
DeepHyper: Asynchronous Hyperparameter Search
for Deep Neural Networks
Prasanna Balaprakash, Michael Salim, Thomas D. Uram,

Venkat Vishwanath, and Stefan M. Wild
Mathematics & Computer Science Division and Leadership Computing Facility

Argonne National Laboratory, Lemont, IL 60439
Email: {pbalapra,msalim,turam,venkat,wild}@anl.gov

Abstract—Hyperparameters employed by deep learning (DL)
methods play a substantial role in the performance and reliability
of these methods in practice. Unfortunately, finding performance-
optimizing hyperparameter settings is a notoriously difficult
task. Hyperparameter search methods typically have limited
production-strength implementations or do not target scalability
within a highly parallel machine, portability across different
machines, experimental comparison between different methods,
and tighter integration with workflow systems. In this paper, we
present DeepHyper, a Python package that provides a common
interface for the implementation and study of scalable hyperpa-
rameter search methods. It adopts the Balsam workflow system to
hide the complexities of running large numbers of hyperparam-
eter configurations in parallel on high-performance computing
(HPC) systems. We implement and study asynchronous model-
based search methods that consist of sampling a small number
of input hyperparameter configurations and progressively fitting
surrogate models over the input-output space until exhausting
a user-defined budget of evaluations. We evaluate the efficacy
of these methods relative to approaches such as random search,
genetic algorithms, Bayesian optimization, and hyperband on DL
benchmarks on CPU- and GPU-based HPC systems.

I. INTRODUCTION

Deep learning (DL) algorithms typically require user-
specified values for hyperparameters, which strongly influence
performance factors such as training time and prediction
accuracy [1]–[3]. These hyperparameters include the num-
ber of hidden layers, the number of units per layer, spar-
sity/overfitting regularization parameters, batch size, learning
rate, type of initialization, optimizer, and activation func-
tion specification. Traditionally, in machine learning (ML)
research, finding performance-optimizing hyperparameter set-
tings has been tackled by using a trial-and-error process or
by brute-force grid/random search. However, such approaches
lead to far-from-optimal performance or are otherwise im-
practical for addressing large numbers of hyperparameters.
Recently, new hyperparameter search methods have emerged
to address the issue of finding high-quality hyperparameter
configurations in short computation time. These methods typ-
ically focus on single-node and small-cluster environments;
therefore, methods that scale to large leadership-class super-
computing systems are limited.

The highly empirical nature of research in DL has been
criticized recently, and the lack of systematic hyperparam-
eter tuning in several published DL method comparisons

has been cited as a key factor [4]. This issue is further
exacerbated by the fact that the design and development of
hyperparameter search methods are still an evolving research
area, and which search method is best suited for a particular
problem setting and scale remains unclear. The optimization
research community faces high startup costs associated with
developing mathematical formulations of the search problems
and search infrastructure to test new ideas rapidly. An easy-
to-use hyperparameter search infrastructure with well-defined
DL hyperparameter search problems can address this issue.
Empirical results and insights obtained with the search in-
frastructure can provide recommendations for search methods
based on particular problem characteristics. Given a new
DL application, a DL researcher can adopt a search method
based on a particular problem setting. Currently, doing so
is challenging, however, because existing open-source DL
search codes and infrastructures are method-centric and ill-
suited for experimental research in DL search methods. Open-
source hyperparameter search implementations tend to exist as
research prototypes or do not target scalability and portability
concerns.

Large high-performance computing (HPC) clusters and
leadership-class supercomputing systems pose a number of
deployment and portability challenges. For example, the queu-
ing systems, scheduling policies, and scripts needed to run
hyperparameter searches can differ significantly from one
machine to another. Establishing the appropriate runtime envi-
ronment requires linking DL backends to properly optimized
DL libraries, which are configured differently for GPUs than
they are for multicore CPUs. Typically, search parallelism
is implemented with message-passing logic (e.g., MPI) built
into the search application layer. While flexible, this approach
requires search algorithm developers to handle myriad system-
level obstacles [5], often related to the shared filesystem or un-
expected interactions between Python and the MPI/networking
stack. The resulting solutions are usually fragile with low
portability; add complexity to the search codebase; and take
significant time away from search algorithm development,
leading to lower productivity. Moreover, the large volume of
training data that needs to be loaded for every hyperparameter
evaluation demands methods that can take advantage of spe-
cialized compute hardware, such as high-bandwidth memory
or flash storage devices, in order to avoid I/O bottlenecks.

