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1 Introduction

The following document describes the construction of the matrices responsible for con-
tact handling for articulated rigid bodies in generalized coordinates. We formulate an
implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee
non-penetration, directional friction, and approximated Coulombs friction cone conditions,
similar to Stewart and Trinkle [1]. The document assumes familiarity with physics princi-
ples of frictional contact and the mathematical techniques for solving standard LCP. This
was originally intended as a guide for the implementation of the LCP solver for the DART
dynamics library.

2 The Equations of Motion

We begin our derivation from the following form of the equations of motion for an articulated
rigid body system with one contact point:

M(q)q̈ + C(q, q̇) = τ + JTfnn + JTDfd (1)

The terms of this equation are as follows:

• q: the state vector

• M : the mass matrix

• C: Coriolis, centrifugal, and gravitational forces

• τ : internal generalized forces

• J : the Jacobian matrix evaluated at the contact point

• n: the normal force direction (Figure 1(a))

• fn: the magnitude of the normal force

• D: discretized friction cone bases (Figure 1(a))

• fd: the magnitudes of tangent forces along the discretized friction cone bases

We can discretize Equation 1 as follows:

M q̈ = M
(q̇n+1 − q̇n)

∆t
(2)
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Figure 1: An articulated system.

M
(q̇n+1 − q̇n)

∆t
= −C(qn, q̇n) + τn + JTfnn + JTDfd (3)

M q̇n+1 = M q̇n −∆t(C(qn, q̇n)− τn) + ∆t(JTfnn + JTDfd) (4)

where superscripts n and n+ 1 indicate the current and the next time steps. In Equation 4
, the first two terms on the right are known values. We group these into a single term τ ∗:

τ ∗ = M q̇n −∆t(C − τn) (5)

We are then left with:
M q̇ = τ ∗ + ∆t(JTfnn + JTDfd) (6)

where the unknown variables are the velocity of the state at the next time step (q̇, superscript
n + 1 omitted for simplicity), the magnitude of normal force (fn), and the magnitudes of
tangent forces (fd).

Now let us consider the equations of motion for a more complex situation shown in Figure
1(b). There are four contact points and three systems involved in the scene. We can stack
the equations of motion for each system in the following matrix form:

M1 0 0
0 M2 0
0 0 M3

 q̇1q̇2
q̇3

 =

τ1∗τ2∗
τ3
∗

 + ∆t

J11
Tn1 J12

Tn2 0 0
0 −JT

22n2 JT
23n3 JT

24n4

−JT
31n1 0 −JT

33n3 −JT
34n4



fn1

fn2

fn3

fn4



+∆t

 JT
11D1 JT

12D2 0 0
0 −JT

22D2 JT
23D3 JT

24D4

−JT
31D1 0 −JT

33D3 −JT
34D4



fd1

fd2

fd3

fd4

 (7)

The subscript i for Mi, q̇i, and τ ∗i indicates the i-th system, while the subscript j for nj, Dj,
fnj, and fdj indicates the j-th contact. A Jacobian matrix Jij has two subscripts indicating
the Jacobian evaluated at contact j for the system i.
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For simplicity, we will rewrite some of these terms as matrices N and B as follows:

N =

J11
Tn1 J12

Tn2 0 0
0 −JT

22n2 JT
23n3 JT

24n4

−JT
31n1 0 −JT

33n3 −JT
34n4


B =

 JT
11D1 JT

12D2 0 0
0 −JT

22D2 JT
23D3 JT

24D4

−JT
31D1 0 −JT

33D3 −JT
34D4

 (8)

Assuming the total number of degrees of freedom for three systems is m, the number of the
contacts is p (p = 4 in Figure 1(b)), and the number of friction cone bases is d (d = 8 in
Figure 1(a)), the dimensions of N and B are m × p and m × pd, respectively. With these
substitutions, Equation 7 reduces to the following:

M q̇ = τ ∗ + ∆t(N fn +Bfd) (9)

3 LCP Formulation

The problem of contact handling is based on three types of constraints: normal direction
constraints, directional friction constraints, and friction cone constraints. Together with
equations of motion described earlier, these three sets of constraints constitute a LCP for
unknown variables q̇, fn, fd, and auxiliary variables λ.

3.1 Normal Direction Constraints

• expression 1: fn ≥ 0

• expression 2: NT q̇ ≥ 0

• expression 3: (NT q̇)T fn = 0

Expression 1 ensures there is no pulling force. Expression 2 prevents penetration by enforcing
a nonnegative normal velocity at contact. Expression 3 constrains the normal force based
on the velocity. If NT q̇ > 0, then fn = 0 (in takeoff). If fn > 0 then NT q̇ = 0 (in contact).

3.2 Directional Friction Constraints

• expression 4: fd ≥ 0

• expression 5: BT q̇ + Eλ ≥ 0

• expression 6: (BT q̇ + Eλ)T fd = 0

Here E ∈ Rpd×p is a binary matrix whose structure is defined as follows:

E =

e1

. . .

ep

 (10)
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where e is a vector of ones in Rd. Additionally, λ is a vector in Rp that contains all of the
auxiliary variables.

