Kinematics and Kinetics of
Marine Vessels

(Module 3)
Dr Tristan Perez Prof. Thor | Fossen
Centre for Complex Dynamic Department of Engineering

Systems and Control (CDSC) Cybernetics

THE UNIVERSITY OF @ NTN
NEWCASTLE [J

AUSTRALIA . %
Det skapende universitet

19/09/2007 One-day Tutorial, CAMS'07, Bol, Croatia



Kinematics

Description of geometrical aspects of
motion without regard to the forces
that create the motion.
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Kinematics

The objectives of kinematics are

Define a set of reference frames from which the
motion will be described.

Define sets of coordinate systems on the reference
frames, which will be use to express in quantitative
way the motion variables.

Determine relations between acceleration, velocity
and position of each point in the system under
study.

TTTTTTTTTTTTTTT E |\-' I |\-|| I

19/09/2007 & NEWCASTLE  One-day Tutorial, CAMS'07, Bol, Croatia =
Det skapende universitet



‘ Reference frames

= A reference frame is perspective from which the
motion is described.

= Let C be a collection of at least 3 noncolinear points
In the Euclidean space. Then C is a reference frame
If the distance between every pair of points does not
vary with time.

= Then, any rigid body is a reference frame, and any
planar rigid object is a reference frame. A point in
the space is not a reference frame.
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‘ Coordinate systems

Coordinate systems are fixed
to reference frames to express
the motion variables.

A coordinate system consists
of a O point fixed in the
reference frame and a dextral
orthonormal basis, which
provides a way to resolve a
vector in the space.

When there is only one
coordinate system attached to
a reference frame, it is
common not to make a
distinction between reference
frame and coordinate system.

Reference frame

Coordinate system:

13}=(0,4,,8,,3;)
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\Vector notation

= Variables associated with motion are described by
directed line segments or vectors:

—

Measure along &4

Za
{a} = (04, a1, @2, @3)
U = uja) + usas + u3as. iis /
— = = .
. Oa i 1%;3&2 Ya
Components of U in {a} 7, I
/
LTa
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Vector notation

The vectors defined as directed line segments (coordinate
free representation) belong a to a three-dimensional space:

il c ‘y:ﬁ

This space and the Euclidian space are isomorphic (can be
put into a one-to-one correspondence that preserves the their
structure)

Exploiting this, it is convenient to consider the coordinate
vector representation in a given coordinate system:

s

A Ik

u® 2 |ud| = i, ug,ud)’.
’\ ug

Coordinate vectors are always given relative to a basis (coordinate system)
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Vector notation

ud
1
u’ £ | ug < u="T,(u") = uidy + usds + usds
us
RS \VS
T

It is convenient to be familiar with both representations. The
coordinate form is convenient for computation and matrix
representations. The coordinate-free form allows extending
scalar to vector calculus.
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‘ Dot and Cross products

3
Dot product: U-vU = E Ujv; = uTv?
J=1
Cross product: F=dxb < c=S8(a)b,

Skew-symmetric form of a coordinate vector:

— a9 al 0

0 —dasg ao
S(aw{ag 0 } S(a) = —S'(a).

i=dxb=—-bxdi < c=8S(a)b=—-S(b)a=S!(b)a.
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Rotation Matrices

Rotation matrix from {a} to {b}: The rotation matriz from a coor-
dinate system {a} to a coordinate system {b} is given by Ry = [R;i] with
Rk = (?3 . bk That ?:.5‘,

J
(@B (@ -B) (@B
Ry = (@ -b1) (G2-by) (a@2-b3) (2.11)
(d3 - b1) (d3-ba) (ds-b3)]

where d; and by are the unit vectors defining {a} and {b} respectively .

y € SO(3) {R € R¥ZRR! =1I3.3;det(R) = 1}.
Ry)~" = R} =Ry,
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Euler Angles

The attitude of one coordinate system relative
to another can be described by three
consecutive rotations.

There are 12 ways of doing this depending
on the order of the rotations, and each triplet
of rotated angles Is called a set of Euler
Angles
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Roll, Pitch and Yaw

The roll, pitch and yaw is set of Euler angles commonly use in

guidance and navigation.