@anl.gov

Addressing these challenges requires a custom workflow and
parallel job execution system, tuned for high-performance,
asynchronous parallel task execution. By providing a simple
interface for task queueing, HPC system complexities are
effectively abstracted away from the hyperparameter search
application layer.

In this paper we present DeepHyper, a scalable Python pack-
age for deep neural network (DNN) hyperparameter search.
The key contributions of the paper are as follows:

• A collection of extensible and portable DNN hyperpa-
rameter search problem instances, each consisting of a
configurable DNN code and a search space of tunable
hyperparameters.

• A generic interface between DNN hyperparameter search
methods and parallel task execution engines, enabling
rapid implementation and testing on leadership-class su-
percomputers.

• A scalable, asynchronous model-based search method
(AMBS) using Bayesian optimization (BO) ideas.

• Demonstration of AMBS efficacy compared with batch-
synchronous methods (genetic algorithm and hyperband)
and other asynchronous methods (random search and BO
with Gaussian process regression).

• A portable workflow system for parallel, asynchronous
evaluations of hyperparameter configurations at HPC
scale (up to 1,024 nodes), designed for fault tolerance
and parallel efficiency.

II. HYPERPARAMETER SEARCH PROBLEM

We let X = (XA,XP) define a DNN configuration, where
XA defines a network topology and XP = (Xc,Xd,Xn) ∈ D
defines the hyperparameters of the DNN, which we explicitly
partition into continuous (Xc), discrete (Xd), and nonordinal
parameters (Xn) that belong to a compact decision set D. Let
w be the weights of the DNN. The hyperparameter search
problem depends on the given training data T and validation
data V .

The problem of finding the hyperparameters of DNNs can
then be formulated as a bilevel mathematical optimization
problem. For a given topology XA and set of hyperparameters
XP , the lower-level problem is to train the DNN:

solve minimize
w

errT ([XA,XP] ; T ;w) , (1)

where errT ([XA,XP] ; T ;w) is the training error obtained on
dataset T . In the upper-level problem, we seek XA and XP
to minimize the error obtained on the validation set V:

solve minimize
XA,XP

errV ([XA,XP] ;V;w∗ [XA,XP]), (2)

where w∗ [XA,XP] is obtained from (1). Such a formulation
allows for different forms of training and validation metrics. In
practice, these functions typically are the same, errT = errV ,
with output differing based only on the data used.

In this paper, we focus on tuning XP = (Xc,Xd,Xn),
which are modeled as a vector of decision variables. The

continuous hyperparameters Xc include hyperparameters cho-
sen from a continuum with lower and upper bounds such as
dropout and learning rate. The discrete hyperparameters Xd

can model any discrete parameters with a natural ordering.
These hyperparameters are expressed with either lower and
upper bounds or a list of ordered discrete values. Examples
include number of epochs, batch size, number of hidden layers,
and number of units per layer in multilayered perceptrons
(MLP), convolution filter and pooling sizes in convolutional
neural networks (CNNs). The nonordinal, or nonordinal cat-
egorical, hyperparameters Xn do not possess a meaningful
ordering. These hyperparameters are expressed as a list of
values. Examples include type of activation functions, type of
training optimizer, and type of layers (e.g., in recurrent neural
nets (RNNs): vanilla RNN, LSTM, GRU).

III. THE DEEPHYPER PACKAGE

The DeepHyper package comprises three Python sub-
packages: benchmarks, a collection of DL hyperparam-
eter search problems; search, a set of search algo-
rithms (including AMBS) for DL hyperparameter search; and
evaluators, an infrastructure for evaluating hyperparame-
ter configurations on HPC platforms.

