
pybedtools Documentation
Release 0.2.3dev

Ryan Dale

April 29, 2011

CONTENTS

1 Overview 1

2 Contents: 3
2.1 Installation . 3
2.2 Three brief examples . 4
2.3 Tutorial Contents . 5
2.4 Topical documentation . 12
2.5 Module documentation . 19

3 Indices and tables 35

Python Module Index 37

Index 39

i

ii

CHAPTER

ONE

OVERVIEW

pybedtools is a Python wrapper for Aaron Quinlan’s BEDtools and is designed to leverage the “genome algebra”
power of BEDtools from within Python scripts.

This documentation is written assuming you know how to use BEDTools and Python.

See full online documentation, including installation instructions, at http://pybedtools.genomicnorth.com.

Note: pybedtools is still very much in progress. Please keep that in mind when assesing whether to use this
package in production code.

1

http://pybedtools.genomicnorth.com

pybedtools Documentation, Release 0.2.3dev

2 Chapter 1. Overview

CHAPTER

TWO

CONTENTS:

2.1 Installation

2.1.1 Requirements

• argparse (unless you’re running Python 2.7, which comes with argparse already)

• Cython - part of pybedtools is written in Cython for speed

• BEDTools

Both argparse and Cython can be installed with pip:

pip install cython argparse

To use pybedtools you’ll need the latest version of the package and the latest version of BEDTools.

2.1.2 Installing pybedtools

To install the latest version of pybedtools you have 2 options:

Option 1: install from source

• go to http://github.com/daler/pybedtools

• click the Downloads link ()

• choose either a .tar.gz or a .zip file, whatever you’re comfortable with

• unzip into a temporary directory

• from the command line, run:

python setup.py install

(you may need admin rights to do this)

Option 2: use pip to automatically download the latest stable version from the Python Package Index:

sudo pip install --upgrade pybedtools

You can run the tests with:

3

http://code.google.com/p/argparse/
http://cython.org/
http://cython.org/
http://github.com/arq5x/bedtools
http://pypi.python.org/pypi/pip
http://github.com/arq5x/bedtools
http://github.com/daler/pybedtools
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi

pybedtools Documentation, Release 0.2.3dev

sh test.sh

Note, however, that you will need to have nosetests installed in order to run the tests, e.g.,:

pip install nosetests

2.1.3 Installing BEDTools

To install BEDTools,

• follow the instructions at https://github.com/arq5x/bedtools to install

• make sure all its programs are on your path

2.2 Three brief examples

Here are three examples to show typical usage of pybedtools. More info can be found in the docstrings
of pybedtools methods and in the Tutorial Contents. Before running the examples, you need to import
pybedtools:

>>> from pybedtools import BedTool, cleanup

After running the examples, clean up any intermediate temporary files with:

>>> cleanup()

2.2.1 Example 1: Save a BED file of intersections, with track line

This example saves a new BED file of intersections between a.bed and b.bed, adding a track line to the output:

>>> a = BedTool(’a.bed’)
>>> a.intersect(’b.bed’).saveas(’a-and-b.bed’, trackline="track name=’a and b’ color=128,0,0")

2.2.2 Example 2: Intersections for a 3-way Venn diagram

This example gets values for a 3-way Venn diagram of overlaps. This demonstrates operator overloading of bedtool
objects:

>>> # set up 3 different bedtools
>>> a = bedtool(’a.bed’)
>>> b = bedtool(’b.bed’)
>>> c = bedtool(’c.bed’)

>>> (a-b-c).count() # unique to a
>>> (a+b-c).count() # in a and b, not c
>>> (a+b+c).count() # common to all
>>> # ... and so on, for all the combinations.

4 Chapter 2. Contents:

http://github.com/arq5x/bedtools
https://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

2.2.3 Example 3: Flanking sequences

This example gets the genomic sequences of the 100 bp on either side of features.

The bedtool.slop() method automatically downloads the chromSizes table from UCSC for the dm3 genome,
but you can pass your own file using the standard BEDTools slop argument of g. Note that this example assumes
you have a local copy of the entire dm3 genome saved as dm3.fa.

>>> # set up bedtool
>>> mybed = bedtool(’in.bed’)

>>> # add 100 bp of "slop" to either side. genome=’dm3’ tells
>>> # the slop() method to download the dm3 chromSizes table from
>>> # UCSC.
>>> extended_by_100 = mybed.slop(genome=’dm3’, l=100, r=100)

>>> # Delete the middle of the now-200-bp-bigger features so
>>> # all we’re left with is the flanking region
>>> flanking_features = extended_by_100.subtract(’in.bed’)

>>> # Assuming you have the dm3 genome on disk as ’dm3.fa’, save the
>>> # sequences as a new file ’flanking.fa’
>>> seqs = flanking_features.sequence(fi=’dm3.fa’).save_seqs(’flanking.fa’)

>>> # We could have done this all in one line
>>> # (this demonstrates "chaining" of bedtool objects)
>>> bedtool(’in.bed’).slop(genome=’dm3’,l=100,r=100).subtract(’in.bed’).flanking_features.sequence(fi=’dm3.fa’).save_seqs(’flanking.fa’)

For more, continue on to the Tutorial Contents, and then check out the Topical documentation.

2.3 Tutorial Contents

2.3.1 Intro

This tutorial assumes that

1. You know how to use BEDTools (if not, check out the BEDTools documentation)

2. You know how to use Python (if not, check out some tutorials like Learn Python the Hard Way)

A brief note on conventions

Throughout this documentation I’ve tried to use consistent typography, as follows:

• Python variables and arguments are shown in italics: s=True

• Files look like this: filename.bed

• Methods, which are often linked to documentation look like this: BedTool.merge().

• BEDTools programs look like this: intersectBed.

• Arguments that are passed to BEDTools programs, as if you were on the command line, look like this: -d.

• The “>>>” in the examples below indicates a Python interpreter prompt and means to type the code into an
interactive Python interpreter like IPython (don’t type the >>>)

Onward!

2.3. Tutorial Contents 5

http://github.com/arq5x/bedtools
http://code.google.com/p/bedtools/#Documentation
http://learnpythonthehardway.org/static/LearnPythonTheHardWay.pdf
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://ipython.scipy.org/moin/

pybedtools Documentation, Release 0.2.3dev

2.3.2 Create a BedTool

First, follow the Installation instructions if you haven’t already done so to install both BEDTools and pybedtools.

Then import the pybedtools module:

>>> import pybedtools

Then set up a BedTool instance using a BED format file. This can be a file that you already have, or one of the
example files as shown below. Some methods currently only work for BED files – see Limitations for more info on
this.

For this tutorial, we’ll use some example files that come with pybedtools. We can get the filename for the example
files using the pybedtools.example_files() function:

>>> # get an example filename to use
>>> bed_filename_a = pybedtools.example_filename(’a.bed’)

The filename will depend on where you have installed pybedtools. Once you have a filename, creating a BedTool
object is easy:

>>> # create a new BedTool using that filename
>>> a = pybedtools.BedTool(bed_filename_a)

Set up a second one so we can do intersections and subtractions – this time, let’s make a new BedTool all in one line:

>>> # create another BedTool to play around with
>>> b = pybedtools.BedTool(pybedtools.example_filename(’b.bed’))

See Creating a BedTool for more information, including convenience functions for working with example bed files
and making BedTool objects directly from strings.

2.3.3 Intersections

Here’s how to intersect a with b:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> a_and_b = a.intersect(b)

a_and_b is a new BedTool instance. It now points to a temp file on disk, which is stored in the attribute a_and_b.fn;
this temp file contains the intersection of a and b.

