
PRELIMINARY DRAFT

Syntax

Terms and types. Note that we allow types to be optional in certain positions
(currently function arguments and return types, and on variable declarations).
Implicitly these are either inferred or filled in with dynamic.

There are explicit terms for dynamic calls and loads, and for dynamic type
checks.

Fields can only be read or set within a method via a reference to this, so no
dynamic set operation is required (essentially dynamic set becomes a dynamic
call to a setter). This just simplifies the presentation a bit. Methods may
be externally loaded from the object (either to call them, or to pass them as
closurized functions).

Type identifiers ::= C,G, T, S, . . .
Arrow kind (k) ::= +,−
Types τ, σ ::= T | dynamic | Object | Null | Type | num

| bool | −→τ k→ σ | C<−→τ >
Ground types τ, σ ::= dynamic | Object | Null | Type | num

| bool |
−−−−−−→
dynamic

+→ dynamic | C<
−−−−−−→
dynamic>

Optional type ([τ ]) ::= | τ
Term identifiers ::= a, b, x, y,m, n, . . .
Primops (φ) ::= +,− . . . || . . .
Expressions e ::= x | i | tt | ff | null | this

| (
−−−→
x : [τ ]) : [σ]⇒ s | newC<−→τ >()

| op(−→e ) | e(−→e )
| e.m | this.x
| x = e | this.x = e
| throw | e as τ | e is τ

Declaration (vd) ::= var x : [τ ] = e | f(−−→x : τ) : τ = s
Statements (s) ::= vd | e | if (e) then s1 else s2 | return e | s; s
Class decl (cd) ::= class C<

−→
T > extends G<−→τ > {

−→
vd}

Toplevel decl (td) ::= vd | cd
Program (P ) ::= let

−→
td in s

Type contexts map type variables to their bounds.
Class signatures describe the methods and fields in an object, along with the

super class of the class. There are no static methods or fields.
The class hierararchy records the classes with their signatures.
The term context maps term variables to their types. I also abuse notation

and allow for the attachment of an optional type to term contexts as follows:
Γσ refers to a term context within the body of a method whose class type is σ.
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Type context (∆) ::= ε | ∆, T <: τ
Class element (ce) ::= var x : τ | fun f : σ

Class signature (Sig) ::= class C<
−→
T > extends G<−→τ > {−→ce}

Class hierarchy (Φ) ::= ε | Φ, C : Sig
Term context (Γ) ::= ε | Γ, x : τ

Subtyping

Variant Subtyping

We include a special kind of covariant function space to model certain dart
idioms. An arrow type decorated with a positive variance annotation (+) treats
dynamic in its argument list covariantly: or equivalently, it treats dynamic
as bottom. This variant subtyping relation captures this special treatment of
dynamic.

Φ,∆ ` dynamic<:+ τ

Φ,∆ ` σ <: τ σ 6= dynamic

Φ,∆ ` σ <:+ τ

Φ,∆ ` σ <: τ

Φ,∆ ` σ <:− τ

Invariant Subtyping

Regular subtyping is defined in a fairly standard way, except that generics are
uniformly covariant, and that function argument types fall into the variant
subtyping relation defined above.

Φ,∆ ` τ <: dynamic

Φ,∆ ` τ <: Object

Φ,∆ ` bottom<: τ
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Φ,∆ ` τ <: τ

(S : σ) ∈ ∆ Φ,∆ ` σ <: τ

Φ,∆ ` S <: τ

Φ,∆ ` σi <:k1 τi i ∈ 0, . . . , n Φ,∆ ` τr <: σr
(k0 = -) ∨ (k1 = +)

Φ,∆ ` τ0, . . . , τn
k0→ τr <: σ0, . . . , σn

k1→ σr

Φ,∆ ` τi <: σi i ∈ 0, . . . , n

Φ,∆ ` C<τ0, . . . , τn><: C<σ0, . . . , σn>

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {. . .}) ∈ Φ
Φ,∆ ` [τ0, . . . , τn/T0, . . . , Tn]C ′<υ0, . . . , υk><: G<σ0, . . . , σm>

Φ,∆ ` C<τ0, . . . , τn><: G<σ0, . . . , σm>

Typing

Field lookup

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ
var x : τ ∈ −→ce

Φ ` C<τ0, . . . , τn>.x  f [τ0, . . . , τn/T0, . . . , Tn]τ

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ x /∈ −→ce
Φ ` C ′<υ0, . . . , υk>.x  f τ

Φ ` C<τ0, . . . , τn>.x  f [τ0, . . . , τn/T0, . . . , Tn]τ

Method lookup

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ
fun m : σ ∈ −→ce

Φ ` C<τ0, . . . , τn>.m  m [τ0, . . . , τn/T0, . . . , Tn]σ

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ m /∈ −→ce
Φ ` C ′<υ0, . . . , υk>.m  m σ