λ =

λ1
...
λp

 (11)

The goal of directional friction constraints is to ensure that contact slipping on the surface
is in the opposite direction of the friction force. Let us first exam the first term of Expression
5, BT q̇, the velocity at contact projected onto each friction cone basis vector. The projection
will end up in one of the three cases:

1. The projected vector is closer to one of the bases than others. The most negative
element in BT q̇ is unique.

2. The projected vector is right in the middle of two basis vectors. The two most negative
elements in BT q̇ are the same.

3. The projected vector is a zero vector.

Because the smallest possible value for any element in BT q̇ +Eλ is zero (by Expression 5),
the first case has at most one zero element in BT q̇ + Eλ. Assuming the index of that zero
element is i, Expression 5 and Expression 6 together state that fd must be a zero vector
except for the i-th element. This nonzero element in fd determines the direction of the
friction force while the corresponding i-th element in BT q̇ +Eλ indicates the most negative
projection of tangent velocity. Therefore, given a set of basis directions, the friction force is
indeed in the most opposite direction of contact slipping. The second case rarely happens,
but when it does we can arbitrary pick one of the two bases to break the tie and apply the
same reasoning as the first case. The third case indicates either static contact (when λ = 0)
or contact breakage (when λ > 0). It will be more clear after we introduce friction cone
constraints.

Is it valid to choose a large positive λ such that all the elements of BT q̇+Eλ are greater
than zero? It does not seem to violate any of the expressions here, but we will see the
implication of that in the next subsection.

3.3 Friction Cone Constraints

• expression 7: λ ≥ 0

• expression 8: µfn − ET fd ≥ 0

• expression 9: λT (µfn − ET fd) = 0

Friction cone constraints describe the switch condition between static state and slipping
state of a contact. From the previous section, we know that at most one element of fd can
be nonzero for the first (and the second) case. Therefore, Expression 8 states that the ratio
of tangent contact force to normal contact force must be less than or equal to the friction
coefficient µ. If the contact force is within the friction cone (inequality case in Expression 8),
λ must be zero by Expression 9. When λ is zero, the corresponding Expression 5 becomes
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BT q̇ ≥ 0. Because the bases of friction cones are arranged in pairs of opposite directions
(e.g. d1 = −d5, d2 = −d6), the only way for all elements to be nonnegative is when BT q̇ is
a zero vector (no slipping), hence the friction cone condition.

Now, we can go back to the question about validity of selecting a large positive λ such
that all the elements of BT q̇ + Eλ are greater than zero. If we do so, fd will be all zeros by
Expression 6, which leads to µfn ≥ 0 by Expression 8. If fn > 0, λ must be zero by Expression
9, contradicting the assumption that λ is a large positive value. Therefore, BT q̇ + Eλ can
be greater than zero only when the contact is broken (fn = 0). As long as the contact exists,
λ will always be either zero or a positive value that makes the most negative element of
BT q̇ + Eλ exactly zero.

3.4 LCP

Putting all the constraints together, we can construct the following linear system of equa-
tions: 

0
a
b
c

 =


M −∆tN −∆tB 0
NT 0 0 0
BT 0 0 E
0 µ −ET 0




q̇
fn
fd
λ

 +


−τ ∗

0
0
0


fn
fd
λ

 ≥ 0,

a
b
c

 ≥ 0,

a
b
c

T fn
fd
λ

 = 0

(12)

The first row of the system is based on Equation 9. The remaining three rows, as well as
the constraints, encapsulate the nine LCP conditions described above. Unfortunately, the
construction described is in MLCP (Mixed LCP) form. To convert it to standard form, we
need to make a few adjustments.

4 Standard LCP Form

The standard LCP solves for two vectors w and z, and is of the following form:

w = Az + q
w ≥ 0
z ≥ 0

wTz = 0

(13)

If we express q̇, as q̇ = M−1(∆tN fn + ∆tBfd + τ ∗), we can then reorder Equation 12 slightly
to get the following:a

b
c

 =

∆tNTM−1N ∆tNTM−1B 0
∆tBTM−1N ∆tBTM−1B E

µ −ET 0

 fn
fd
λ

 +

NTM−1τ ∗

BTM−1τ ∗

0

 (14)
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where:

w =

a
b
c


A =

∆tNTM−1N ∆tNTM−1B 0
∆tBTM−1N ∆tBTM−1B E

µ −ET 0


z =

fn
fd
λ


q =

NTM−1τ ∗

BTM−1τ ∗

0



(15)

We can now solve this standard LCP using any LCP solver, such as Lemke’s algorithm.
Once we have w and z, we can discard w and plug values in z back into the equations of
motion to get q̇n+1.

5 Stabilization

In practice, the numerical instability can occur when the matrix A is ill-conditioned. To
make the solution of LCP more stable, we can apply two simple treatments to modify A.
First, we can add a small value to the diagonal elements of A: A(i, i) = (1 + ε) ∗ A(i, i).
ε is similar to CFM parameter in Open Dynamic Engine. Note that this modification will
change the accuracy of the solution.

Another way to stabilize contact constraints is to scale the submatrices in A such that
they are in the same order of magnitude. In particular, we scale matrix E (both places in A)
and matrix µ by ∆t. Scaling the last row of A (i.e. µ and ET ) does not affect the solution
because the shape of the Coulomb friction cone is not changed. Scaling the last column of
A only scales the value of λ. Since we do not use λ and LCP only cares about whether λ is
greater than or equal to zero, scaling E and µ has no effect on the contact force solution.
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