We can either print the new BedTool (which will show ALL features – use with caution if you have huge files!) or
use the BedTool.head() method to get the first N lines (10 by default). Here’s what a, b, and a_and_b look like:

>>> a.head()
chr1 1 100 feature1 0 +
chr1 100 200 feature2 0 +
chr1 150 500 feature3 0 -
chr1 900 950 feature4 0 +

>>> b.head()
chr1 155 200 feature5 0 -
chr1 800 901 feature6 0 +

>>> a_and_b.head()
chr1 155 200 feature2 0 +
chr1 155 200 feature3 0 -
chr1 900 901 feature4 0 +

6 Chapter 2. Contents:

http://github.com/arq5x/bedtools
http://genome.ucsc.edu/FAQ/FAQformat#format1

pybedtools Documentation, Release 0.2.3dev

The BedTool.intersect() method simply wraps the BEDTools_ program intersectBed. This means that
we can pass BedTool.intersect() any arguments that intersectBed accepts. For example, if we want to
use the intersectBed switch -u (which acts as a True/False switch to indicate that we want to see the features in
a that overlapped something in b), then we can use the keyword argument u=True, like this:

>>> # Intersection using the -u switch
>>> a_with_b = a.intersect(b, u=True)
>>> a_with_b.head()
chr1 100 200 feature2 0 +
chr1 150 500 feature3 0 -
chr1 900 950 feature4 0 +

a_with_b is another, different temp file whose name is stored in a_with_b.fn. You can read more about the use of temp
files in Principle 1: Temporary files are created automatically. More on arguments that you can pass to BedTool
objects in a moment, but first, some info about saving files.

2.3.4 Saving the results

If you want to save the results as a meaningful filename for later use, use the BedTool.saveas() method. This
also lets you optionally specify a trackline for directly uploading to the UCSC Genome Browser, instead of opening
up the files afterward and manually adding a trackline:

>>> a_with_b.saveas(’intersection-of-a-and-b.bed’, trackline=’track name="a and b"’)
<BedTool(intersection-of-a-and-b.bed)>

Note that the BedTool.saveas() method returns a new BedTool object which points to the newly created file
on disk. This allows you to insert a BedTool.saveas() call in the middle of a chain of commands (described in
another section below).

2.3.5 Default arguments

Recall that we passed the u=True argument to a.intersect():

>>> a_with_b = a.intersect(b, u=True)

While we’re on the subject of arguments, note that we didn’t have to specify -a or -b arguments, like you would need
if calling intersectBed from the command line. That’s because BedTool objects make some assumptions for
convenience.

We could have supplied the arguments a=a.fn and b=b.fn. But since we’re calling a method on a, pybedtools
assumes that the file a points to (specifically, a.fn) is the one we want to use as input. So by default, we don’t need to
explicitly give the keyword argument a=a.fn because the a.intersect() method does so automatically.

We’re also calling a method that takes a second bed file as input – other such methods include
BedTool.subtract() and BedTool.closest(). In these cases, pybedtools assumes the first unnamed
argument to these methods are the second file you want to operate on (and if you pass a BedTool, it’ll automat-
ically use the file in the fn attribute of that BedTool). So a.intersect(b) is just a more convenient form of
a.intersect(a=a.fn, b=b.fn), which does the same thing.

OK, enough about arguments for now, but you can read more about them in Principle 2: Names and arguments are
as similar as possible to BEDTools, Principle 3: Sensible default args and Principal 4: Other arguments have no
defaults.

2.3. Tutorial Contents 7

pybedtools Documentation, Release 0.2.3dev

2.3.6 Chaining methods together (pipe)

One useful thing about BedTool methods is that they often return a new BedTool. In practice, this means that we
can chain together multiple method calls all in one line, similar to piping on the command line.

>>> # Intersect and then merge all on one line, displaying the first
>>> # 10 lines of the results
>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> a.intersect(b, u=True).merge().head()
chr1 100 500
chr1 900 950

In general, methods that return BedTool objects have the following text in their docstring to indicate this:

.. note::

This method returns a new BedTool instance

A rule of thumb is that all methods that wrap BEDTools programs return BedTool objects, so you can chain these to-
gether. Other pybedtools-unique methods return BedTool objects too, just check the docs (according to Principle
6: Check the help). For example, as we saw in one of the examples above, the BedTool.saveas() method returns
a BedTool object. That means we can sprinkle those commands within the example above to save the intermediate
steps as meaningful filenames for later use:

>>> a.intersect(b, u=True).saveas(’a-with-b.bed’).merge().saveas(’a-with-b-merged.bed’)
<BedTool(a-with-b-merged.bed)>

Now we have new files in the current directory called a-with-b.bed and a-with-b-merged.bed.

I found myself doing intersections so much that I thought it would be useful to overload the + and - operators to do
intersections. To illustrate, these two example commands do the same thing:

>>> result_1 = a.intersect(b, u=True)
>>> result_2 = a+b

>>> # To test equality, convert to strings
>>> str(result_1) == str(result_2)
True

And the - operator assumes intersectBed‘s -v option:

>>> result_1 = a.intersect(b, v=True)
>>> result_2 = a-b

>>> # To test equality, convert to strings
>>> str(result_1) == str(result_2)
True

If you want to operating on the resulting BedTool that is returned by an addition or subtraction, you’ll need to wrap
the operation in parentheses:

>>> merged = (a+b).merge()

You can learn more about chaining in Principle 5: Chaining together commands.

2.3.7 Filtering

The filter() method lets you pass in a function that accepts an Interval as its first argument and returns True
for False. For example, to only get features of a certain size:

8 Chapter 2. Contents:

http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = a.filter(lambda x: len(x) > 100)
>>> print b
chr1 150 500 feature3 0 -

The filter() method will pass its *args and **kwargs to the function provided. So a more generic case would
be the following, where the function is defined once and different arguments are passed in for filtering on different
lengths:

>>> def len_filter(feature, L):
... return len(feature) > L

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> print a.filter(len_filter, L=10)
chr1 1 100 feature1 0 +
chr1 100 200 feature2 0 +
chr1 150 500 feature3 0 -
chr1 900 950 feature4 0 +

>>> print a.filter(len_filter, L=99)
chr1 100 200 feature2 0 +
chr1 150 500 feature3 0 -

>>> print a.filter(len_filter, L=200)
chr1 150 500 feature3 0 -

The filter() method uses a file-based format, where the new BedTool object refers to a new temp file. You can
use a generator function to create a new BedTool if you want to save disk space:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.BedTool((i for i in a if len_filter(i, L=200)))
>>> print b
chr1 150 500 feature3 0 -

However, keep in mind that printing b, which was created using a generator expression, has now been consumed – so
printing b again will do nothing:

>>> print b

If you create a BedTool with a generator expression, you can always save it as a file for later use. This is what
filter() is doing:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.BedTool((i for i in a if len_filter(i, L=200))).saveas(’len-filtered-b.bed’)
>>> print b
chr1 150 500 feature3 0 -

>>> print b
chr1 150 500 feature3 0 -

The featurefuncs module contains some ready-made functions written in Cython that will be faster than pure
Python equivalents. For example, there are greater_than() and less_than() functions, which are about 70%
faster. In IPython:

>>> len(a)
310456

2.3. Tutorial Contents 9

pybedtools Documentation, Release 0.2.3dev

>>> def L(x,width=100):
... return len(x) > 100

>>> %timeit a.filter(greater_than, 100)
1 loops, best of 3: 1.74 s per loop

>>> %timeit a.filter(L, 100)
1 loops, best of 3: 2.96 s per loop

2.3.8 Each

The BedTool.each() method applies a function to every feature. Like BedTool.filter(), you can use your
own function or some pre-defined ones in the featurefuncs module.