Φ ` C<τ0, . . . , τn>.m  m [τ0, . . . , τn/T0, . . . , Tn]σ
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Method and field absence

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ x /∈ −→ce
Φ ` x /∈ C ′<υ0, . . . , υk>

Φ ` x /∈ C<τ0, . . . , τn>

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ m /∈ −→ce
Φ ` m /∈ C ′<υ0, . . . , υk>τσ

Φ ` m /∈ C<τ0, . . . , τn>

Expression typing: Φ,∆,Γ ` e : [τ ] ⇑ τ ′

Expression typing is a relation between typing contexts, a term (e), an op-
tional type ([τ ]), and a type (τ ′). The general idea is that we are typechecking
a term (e) and want to know if it is well-typed. The term appears in a context,
which may (or may not) impose a type constraint on the term. For example, in
var x : τ = e, e appears in a context which requires it to be a subtype of τ ,
or to be coercable to τ . Alternatively if e appears as in var x : = e, then
the context does not provide a type constraint on e. This “contextual” type
information is both a constraint on the term, and may also provide a source of
information for type inference in e. The optional type [τ ] in the typing relation
corresponds to this contextual type information. Viewing the relation algorith-
mically, this should be viewed as an input to the algorithm, along with the term.
The process of checking a term allows us to synthesize a precise type for the
term e which may be more precise than the type required by the context. The
type τ ′ in the relation represents this more precise, synthesized type. This type
should be thought of as an output of the algorithm. It should always be the case
that the synthesized (output) type is a subtype of the checked (input) type if
the latter is present. The checking/synthesis pattern allows for the propagation
of type information both downwards and upwards.

It is often the case that downwards propagation is not useful. Consequently,
to simplify the presentation the rules which do not use the checking type require
that it be empty ( ). This does not mean that such terms cannot be checked
when contextual type information is supplied: the first typing rule allows con-
textual type information to be dropped so that such rules apply in the case that
we have contextual type information, subject to the contextual type being a
supertype of the synthesized type:

Φ,∆,Γ ` e : ⇑ σ Φ,∆ ` σ <: τ

Φ,∆,Γ ` e : τ ⇑ σ

The implicit downcast rule also allows this when the contextual type is a
subtype of the synthesized type, corresponding to an implicit downcast.

4



Φ,∆,Γ ` e : ⇑ σ Φ,∆ ` τ <: σ

Φ,∆,Γ ` e : τ ⇑ τ

Variables are typed according to their declarations:

Φ,∆,Γ[x : τ ] ` x : ⇑ τ

Numbers, booleans, and null all have a fixed synthesized type.

Φ,∆,Γ ` i : ⇑ num

Φ,∆,Γ ` ff : ⇑ bool

Φ,∆,Γ ` tt : ⇑ bool

Φ,∆,Γ ` null : ⇑ bottom

A this expression is well-typed if we are inside of a method, and σ is the
type of the enclosing class.

Γ = Γ′σ

Φ,∆,Γ ` this : ⇑ σ

A fully annotated function is well-typed if its body is well-typed at its de-
clared return type, under the assumption that the variables have their declared
types.

Γ′ = Γ[−→x : −→τ ] Φ,∆,Γ′ ` s : σ ⇑ Γ′

Φ,∆,Γ ` (−−→x : τ) : σ ⇒ s : ⇑ −→τ −→ σ

A function with a missing argument type is well-typed if it is well-typed with
the argument type replaced with dynamic.
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Φ,∆,Γ ` (x0 : [τ0], . . . , xi : dynamic, . . . , xn : [τn]) : [σ]⇒ s : [τ ] ⇑ τf

Φ,∆,Γ ` (x0 : [τ0], . . . , xi : , . . . , xn : [τn]) : [σ]⇒ s : [τ ] ⇑ τf

A function with a missing argument type is well-typed if it is well-typed
with the argument type replaced with the corresponding argument type from
the context type. Note that this rule overlaps with the previous: the formal
presentation leaves this as a non-deterministic choice.

τc = υ0, . . . , υn
k→ υr

Φ,∆,Γ ` (x0 : [τ0], . . . , xi : υi, . . . , xn : [τn]) : [σ]⇒ s : τc ⇑ τf
Φ,∆,Γ ` (x0 : [τ0], . . . , xi : , . . . , xn : [τn]) : [σ]⇒ s : τc ⇑ τf

A function with a missing return type is well-typed if it is well-typed with
the return type replaced with dynamic.

Φ,∆,Γ ` (
−−−→
x : [τ ]) : dynamic⇒ s : [τc] ⇑ τf

Φ,∆,Γ ` (
−−−→
x : [τ ]) : ⇒ s : [τc] ⇑ τf

A function with a missing return type is well-typed if it is well-typed with
the return type replaced with the corresponding return type from the context
type. Note that this rule overlaps with the previous: the formal presentation
leaves this as a non-deterministic choice.