- T,
Ya
Za
(b)
M
) L
T -- >
! Lq
1
[/ —
) —T 1
Yo = Yo
1
1
; Z//
’ a
Za.
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Vector of Roll, Pitch
and Yaw that
take {a} into the
orientation of

{b}:

O = 4.0, ’z;i*]T.
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‘ Rotation matrix in terms of RPY

a ___
b T RZ,"(L’Ry’,QRm”,(j‘)'

After multiplication:

el —scoh + cslsd  sihsp + cedsh
R} = |siycl g + spsBsiy  —cpsod + sipepsh
—s6 chsop clco

s = sin(-) ¢ = cos(-)

Note that the multiplication is consistent with the

transformation
ré — Rg I‘b Transforms a vector from the

base b to the base a.
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‘ Angular velocity

Since the rotation matrix is orthogonal, then

d a 5 a a a/mPa
E[Rg(Rb)T] =R{RY)" +R{RY) =0

This imply that R (R¢)” s skew symmetric, and hence be
represented by a single coordinate vector (Egeland and Gravdahl, 2002):

. : T
Wap S(wa) = Ry (Ry)
This is the angular velocity of {b} with respect to {a}, expressed in {a}

The derivative of the rotation matrix can then be expressed as

Rg = S(wy,,) Ry = Ry S(ng)-
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Angular velocity and deriv of RPY

Consider a rotation from {a} to {d} via RPY:

b al
g — R‘?.?;'b-u. Rc — Ry.ﬁ«. Rr& - R«re@"}

A

. . a r r
The angular velocities are ~ «a, = 00,4,
wy, = [0,6,0]",

wgd — (‘:}‘0.‘0]1 .

Then from the theorem of
addition of angular velocities we
have .
Wod = +Rjw;, + RERW,

ah

d W d
ad_R {lb—|_RC !1wbr_+Rr_ r_d
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‘ Angular velocity and deriv of RPY

From Wt = w% + Riw! + RIR W

wl =R, + RIR{w),. + Réw

using, s 2 [0.6.1]"
we obtain
‘ {cz;‘)c@ — 51/ 0-| ‘ [ mé q'aé, -|
Wog = Eq(0uq)O 0 = Lsz;‘)c@ b OJ (S Oui = B (@) wly — _c c
—s0 0 1 If”t. th s fé? 1J
1 0 —s6 : : 1 sotd  cotd
Wad = Ed(gad)(;)ad = |70 o QQCQ] (;)ad é')ad = EEI(Gad)wgd =10 co _QO-| w! ad
LO —80@ c:q')cé?J L(] Z;’ J

The angular velocity and the derivative of the Euler angles are, in general,
different things.

® NTNU )
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‘ Position

Position of “p” with respect to {a}, and expressed in {a}:

Coordinate system where th
e\‘a

vector is expressed _r.a a a T
Yop = ['? ap.1y Tap,2:7 ap,B]
/ Point of interest Position of “0’ with
Reference coordinate system Zp respect to {a} and

expressed in {b}.

~a
Yb
s |
Tap ) Note that a change in coord

04 . » sys does not change the
) &, / oy position vector; it is still p in
a f;f {a}
e

)
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Velocity

The relative position of any two points is invariant in any coordinate

system (||r1-r2|| is independent of the coordinate system used to
express rl and r2).

The velocity, however, depends on the coordinate system adopted.

P Q
N {b} and “p” rotate

with angular
velocity .

{a} b}

v

The velocity of “p” wrt {b} Is zero, but not wrt {a}.
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‘ Derivative of a vector

The derivative of a vector makes no sense without
specifying the coordinate system with respect of
which the derivative iIs taken:

“d_ , dr{ . drs . dr? _ In general

A T T e, ad
il 75

b_dr'i d?lbl digbz d-rb 53_

dt dt dt dt

19/09/2007 & NEWCASTLE One-day Tutorial, CAMS'07, Bol, Croatia E NTN U 19

aaaaaaaaa Det skapende universitet



‘ Transport Theorem
“di bdF

= — + Wap X 17
dt dt .
In coordinate form
r¢ = Rgrb
r* = Rir” + Rir’

= R} [F" + S(why)r"]

We need to use double
script so we don’t have this
problem in notation:

If we multiply both sides by R?

b b b b
v’ =1 4+ S{w,, v ? b b b
“ ,, = Iy, +S(w)r

b
bp
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‘ Velocity and Acceleration

If {i} denotes an inertial coordinate system, then

Lo, i A -
» = vl 2 pl

th.gw\/ ip ip

The first subscript Indicates the coordinate
system with respect of which the derivative is
taken