>>> from pybedtools import featurefuncs
>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> with_counts = a.intersect(b, c=True)
>>> normalized = with_counts.each(featurefuncs.normalized_to_length, -1)
>>> print normalized
chr1 1 100 feature1 0 + 0.0
chr1 100 200 feature2 0 + 1.0000000475e-05
chr1 150 500 feature3 0 - 2.85714299285e-06
chr1 900 950 feature4 0 + 2.00000009499e-05

2.3.9 Using the history and tags

BEDTools makes it very easy to do rather complex genomic algebra. Sometimes when you’re doing some exploratory
work, you’d like to rewind back to a previous step, or clean up temporary files that have been left on disk over the
course of some experimentation.

To assist this sort of workflow, BedTool instances keep track of their history in the BedTool.history attribute.
Let’s make an example BedTool, c, that has some history:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> c = a.intersect(b, u=True)

c now has a history which tells you all sorts of useful things (described in more detail below):

>>> print c.history
[<HistoryStep> bedtool("/home/ryan/pybedtools/pybedtools/test/a.bed").intersect("/home/ryan/pybedtools/pybedtools/test/b.bed", u=True), parent tag: klkreuay, result tag: egzgnrvj]

There are several things to note here. First, the history describes the full commands, including all the names of the
temp files and all the arguments that you would need to run in order to re-create it. Since BedTool objects are
fundamentally file-based, the command refers to the underlying filenames (i.e., a.bed and b.bed) instead of the
BedTool instances (i.e., a and b). A simple copy-paste of the command will be enough re-run the command. While
this may be useful in some situations, be aware that if you do run the command again you’ll get another temp file that
has the same contents as c‘s temp file.

To avoid such cluttering of your temp dir, the history also reports tags. BedTool objects, when created, get a random
tag assigned to them. You can get get the BedTool associated with tag with the pybedtools.find_tagged()
function. These tags are used to keep track of instances during this session.

So in this case, we could get a reference to the a instance with:

10 Chapter 2. Contents:

http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

>>> should_be_a = pybedtools.find_tagged(’klkreuay’)

Here’s confirmation that the parent of the first step of c‘s history is a (note that HistoryStep objects have a
HistoryStep.parent_tag and HistoryStep.result_tag):

>>> pybedtools.find_tagged(c.history[0].parent_tag) == a
True

Let’s make something with a more complicated history:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> c = a.intersect(b)
>>> d = c.slop(g=pybedtools.chromsizes(’hg19’), b=1)
>>> e = d.merge()

>>> # this step adds complexity!
>>> f = e.subtract(b)

Let’s see what the history of f (the last BedTool created) looks like . . . note that here I’m formatting the results to
make it easier to see:

>>> print f.history
[
| [
| | [
| | | [
| | | |<HistoryStep> BedTool("/home/ryan/pybedtools/pybedtools/test/a.bed").intersect(
| | | | "/home/ryan/pybedtools/pybedtools/test/b.bed",
| | | |),
| | | | parent tag: rzrztxlw,
| | | | result tag: ifbsanqk
| | |],
| | |
| | |<HistoryStep> BedTool("/tmp/pybedtools.BgULVj.tmp").slop(
| | | b=1,genome="hg19"
| | |),
| | | parent tag: ifbsanqk,
| | | result tag: omfrkwjp
| |],
| |
| |<HistoryStep> BedTool("/tmp/pybedtools.SFmbYc.tmp").merge(),
| | parent tag: omfrkwjp,
| | result tag: zlwqblvk
|],
|
|<HistoryStep> BedTool("/tmp/pybedtools.wlBiMo.tmp").subtract(
| "/home/ryan/pybedtools/pybedtools/test/b.bed",
|),
| parent tag: zlwqblvk,
| result tag: reztxhen
]

Those first three history steps correspond to c, d, and e respectively, as we can see by comparing the code snippet
above with the commands in each history step. In other words, e can be described by the sequence of 3 commands in
the first three history steps. In fact, if we checked e.history, we’d see exactly those same 3 steps.

When f was created above, it operated both on e, which had its own history, as well as b – note the nesting of the
list. You can do arbitrarily complex “genome algebra” operations, and the history of the BEDTools will keep track

2.3. Tutorial Contents 11

pybedtools Documentation, Release 0.2.3dev

of this. It may not be useful in every situtation, but the ability to backtrack and have a record of what you’ve done can
sometimes be helpful.

You can delete temp files that have been created over the history of a BedTool with
BedTool.delete_temporary_history(). This method will inspect the history, figure out which items point
to files in the temp dir (which you can see with get_tempdir()), and prompt you for their deletion:

>>> f.delete_temporary_history()
Delete these files?

/tmp/pybedtools..BgULVj.tmp
/tmp/pybedtools.SFmbYc.tmp
/tmp/pybedtools.wlBiMo.tmp

(y/N) y

Note that the file that f points to is left alone. To clarify, the BedTool.delete_temporary_history() will
only delete temp files that match the pattern <TEMP_DIR>/pybedtools.*.tmp from the history of f, up to but
not including the file for f itself. Any BedTool instances that do not match the pattern are left alone.

2.3.10 More documentation

For more info, see the Topical documentation.

2.4 Topical documentation

2.4.1 Release notes

0.2.3dev

• Added history mechanism – see Using the history and tags.

• Added tagging mechanism

2.4.2 Future work

The following is a list of items I plan to work on for future releases of pybedtools. Help and feedback are welcome!:

• Finish wrapping the rest of the BEDTools programs

• DONE: Better mechanism for handling temp files.

– DONE: BedTool objects could keep track of all their ‘parent’ tempfiles, and as such would retain the
history of their creation.

– N/A: indexing into the history of a BedTool would give you access to these previous files. not imple-
mented – complex histories would require a tree, which is not easily indexed. Instead I’m using a “tag”
system

– DONE: could have a BedTool.delete_history(), which would delete all the intermediate temp-
files on disk, cleaning up only for this particular BedTool

• Universal “interval” file support

– Should have a parent UniversalInterval class and then have GFF, GTF, VCF, etc. etc. all subclassed
from that

– BedTool should auto-detect the interval file format

12 Chapter 2. Contents:

http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

• Support for “derived” file types

– currently the handling of output created by a.intersect(b, c=True) is special-cased, and
a.intersect(b, wao=True) is unsupported by custom BedTool methods.

– these should probably just be implemented as subclasses of the as-yet hypothetical
UniversalInterval class.

• Support for groupBy

– it would be nice to have support for filo

• Randomization methods still under development

• Have wrappers use subprocess.Popen instead of os.system calls for better trapping of errors

• More universal wrapper – perhaps as decorator?

• Full unit tests to bolster the tutorial doctests

2.4.3 Why use pybedtools?

pybedtools makes working with BEDTools from Python code easy.

Calling BEDTools from Python “by hand” gets awkward for things like geting the number of intersecting features
between two bed files, for example:

>>> # The annoying way of calling BEDTools from Python...
>>> p1 = subprocess.Popen([’intersectBed’,’-a’,’a.bed’,’-b’,’b.bed’,’-u’], stdout=subprocess.PIPE)

>>> # then pipe it to wc -l to get a line count
>>> p2 = subprocess.Popen([’wc’,’-l’], stdin=subprocess.PIPE)

>>> # finally, parse the results
>>> results = p2.communicate()[0]
>>> count = int(results.split()[-1])

If we wanted to get the number of features unique to a.bed , it would mean another 4 lines of this, with the only
difference being the -v argument instead of -u for the intersectBed call.. For me, this got old quickly, hence the
creation of pybedtools.

