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‘Marine hydrodynamics

In order to study the motion of marine structures and
vessels, we need to understand the effects the
surrounding fluid has on them.

This requires some basic concepts of
hydrodynamics—which is fluid dynamics under
special-case simplifications and assumptions
particular of marine applications.

To solve problems related to ship motion we, need to
know two things about the fluid:

= velocity
= pressure

17/09/2007 QEET‘;‘{EAASTLE One-day Tutorial, CAMS'07, Bol, Croatia fist skapsnie



Fluid flow description

The velocity of the fluid at the location /
X
X = [m, X2, wg}T VD
7

IS given by the

v(x,t) = [v1(x,1), va(x,t), v3(x,1)]

this vector is usually described relative to an inertial
coordinate system with origin in the mean free
surface (h-frame, or s-frame).
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Incompressible fluid

For the flow velocities involved in ship motion, the fluid can be
considered incompressible, i.e., constant density.

Under this assumption, the net volume rate at a volume V
enclosed by a surface S'is

//Sv'ndS:///Vdiv(v)dV:O

since this is valid for all the regions V in the fluid, then by
assuming that div(v) is continuous, we obtain the

continuity equation for incompressible flows:

. 8’01 3’02 3’03
d == . —_— —_—— S _— = O
iv(v)=V-.v o + o0 + 3,
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Material derivative

Let f(z,y,z,t) be ascalarfunction and f(¢,z,y,2) a
vector-valued function; then,

ﬁza_f+8fdx+8fdy+dfdz
dt ot Oxdt OJydt 0z dt
df of ofdv Oofdy Ofdz
dt "ol owdr Bydt ' 0zdt

If these are taken for the function x(?) s.t. x(t) = v ()
then we have a special notation—material derivative:

Df _9f Df  Of
Di ot ' VI, Dt Ot
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Flow equations

The conservation of momentum in the flow is described by the

D ‘
pD—Z =pF — Vp+ uViv

F are accelerations due to volumetric forces: F = [00 — g|*
p = p(x,t) is the pressure, and y is the viscosity of the fluid.

Unknowns: V and p

N-S + Continuity eq. form a system of Nonlinear PDE
No analytical solution exists for realistic ship flows.
Numerical solutions are still far from feasible
Practical approaches: RANS (CFD)
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‘ Potential theory

A further simplification is obtained by assuming that
the fluid 1s inviscid and the flow Is Irrotational.
Irrotaional means that

curl(v) =V x v =0

Under this assumption, then exists a scalar function ¢
called potential such that

v = V@

So, if we know the potential, we can calculate the flow
velocity vector (the gradient of the potential).
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How do we obtain the potential?

In potential theory, the continuity equation
reverts to the Laplacian of the potential
equal to zero:

a2q; d2q5 0P

2
P = -
v ox2 dy dzz 0

The potential is, thus, obtained by solving this
subject to appropriate boundary conditions, I.e.,
by solving a boundary value problem (VBP).

The Laplace Equation is linear <& Superposition of flows.
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‘ Ex:Potential Flow Superposition

| P A
4 o
. /(\ 3K
— N
] X
R\,J/




How do we calculate pressure?

If we neglect viscosity in the N-S equation, we
obtain the Euler Equation of flow:

Dv
— _— ,F —
Por =P Vp
Then,
ov D
- _ Y y7r
8t+(v V)v V(p+ )
where —VY =F, ie. T = gz
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Irrotaional flow assumption

Using some vector calculus

ov B p 15
a7 (va)xv——V(p+2V +T>
If the flow Is Irrotational, then
od 1 ‘
v(p+g+ (V@)ZJrT) — 0
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‘ Bernoulli equation
p 0P 1 B
V(p—FE—F (VP)? +T>_0

If this Is valid in the whole fluid, then

op 1
—I_E §(Vd5) —I—QZ—C

p
0

which is the Bernoulli equation.
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Potential theory—summary

Potential theory offers a great simplification: if we know the potential, then
we know the velocity and the pressure, from which we can calculate the
forces acting on a floating body by integrating the pressure over the
surface of the body.

and

I
7\

for most problems related ship motion in waves, potential theory is
sufficient for engineering purposes. Viscous effects are added to the
models using empirical formulae or via system identification.
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Applications

= Regular waves
= Marine structures in waves
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‘ Regular waves in deep water

t-fixed
r-fixed
el ‘ , Zh‘
Propagation
\ O\
(T
» B | \ >
Th \/ 5
: T |
e L
The sea surface elevation is denoted by ((x.t).
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Kinematic free-surface Condition

Kinematic free-surface condition: A fluid particle on the free
surface is assumed to remain on the free surface.