Angular acceleration
Linear acceleration:

. —Wip = —=Wip + Wip X Wip -
de? zd,ﬁ' dt ! dt ' \-I—.\,.—E-/
(_1"" é Ep - E'p :0
i = —
P de2 dt | .
i
—.‘: é d’—p - d —
ip = Euﬁib = Ewib
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‘ Motion In different coord systems

“b

Not inertial
b3

Inertial
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‘ Motion In different coord systems

'Fip — ﬂb + 'Fbp

id idlﬁ, Ed &S ’id_’l B id bd

T’Zb —|_ d

pri il el —Tbp + Wi X Thp

Transport dt dt
Theorem

In coordinate form
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‘ Motion In different coord systems

id g b

Erfwip 0t — T + 7t pr + Wip X Fbp

Taking a derivative again:

id2 -a'.d2 zd d
Fﬂp de Tib + — i (df:'bp‘f‘wzb X 7bp)
L2 bd /bd . . . bd B B
=2 Tib + = 7 \ 7" + Wip X Tbp | + wWip X prally +Wib X Thp |
-a'.d2 bd2 bd bd

= 3T+ 5Ty + =i X Top + 2y X — T + Gip X Gipy X Tp.

With the adopted notation

bdz bd
Qip = Qip + ==5Thp + Qup X Thy + 2Wjp X ==Tpp + Wi X (i X Tp)
dt? N— dt LN — ”
Transversal C‘o-r%ﬂi . C'entripetal

.a.p = a] ib T Rb [rbp + S( zb)rbp + 2 S(wab)rbp + S( eb)s(w?b)rgp]
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Ship kinematics

Ship kinematics is different depending on the
assumptions made to describe the motion:

Manoeuvring
Seakeeping
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Ship Motion description

To describe the ship motion the following
coordinate systems are used.:

x,, North

e North-East-Down, {n};
e Body(-fixed), {b};

e Seakeeping, {s}.
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Manoeuvring Kinematics

In manoeuvring, the position of the vessel is given by the position
of of {b}-body-fixed coordinate system with respect to {n}-North-

East-Down coordinate system.

The attitude is given by the angles of roll, pitch and yaw that take
{n} into the orientation of {b}.

2N, E, D"

r, E:

@nb = [rJ A, L]

®NTNU
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‘ Vessel linear velocities

The velocities are more conveniently expressed in {b}-
body-fixed coordinate system:

vh, 2R, = R [N, B, D"

nb n

b T

Vob = {’UL? l{? uj\}

surge sway heave
Note that the following
integral has no physical
meaning:

t ) ¢
d ; ; . n n..b n
/0 Vb AT Ship trajectory: 7, (t) = /0 Ryv,),dr +r,(0)
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‘ Vessel angular velocities

The angular velocity expressed in {b}-body-

fixed coordinate system is

wly, = [p,q,r

TN

roll pitch  yaw

7

Note that the following integral has no physical
meaning: t
/ WP, dr
0
The ship orientation is b

obtained integrating O, = Tb((")n ) Wb

R ( nb)

Which is the relationship
we have already shown
between the ang vel and
the derivative of the
Euler angles.

TTTTTTTTTTTTTTT
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‘Generalised position and velocity

= We define the coordinate position-orientation
vector (Fossen, 1994).

= We define the coordinate linear-angular
velocity vector (Fossen, 1994):.

A Vib |
vV — wb :[uﬁvﬁu}?p?Q?r}

nb

T

@ NEWCASTLE (3¢ day Tutorial, CAMS'07, Bol, Croatia E I JT[ q U
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‘ Kinematic model {n}-{b}

Then, , .
n=4Jy(nv

n A E(G)ﬂ,b) 03><3
b (1) { 033 TE}(an):|

Rb @n) 0q ...
Note that Ji(n)~t éJi(n)[ 0 (©np) 3%3 }

03><3 Tgl(@nb)

Ji(n)~t # I} ()" Because Ty is not orthogonal.
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Summary manoeuvring coordinates

Perez, T. and T.l. Fossen (2007)

Variable Description
%b — [N, E, D] Vessel position in {n}
v = |u,v, u,]T Vessel linear velocity in {b}

W), =P q, r]T Vessel angular velocity in {6}
O, = [0, 0, 0] Euler angles that take {n} into {b}
n = rzib)T, (©,,5)']"  Generalised position vector

v = (VP )T, (Wb )T Generalised velocity vector
n=J'"(nv Vessel trajectory
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Seakeeping kinematics

In seakeeping, the motion is described from a reference frame which
represents the equilibrium position and orientation of the vessel.