Here’s how to do the same thing with pybedtools:

>>> from pybedtools import BedTool
>>> a = BedTool(’a.bed’)
>>> count = a.intersect(’b.bed’, u=True).count()

Behind the scenes, the pybedtools.BedTool class does something very similar to the subprocess example above,
but in a more Python-friendly way.

Furthermore, for the specific case of intersections, the + and - operators have been overloaded, making many inter-
sections extremely easy:

>>> a = BedTool(’a.bed’)
>>> b = BedTool(’b.bed’)
>>> c = BedTool(’c.bed’)

>>> (a+b).count() # number of features in a and b
>>> (a-b).count() # number of features in a not b
>>> (a+b+c).count() # number of features in a, b and c

2.4. Topical documentation 13

https://github.com/arq5x/filo
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

The other BEDTools programs are wrapped as well, like BedTool.merge(), BedTool.slop(), and others.

In addition to wrapping the BEDTools programs, there are many additional BedToolmethods provided in this module
that you can use in your Python code.

2.4.4 Limitations

There are some limitations you need to be aware of.

• pybedtools makes heavy use of temporary files. This makes it very convenient to work with, but if you are
limited by disk space, you’ll have to pay attention to this feature (see temp principle below for more info).

• BedTool methods that wrap BEDTools programs (BedTool.intersect(), BedTool.merge(),
BedTool.subtract(), etc) will work on BAM, GFF, VCF, and everything that BEDTools sup-
ports. However, many pybedtools-specific methods (for example BedTool.lengths() or
BedTool.size_filter()) currently only work on BED files. I hope to add support for all interval
files soon.

• Not all BEDTools programs are wrapped – this package is still a work in progress. I wrapped the ones I use
most often and still need to wrap the others. The following table shows what’s currently wrapped:

BEDTools program BedTool method name
intersectBed BedTool.intersect()
subtractBed BedTool.subtract()
fastaFromBed BedTool.sequence()
slopBed BedTool.slop()
windowBed BedTool.window()
closestBed BedTool.closest()
shuffleBed BedTool.shuffle()

2.4.5 Creating a BedTool

To create a BedTool, first you need to import the pybedtools module. For these examples, I’m assuming you
have already done the following:

>>> import pybedtools
>>> from pybedtools import BedTool

Next, you need a BED file to work with. If you already have one, then great – move on to the next section. If not,
pybedtools comes with some example bed files used for testing. You can take a look at the list of example files
that ship with pybedtools with the list_example_files() function:

>>> # list the example bed files
>>> pybedtools.list_example_files()
[’a.bed’, ’b.bed’, ’c.gff’, ’d.gff’, ’rmsk.hg18.chr21.small.bed’, ’rmsk.hg18.chr21.small.bed.gz’]

Once you decide on a file to use, feed the your choice to the example_filename() function to get the full path:

>>> # get the full path to an example bed file
>>> bedfn = pybedtools.example_filename(’a.bed’)

The full path of bedfn will depend on your installation (this is similar to the data() function in R, if you’re familiar
with that).

Now that you have a filename – either one of the example files or your own, you create a new BedTool simply by
pointing it to that filename:

14 Chapter 2. Contents:

http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://www.r-project.org/

pybedtools Documentation, Release 0.2.3dev

>>> # create a new BedTool from the example bed file
>>> myBedTool = BedTool(bedfn)

Alternatively, you can construct BED files from scratch by using the from_string keyword argument. However,
all spaces will be converted to tabs using this method, so you’ll have to be careful if you add “name” columns. This
can be useful if you want to create de novo BED files on the fly:

>>> # an "inline" example:
>>> fromscratch1 = pybedtools.BedTool(’chrX 1 100’, from_string=True)
>>> print fromscratch1
chrX 1 100

>>> # using a longer string to make a bed file. Note that
>>> # newlines don’t matter, and one or more consecutive
>>> # spaces will be converted to a tab character.
>>> larger_string = """
... chrX 1 100 feature1 0 +
... chrX 50 350 feature2 0 -
... chr2 5000 10000 another_feature 0 +
... """

>>> fromscratch2 = BedTool(larger_string, from_string=True)
>>> print fromscratch2
chrX 1 100 feature1 0 +
chrX 50 350 feature2 0 -
chr2 5000 10000 another_feature 0 +

Of course, you’ll usually be using your own bed files that have some biological importance for your work that are
saved in places convenient for you, for example:

>>> a = BedTool(’/data/sample1/peaks.bed’)

2.4.6 Design principles

Principle 1: Temporary files are created automatically

Let’s illustrate some of the design principles behind pybedtools by merging features in a.bed that are 100 bp or
less apart (d=100) in a strand-specific way (s=True):

>>> from pybedtools import BedTool
>>> import pybedtools
>>> a = BedTool(pybedtools.example_filename(’a.bed’))
>>> merged_a = a.merge(d=100, s=True)

Now merged_a is a BedTool instance that contains the results of the merge.

BedTool objects must always point to a file on disk. So in the example above, merged_a is a BedTool, but what
file does it point to? You can always check the BedTool.fn attribute to find out:

>>> # what file does *merged_a* point to?
>>> merged_a.fn
’/tmp/pybedtools.MPPp5f.tmp’

Note that the specific filename will be different for you since it is a randomly chosen name (handled by Python’s
tempfile module). This shows one important aspect of pybedtools: every operation results in a new temporary
file. Temporary files are stored in /tmp by default, and have the form /tmp/pybedtools.*.tmp.

2.4. Topical documentation 15

pybedtools Documentation, Release 0.2.3dev

Future work on pybedtools will focus on streamlining the temp files, keeping only those that are needed. For now,
when you are done using the pybedtools module, make sure to clean up all the temp files created with:

>>> # Deletes all tempfiles created this session.
>>> # Don’t do this yet if you’re following the tutorial!
>>> pybedtools.cleanup()

If you forget to do this, from the command line you can always do a:

rm /tmp/pybedtools.*.tmp

to clean everything up.

If you need to specify a different directory than that used by default by Python’s tempdir module, then you can set it
with:

>>> pybedtools.set_tempdir(’/scratch’)

You’ll need write permissions to this directory, and it needs to already exist.

Principle 2: Names and arguments are as similar as possible to BEDTools

Returning again to this example:

>>> merged_a = a.merge(d=100, s=True)

This demonstrates another pybedtools principle: the BedTool methods that wrap BEDTools programs do the
same thing and take the exact same arguments as the BEDTools program. Here we can pass d=100 and s=True only
because the underlying BEDTools program, mergeBed, can accept these arguments. Need to know what arguments
mergeBed can take? See the docs for BedTool.merge(); for more on this see Principle 6: Check the help.

In general, remove the “Bed” from the end of the BEDTools program to get the corresponding BedTool method.
So there’s a BedTool.subtract() method for subtractBed, a BedTool.intersect() method for
intersectBed, and so on.

Since these methods just wrap BEDTools programs, they are as up-to-date as the version of BEDTools you have
installed on disk. If you are using a cutting-edge version of BEDTools that has some hypothetical argument -z for
intersectBed, then you can use a.intersectBed(z=True).

Principle 3: Sensible default args

If we were running the mergeBed program from the command line, we would would have to specify the input file
with the mergeBed -i option.

pybedtools assumes that if we’re calling the merge() method on a, we want to operate on the bed file that a
points to.

In general, BEDTools programs that accept a single BED file as input (by convention typically specified with the -i
option) the default behavior for pybedtools is to use the BedTool‘s file (indicated in the BedTool.fn attribute)
as input.

