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Time-domain modelling approaches

Two approaches can be distinguished for time-
domain modelling:

Full time-domain hydrodynamic codes,

Time-domain models based on frequency-
domain data.

Here, we will focus on the second approach.
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Frequency-domain Eq. of Motion
In the hydrodynamic literature it is common to find the following 

model:

)()()()()()]([ tttt excRB τGξξBξAM =+++ &&& ωω

This is not a true time-domain model (Cummins, 1962)

This is valid to describe the steady-state response to sinusoidal 
excitations—i.e., Frequency Response:
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Cummins’s equation
Cummins (1962), took a different modelling approach and 

consider the radiation problem ab initio in the time domain : 

The added mass matrix is constant—frequency and speed independent. 

The convolution term accounts for fluid-memory effects.

The kernel of the convolution is a matrix of retardation functions or impulse 
responses.

This is a true linear time-domain model.
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Cummins’s equation with forward 
speed

The convolution terms depend on the forward speed.

With forward speed appears a constant damping 
term.

The restoring forces are affected by hydrodynamic 
pressure—Lift, changes in trim.  (Usually ignored for 
Fn<0.3)
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From the Riemann-Lesbesgue Lemma:

If Cummins’s Equation is valid for any input, it must then 
be valid for sinusoids in particular (Ogilvie, 1964). 

Ogilvie (1964) transformed the Cummins’ Equation to the frequency 
domain, and found that

Ogilvie’s relations
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Non-parametric Representations

Frequency-domain
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Parametric Representations

Because the convolution is a dynamic linear operation, 
it can be represented by a linear ordinary differential 
equation—state-space model:
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Parametric Representations
From the state-space representation, it follow 
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Convolution replacement

The convolution (non-parametric model) in the 
Cummins equation can be time and memory 
consuming for simulation. 

For analysis and design of a control system, the 
convolutions are not very well suited.

The parametric state-space representation of 
appropriate order (n-order) eliminates the above 
problems.



19/09/2007 One-day Tutorial, CAMS'07, Bol, Croatia 11

Convolution replacement
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Properties of the convolution terms
Property Implication on parametric 

models
K(s) is zero at s=0 for U=0.

TFs strictly proper

TFs relative degree 1

TF BIBO stable

K(s) is passive => diagonal terms 
are positive real; off diagonal terms 
stable.
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Low-frequency limit (U=0)

In  the limit  at low freq, B(ω) is zero, since there cannot 
be waves (Faltinsen, 1990); thus the real part is zero 
for U=0 and -B(∞) for U>0.

The imaginary part tends to zero as the following 
difference is finite:

Note that regularity conditions for the exchange of limit and integration are satisfied.

)]()([)]()([)( ∞−+∞−= AABBK ωωωω jj
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High-frequency limit (U=0)

In  the limit  at high frequency, the real part is zero. 

The imaginary part also tends to zero by Ogilvie’s
relation and Riemann-Lebesgue Lemma:

)]()([)]()([)( ∞−+∞−= AABBK ωωωω jj
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Initial and final time (U=0)

Initial time:

Final time:

Which follows by Ogilvie’s relation and Riemann-Lebesgue Lemma.

Regularity conditions for the exchange of limit and integration are satisfied.
The last relation follows from  energy considerations (Faltinsen, 1990):
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Passivity
For U=0 and no current, the damping matrix is 

symmetric and positive semi-definite:

From this follows the positive realness of the 
convolution terms and thus the passivity; that 
is these terms cannot generate energy.

From energy considerations, it also follows that 
the diagonal terms of K(s) are passive.
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)(),( ωω BA

Parametric model identification
The convolution replacement can be posed in different 

ways, which in “theory” should provide the same 
answer:
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Parametric model identification
Different proposals have appeared in the literature:

Time-domain identification:

LS-fitting of the impulse response (Yu & Falnes, 1998)
Realization theory (Kristiansen & Egeland, 2003)

Frequency-domain identification:

LS-fitting of the frequency response K(jω) (Jeffreys, 1984),(Damaren 
2000).
LS-fitting of added mass and damping (Soding 1982), (Xia et. al 
1998), (Sutulo & Guedes-Soares 2006).
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Time-domain identification

From K(t) to state-space models.
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Numerical computations of K(t)
A key issue for time-domain identification is to start with a 

good impulse response computed from the damping.

Numerical codes can only provide accurate computations of added 
mass and damping up to a certain frequency, say Ω.

This introduces an error in the computation of the retardation 
functions:
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In the limit at high frequency the following tendencies 
are observed for the 3D damping and added mass:

∞→∝ ω
ω
αω asB ik

ik 2)( ∞→∝∞− ω
ω
βω asAA ik

ikik 2)()(

As commented by Damaren (2000), this seems at odds with what is 
generally stated in the hydrodynamic literature!

Note that there are no expansions involved to obtain these results, 
the only assumption is the linearity which results in a rational
representation and the relative degree 1, which results from the
integration of damping over the frequencies.

High-frequency values of A(ω) and B(ω)
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Example Containership (Taghipour et al., 2007a)

The panel sizing was done to be able to compute frequencies up to 2.5 rad/s.

Rule of thumb: characteristic panel length < 1/8 min wave length (Faltinsen, 
1993).
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Numerical computations
Extending the damping with tail prop to 1/ω2

In this example, the 
tail α/ω2 is not a very 
good for B35 and 
B53 (2.5rad/s is too 
low), whereas it is ok 
for B33 and B55.
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Note the differences at t=0+, 
and the errors at different time 
instants.