A. Benchmarks

The benchmarks subpackage comprises several instances
of hyperparameter search problems. Each instance consists
of a model and a search space. The model file contains
configurable DNN code that receives the hyperparameters via
a command line, loads the data, builds the DNN model, runs
the training, and returns the validation error. One can perform
a standalone run of any benchmark model by providing a
single hyperparameter configuration via the command line to
the model script. The model file follows the template in source
code 1.

Source code 1 Benchmark model template
class BenchmarkProblem():
def __init__(self, param_dict):
'''parse command line parameters'''
self.read_params(param_dict)
'''load the data'''
self.load_data()
''' preprocess data '''
self.preprocess_data()
'''training/validation data split'''
self.split_data()
'''build the model'''
self.build_model()
'''train the model'''
self.train_model()
'''evaluate the model performance'''
self.evaluate_model()
'''return the objective value'''
self.return_result()

The model code is self-instrumented and logs the Python
module import time, which can become significant in shared
filesystem environments, in addition to the time spent in each

function in source code 1. Moreover, the code has a graceful
termination that stops the training based on a user-defined
timeout value and passes control from self.train model() to
self.evaluate model() and self.return result(). The benchmark
run returns the validation error to the search.

The search space description file follows the template shown
in source code 2. The lower and upper bounds for the
continuous and discrete integer hyperparameters are given as
Python tuples. The discrete noninteger and nonordinal hyper-
parameters are given as lists of values. To extend the search
space by exposing more hyperparameters is straightforward:
one simply adds a named hyperparameter to the search space
file and ensures that a command-line argument with this name
is correctly parsed by the model file. The starting_point
variable contains the initial hyperparameter configuration that
will be evaluated first by the search methods.

The standardized search space description and model run
interface provide significant modularity, in the sense that
one can easily plug a new benchmark into DeepHyper and
immediately apply any of the supported hyperparameter search
algorithms without further modification to DeepHyper.

Source code 2 Search space template
class Space():
def __init__(self):

space = collections.OrderedDict()
space['epochs'] = (5, 500)
space['nhidden'] = (1, 2)
space['nunits'] = (5, 100)
space['activation'] = ['relu', 'softmax']
space['batch_size'] = [8, 16, 32, 64, 128]
space['dropout'] = (0.0, 1.0)
space['optimizer'] = ['sgd', 'rmsprop']
space['learning_rate'] = (1e-04, 1e01)
self.space = space
self.starting_point = [5, 1, 5,'relu', 8,

0.0,'sgd', 1e-04]

B. Search

The search subpackage contains several modules im-
plementing hyperparameter search methods. These modules
share common interfaces for reading the problem search space
(described in §III-A) and evaluating the benchmark’s objective
(see §III-C). The search methods approximately solve (2) by
repeating the following steps.

(i) Sampling: Promising hyperparameter configurations
are generated.

(ii) Evaluating: Each configuration is evaluated by train-
ing the model and then computing the error on the
validation dataset.

(ii) Updating: The resulting validation errors are used to
bias future hyperparameter configuration samples to
minimize the validation error.

Given the expensive nature of training each DNN model,
parallelizing hyperparameter configuration evaluations on mul-
tiple compute nodes is critical for speeding the search. The
search methods that parallelize evaluations can be classified

Algorithm 1 Asynchronous parallel model-based search

1 Xs ← random_sample_configs(D)
2 add_eval_batch(Xs)
3 while stopping criterion not met do
4 (Xr, Yr) ← get_finished_evals()
5 s ← |Yr|
6 if s > 0 then
7 Xout ← Xout ∪ Xr; Yout ← Yout ∪ Yr
8 M ← Fit(Xout, Yout)
9 D ← D −Xr

10 Xs ← sample_configs(M, D)
11 add_eval_batch(Xs)
12 end if
13 end while

Output: Best hyperparameter configuration(s) from Xout

as either batch synchronous or asynchronous methods. In the
former, the search method proceeds to the next iteration only
after completely evaluating the set of hyperparameter config-
urations sampled in the current iteration. In the latter, new
configurations are selected before all previous configurations
have been evaluated. The evaluators subpackage provides
a simple, three-function interface for both batch synchronous
and asynchronous evaluations. We describe the interface here
but leave implementation details to §III-C.