We can still pass a file using the i keyword argument if we wanted to be absolutely explicit. In fact, the following two
versions produce the same output:

>>> # The default is to use existing file for input -- no need
>>> # to specify "i" . . .
>>> result1 = a.merge(d=100, s=True)

>>> # . . . but you can always be explicit if you’d like

16 Chapter 2. Contents:

http://docs.python.org/library/tempfile.html#tempfile.tempdir
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

>>> result2 = a.merge(i=a.fn, d=100, s=True)

>>> # Confirm that the output is identical
>>> str(result1) == str(result2)
True

Methods that have this type of default behavior are indicated by the following text in their docstring:

.. note::

For convenience, the file this BedTool object points to is passed as "-i"

There are some BEDTools programs that accept two BED files as input, like intersectBedwhere the the first file is
specified with -a and the second file with -b. The default behavior for pybedtools is to consider the BedTool‘s
file as -a and the first non-keyword argument to the method as -b, like this:

>>> b = pybedtools.BedTool(pybedtools.example_filename(’b.bed’))
>>> result3 = a.intersect(b)

This is exactly the same as passing the a and b arguments explicitly:

>>> result4 = a.intersect(a=a.fn, b=b.fn)
>>> str(result3) == str(result4)
True

Furthermore, the first non-keyword argument used as -b can either be a filename or another BedTool object; that is,
these commands also do the same thing:

>>> result5 = a.intersect(b=b.fn)
>>> result6 = a.intersect(b=b)
>>> str(result5) == str(result6)
True

Methods that accept either a filename or another BedTool instance as their first non-keyword argument are indicated
by the following text in their docstring:

.. note::

This method accepts either a BedTool or a file name as the first
unnamed argument

Principal 4: Other arguments have no defaults

Only the BEDTools arguments that refer to BED (or other interval) files have defaults. In the current version of
BEDTools, this means only the -i, -a, and -b arguments have defaults. All others have no defaults specified by
pybedtools; they pass the buck to BEDTools programs. This means if you do not specify the d kwarg when
calling BedTool.merge(), then it will use whatever the installed version of BEDTools uses for -d (currently,
mergeBed‘s default for -d is 0).

-d is an option to BEDTools mergeBed that accepts a value, while -s is an option that acts as a switch. In
pybedtools, simply pass a value (integer, float, whatever) for value-type options like -d, and boolean values
(True or False) for the switch-type options like -s.

Here’s another example using both types of keyword arguments; the BedTool object b (or it could be a string filename
too) is implicitly passed to intersectBed as -b (see Principle 3: Sensible default args above):

>>> a.intersect(b, v=True, f=0.5)

Again, any option that can be passed to a BEDTools program can be passed to the corresonding BedTool method.

2.4. Topical documentation 17

http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

Principle 5: Chaining together commands

Most methods return new BedTool objects, allowing you to chain things together just like piping commands together
on the command line. To give you a flavor of this, here is how you would get the merged regions of features shared
between a.bed (as referred to by the BedTool a we made previously) and b.bed: (as referred to by the BedTool
b):

>>> a.intersect(b).merge().saveas(’shared_merged.bed’)
<BedTool(shared_merged.bed)>

This is equivalent to the following BEDTools commands:

intersectBed -a a.bed -b b.bed | merge -i stdin > shared_merged.bed

Methods that return a new BedTool instance are indicated with the following text in their docstring:

.. note::

This method returns a new BedTool instance

Principle 6: Check the help

If you’re unsure of whether a method uses a default, or if you want to read about what options an underlying BED-
Tools program accepts, check the help. Each pyBedTool method that wraps a BEDTools program also wraps the
BEDTools program help string. There are often examples of how to use a method in the docstring as well.

2.4.7 Example: Flanking seqs

The BedTool.slop() method (which calls slopBed) needs a chromosome size file. If you specify a genome
name to the BedTool.slop() method, it will retrieve this file for you automatically from the UCSC Genome
Browser MySQL database.

import pybedtools
a = pybedtools.BedTool(’in.bed’)
extended = a.slop(genome=’dm3’,l=100,r=100)
flanking = extended.subtract(a).saveas(’flanking.bed’)
flanking.sequence(fi=’dm3.fa’)
flanking.save_seqs(’flanking.fa’)

Or, as a one-liner:

pybedtools.BedTool(’in.bed’).slop(genome=’dm3’,l=100,r=100).subtract(a).sequence(fi=’dm3.fa’).save_seqs(’flanking.fa’)

Don’t forget to clean up!:

pybedtools.cleanup()

2.4.8 Example: Region centers that are fully intergenic

Useful for, e.g., motif searching:

a = pybedtools.BedTool(’in.bed’)

Sort by score
a = a.sorted(col=5,reverse=True)

18 Chapter 2. Contents:

http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

Exclude some regions
a = a.subtract(’regions-to-exclude.bed’)

Get 100 bp on either side of center
a = a.peak_centers(100).saveas(’200-bp-peak-centers.bed’)

2.4.9 Example: Histogram of feature lengths

Note that you need matplotlib installed to plot the histogram.

import pylab as p
a = pybedtools.BedTool(’in.bed’)
p.hist(a.lengths(),bins=50)
p.show()

2.5 Module documentation

2.5.1 pybedtools module-level functions

pybedtools.chromsizes(genome)
Looks for a genome already included in the genome registry; if not found then it looks it up on UCSC. Returns
the dictionary of chromsize tuples where each tuple has (start,stop).

Chromsizes are described as (start, stop) tuples to allow randomization within specified regions; e. g., you can
make a chromsizes dictionary that represents the extent of a tiling array.

Example usage:

>>> dm3_chromsizes = chromsizes(’dm3’)
>>> for i in sorted(dm3_chromsizes.items()):
... print i
(’chr2L’, (1, 23011544))
(’chr2LHet’, (1, 368872))
(’chr2R’, (1, 21146708))
(’chr2RHet’, (1, 3288761))
(’chr3L’, (1, 24543557))
(’chr3LHet’, (1, 2555491))
(’chr3R’, (1, 27905053))
(’chr3RHet’, (1, 2517507))
(’chr4’, (1, 1351857))
(’chrM’, (1, 19517))
(’chrU’, (1, 10049037))
(’chrUextra’, (1, 29004656))
(’chrX’, (1, 22422827))
(’chrXHet’, (1, 204112))
(’chrYHet’, (1, 347038))

pybedtools.chromsizes_to_file(chromsizes, fn=None)
Converts a chromsizes dictionary to a file. If fn is None, then a tempfile is created (which can be deleted with
pybedtools.cleanup()).

Returns the filename.

pybedtools.data_dir()
Returns the data directory that contains example files for tests and documentation.

2.5. Module documentation 19

pybedtools Documentation, Release 0.2.3dev

pybedtools.example_bedtool(fn)
Return a bedtool using a bed file from the pybedtools examples directory. Use list_example_files() to
see a list of files that are included.

pybedtools.example_filename(fn)
Return a bed file from the pybedtools examples directory. Use list_example_files() to see a list of files
that are included.

pybedtools.get_chromsizes_from_ucsc(genome, saveas=None, mysql=’mysql’, timeout=None)
Download chrom size info for genome from UCSC and returns the dictionary.

If you need the file, then specify a filename with saveas (the dictionary will still be returned as well).

If mysql is not on your path, specify where to find it with mysql=<path to mysql executable>.

timeout is how long to wait for a response; mostly used for testing. Will only be used if

Example usage:

>>> dm3_chromsizes = get_chromsizes_from_ucsc(’dm3’)
>>> for i in sorted(dm3_chromsizes.items()):
... print i
(’chr2L’, (1, 23011544))
(’chr2LHet’, (1, 368872))
(’chr2R’, (1, 21146708))
(’chr2RHet’, (1, 3288761))
(’chr3L’, (1, 24543557))
(’chr3LHet’, (1, 2555491))
(’chr3R’, (1, 27905053))
(’chr3RHet’, (1, 2517507))
(’chr4’, (1, 1351857))
(’chrM’, (1, 19517))
(’chrU’, (1, 10049037))
(’chrUextra’, (1, 29004656))
(’chrX’, (1, 22422827))
(’chrXHet’, (1, 204112))
(’chrYHet’, (1, 347038))

pybedtools.list_example_files()
Returns a list of files in the examples dir. Choose one and pass it to example_file_fnl() to get the full
path to an examplefile.