When doing time-domain identification, it is 
important to start from a good approx of 
the retardation function!
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Sometimes it is necessary to extend the 
damping with asymptotic values:
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Impulse response curve fitting
Given the SISO SS realization of order n:

The parameters can be obtained from

The application of this method to marine structures was 
proposed by Yu and Falnes (1998). 
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Impulse response curve fitting
It is hard to guess the order of the system by looking at the impulse 
response alone—one should start with lower order and increase it to 
improve the fit.

The LS-problem is non-linear in the parameters. This problem can be 
solved with Gaussian-Newton methods.

The Gaussian-Newton methods are known to work well if the 
parameters’ initial guess are close to the optimal parameters. 

Since the initial value of the parameters is difficult to obtain from the 
impulse response, and these depends on the particular realization 
being chosen, the method is not very practical.
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Realization theory
A key result of realization theory is the following 

factorization (Ho and Kalman, 1966):

Extended observability matrix

Extended controllability matrix

Hankel matrix of the impulse 
response values (constant along 
the anti-diagonals)
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Realization theory
Kung’s Algorithm (Kung, 1978):

The number of significant 
singular values give the order 
of the system:

Singular value decomposition
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Realization theory
Kung’s Algorithm (Kung, 1978):

The application of this method to marine structures was proposed by 
Kristiansen and Egeland (2003).
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Realization theory 
The problem is solved in discrete time

Kung’s algorithm obtains the model based on a SVD-factorization of the 
Hankel matrix of samples of the impulse response.

If the impulse response is not accurate, it may in very large order systems

The conversion from discrete to continuous often gives a matrix Dc in the 
state-space realization, which is inconsistent with the dynamics of the 
problem for the retardation function (relative degree 1). 

The MATLAB command imp2ss implements Kung’s algorithm, and 
chooses the order by neglecting singular values less than 1% of the 
largest one.

imp2ss requires using model order reduction afterwards (Kristiansen et al 
2005).

The resulting models may not be passive.
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Example Container ship
Singular values of the Hankel matrix of the samples of the 

impulse response.

These suggest (based 
on the blue plots)

Order K33(s) = 3 or 4

Oder K35(s) = 5 or 6

Order K55(s) = 3 or 4 
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Impulse response fitting for K33(t) with a system of order 4.
Identification method: imp2ss + balmr (model order reduction).

K33(t) K33(jw)

The identified model is not passive and does not have a zero at s=0.

Example Container ship
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The identified model is passive, but still does not have a zero at s=0.

Example Container ship
Impulse response fitting for K33(t) with a system of order 3.
Identification method: imp2ss + balmr (model order reduction).
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Impulse response fitting for K35(t) with a system of order 5.
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The identified model is passive, but still does not have a zero at s=0.

Note that the off-diagonal terms do not necessarily have to passive for 
K(s) to be passive (Unneland & Perez, 2007).

Example Container ship
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Comments about Realization Theory

Depending on the hydrodynamic data, it may be necessary to 
extend the damping at high freq. to have a good estimate the of 
the impulse response function before doing the idetification.

Looking at the impulse response fitting alone is not a good 
criteria—most properties are evident from the freq. response.

Imp2ss may require using model order reduction afterwards.

The models almost never satisfy the low frequency asymptotic 
values (zero at s=0).

High-order models may not be passive; this can solved trying 
different orders or using a model order reduction method that 
enforces passivity.  
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Frequency-domain 
Identification

From K(jω) to K(s) 
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Frequency-domain identification
We can fit a SISO TF to each entry of K(jω):
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Relative degree condition

From the finite initial time of the impulse response:
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From the Initial-value Theorem of the Laplace Transform:

Hence for this to be finite n=m+1; relative degree = 1.
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Minimum order transfer function
Because of the restriction of relative degree 1, the 

minimum order TF that can represent a convolution 
term is
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Therefore, we can start with a system of order n=2, 
and then increase the order until we improve the 
fitting at an appropriate level.
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Regression in the frequency domain
In this method, a rational transfer function 

is fitted to the frequency response data:  

The application of this method to marine structures was 
proposed by Jeffreys (1984) and Damaren (2000).
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Quasi-linear regression
Levi (1959) proposed the following linearization:

which is affine in the parameters and reduces to a linear LS problem.

This can be obtained If we chose the weights in the nonlinear problem as
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Iterative Quasi-linear regression
The quasi-linear regressor tend to have a poor fit a low 

freq. This can be avoided by solving the linear LS 
problem iteratively, starting with the quasi-linear 
regressor and using the parameters obtained to 
compute a weighing:

After a few iterations,                                         and the 
nonlinear problem is recovered.

K,3,2=k
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Containership example
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Frequency-domain identification of K33(jw) order 3
Identification method: iterative quasi-linear regression (invfreqs.m) 

The model is passive 
and satisfy the 
asymptotic values.
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Containership example
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Frequency-domain identification of K35(jw) order 5 and K55(jw) order 3
Identification method: iterative quasi-linear regression (invfreqs.m) 
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Reconstructing B(ω) 
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Reconstructing A(ω) 
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Comments about Freq.-dom. regression

FD-identification avoids having to compute the impulse response 
from the damping

The identification method is simplest: a series of linear LS 
problems—easy to programme. 

The zero at s=0 and the relative degree can be enforced in the 
structure of the model, so the asymptotic values are always 
ensured.

The resulting models may be unstable: this is fixed by reflecting 
the unstable poles about the imaginary axis.

The resulting models may not be passive: this can be solved 
using weights in the LS problem.  
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Simulink Model implementation

After obtaining a state-space representation or 
the transfers functions, we can assemble a 
complete model: 
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