The evaluator interface provides a key benefit in mod-
ularity to the search methods. New hyperparameter search
algorithms can be implemented in DeepHyper without con-
sideration of the underlying parallelization details, which
are tightly encapsulated. The resulting hyperparameter search
method is then immediately portable from personal computers
(for debugging and small-scale experimentation) to HPC sys-
tems supporting massively-parallel hyperparameter searches.
Moreover, the search code is immediately applicable to any
of the problems defined in the benchmarks subpackage.

1) Asynchronous model-based search (AMBS): AMBS re-
lies on fitting a dynamically updated surrogate model that
tries to learn the relationship between the hyperparameter
configurations (input) and their validation errors (output). Key
properties of the surrogate model are that it is cheap to
evaluate and can be used to prune the search space and identify
promising regions. The surrogate model is iteratively refined
in the promising regions of the search space by obtaining new
outputs at inputs that are predicted by the model to be high
performing.

The AMBS framework is outlined in Algorithm 1. The
search is designed to operate in a manager-worker paradigm,
whereby a manager runs the search and generates configu-
rations and workers perform the computationally expensive
evaluations and return the validation error to the manager.

The search is initialized with a number of hyperparam-
eter configurations equal to the number of available work-
ers, obtained by random sampling of the search space
D. The evaluators interface provides a single function

add_eval_batch for submitting new hyperparameter con-
figurations for evaluation. Each worker is busy only with one
evaluation at a time.

At each iteration, AMBS queries the workers for the most
recent evaluation results (Xr, Yr). The number of results,
|Yr| = s, is therefore also equal to the number of newly idle
workers. When s is nonzero, the new results are appended to
the evaluated list (Xout, Yout), and the surrogate model M is
retrained on the latest information (line 8). The asynchronous
aspect of this algorithm lies in get_finished_evals,
which is nonblocking and allows the search to avoid waiting
for all the evaluation results before proceeding to the next
iteration. As soon as an evaluation is finished, the validation
error is used to bias the search toward more promising regions
of the search space.

Using the surrogate model M, AMBS samples a set Xs

of s configurations from the search space D using the func-
tion sample_configs. This new set of promising con-
figurations is immediately submitted to the workers through
add_eval_batch, thereby restoring the worker utilization
to 100%. Crucial to the effectiveness of AMBS are the method
(sample_configs) used for selecting hyperparameter con-
figurations and the choice of model (M).

For sample_configs we adopt acquisition function
ideas from the BO literature [6]. First, we sample a large
number of unevaluated hyperparameter configurations. For
each sampled configuration xi, we use the modelM to predict
a value µ(xi) and standard deviation σ(xi). Evaluating points
with small values of µ(xi) indicates that the xi can potentially
result in reduction of validation error subject to the accuracy
of M, a process called exploitation. Large values of σ(xi)
indicate that M has not learned the regions of the search
space well at xi. Evaluating points with large σ(xi) improves
the modelM, a process called exploration. Several acquisition
functions have been developed in the BO literature that attempt
to balance exploration and exploitation for various settings. In
this paper we focus on the lower confidence bound, a simple
and robust acquisition function defined by

ALCB(x) = µ(x)− λ ∗ σ(x). (3)

When the parameter λ ≥ 0 is set to 0, the search performs pure
exploitation (i.e., points that have lower predicted values are
selected irrespective of model uncertainty). As λ increases, the
search tends toward pure exploration, and points are selected
based on their potential to improve the accuracy of M.