Example usage:

>>> choices = list_example_files()
>>> assert ’a.bed’ in choices
>>> bedfn = example_filename(’a.bed’)
>>> mybedtool = BedTool(bedfn)

2.5.2 BedTool methods that wrap BEDTools programs

The following methods wrap BEDTools programs. This package is still in development; the goal is to eventually
support all BEDTools programs.

BedTool.intersect

BedTool.intersect(*args, **kwargs)
pybedtools help:

20 Chapter 2. Contents:

http://github.com/arq5x/bedtools
http://github.com/arq5x/bedtools

pybedtools Documentation, Release 0.2.3dev

Intersect with another BED file. If you want to use BAM as input, you need to specify
abam=’filename.bam’. Returns a new BedTool object.

Example usage:

Create new BedTool object

>>> a = pybedtools.example_bedtool(’a.bed’)

Get overlaps with b.bed:

>>> b = pybedtools.example_bedtool(’b.bed’)
>>> overlaps = a.intersect(b)

Use v=True to get the inverse – that is, those unique to “a.bed”:

>>> unique_to_a = a.intersect(b, v=True)

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-a”

Note: This method accepts either a bedtool or a file name as the first unnamed argument

Original BEDtools program help:

Program: intersectBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary: Re-
port overlaps between two feature files.

Usage: intersectBed [OPTIONS] -a <bed/gff/vcf> -b <bed/gff/vcf>

Options:

-abam The A input file is in BAM format. Output will be BAM as
well.

-ubam Write uncompressed BAM output. Default is to write com-
pressed BAM.

-bed When using BAM input (-abam), write output as BED. The
default is to write output in BAM when using -abam.

-wa Write the original entry in A for each overlap.

-wb Write the original entry in B for each overlap. - Useful for
knowing what A overlaps. Restricted by -f and -r.

-wo Write the original A and B entries plus the number of base
pairs of overlap between the two features. - Overlaps re-
stricted by -f and -r.

Only A features with overlap are reported.

-wao Write the original A and B entries plus the number of base
pairs of overlap between the two features. - Overlapping
features restricted by -f and -r.

2.5. Module documentation 21

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

However, A features w/o overlap are also reported
with a NULL B feature and overlap = 0.

-u Write the original A entry once if any overlaps found in B.
- In other words, just report the fact >=1 hit was found. -
Overlaps restricted by -f and -r.

-c For each entry in A, report the number of overlaps with
B. - Reports 0 for A entries that have no overlap with B. -
Overlaps restricted by -f and -r.

-v Only report those entries in A that have no overlaps with
B. - Similar to “grep -v” (an homage).

-f Minimum overlap required as a fraction of A. - Default is
1E-9 (i.e., 1bp). - FLOAT (e.g. 0.50)

-r Require that the fraction overlap be reciprocal for A and B.
- In other words, if -f is 0.90 and -r is used, this requires

that B overlap 90% of A and A also overlaps 90% of
B.

-s Force strandedness. That is, only report hits in B that over-
lap A on the same strand. - By default, overlaps are re-
ported without respect to strand.

-split Treat “split” BAM or BED12 entries as distinct BED inter-
vals.

BedTool.merge

BedTool.merge(*args, **kwargs)
pybedtools help:

Merge overlapping features together. Returns a new BedTool object.

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)

Merge:

>>> c = a.merge()

Allow merging of features 500 bp apart:

>>> c = a.merge(d=500)

Report number of merged features:

>>> c = a.merge(n=True)

Report names of merged features:

>>> c = a.merge(nms=True)

22 Chapter 2. Contents:

pybedtools Documentation, Release 0.2.3dev

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-i”

Original BEDtools program help:

Program: mergeBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary:
Merges overlapping BED/GFF/VCF entries into a single interval.

Usage: mergeBed [OPTIONS] -i <bed/gff/vcf>

Options:

-s Force strandedness. That is, only merge features that are
the same strand. - By default, merging is done without re-
spect to strand.

-n Report the number of BED entries that were merged. -
Note: “1” is reported if no merging occurred.

-d Maximum distance between features allowed for features
to be merged. - Def. 0. That is, overlapping & book-ended
features are merged. - (INTEGER)

-nms Report the names of the merged features separated by semi-
colons.

-scores [STRING] Report the scores of the merged features. Specify one of

the following options for reporting scores: sum, min, max, mean, median, mode, anti-
mode, collapse (i.e., print a semicolon-separated list),

BedTool.subtract

BedTool.subtract(*args, **kwargs)
pybedtools help:

Subtracts from another BED file and returns a new BedTool object.

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)

Do a “stranded” subtraction:

>>> c = a.subtract(b, s=True)

Require 50% of features in a to overlap:

>>> c = a.subtract(b, f=0.5)

Note: This method returns a new bedtool instance

2.5. Module documentation 23

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

Note: This method accepts either a bedtool or a file name as the first unnamed argument

Original BEDtools program help:

Program: subtractBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary: Re-
moves the portion(s) of an interval that is overlapped

by another feature(s).

Usage: subtractBed [OPTIONS] -a <bed/gff/vcf> -b <bed/gff/vcf>

Options:

-f Minimum overlap required as a fraction of A. - Default is
1E-9 (i.e., 1bp). - (FLOAT) (e.g. 0.50)

-s Force strandedness. That is, only report hits in B that over-
lap A on the same strand. - By default, overlaps are re-
ported without respect to strand.

BedTool.sequence

BedTool.sequence(fi, **kwargs)
pybedtools help:

Wraps fastaFromBed. fi is passed in by the user; bed is automatically passed in as the
bedfile of this object; fo by default is a temp file. Use save_seqs() to save as a file.

The end result is that this BedTool will have an attribute, self.seqfn, that points to the new
fasta file.

Example usage:

>>> a = pybedtools.BedTool("""

... chr1 1 10 ... chr1 50 55”“”, from_string=True) >>> fasta = pybed-
tools.example_filename(‘test.fa’) >>> a = a.sequence(fi=fasta) >>> print
open(a.seqfn).read() >chr1:1-10 GATGAGTCT >chr1:50-55 CCATC <BLANKLINE>

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-bed”

Original BEDtools program help:

Program: fastaFromBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary:
Extract DNA sequences into a fasta file based on feature coordinates.

Usage: fastaFromBed [OPTIONS] -fi <fasta> -bed <bed/gff/vcf> -fo <fasta>

Options:

-fi Input FASTA file

-bed BED/GFF/VCF file of ranges to extract from -fi

-fo Output file (can be FASTA or TAB-delimited)

-name Use the name field for the FASTA header

24 Chapter 2. Contents:

mailto:aaronquinlan@gmail.com
mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

-tab Write output in TAB delimited format. - Default is FASTA
format.

-s Force strandedness. If the feature occupies the antisense
strand, the sequence will be reverse complemented. - By
default, strand information is ignored.

BedTool.closest

BedTool.closest(*args, **kwargs)
pybedtools help:

Return a new BedTool object containing closest features in b. Note that the resulting file is
no longer a valid BED format; use the special “_closest” methods to work with the resulting
file.