τc = υ0, . . . , υn
k→ υr

Φ,∆,Γ ` (
−−−→
x : [τ ]) : υr ⇒ s : τc ⇑ τf

Φ,∆,Γ ` (
−−−→
x : [τ ]) : ⇒ s : τc ⇑ τf

Instance creation creates an instance of the appropriate type.

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {. . .}) ∈ Φ
len(−→τ ) = n+ 1

Φ,∆,Γ ` newC<−→τ >() : ⇑ C<−→τ >

Members of the set of primitive operations (left unspecified) can only be
applied. Applications of primitives are well-typed if the arguments are well-
typed at the types given by the signature of the primitive.

op : −→τ → σ Φ,∆,Γ ` e : τ ⇑ τ ′

Φ,∆,Γ ` op(−→e ) : ⇑ σ
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Function applications are well-typed if the applicand is well-typed and has
function type, and the arguments are well-typed.

Φ,∆,Γ ` e : ⇑ −→τa
k→ τr

Φ,∆,Γ ` ea : τa ⇑ τ ′a for ea, τa ∈ −→ea,−→τa
Φ,∆,Γ ` e(−→ea) : ⇑ τr

Application of an expression of type dynamic is well-typed if the arguments
are well-typed at any type.

Φ,∆,Γ ` e : ⇑ dynamic
Φ,∆,Γ ` ea : ⇑ τ ′a for ea ∈ −→ea
Φ,∆,Γ ` e(−→ea) : ⇑ dynamic

A method load is well-typed if the term is well-typed, and the method name
is present in the type of the term.

Φ,∆,Γ ` e : ⇑ σ Φ ` σ.m  m τ

Φ,∆,Γ ` e.m : ⇑ τ

A method load from a term of type dynamic is well-typed if the term is
well-typed.

Φ,∆,Γ ` e : dynamic ⇑ τ

Φ,∆,Γ ` e.m : ⇑ dynamic

A field load from this is well-typed if the field name is present in the type
of this.

Γ = Γτ Φ ` τ.x  f σ

Φ,∆,Γ ` this.x : ⇑ σ

An assignment expression is well-typed so long as the term is well-typed at
a type which is compatible with the type of the variable being assigned.

Φ,∆,Γ ` e : [τ ] ⇑ σ Φ,∆,Γ ` x : σ ⇑ σ′

Φ,∆,Γ ` x = e : [τ ] ⇑ σ
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A field assignment is well-typed if the term being assigned is well-typed, the
field name is present in the type of this, and the declared type of the field is
compatible with the type of the expression being assigned.

Γ = Γτ Φ,∆,Γ ` e : [τ ] ⇑ σ
Φ ` τ.x  f σ′ Φ,∆ ` σ <: σ′

Φ,∆,Γ ` this.x = e : ⇑ σ

A throw expression is well-typed at any type.

Φ,∆,Γ ` throw : ⇑ σ

A cast expression is well-typed so long as the term being cast is well-typed.
The synthesized type is the cast-to type. We require that the cast-to type be a
ground type.

Φ,∆,Γ ` e : ⇑ σ τ is ground

Φ,∆,Γ ` e as τ : ⇑ τ

An instance check expression is well-typed if the term being checked is well-
typed. We require that the cast to-type be a ground type.

Φ,∆,Γ ` e : ⇑ σ τ is ground

Φ,∆,Γ ` e is τ : ⇑ bool

Declaration typing: Φ,∆,Γ `d vd ⇑ Γ′

Variable declaration typing checks the well-formedness of the components,
and produces an output context Γ′ which contains the binding introduced by
the declaration.

A simple variable declaration with a declared type is well-typed if the initial-
izer for the declaration is well-typed at the declared type. The output context
binds the variable at the declared type.

Φ,∆,Γ ` e : τ ⇑ τ ′

Φ,∆,Γ `d var x : τ = e ⇑ Γ[x : τ ]
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A simple variable declaration without a declared type is well-typed if the
initializer for the declaration is well-typed at any type. The output context
binds the variable at the synthesized type (a simple form of type inference).

Φ,∆,Γ ` e : ⇑ τ ′

Φ,∆,Γ `d var x : = e ⇑ Γ[x : τ ′]

A function declaration is well-typed if the body of the function is well-typed
with the given return type, under the assumption that the function and its
parameters have their declared types. The function is assumed to have a con-
travariant (precise) function type. The output context binds the function vari-
able only.

τf = −→τa
−→ τr Γ′ = Γ[f : τf ] Γ′′ = Γ′[−→x : −→τa ]

Φ,∆,Γ′′ ` s : τr ⇑ Γ0

Φ,∆,Γ `d f(−−−→x : τa) : τr = s ⇑ Γ′

Statement typing: Φ,∆,Γ ` s : τ ⇑ Γ′

The statement typing relation checks the well-formedness of statements and
produces an output context which reflects any additional variable bindings in-
troduced into scope by the statements.