In AMBS, multiple hyperparameter configurations can fin-
ish evaluation simultaneously; this situation must be addressed
in order to minimize worker idling. To select s configurations
at a time, sample_configs adopts a multipoint acquisition
function based on a “constant liar” strategy. This approach
starts by selecting a point that maximizes ALCB. A dummy
output is assigned to the first configuration and the model
is updated with this configuration and the dummy output (a
lie). The second configuration in the batch is then obtained
by maximizing ALCB using the updated model. This process
is repeated until a set of s configurations is selected. The

dummy output has the same value over the s−1 configuration
selections. Typical dummy choices include the maximum,
minimum, or mean of the validation errors that the search
has found up to that point. In AMBS, a distinguishing feature
of the sample_configs constant liar strategy is that the
model trained on dummy values is not discarded after s con-
figurations are generated. Instead, the same model containing
a mixture of true results and “lies” is maintained, and the lie
values are replaced by evaluated validation errors as soon as
they become available.

The search space characteristics determine the type of
model. Any ML regression method can be used for building
the surrogate model by using a bagging approach that builds
a number of models, each from a subset of training data,
and aggregates them to compute a mean µ(x) and standard
deviation σ(x) of a configuration x. However, there is a class
of ML methods that are better suited for model-based search
because they provide standard deviations natively. The most
widely used method in BO is Gaussian process regression,
which requires explicit encoding to convert the nonordinal
parameters to numeric ones. Depending on the sensitivity to
the nonordinal hyperparameters, this conversion can reduce the
effectiveness of the method. Random forests is an effective
alternative model class because it can handle discrete and
nonordinal parameters directly without the need for encoding.
DeepHyper allows the use of any of the regression models
available in the scikit-learn package [7], a popular ML package
implemented in Python.

2) Other search methods: Perhaps the simplest asyn-
chronous search is random search (RS), in which configura-
tions are sampled at random (without replacement) as soon as
an evaluation is finished and a worker becomes free. RS has
been shown to be more effective than grid search for several
ML and DL algorithms. In DeepHyper, RS is implemented
by using random sampling instead of a multipoint acquisition
function in sample_configs.

Although we focus on asynchronous search methods,
DeepHyper provides an interface for the implementation
of batch-synchronous search methods. These methods still
use add_eval_batch to submit the evaluation of new
configurations, but get_finished_evals is replaced by
await_evals, which blocks (up to a specified timeout
period) until all s of the requested configurations have been
evaluated.

Using the same interface, any batch-synchronous search
method can be implemented. A widely used batch-
synchronous search method for hyperparameter search is
evolutionary computation (EC), which repeatedly improves
a population of configurations by applying a series of ge-
netic operations. In DeepHyper we integrate the Distributed
Evolutionary Algorithms in Python (DEAP) [8] framework,
which provides transparent and modular EC components that
facilitate rapid prototyping and testing of new EC ideas. DEAP
contains implementations such as genetic, particle swarm opti-
mization, differential evolution, and estimation of distribution
algorithms. DEAP naturally addresses search spaces with real

parameters; to handle mixed-integer spaces, we implemented
an encoder-decoder interface for DEAP. The encoder trans-
forms continuous and discrete hyperparameter values such
that the range is between 0 and 1. For each nonordinal (or
discrete) hyperparameter with k distinct values, we split 0 and
1 into k intervals and assign each value of the hyperparameter
to that interval. DeepHyper uses a decoder to transform the
values into the original values, evaluates them, and returns
their validation errors.

While several search methods offer efficiencies by adap-
tively choosing new configurations to train, an alternative strat-
egy is to adaptively allocate resources across the selected con-
figurations. Hyperband [3] is a hyperparameter search based on
the adaptive allocation approach. It formulates hyperparameter
search as a pure-exploration, deterministic, infinitely many-
armed bandit problem. It adopts a principled early stopping
strategy to preemptively stop configuration evaluations with
poor validation error; given a fixed time budget, this allows
the search to evaluate more configurations than can other BO
search algorithms. The search starts from randomly sampled
configurations, runs each for a certain number of epochs, and
removes the configurations in the lowest half in terms of
validation accuracy. It then increases the number of epochs
for the surviving configurations and continues running them.
The number of epochs at each iteration is increased geo-
metrically according to a fixed schedule. Hyperband requires
batch synchronization and uses await_evals because the
search cannot proceed to the next iteration before eliminating
hyperparameter configurations from the current iteration.