Example usage:

a = BedTool(’in.bed’)

get the closest feature in ’other.bed’ on the same strand
b = a.closest(’other.bed’, s=True)

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-a”

Note: This method accepts either a bedtool or a file name as the first unnamed argument

Original BEDtools program help:

Program: closestBed (v2.11.2) Authors: Aaron Quinlan (aaronquinlan@gmail.com)

Erik Arner, Riken

Summary: For each feature in A, finds the closest feature (upstream or downstream) in B.

Usage: closestBed [OPTIONS] -a <bed/gff/vcf> -b <bed/gff/vcf>

Options:

-s Force strandedness. That is, find the closest feature in B
that overlaps A on the same strand. - By default, overlaps
are reported without respect to strand.

-d In addition to the closest feature in B, report its distance to
A as an extra column. - The reported distance for overlap-
ping features will be 0.

-t How ties for closest feature are handled. This occurs when
two features in B have exactly the same overlap with A. By
default, all such features in B are reported. Here are all the
options: - “all” Report all ties (default). - “first” Report the
first tie that occurred in the B file. - “last” Report the last
tie that occurred in the B file.

2.5. Module documentation 25

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

Notes: Reports “none” for chrom and “-1” for all other fields when a feature is not found in B on
the same chromosome as the feature in A. E.g. none -1 -1

BedTool.window

BedTool.window(*args, **kwargs)
pybedtools help:

Intersect with a window.

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> print a.window(b, w=1000)
chr1 1 100 feature1 0 + chr1 155 200 feature5 0 -
chr1 1 100 feature1 0 + chr1 800 901 feature6 0 +
chr1 100 200 feature2 0 + chr1 155 200 feature5 0 -
chr1 100 200 feature2 0 + chr1 800 901 feature6 0 +
chr1 150 500 feature3 0 - chr1 155 200 feature5 0 -
chr1 150 500 feature3 0 - chr1 800 901 feature6 0 +
chr1 900 950 feature4 0 + chr1 155 200 feature5 0 -
chr1 900 950 feature4 0 + chr1 800 901 feature6 0 +
<BLANKLINE>

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-a”

Note: This method accepts either a bedtool or a file name as the first unnamed argument

Original BEDtools program help:

Program: windowBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary: Ex-
amines a “window” around each feature in A and

reports all features in B that overlap the window. For each overlap the entire entry in A and
B are reported.

Usage: windowBed [OPTIONS] -a <bed/gff/vcf> -b <bed/gff/vcf>

Options:

-abam The A input file is in BAM format. Output will be BAM as
well.

-ubam Write uncompressed BAM output. Default is to write com-
pressed BAM.

-bed When using BAM input (-abam), write output as BED. The
default is to write output in BAM when using -abam.

-w Base pairs added upstream and downstream of each entry
in A when searching for overlaps in B. - Creates symterical
“windows” around A. - Default is 1000 bp. - (INTEGER)

26 Chapter 2. Contents:

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

-l Base pairs added upstream (left of) of each entry in A when
searching for overlaps in B. - Allows one to define assym-
terical “windows”. - Default is 1000 bp. - (INTEGER)

-r Base pairs added downstream (right of) of each entry in A
when searching for overlaps in B. - Allows one to define
assymterical “windows”. - Default is 1000 bp. - (INTE-
GER)

-sw Define -l and -r based on strand. For example if used, -l
500 for a negative-stranded feature will add 500 bp down-
stream. - Default = disabled.

-sm Only report hits in B that overlap A on the same strand. -
By default, overlaps are reported without respect to strand.

-u Write the original A entry once if any overlaps found in B.
- In other words, just report the fact >=1 hit was found.

-c For each entry in A, report the number of overlaps with
B. - Reports 0 for A entries that have no overlap with B. -
Overlaps restricted by -f.

-v Only report those entries in A that have no overlaps with
B. - Similar to “grep -v.”

BedTool.sort

BedTool.sort(*args, **kwargs)
pybedtools help:

Note that chromosomes are sorted lexograpically, so chr12 will come before chr9.

Example usage:

>>> a = pybedtools.BedTool(’’’
... chr9 300 400
... chr1 100 200
... chr1 1 50
... chr12 1 100
... chr9 500 600
... ’’’, from_string=True)
>>> print a.sort()
chr1 1 50
chr1 100 200
chr12 1 100
chr9 300 400
chr9 500 600
<BLANKLINE>

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-i”

Original BEDtools program help:

2.5. Module documentation 27

pybedtools Documentation, Release 0.2.3dev

Program: sortBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary: Sorts a
feature file in various and useful ways.

Usage: sortBed [OPTIONS] -i <bed/gff/vcf>

Options:

-sizeA Sort by feature size in ascending order.

-sizeD Sort by feature size in descending order.

-chrThenSizeA Sort by chrom (asc), then feature size (asc).

-chrThenSizeD Sort by chrom (asc), then feature size (desc).

-chrThenScoreA Sort by chrom (asc), then score (asc).

-chrThenScoreD Sort by chrom (asc), then score (desc).

BedTool.slop

BedTool.slop(*args, **kwargs)
pybedtools help:

Wraps slopBed, which adds bp to each feature. Returns a new BedTool object.

If g is a dictionary (for example, return values from pybedtools.chromsizes()) it will be
converted to a temp file for use with slopBed. If it is a string, then it is assumed to be a
filename.

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)

Increase the size of features by 100 bp in either direction. Note that you need to
specify either a dictionary of chromsizes or a filename containing chromsizes for
the genome that your bed file corresponds to:

>>> c = a.slop(g=pybedtools.chromsizes(’hg19’), b=100)

Grow features by 10 bp upstream and 500 bp downstream, using a genome file you
already have constructed called ‘hg19.genome’

First, create the file:

>>> fout = open(’hg19.genome’,’w’)
>>> chromdict = pybedtools.get_chromsizes_from_ucsc(’hg19’)
>>> for chrom, size in chromdict.items():
... fout.write("%s\t%s\n" % (chrom, size[1]))
>>> fout.close()

Then use it:

>>> c = a.slop(g=’hg19.genome’, l=10, r=500, s=True)

Clean up afterwards:

>>> os.unlink(’hg19.genome’)

28 Chapter 2. Contents:

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

Note: This method returns a new bedtool instance

Note: For convenience, the file this bedtool object points to is passed as “-i”

Original BEDtools program help:

Program: slopBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary: Add
requested base pairs of “slop” to each feature.

Usage: slopBed [OPTIONS] -i <bed/gff/vcf> -g <genome> [-b <int> or (-l and -r)]

Options:

-b Increase the BED/GFF/VCF entry by -b base pairs in each
direction. - (Integer) or (Float, e.g. 0.1) if used with -pct.

-l The number of base pairs to subtract from the start coordi-
nate. - (Integer) or (Float, e.g. 0.1) if used with -pct.

-r The number of base pairs to add to the end coordinate. -
(Integer) or (Float, e.g. 0.1) if used with -pct.

-s Define -l and -r based on strand. E.g. if used, -l 500 for a
negative-stranded feature, it will add 500 bp downstream.
Default = false.

-pct Define -l and -r as a fraction of the feature’s length. E.g.
if used on a 1000bp feature, -l 0.50, will add 500 bp “up-
stream”. Default = false.

Notes:

1. Starts will be set to 0 if options would force it below 0.

(2) Ends will be set to the chromosome length if requested slop would force it above the max
chrom length. (3) The genome file should tab delimited and structured as follows:

<chromName><TAB><chromSize>

For example, Human (hg19): chr1 249250621 chr2 243199373 ... chr18**gl000207**random
4262

Tips: One can use the UCSC Genome Browser’s MySQL database to extract chromosome sizes.
For example, H. sapiens:

mysql –user=genome –host=genome-mysql.cse.ucsc.edu -A -e / “select chrom, size from
hg19.chromInfo” > hg19.genome

BedTool.shuffle

BedTool.shuffle(*args, **kwargs)
pybedtools help:

Shuffle coordinates.