Then the action of the waves makes the vessel oscillate with respect to
this equilibrium

Equilibrium state
ri.f‘“*.’rz-::?)

Definition of equilibrium
reference frame:

= 1" = [Ucos,Usin, 01

T

V-n,.s T Tt ns
W,y = {O? 0, O]T?

(-)n,.s — {O* 0? L_’}T"

vi.=Rive =[U0,0"

s ns

U= |vi| = |"dr.s/dt| Vessel average forward speed.

mns
® NTNU ]

19/09/2007 & NEWCASTLE  One-day Tutorial, CAMS'07, Bol, Croatia =
Det skapende universitet



‘ Seakeeping coordinates

In a similar fashion as we did in manoeuvring, we can define the
perturbation body-fixed linear and angular velocities

= R, £ [Su, ov, dw]!,
W & [6p, dq, or]?,

5b

Perturbation roll, pitch and

aw.
’ O £ 56,50, 50"

é)sb = Ty,(Op) w"

sb»

1 ssetse Céc.'btéf?
Ty, (Oy) = |0 C5¢ —50¢

0 sse/Cs6  C5o/Co8
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‘ Seakeeping coordinates

Further, we can define the
perturbation position an
velocity vector:

s b
a | Tgp A [V
SR

sb

In the hydrodynamic literature, the following variables
are used:

A
5 — 677 The kinematics transformation is
simplified under the assumptions of

é — 5V~ 5“ very small angles
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Summary seakeeping coordinates

Perez, T. and T.l. Fossen (2007)

Variable Description

re, Vessel perturbation displ. in {s}
vl = [ou, dv, Sw]! Vessel linear pert. velocity in {b}
W) = [(5}3, 0q, O"i'“]T Vessel pert. angular vel. %11 {b}
O, = [0, 80, 54T Euler ang. that take {s} into {b}
on =[(rs)", (®@)1 T reneralised pert. position vector
£ =0m Seakeeping variables

ov = [(v? )T, (W2 )T]T reneralised pert. velocity vector
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Kinetics

Description of forces and the motion
they cause on bodies using
postulated laws of physics.

19/09/2007 One-day Tutorial, CAMS'07, Bol, Croatia
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‘ Forces and moments

= A force acting on a rigid body has a line of action which
passes through the point of application.

= This means that the force produces a moment about a
point.

P' any point on the
line of action

. Line of action
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Forces and moments

A resultant force due to a set S of forces
acting on arigid body is

fRES — E ‘, f j
]
The resultant does not have a line of action.

A resultant moment due to a set S of forces
acting on a rigid body is

Mg, p :Zer X fj
]
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‘ Moment about another point

The moment about a point Q can be found

The resultant can be
regarded as a
force with line of
action through P
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Transformation

Using the previous results we have that in
body-fixed coordinates

f(g — ka’) _ I3><3 03><3 th:
mg S(rQbP) f)+m, S(rQbP) L || m)

o J/

T, b
H' (rgp)

If we choose Q = Ob,

then
ft? . ka’) . I3><3 03><3 th:
mE S(rt?P) th: + th), S(rbbp) | P th’,

o J/

g
H' (1)
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‘ Rigid-body mass and inertia matrix

The generalised mass matrix with inertia moments and products
taken about the origin of {b} Is

y | mlaxs —mS(rgg)
Ve = s, 1,

Inertia matrix taken about the origin {b} can be expressed by the
one taken about CG (Parallel axis theorem):

) )
Ig/b — I%}/q - mS(rgg)S(rég) The notation “b/” means
i about; e.g. b/g means
5 9 about CG
yc +z —2Yy —xz
b ‘ ‘
Ib/g = / —xy oz’ 427 —yz dm
bl —az —yz x4y

The parallel axis theorem can only be use between CG and another point. So if we want
to convert between two arbitrary points we have to do it in two steps.
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‘ Angular momentum
The angular momentum about CG in B is given by
h) = T;, w

If this Is expressed in the inertial coordinate system ({i},

7 b i )
h =R Ib/(}'R 'Eb b/g — R Ib/qut

This shows that inertia matrix is not constant in an
Inertial frame {i} if {b} rotates wrt {i}. Hence, it Is
convenient to express the eguations of motion in a
body-fixed coordinate system.
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‘ Fuler's Axioms

= Euler's 1st axiom states that:

i i
mv;, =1{

Vig -i1s the velocity of CG relative to {i} and expressed in {i}

f¢ -IS the vector of resultant forces.