C. Evaluator

As illustrated in source code 3, the evaluators sub-
package defines the Evaluator interface, which is used
by the asynchronous and batch-synchronous search methods
described in §III-B.

Source code 3 Evaluator interface
class Evaluator():
def add_eval_batch(self, XX):
'''Submit list of new cfgs XX'''
def get_finished_evals(self):
'''Query for newly completed evaluations
and return results list'''
def await_evals(self, XX):
'''Block until evaluations are completed
for all cfgs in XX and return results list'''

This simple interface could have numerous and complex
implementations in order to enable features such as
• intranode parallelism for small-scale experiments.
• various types of internode parallelism for large-scale

experiments.
• checkpointing of evaluation results.
• fault tolerance for systematic model errors, related to the

sampled hyperparameter configuration.
• fault tolerance for unexpected filesystem or network

failures.

• reliable caching of evaluations for search algorithms that
repeatedly visit a configuration, and

• graceful termination of slow or halted evaluations.
DeepHyper is packaged with a LocalEvaluator

to support the rapid development and testing of
new search algorithms and benchmarks. The Python
concurrent.futures module is used to dispatch
benchmark evaluations as independent processes running
concurrently in a multiprocessor node or personal machine.
The last three points of the above feature list become
significant challenges when one tries to effectively leverage
HPC resources. Toward this goal, the BalsamEvaluator
was implemented to interface DeepHyper with Balsam [9], a
general-purpose framework for managing workflows in HPC
environments.

Users interact with a local Balsam job database to define
task graphs and dynamic workflows. In the DeepHyper con-
text, the BalsamEvaluator uses the Python API provided
by Balsam to interact with the BalsamJob database. Each
BalsamJob corresponds to a single hyperparameter config-
uration evaluation and contains fields pointing to the task
executable (Python interpreter and benchmark model path) and
the command-line arguments used to specify the configuration.

The BalsamEvaluator maintains two dictionaries:
pending_evals, which maps configurations onto the cor-
responding BalsamJob IDs, and evals, which maps the
same configurations to the stored objective value. As a search
proceeds synchronously or asynchronously, receiving data
from BalsamEvaluator, these data structures are updated
accordingly. The Evaluator takes advantage of the Balsam
Django API to filter jobs according to their state (e.g., process
return code) and leverages functionality such as monitoring
job output, logging error tracebacks, and generating compute
node utilization profiles.

Balsam provides a launcher that asynchronously pulls and
packages these tasks for execution while tracking the state of
the entire workflow. All details of concurrent execution, load
balancing, and machine-specific scheduling/MPI issues are
encapsulated within the Balsam layer. DeepHyper leverages
the dynamic launcher’s ability to kill long-running tasks and
tolerate failed ones. In either event, the BalsamEvaluator
dispatches new hyperparameter evaluation tasks, while the
AMBS model retains the dummy objective value. Since spe-
cific tasks can be killed and replaced without interrupting
the rest of the ensemble, sophisticated early-stopping methods
can be leveraged in future search strategies. The launcher
abstraction also enhances portability; the same workflow runs
on small to large CPU and GPU clusters, insofar as the
appropriate DL backends (e.g., TensorFlow) are preloaded.
Internally, the launcher wraps single-node hyperparameter
evaluation tasks in an MPI manager-worker program, where
each worker rank oversees a forked task process.

The BalsamJob database automatically records useful
provenance data such as task execution time and traceback
messages in the event of task runtime errors. Because the
Balsam launcher execution is so loosely coupled to the

DeepHyper application through the BalsamJob database,
the workflow becomes resilient to task failures or walltime
expirations. On interruption, the DeepHyper search state is
quickly checkpointed, and the pending evaluations are marked
for retry in the BalsamJob database.

Balsam users use the balsam init command-line inter-
face to establish a new job database for their workflow. In the
case of DeepHyper search experiments, a separate database
is instantiated for each experiment; users also can tag jobs
falling under one experiment and to store all experiments
together. Internally, Balsam uses the Django ORM to interface
a database driver with a PostgresSQL server instance running
on a login or head node.