Example usage:

2.5. Module documentation 29

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> seed = 1 # so this test always returns the same results
>>> b = a.shuffle(genome=’hg19’, chrom=True, seed=seed)
>>> print b
chr1 59535036 59535135 feature1 0 +
chr1 99179023 99179123 feature2 0 +
chr1 186189051 186189401 feature3 0 -
chr1 219133189 219133239 feature4 0 +
<BLANKLINE>

Note: For convenience, the file this bedtool object points to is passed as “-i”

Original BEDtools program help:

Program: shuffleBed (v2.11.2) Author: Aaron Quinlan (aaronquinlan@gmail.com) Summary: Ran-
domly permute the locations of a feature file among a genome.

Usage: shuffleBed [OPTIONS] -i <bed/gff/vcf> -g <genome>

Options:

-excl A BED/GFF/VCF file of coordinates in which features in
-i should not be placed (e.g. gaps.bed).

-incl Instead of randomly placing features in a genome, the -
incl options defines a BED/GFF/VCF file of coordinates
in which features in -i should be randomly placed (e.g.
genes.bed).

-chrom Keep features in -i on the same chromosome. - By default,
the chrom and position are randomly chosen.

-seed Supply an integer seed for the shuffling. - By default, the
seed is chosen automatically. - (INTEGER)

-f Maximum overlap (as a fraction of the -i feature) with an
-excl feature that is tolerated before searching for a new,
randomized locus. For example, -f 0.10 allows up to 10%
of a randomized feature to overlap with a given feature in
the -excl file. Cannot be used with -incl file. - Default is
1E-9 (i.e., 1bp). - FLOAT (e.g. 0.50)

Notes:

1. The genome file should tab delimited and structured as follows: <chrom-
Name><TAB><chromSize>

For example, Human (hg19): chr1 249250621 chr2 243199373 ... chr18**gl000207**random
4262

Tips: One can use the UCSC Genome Browser’s MySQL database to extract chromosome sizes.
For example, H. sapiens:

mysql –user=genome –host=genome-mysql.cse.ucsc.edu -A -e / “select chrom, size from
hg19.chromInfo” > hg19.genome

30 Chapter 2. Contents:

mailto:aaronquinlan@gmail.com

pybedtools Documentation, Release 0.2.3dev

2.5.3 BedTool methods unique to pybedtools

The following methods are currently only supported for use with BED format files; support for other file types is under
development.

BedTool.count

BedTool.count()
Number of features in BED file. Does the same thing as len(self), which actually just calls this method.

Only counts the actual features. Ignores any track lines, browser lines, lines starting with a “#”, or blank lines.

Example usage:

a = BedTool(’in.bed’)
a.count()

BedTool.saveas

BedTool.saveas(fn, trackline=None)

Save BED file as a new file, adding the optional trackline to the beginning.

Returns a new BedTool for the newly saved file.

A newline is automatically added to the trackline if it does not already have one.

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = a.saveas(’other.bed’)
>>> b.fn

‘other.bed’ >>> print b == a True

>>> b = a.saveas(’other.bed’, trackline="name=’test run’ color=128,255,0")
>>> open(b.fn).readline()
"name=’test run’ color=128,255,0\n"

Note: This method returns a new bedtool instance

BedTool.features

BedTool.features()
Returns an iterator of feature objects.

BedTool.print_sequence

BedTool.print_sequence()
Print the sequence that was retrieved by the BedTool.sequence() method.

See usage example in BedTool.sequence().

2.5. Module documentation 31

pybedtools Documentation, Release 0.2.3dev

BedTool.save_seqs

BedTool.save_seqs(fn)
Save sequences of features in this BedTool object as a fasta file fn.

In order to use this function, you need to have called the BedTool.sequence() method.

A new BedTool object is returned which references the newly saved file.

Example usage:

a = BedTool(’in.bed’)

specify the filename of the genome in fasta format
a.sequence(’data/genomes/genome.fa’)

use this method to save the seqs that correspond to the features
in "a"
a.save_seqs(’seqs.fa’)

BedTool.cat

BedTool.cat(other, postmerge=True, **kwargs)

Concatenates two BedTool objects (or an object and a file) and does an optional post-merge of the
features.

Use postmerge=False if you want to keep features separate.

TODO:

currently truncates at BED3 format!

kwargs are sent to BedTool.merge().

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)
>>> b = pybedtools.example_bedtool(’b.bed’)
>>> print a.cat(b)

chr1 1 500 chr1 800 950 <BLANKLINE>

Note: This method returns a new bedtool instance

Note: This method accepts either a bedtool or a file name as the first unnamed argument

BedTool.total_coverage

BedTool.total_coverage()
Returns the total number of bases covered by this BED file. Does a self.merge() first to remove potentially
multiple-counting bases.

Example usage:

>>> a = pybedtools.example_bedtool(’a.bed’)

32 Chapter 2. Contents:

pybedtools Documentation, Release 0.2.3dev

This does a merge() first, so this is what the total coverage is counting:

>>> print a.merge()
chr1 1 500
chr1 900 950
<BLANKLINE>

>>> print a.total_coverage()
549

BedTool.delete_temporary_history

BedTool.delete_temporary_history(ask=True, raw_input_func=None)
Use at your own risk! This method will delete temp files. You will be prompted for deletion of files unless you
specify ask=False.

Deletes all temporary files created during the history of this BedTool up to but not including the file this current
BedTool points to.

Any filenames that are in the history and have the following pattern will be deleted:

<TEMP_DIR>/pybedtools.*.tmp

(where <TEMP_DIR> is the result from get_tempdir() and is by default “/tmp”)

Any files that don’t have this format will be left alone.

(raw_input_func is used for testing)

2.5. Module documentation 33

pybedtools Documentation, Release 0.2.3dev

34 Chapter 2. Contents:

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

35

pybedtools Documentation, Release 0.2.3dev

36 Chapter 3. Indices and tables

PYTHON MODULE INDEX

p
pybedtools, 19

37

pybedtools Documentation, Release 0.2.3dev

38 Python Module Index

INDEX

C
cat() (pybedtools.BedTool method), 32
chromsizes() (in module pybedtools), 19
chromsizes_to_file() (in module pybedtools), 19
closest() (pybedtools.BedTool method), 25
count() (pybedtools.BedTool method), 31

D
data_dir() (in module pybedtools), 19
delete_temporary_history() (pybedtools.BedTool

method), 33

E
example_bedtool() (in module pybedtools), 20
example_filename() (in module pybedtools), 20

F
features() (pybedtools.BedTool method), 31

G
get_chromsizes_from_ucsc() (in module pybedtools), 20

I
intersect() (pybedtools.BedTool method), 20

L
list_example_files() (in module pybedtools), 20

M
merge() (pybedtools.BedTool method), 22

P
print_sequence() (pybedtools.BedTool method), 31
pybedtools (module), 19

S
save_seqs() (pybedtools.BedTool method), 32
saveas() (pybedtools.BedTool method), 31
sequence() (pybedtools.BedTool method), 24
shuffle() (pybedtools.BedTool method), 29

slop() (pybedtools.BedTool method), 28
sort() (pybedtools.BedTool method), 27
subtract() (pybedtools.BedTool method), 23

T
total_coverage() (pybedtools.BedTool method), 32

W
window() (pybedtools.BedTool method), 26

39

	Overview
	Contents:
	Installation
	Three brief examples
	Tutorial Contents
	Topical documentation
	Module documentation

	Indices and tables
	Python Module Index
	Index