= Euler’'s 2" axiom states that:

Angular momentum about CG Resultant moment about CG
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Rigid-body Equations of motion

Expressing the velocities in the body-fixed coordinate
system—Iocated at an arbitrary point in the body, the
Euler axioms become

{ Vib + S( zb)rbq + S( zb) Vib + 82( zb)rgq] — fb

Ib/b zb + S( zb)Ib/b zb + mS(rbq) ib + mS(rl)q)S(w?b)vf}) mg
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‘ Ship RB eq of motion

Following the notation of Fossen (2002):

MY, s + Crp(v)v = 7°

n £ [rﬂb} — [N? E.D, ¢, 93-—¢-11]T Generalised positions

b . .
8 [V%b = [u,v,w,p,q,7]" Generalised velocities
T

f*
T = { = [X Y,Z, K M, N]T Generalised forces

TTTTTTTTTTTTTTT E |\-| I |\-|| I
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Coriolis and Centripetal terms

The Coriolis-centripetal terms can be expressed as

where

Crp(v) 2 Crpi1 CgrB.i2
Crp21 Cgrp.o22

v = W)

Crp.11 = 03«3,
Crp.i2=—mS(vi) —mS h
Crpa21 = —mS(v1) — mS(S(v2)ry,),
Crp.o2 = mS(S(vi)ry,) — S(Iz/bVQ)a

< Separated into linear and anglular

19/09/2007
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RB Equations of motion in 6DOF

In coordinate form:

m f&—v-r+wq—x2(q2+"f’)+yg(pq P+ zg(pr+4)] =1
m |V — wp + ur — yg(r2+p‘) qr p) + 2( p+r)_ = ’TS
m w—uq+vp—22(p2+d)+frb(r’p Q) +y,(ra+p)] =73

Lp+ (12 = I)qr = (F 4 po) L. + (7 = ). + (pr = D),
+m yg(w—uq+vp) —7b(v—wp+ur)] =7}

i+ (12 = 1219 = (b + )12, + (02 = )12, + (ap = 7)1}
+m |z (u— vr 4+ wq) —:rb(w— uq+vp)] =7}

27+ (I = I7)pg (Q+r’p)1U (@ =Py + (rg =D)L,
7

[3’ (0 — wp 4+ ur) — yq(u —ur + wq)]
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Changing the body-fixed system

In different applications it is necessary to consider different locations
for a body-fixed coordinate system.

Hence we may want to transform the equations of motion from {b} to

{p}

MY o 4+ Crp(v)v = 7"

M2 ¥ + CE o (LP) P = 77
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Changing the body-fixed coordinates

This can be done by direct application of the transformations
we have already derived:

Vi?a _ I3 S' (rbbp) V?b {fbb } :{ I3 03><3:| { th: }
(Di% 0,5 Ls mibb mg \S(lfp) Lis mt;

w J

H(rD)) H' (ryp)
Hence,

vP = H{rgpju
TP = H_T(I‘EPJT
My = H™" (1, MppH™ (r},)

Chp(v?) = H™T (], )Chp(H'w?)H ! (r})
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Seakeeping RB equations of motion

In Seakeeping, the equations of motion are
considered within an linear framework.

In the literature, it is said that the motion is
described from the equilibrium reference frame
and formulated at the origin of {s}—seakeeping
coordinate system.

This would imply that the inertia matrix is time
varying as we have seen in the previous slide,
but this Is not the case.
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‘ Seakeeping RB equations of motion

The seakeeping RB eq. can be obtained by considering the
equations of motion in body-fixed coordinates and considering
only linear terms:

on = Jp(on)ov, 51 = dv

Mpggpdor + CRB((gF){5H =0T : I\JIRBfSI:"' ~ 0T
Pertur_bation Eqin Perturbation within
body-fixed coord. Linear framework

Seakeeping RB Eq. .
of motion: MRB*’S X OT
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