A variable declaration statement is well-typed if the variable declaration is
well-typed per the previous relation, with the corresponding output context.

Φ,∆,Γ `d vd ⇑ Γ′

Φ,∆,Γ ` vd : τ ⇑ Γ′

An expression statement is well-typed if the expression is well-typed at any
type per the expression typing relation.

Φ,∆,Γ ` e : ⇑ τ

Φ,∆,Γ ` e : τ ⇑ Γ

A conditional statement is well-typed if the condition is well-typed as a
boolean, and the statements making up the two arms are well-typed. The
output context is unchanged.

9



Φ,∆,Γ ` e : bool ⇑ σ
Φ,∆,Γ ` s1 : τr ⇑ Γ1 Φ,∆,Γ ` s2 : τr ⇑ Γ2

Φ,∆,Γ ` if (e) then s1 else s2 : τr ⇑ Γ

A return statement is well-typed if the expression being returned is well-
typed at the given return type.

Φ,∆,Γ ` e : τr ⇑ τ

Φ,∆,Γ ` return e : τr ⇑ Γ

A sequence statement is well-typed if the first component is well-typed, and
the second component is well-typed with the output context of the first compo-
nent as its input context. The final output context is the output context of the
second component.

Φ,∆,Γ ` s1 : τr ⇑ Γ′ Φ,∆,Γ′ ` s2 : τr ⇑ Γ′′

Φ,∆,Γ ` s1; s2 : τr ⇑ Γ′′

Class member typing: Φ,∆,Γ `ce vd : ce ⇑ Γ′

A class member is well-typed with a given signature (ce) taken from the
class hierarchy if the signature type matches the type on the definition, and if
the definition is well-typed.

Φ,∆,Γ `d var x : [τ ] = e ⇑ Γ′

Φ,∆,Γ `ce var x : [τ ] = e : var x : [τ ] ⇑ Γ′

vd = f(x0 : τ0, . . . , xn : τn) : τr = s

σe = τ0, . . . , τn
+→ τr

Φ,∆,Γ `d vd ⇑ Γ′

Φ,∆,Γ `ce vd : fun f : σe ⇑ Γ′

Class declaration typing: Φ,Γ `c cd ⇑ Γ′
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A class declaration is well-typed with a given signature (Sig) taken from the
class hierarchy if the signature matches the definition, and if each member of the
class is well-typed with the corresponding signature from the class signature.
The members are checked with the generic type parameters bound in the type
context, and with the type of the current class set as the type of this on the
term context Γ.

cd = class C<
−→
T > extends G<−→τ > {vd0, . . . , vdn}

(C : class C<
−→
T > extends G<−→τ > {ce0, . . . ,−→cen}) ∈ Φ

∆ =
−→
T Γi =

{
Γ
C<
−→
T >

if vd i is a method

Γ if vd i is a field

Φ,∆,Γi `ce vd i : cei ⇑ Γ′i for i ∈ 0, . . . , n

Φ,Γ `c cd ⇑ Γ′

Override checking:
Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ ce

The override checking relation is the primary relation that checks the consis-
tency of the class hierarchy. We assume a non-cyclic class hierarchy as a syntac-
tic pre-condition. The override check relation checks that in a class declaration
C<T0, . . . , Tn> which extends G<τ0, . . . , τk>, the definition of an element with
signature ce is valid.

A field with the type elided is a valid override if the same field with type
dynamic is valid.

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x : dynamic

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x :

A field with a type τ is a valid override if it appears in the super type with
the same type.

Φ ` G<τ0, . . . , τk>.x  f τ

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x : τ

A field with a type τ is a valid override if it does not appear in the super
type.

Φ ` x /∈ G<τ0, . . . , τk>

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x : τ
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A method with a type σ is a valid override if it does not appear in the super
type.

Φ ` f /∈ G<τ0, . . . , τk>

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ fun f : σ

A method with a type σ is a valid override if it appears in the super type,
and σ is a subtype of the type of the method in the super class.

Φ ` G<τ0, . . . , τk>.f  m σs
Φ,∆ ` σ <: σs

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ fun f : σ

Toplevel declaration typing: Φ,Γ `t td ⇑ Γ′

Top level variable declarations are well-typed if they are well-typed according
to their respective specific typing relations.

Φ, ε,Γ `d vd ⇑ Γ′

Φ,Γ `t vd ⇑ Γ′

Φ,Γ `c cd ⇑ Γ′

Φ,Γ `t cd ⇑ Γ′

Well-formed class signature: Φ ` Sig ok

The well-formed class signature relation checks whether a class signature is
well-formed with respect to a given class hierarchy Φ.

The Object signature is always well-formed.

