:
DOF:

1-surge

-], (aq;tfadj(n)ids i=123. 2-sway
ooW 3-heave
4-roll

oD . _
- N - j(rxn)i_gds i =456. >pich

Tradi =

rad,i
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Radiation forces for regular motion

If the motion of the vessel on the
DOF 1 is harmonic:

& = Ecos(ot)

Then, after integrating the pressure over the surface
of the hull, the radiation forces in the DOF j due
to the motion in the DOF i take the following form:

Trag i = —Aj(@) & —By(w) &~ Opyinsteady.
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Radiation forces for regular motion
Trad,j = _AJ (C()) 5 Bu (C()) é:

The coefficients that multiply the accelerations are called
added mass coefficients even though not all of them have
units of mass. The added mass terms give the forces due to
the accelerations of the fluid as the vessel oscillations—the
whole fluid will oscillate with different fluid particle
amplitudes.

The coefficients proportional to the velocities are called
potential damping coefficients. The potential damping terms
represent the energy carried away by the waves generated
due to the motion of the hull.
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Added mass and damping

Example of added mass and e
potential damping in heave — - -
of a symmetric rectangular
barge 8x4x45m:

(4] [=>] -l w w
T T T

A33 [Kg]

0 i 2 3 4 5 6
Freq [rad/s]

The added mass and damping
coefficients depend on

B33 [N s/m]

Shape of the hull
Forward speed : é é ; é 6
Water depth Freq [rads
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Symmetry

There is a total of 36 added mass and 36 damping
coefficients.

If the structure has zero speed and a plane of symmetry,
half of the coefficients are zero. (for this to hold with forward
speed, the plane of symmetry has to be parallel to the
forward direction.)

If the structure has zero speed and there is no current, then
the matrices of added mass and damping are symmetric:

Aﬁj (@) = Aji (@)
Bij (@) = Bji(a))
Qe & NTNU
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Restoring forces (linear)

The resotring forces are due to changes
In displacement:

00 0 0 0 0 | —Z: = pgdwp(0)(A,,, waterplane area)
00 0 0 0 0 _ T = pgjj xdA
Awp
Gogo| 00 Z 0 Zo | o, g
00 0 —K; 0 0 , i \
¢ - Ky = pgV(zg —z5) + pgjj yed4 = pgVGMT
00 -M. 0 -My 0 Awp
00 0 0 0 0 — Mg = pgV(zg —zp) +ng‘L. x*d4 = pgVGM;

These are computed for calm water—Calm water stability.
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Linear Wave Excitation

The linear wave excitation or 15t order waves
excitation are the loads on the structure when it is
restrained from oscillating and there are incident
waves. The linear assumption assumes the loads
are proportional to the wave amplitude.

15t order wave loads are separated into two
components:
o Froude-Kriloff
o Diffraction
Ciicisic ® NTNU
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Froude-Kriloff loads

The Froude-Kriloff loads are obtained by
integrating the pressure due to undisturbed
wave field over the mean wetted surface of
the body—It is assumed that the body does
not disturb the wave field.

These can be considered within a nonlinear
framework by integrating over the
Instantaneous wetter surface.
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Diffraction loads

The diffraction loads appear due to the change In
the wave field by the presence of the body.

These can be computed in a similar way as the
radiation forces by considering a BVP; the main
difference is that the boundary condition on the
body:

o The velocity due to the diffraction potential has to be

equal and opposite to the velocity due to undisturbed
wave potential.

This body condition ensures there will be no fluid
transport through the body.
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RAOs—Frequency response functions

exc
(1) Force RAO . Force tlc_\)DA\\/lcg)tlon & (1)
—~,
Sea surface elevation combined
\ motion
C(1) -l Motion RAO | ——  &;(¢) /
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Force RAO

For a regular wave
¢ =¢ cos(wt+o,)

The linear excitation forces will be

7. =T, (w)cos[wt + ¢, (0)]

exc,i

The amplitude and phase of the excitation force depend on

Encounter angle (wave freq, vessel speed, heading relative to waves)
Wave amplitude
Forward speed
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Force RAO

cos(wt+¢, +arg[F (jw)l)

7 () 0.()

J/

Texc,i (t) — ? ‘FI ( JC())

Example heave Force RAO (i=3) for a barge (8x4x45m):

x 10 Force FRF Heave 400
3001
=)
2 [0}
S o 200
2 % 2001
2 o
100}
1 L O L L L
0 0.5 1 15 2 0 0.5 - 1 ) 1.5 2
Freq [rad/s] req [rad/s]
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Motion RAO

& (t) :?‘Hi(ja)

Z (o)

)|cos(wt + ¢, +arg[H;(jw)])

PDe i (w)

Exampble motion Force RAO (i=3) for a barge (8x4x45m):

14

12¢

1

Motion FRF Heave

0 0.5 1 15

[ded]

Phase
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Force to motion FRF

Using the added mass and damping with the linear
(seakeeping) equation of motion we can obtain the force to
motion frequency response function:

[~0° Mg + A(@)]+ jo B(w) + GIE = T,
This is sometimes written in the hydrodynamic literature as

[Mig + A(@)J5(1) + B(@)(t) + GE(L) = Tope (1)

This is an abuse of notation since this is not a true equation of motion; it is a
different (rather confusing) way to write the frequency response function.
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Force to motion FRF

Then we can define the force to motion frequency
response matrix:

G(jo) =[-o M. +A(®)]+ joB(w)+G]™

_Gll(ja)) Glz(ja)) GlB(ja))_
Gzl(ja)) Gzz(ja)) Gza(ja))

_661(ja)) Gg,(Jo) - GGG(jw)_
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Motion RAO

The Force RAO relates the wave elevation to the
linear excitation forces.

By combining the Force RAO with the Force to
motion frequency response matrix we obtain the

motion frequency response due to wave elevation or
Motion RAO:

H(Jw) = G(Jw) F(]w)
H(jw)=[H,(jo),H,(j®)....Hs(jo)]
F(jo)=[F(jo),F(jo)....F(jo)]

oo QR s . BNTNU
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Statistics of Loads and Motion

Since the wave elevation is assumed a zero-mean
Gaussian process and the system is assumed linear,
the loads and the response are also zero-mean and
Gaussian processes.

The spectra of loads and response is all that is
needed to compute any statistics:

S...(®) =|F (jo)[ S (@)
S..i(@) =|H,(jo)| S ()
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Simulation of wave loads and motion
time series

Having the spectrum, we can simulate time series of loads and
motion in the same way we do it for the wave elevation:

z-i (t) — sznmi COS[C()e,n t+ gpnmi T gn]

\/Z‘F(J ’Zm gg(ja):,}(;) Ao Ay
Pomi = AGF (Jop, U, 1) @, , _[”:@?JCOSZ;)
0): } [C!Jn —Aa)/2, On T Aa)/Z] &, -uniformly distributed
Im €Ut =212, 1, + 07 12] n 0,27
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Non-linear wave loads

There are some problems related to wave-structure
Interactions which cannot be described by linear Theory
alone.

The nonlinear problems attempt to describe more
accurately the free-surface and body conditions on the
Instantaneous rather than mean values.

A convenient way to solve nonlinear wave-structure
problems is by using perturbation analysis.

In a second order theory, the problems are solved up
second-order in incident wave amplitude—i.e., in the
potential and pressure terms proportional to the wave
amplitude and wave amplitude square are considered.
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Non-linear wave loads

The effects of second-order loads are important
for structures which are kept in position by
mooring lines, anchors, and propulsion
systems, and for vessels following trajectories.

The solution of a second order problem
evidences

Mean wave drift force
Slowly-varying wave drift force (sub harmonic)
Rapidly varying wave drift force (super harmonic)
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Evidence of second-order loads

A simple way to evidence the effects of a second order
problem is to look at the quadratic term in the
Bernoulli equation:

p+pgz+p@¢+’[2)V¢-V¢:C

dt
Then,
2 2 2
Vo-Vo=V"+V, +V,;
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‘ Evidence of second-order loads

Consider the case where

V, = A cos(amt) + A, cos(a,t)

Then,
A12 A22 Mean components
/

1T T

2 42%
+ %COS(Zwlt) + %cos(Za)zt)
+ A A, cos[(a, — w,)t]+ A A, cos[(a, + w,)t]
7

Slowly varying component

rapidly varying components

These give rise to 2" order pressure force components!
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Non-linear wave load effects

Mean wave-drift force: Determine the equilibrium position of
the moored system (together with wind and current). They
are important for the design of mooring lines and propulsion
systems for dynamic positioning.

Slowly-varying wave-drift force: The forces have
frequencies much slower than the wave elevation. These
can excite resonant modes in the horizontal position of the
moored vessel. Typical resonance periods in offshore
structures are 1 to 2min.

Rapidly-varying wave-drift force: these forces have
frequency components which are higher than the wave
elevation frequency. These can excite structural resonant
modes: periods 2 to 4s.

Ciicisic | & NTNU
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Example (Pinkster 1979)

[Source: Pinkster, 1979]

250 ' TIME (s)
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Second order FRF

For slowly varying wave-drift forces, the second
order potential is needed.

With the second order potential, the second order
FRF be computed:

Tjilf(a)j’a)k) Tjilf(a)j’a)k)

Zzg é/k[T COS([a)j _a)k]t+[5j -&])

j=1 k=1

+TJ—IES|n([C()j —o]t+[e, — 5]l
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‘ Hydrodynamic Codes

The working principle of all codes:

Input data and Output data and

>

* A(w), [A(=)]
* B(w), [B(«)]
* 1st order force FRF
« 2"d order force FRF

* Motion FRF

* Hull geometry

 Loading condition

» Environment (frequencies)
» Calculation settings

« Additional damping and spring to
represent PD controller, mooring, or
linear viscous damping.
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