Let the free surface be defined as  z = (x, y,t)
Then,if F=z—-_(x,y,t)

The kinematic condition reverts to %Ij =0
Hence,
8§+8¢8{;+8¢6§_6¢:O on Zzé’(x,y,t)

o0 oOx Ox Oy oy Oz
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Dynamic free-surface Conditions

. the water pressure
equals the atmospheric pressure on the free surface.

z

L-\ p=pg forz=C
AN /'(

\._/T\_/ N
h

T T T T W T

If we choose the constant in the Bernoulli equationas C=p,/p

op 1|(ogY (08) (98 |_ L
gl + > Z{K&J +(8yj J{@zj}_o on = (x,,1)
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Linearised free-surface conditions

The free-surface conditions can be linearised
about the mean free-surface:

05 _ 94 _,
ot 0z 0
on Z =
O¢
+—=0
g¢ Py
Combined:
oLl 82¢
+ :O on —
g@z ot* z=0
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Regular Wave linear BVP

Hence, the boundary value problem (BVP) is to find the
potential, ¢,,(X,¢) that satisfies

VZdh,, =0
D, )
5.1 (‘_ :(:_g on z=10

0z ot

0P, 0
— = — on z=
o 96

b,

(‘_ =0 on z=-h
0z

¢ = (sin(wt — kz + ¢)

The linear free-surface = solution will be valid for waves
with small stepness, i.e., (/A < 1.

i = N ~@NTNU
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‘ Regular Wave Potential

Solution:
® Deep water:

¢,y = —e"* cos(wt — kx + ¢)

#® Shallow water:

 gCcosh[k(z + h)]
~ w  cosh[kh]

$,, cos(wt — kx +¢)

We then have the velocities and pressure in the whole fluid
domain:

0P
[, v, w]" = Vd,, P—Po=—pgz—p..

i = N ~@NTNU
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‘ Regular wave formulae (Faltinsen, 1990)

Finite water depth Infinite water depth
. . gl,coshk(z+ k) gt
Velocity potential === - =2k -
y potenti ¢ ©  cosh kA cos(wt — kx) ¢ - e* cos(wt — kx)
Connection between wave number @’ % tanh bk w’ C -
k and circular frequency w g =k tan _gF =k - S«Q_
Connection between wavelength 8 2 g <
A and wave period T ' M= tanh == h A=5:_IT2

Wave profile

Dynamic pressure
x-component of velocity
z-component of velocity
x-component of acceleration

z-component of acceleration

£ =&, sin(wt — kx)
cosh k(z + h) .
osh #h sin{wt — kx)

coshk(z+h) . (0t — kx
PRI

sinh k(z + h)
sinh kh
., coshk(z +h)

B e i

2 sinh k(z +Ah) .
as ) b bh sin{wt — kx)

Po=pgt.,
u=wg,
w=wk,

cos(wt — kx)

cos(wt — kx)

s C,/sin(wt — kx)

 po = pgl.e” sin(wt — kx)

u = wl.e* sin(wt — kx)
w = e cos(wt — kx)
a, = w§,e* cos(wt — kx)

a;= —w’t,e* sin{wt — kx)

o=2n/T, k=2x/A, T =Wave period, A= Wavelength, &,=Wave amplitude, g = Acceleration of gravity,
t = Time variable, x = direction of wave propagation, z = vertical coordinate, z positive upwards, 2 =0 mean
waterlevel, = average waterdepth. Total pressure in the fluid: p, — pgz + pg (po = atmospheric pressure).

17/09/2007 &ﬁi‘:‘fﬁf“w

@ NTNU

One-day Tutorial, CAMS'07, Bol, Croatia

Det skapende universitet 21



‘Water particle trajectories

Deep water: .

o

Pe P b

|
.
?

|
4 > T

(WO O (

|

1

[Source. Groen and Dowresfem, 1958]

Shallow water: (PO
D %%gzch qb
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Potential theory for ships In waves

The fluid forces are due to variations in pressure on the surface
of the hull.

It is normally assumed that the forces (pressure) can be made of
different components

Excitation Load Radiation Load Total Load
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Potential theory for ships In waves

Under linearity assumptions, the hydrodynamic problem is dealt as 2
separate problems and the solutlons then added:

Excitation Load Radiation Load Total Load

. the ship is forced to oscillate in calm water.

: the ship is restrained from moving in the
presence of a wave field.

6
Potentials: (DTotal = jzlq)j + cDlncia’em‘ + CDScattering
o J

Radiation problem

~
Diffraction problem

® - due to the motion in the j-th DOF.
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'Radiation potential

Boundary conditions:

66121) +g E;E =0 for: z=0 free surface condition (dynamic+kinematic conditions)
t Z
@: 0 for z=-h sea bed condition
0z
o _ v (x,v.z r) dynamic body condition
an n LI Bl
m @ =0 radiation condition
R—
Floating body
6 | | 1¢~;/
q)rad:Z- CD]. 9 — __4_$+0
.]: -_ — — 3 =
" y (Drad T O | ™~
>f\ _\/s/
S*
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Computing forces

Forces and moments are obtained by
iIntegrating the pressure over the average
wetted surface Sw:

Notation: i-th component
Radiation forces and moments:
DOF:

" { ffsw ( ) ds 1= 1,2, 3-7 1-surge
. 2-sway

ry ffsw ( 57 ) r X n)i_g ds 1=4,5,6. 3-heave

Excitation forces (due to incident 4-r(_)II
and scattered potentials) and 5-pitch
moments: 6-yaw

0P 1w _ .
_h ffsw o ) (n); ds r=1,2,3.
1wi — 5P -
_ 1w o K =
ffsw at r >< H)Z_S dS L — 47()76.
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