Φ ` Object ok

A signature for a class C is well-formed if its super-class signature is well-
formed, and if every element in its signature is a valid override of the super-class.
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Sig = class C<
−→
T > extends G<τ0, . . . , τk> {ce0, . . . , cen}

(G : Sig ′) ∈ Φ Φ ` Sig ′ ok

Φ ` C<
−→
T > extendsG<τ0, . . . , τk>⇐ cei for cei ∈ ce0, . . . , cen

Φ ` Sig ok

Well-formed class hierarchy: ` Φ ok

A class hierarchy is well-formed if all of the signatures in it are well-formed
with respect to it.

Φ ` Sig ok forSig ∈ Φ

` Φok

Program typing: Φ ` P

Program well-formedness is defined with respect to a class hierarchy Φ. It
is not specified how Φ is produced, but the well-formedness constraints in the
various judgments should constrain it appropriately. A program is well-formed
if each of the top level declarations in the program is well-formed in a context in
which all of the previous variable declarations have been checked and inserted in
the context, and if the body of the program is well-formed in the final context.
We allow classes to refer to each other in any order, since Φ is pre-specified, but
do not model out of order definitions of top level variables and functions. We
assume as a syntactic property that the class hierarchy Φ is acyclic.

Γ0 = ε Φ,Γi `t td i ⇑ Γi+1 for i ∈ 0, . . . , n
Φ, ε,Γn+1 ` s : τ ⇑ Γ′n+1

Φ ` let td0, . . . , tdn in s
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Elaboration

Elaboration is a type driven translation which maps a source Dart term to a
translated term which corresponds to the original term with additional dynamic
type checks inserted to reify the static unsoundness as runtime type errors. For
the translation, we extend the source language slightly as follows.

Expressions e ::= . . . | dcall(e,−→e ) | dload(e,m) | check(e, τ)

The expression language is extended with an explicitly checked dynamic
call operation, and explicitly checked dynamic method load operation, and a
runtime type test. Note that while a user level cast throws an exception on
failure, the runtime type test term introduced here produces a hard type error
which cannot be caught programmatically.

We also extend typing contexts slightly by adding an internal type to method
signatures.

Class element (ce) ::= var x : τ | fun f : τ / σ

A method signature of the form fun f : τ / σ describes a method whose public
interface is described by σ, but which has an internal type τ which is a subtype
of σ, but which is properly covariant in any type parameters. The elaboration
introduces runtime type checks to mediate between the two types. This is
discussed further in the translation of classes below.

Field lookup

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ
var x : τ ∈ −→ce

Φ ` C<τ0, . . . , τn>.x  f [τ0, . . . , τn/T0, . . . , Tn]τ

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ x /∈ −→ce
Φ ` C ′<υ0, . . . , υk>.x  f τ

Φ ` C<τ0, . . . , τn>.x  f [τ0, . . . , τn/T0, . . . , Tn]τ

Method lookup

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ
fun m : τ / σ ∈ −→ce

Φ ` C<τ0, . . . , τn>.m  m [τ0, . . . , τn/T0, . . . , Tn]τ / [τ0, . . . , τn/T0, . . . , Tn]σ

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ m /∈ −→ce
Φ ` C ′<υ0, . . . , υk>.m  m τ / σ

Φ ` C<τ0, . . . , τn>.m  m [τ0, . . . , τn/T0, . . . , Tn]τ / [τ0, . . . , τn/T0, . . . , Tn]σ
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Method and field absence

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ x /∈ −→ce
Φ ` x /∈ C ′<υ0, . . . , υk>

Φ ` x /∈ C<τ0, . . . , τn>

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {−→ce}) ∈ Φ m /∈ −→ce
Φ ` m /∈ C ′<υ0, . . . , υk>τσ

Φ ` m /∈ C<τ0, . . . , τn>

Type translation

To translate covariant generics, we essentially want to treat all contravariant
occurrences of type variables as dynamic. The type translation �τ� implements
this. It is defined in terms of the dual operator �τ � which translates positive
occurences of type variables as dynamic.

�T� = T

�τ0, . . . , τn
k→ τr� = �τ0�, . . . , �τn�

k→�τr�
�C<τ0, . . . , τn>� = C< �τ0�, . . . , �τn� >

�τ� = τ otherwise

�T� = dynamic

�τ0, . . . , τn
k→ τr� = �τ0�, . . . , �τn�

k→�τr�
�C<τ0, . . . , τn>� = C< �τ0�, . . . , �τn� >

�τ� = τ if τ is base type.

Expression typing: Φ,∆,Γ ` e : [τ ] ⇑ e′ : τ ′

For subsumption, the elaboration of the underlying term carries through.

Φ,∆,Γ ` e : ⇑ e′ : σ Φ,∆ ` σ <: τ

Φ,∆,Γ ` e : τ ⇑ e′ : σ

In an implicit downcast, the elaboration adds a check so that an error will
be thrown if the types do not match at runtime.
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Φ,∆,Γ ` e : ⇑ e′ : σ Φ,∆ ` τ <: σ

Φ,∆,Γ ` e : τ ⇑ check(e′, τ) : τ

Φ,∆,Γ[x : τ ] ` x : ⇑ x : τ

Φ,∆,Γ ` i : ⇑ i : num

Φ,∆,Γ ` ff : ⇑ ff : bool

Φ,∆,Γ ` tt : ⇑ tt : bool

Φ,∆,Γ ` null : ⇑ null : bottom

Γ = Γ′σ

Φ,∆,Γ ` this : ⇑ this : σ

A fully annotated function elaborates to a function with an elaborated body.
The rest of the function elaboration rules fill in the reified type using contextual
information if present and applicable, or dynamic otherwise.

Γ′ = Γ[−→x : −→τ ] Φ,∆,Γ′ ` s : σ ⇑ s′ : Γ′

Φ,∆,Γ ` (−−→x : τ) : σ ⇒ s : ⇑ (−−→x : τ) : σ ⇒ s′ : −→τ −→ σ

Φ,∆,Γ ` (x0 : [τ0], . . . , xi : dynamic, . . . , xn : [τn]) : [σ]⇒ s : [τ ] ⇑ ef : τf

Φ,∆,Γ ` (x0 : [τ0], . . . , xi : , . . . , xn : [τn]) : [σ]⇒ s : [τ ] ⇑ ef : τf

τc = υ0, . . . , υn
k→ υr

Φ,∆,Γ ` (x0 : [τ0], . . . , xi : υi, . . . , xn : [τn]) : [σ]⇒ s : τc ⇑ ef : τf

Φ,∆,Γ ` (x0 : [τ0], . . . , xi : , . . . , xn : [τn]) : [σ]⇒ s : τc ⇑ ef : τf
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Φ,∆,Γ ` (
−−−→
x : [τ ]) : dynamic⇒ s : [τc] ⇑ ef : τf

Φ,∆,Γ ` (
−−−→
x : [τ ]) : ⇒ s : [τc] ⇑ ef : τf

τc = υ0, . . . , υn
k→ υr

Φ,∆,Γ ` (
−−−→
x : [τ ]) : υr ⇒ s : τc ⇑ ef : τf

Φ,∆,Γ ` (
−−−→
x : [τ ]) : ⇒ s : τc ⇑ ef : τf

(C : class C<T0, . . . , Tn> extends C ′<υ0, . . . , υk> {. . .}) ∈ Φ
len(−→τ ) = n+ 1

Φ,∆,Γ ` newC<−→τ >() : ⇑ newC<−→τ >() : C<−→τ >

op : −→τ → σ Φ,∆,Γ ` e : τ ⇑ e′ : τ ′

Φ,∆,Γ ` op(−→e ) : ⇑ op(
−→
e′ ) : σ

Function application of an expression of function type elaborates to either a
call or a dynamic (checked) call, depending on the variance of the applicand. If
the applicand is a covariant (fuzzy) type, then a dynamic call is generated.

Φ,∆,Γ ` e : ⇑ e′ : −→τa
k→ τr

Φ,∆,Γ ` ea : τa ⇑ e′a : τ ′a for ea, τa ∈ −→ea,−→τa

ec =

{
e′(
−→
e′a) if k = −

dcall(e′,
−→
e′a) if k = +

Φ,∆,Γ ` e(−→ea) : ⇑ ec : τr

Application of an expression of type dynamic elaborates to a dynamic call.

Φ,∆,Γ ` e : ⇑ e′ : dynamic
Φ,∆,Γ ` ea : ⇑ e′a : τ ′a for ea ∈ −→ea

Φ,∆,Γ ` e(−→ea) : ⇑ dcall(e′,
−→
e′a) : dynamic

Φ,∆,Γ ` e : dynamic ⇑ e′ : τ
Φ,∆,Γ ` ea : ⇑ e′a : τa for ea ∈ −→ea

Φ,∆,Γ ` dcall(e,−→ea) : ⇑ dcall(e′,
−→
e′a) : dynamic
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Φ,∆,Γ ` e : ⇑ e′ : σ Φ ` σ.m  m σ / τ

Φ,∆,Γ ` e.m : ⇑ e′.m : τ

A method load from a term of type dynamic elaborates to a dynamic
(checked) load.

Φ,∆,Γ ` e : dynamic ⇑ e′ : τ

Φ,∆,Γ ` e.m : ⇑ dload(e′,m) : dynamic

Φ,∆,Γ ` e : dynamic ⇑ e′ : τ

Φ,∆,Γ ` dload(e,m) : ⇑ dload(e′,m) : dynamic

Γ = Γτ Φ ` τ.x  f σ

Φ,∆,Γ ` this.x : ⇑ this.x : σ

Φ,∆,Γ ` e : [τ ] ⇑ e′ : σ Φ,∆,Γ ` x : σ ⇑ x : σ′

Φ,∆,Γ ` x = e : [τ ] ⇑ x = e′ : σ

Γ = Γτ Φ,∆,Γ ` e : [τ ] ⇑ e′ : σ
Φ ` τ.x  f σ′ Φ,∆ ` σ <: σ′

Φ,∆,Γ ` this.x = e : ⇑ this.x = e : σ

Φ,∆,Γ ` throw : ⇑ throw : σ

Φ,∆,Γ ` e : ⇑ e′ : σ τ is ground

Φ,∆,Γ ` e as τ : ⇑ e′ as τ : τ

Φ,∆,Γ ` e : ⇑ e′ : σ τ is ground

Φ,∆,Γ ` e is τ : ⇑ e′ is τ : bool

Φ,∆,Γ ` e : ⇑ e′ : σ

Φ,∆,Γ ` check(e, τ) : ⇑ check(e′, τ) : τ
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Declaration typing: Φ,∆,Γ `d vd ⇑ vd ′ : Γ′

Elaboration of declarations elaborates the underlying expressions.

Φ,∆,Γ ` e : τ ⇑ e′ : τ ′

Φ,∆,Γ `d var x : τ = e ⇑ var x : τ ′ = e′ : Γ[x : τ ]

Φ,∆,Γ ` e : ⇑ e′ : τ ′

Φ,∆,Γ `d var x : = e ⇑ var x : τ ′ = e′ : Γ[x : τ ′]

τf = −→τa
−→ τr Γ′ = Γ[f : τf ] Γ′′ = Γ′[−→x : −→τa ]

Φ,∆,Γ′′ ` s : τr ⇑ s′ : Γ0

Φ,∆,Γ `d f(−−−→x : τa) : τr = s ⇑ f(−−−→x : τa) : τr = s′ : Γ′

Statement typing: Φ,∆,Γ ` s : τ ⇑ s ′ : Γ′

Statement elaboration elaborates the underlying expressions.

Φ,∆,Γ `d vd ⇑ vd ′ : Γ′

Φ,∆,Γ ` vd : τ ⇑ vd ′ : Γ′

Φ,∆,Γ ` e : ⇑ e′ : τ

Φ,∆,Γ ` e : τ ⇑ e′ : Γ

Φ,∆,Γ ` e : bool ⇑ e′ : σ
Φ,∆,Γ ` s1 : τr ⇑ s′1 : Γ1 Φ,∆,Γ ` s2 : τr ⇑ s′2 : Γ2

Φ,∆,Γ ` if (e) then s1 else s2 : τr ⇑ if (e′) then s′1 else s′2 : Γ

Φ,∆,Γ ` e : τr ⇑ e′ : τ

Φ,∆,Γ ` return e : τr ⇑ return e′ : Γ

Φ,∆,Γ ` s1 : τr ⇑ s′1 : Γ′ Φ,∆,Γ′ ` s2 : τr ⇑ s′2 : Γ′′

Φ,∆,Γ ` s1; s2 : τr ⇑ s′1; s′2 : Γ′′
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Class member typing: Φ,∆,Γ `ce vd : ce ⇑ vd ′ : Γ′

Elaborating class members is done with respect to a signature. The field
translation simply translates the field as a variable declaration.

Φ,∆,Γ `d var x : [τ ] = e ⇑ vd ′ : Γ′

Φ,∆,Γ `ce var x : [τ ] = e : var x : [τ ] ⇑ vd ′ : Γ′

Translating methods requires introducing guard expressions. The signature
provides an internal and an external type for the method. The external type
is the original declared type of the method, and is the signature which the
method presents to external clients. Because we implement covariant generics,
clients may see an instantiation of this signature which will allow them to violate
the contract expected by the implementation. To handle this, we rewrite the
method to match an internal signature which is in fact soundly covariant in the
type parameters (that is, all contravariant type parameters are replaced with
dynamic, and hence all remaining type parameters occur in properly covariant
positions). This property is enforced in the override checking relation: from the
perspective of this relation, there is simply another internal type which defines
how to wrap the method with guards.

The translation insists that the internal and external types be function types
of the appropriate arity, and that the external type is equal to the type of the
declaration. The declaration is translated using the underlying function defini-
tion translation, but is then wrapped with guards to enforce the type contract,
producing a valid function of the internal (covariant) type. The original body of
the function is wrapped in a lambda function, which is applied using a dynamic
call which checks that the arguments (which may have negative occurrences of
type variables which are treated as dynamic in the internal type) are appro-
priate for the actual body. The original function returns a type τr which may
be a super-type of the internal type (since negative occurrences of type vari-
ables must be treated as dynamic), and so we insert a check expression to guard
against runtime type mismatches here.

This is a very simplistic translation for now. We could choose, in the case
that the body returns a lambda, to push the checking down into the lambda
(essentially wrapping it in place).

vd = f(x0 : τ0, . . . , xn : τn) : τr = s

σe = τ0, . . . , τn
+→ τr σi = υ0, . . . , υn

−→ υr
Φ,∆,Γ `d vd ⇑ f(x0 : τ0, . . . , xn : τn) : τr = s′ : Γ′

eg = (x0 : τ0, . . . , xn : τn) : τr ⇒ s′

sg = return (check(dcall(eg, x0, . . . , xn), υr))
vdg = f(x0 : υ0, . . . , xn : υn) : υr = sg

Φ,∆,Γ `ce vd : fun f : σi / σe ⇑ vdg : Γ′
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Class declaration typing: Φ,Γ `c cd ⇑ cd ′ : Γ′

Elaboration of a class requires that the class hierarchy Φ have a matching
signature for the class declaration. Each class member in the class is elaborated
using the corresponding class element from the signature.

cd = class C<
−→
T > extends G<−→τ > {vd0, . . . , vdn}

(C : class C<
−→
T > extends G<−→τ > {ce0, . . . ,−→cen}) ∈ Φ

∆ =
−→
T Γi =

{
Γ
C<
−→
T >

if vd i is a method

Γ if vd i is a field

Φ,∆,Γi `ce vd i : cei ⇑ vd ′i : Γ′i for i ∈ 0, . . . , n

cd ′ = class C<
−→
T > extends G<−→τ > {

−→
vd ′}

Φ,Γ `c cd ⇑ cd ′ : Γ′

Override checking:
Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ ce

Override checking remains largely the same, with the exception of additional
consistency constraints on the internal signatures for methods.

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x : dynamic

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x :

Φ ` G<τ0, . . . , τk>.x  f τ

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x : τ

Φ ` x /∈ G<τ0, . . . , τk>

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ var x : τ

For a non-override method, we require that the internal type τ be a subtype
of �σ� where σ is the declared type. Essentially, this enforces the property that
the initial declaration of a method in the hierarchy has a covariant internal type.

∆ = T0, . . . , Tn Φ,∆ ` τ<: �σ�
Φ ` f /∈ G<τ0, . . . , τk>

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ fun f : τ / σ
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For a method override, we require two coherence conditions. As before,
we require that the internal type τ be a subtype of the �σ � where σ is the
external type. Moreover, we also insist that the external type σ be a subtype
of the external type of the method in the superclass, and that the internal
type τ be a subtype of the internal type in the superclass. Note that it this
last consistency property that ensures that covariant generics are “poisonous” in
the sense that non-generic subclasses of generic classes must still have additional

checks. For example, a superclass with a method of external type σs = T
−→ T

will have internal type τs = dynamic
−→ T . A subclass of an instantiation of

this class with num can validly override this method with one of external type

σ = num
−→ num. This is unsound in general since the argument occurrence

of T in σs is contra-variant. However, the additional consistency requirement is
that the internal type of the subclass method must be a subtype of [num/T ]τs =

dynamic
−→ num. This enforces the property that the overridden method

must expect to be used at type dynamic
−→ num, and hence must check its

arguments (and potentially its return value as well in the higher-order case).
This checking code is inserted during the elaboration of class members above.

∆ = T0, . . . , Tn Φ,∆ ` τ<: �σ�
Φ ` G<τ0, . . . , τk>.f  m τs / σs
Φ,∆ ` τ <: τs Φ,∆ ` σ <: σs

Φ ` C<T0, . . . , Tn> extendsG<τ0, . . . , τk>⇐ fun f : τ / σ

Toplevel declaration typing: Φ,Γ `t td ⇑ td ′ : Γ′

Top level declaration elaboration falls through to the underlying variable
and class declaration code.

Φ, ε,Γ `d vd ⇑ vd ′ : Γ′

Φ,Γ `t vd ⇑ vd ′ : Γ′

Φ,Γ `c cd ⇑ cd ′ : Γ′

Φ,Γ `t cd ⇑ cd ′ : Γ′

Well-formed class signature: Φ ` Sig ok
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Φ ` Object ok

Sig = class C<
−→
T > extends G<τ0, . . . , τk> {ce0, . . . , cen}

(G : Sig ′) ∈ Φ Φ ` Sig ′ ok

Φ ` C<
−→
T > extendsG<τ0, . . . , τk>⇐ cei for cei ∈ ce0, . . . , cen

Φ ` Sig ok

Well-formed class hierarchy: ` Φ ok

Φ ` Sig ok forSig ∈ Φ

` Φok

Program typing: Φ ` P ⇑ P ′

Γ0 = ε Φ,Γi `t td i ⇑ td ′i : Γi+1 for i ∈ 0, . . . , n
Φ, ε,Γn+1 ` s : τ ⇑ s′ : Γ′n+1

Φ ` let td0, . . . , tdn in s ⇑ let td ′0, . . . , td
′
n in s′
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