IV. EXPERIMENTAL RESULTS

We next evaluate the efficacy of DeepHyper using a diverse
set of benchmarks using asynchronous and batch synchronous
search methods on two large-scale HPC systems. We compare
these using metrics such as accuracy and utilization to demon-
strate the scalability and ease of portability of DeepHyper on
HPC systems.

A. Setup

We used two large-scale and diverse HPC systems for
our evaluations: Theta is a 11.69-petaflops Cray XC40-based
leadership-class supercomputing system at the Argonne Lead-
ership Computing Facility (ALCF). It consists of 4,392 nodes,
each containing a 64-core Intel Xeon Phi processor with 16
gigabytes of high-bandwidth in-package memory, 192 GB
of DDR4 memory, and a 128 GB SSD. Theta’s file system
has a capacity of 10 petabytes and the compute nodes are
interconnected using an Aries fabric. Cooley is a GPU-based
cluster at the ALCF. It has a total of 126 compute nodes; each
node has 12 CPU cores, one NVIDIA Tesla K80 dual-GPU
card, with 24 GB of GPU memory and 384 GB of DDR3 CPU
memory. The compute nodes are interconnected via an Infini
Band fabric.

The Theta environment consisted of Intel Python 3.6.3,
Tensorflow 1.3.1 [10], Keras 2.0.9 [11], and scikit-optimize
0.4. On Cooley, TensorFlow 1.3.0 and Keras 2.1.5 were used
instead. The lightweight Balsam launcher process ran on either
a MOM node of Theta or compute head node of the Cooley
cluster.

We selected a set of six benchmarks to span a diverse
set of benchmark models commonly used by applications.
We used these benchmarks to evaluate DeepHyper and the
efficacy of its search methods. The hyperparameters for these
benchmarks are summarized in Table I. The baseline codes
for these benchmarks (except gcn) have been obtained from
the examples directory of the Keras github repo.

mnistmlp is a fully connected hidden DNN for classifying
images in the MNIST dataset. mnistcnn is a CNN benchmark
for classifying images in the MNIST dataset. cifar10cnn is a
CNN benchmark for classifying images in the cifar10 dataset.
gcn is an implementation of graph convolution networks [12]
for semi-supervised classification on the Cora dataset. rnn1 is

TABLE I
BENCHMARKS AND THEIR ASSOCIATED RANGES; FOR THE PARAMETERS
WHEREIN A RANGE IS NOT LISTED, WE EMPLOY THE SAME RANGE FOR

ALL BENCHMARKS

Benchmark Hyperparameters
mnistmlp epochs (nepochs) ∈ [5, 500], number of hidden lay-

ers (nhidden) ∈ [1, 100], number of units per layer
(nunits) ∈ [1, 1000], activation ∈ [relu, elu, selu, tanh],
batch size (bsize) ∈ [8, 1024], dropout ∈ [0.0, 1.0],
optimizer ∈ [sgd, rmsprop, adagrad, adadelta, adam,
adamax, nadam], learning rate (lrate) ∈ [1e-04, 1e01]

mnistcnn nepochs, nunits, activation, bsize, dropout, optimizer,
lrate, filter size for first and convolution 2D layer ∈
[1, 3, 5, 7], number of filters for first and convolution
2D layer ∈ [8, 16, 32, 64], pooling size (psize) ∈ [2,
3, 4]

cifar10cnn same as mnistcnn
gcn nepochs, activation, bsize, dropout, optimizer, lrate,

normalization ∈ [False, True], number of graph con-
volutional units ∈ [2, 4, 6, 8, 16, 32, 64], filter type ∈
[localpool, chebyshev], maximum polynomial degree
∈ [1, 10]

rnn1 nepochs, nunits, nlayers, activation, bsize, dropout,
optimizer, lrate, type of rnn (rnntype) ∈ [LSTM, GRU,
SimpleRNN]

rnn2 nepochs, nunits, nlayers, activation, bsize, dropout,
optimizer, lrate, rnntype

a recurrent neural network (RNN) for sequence-to-sequence
learning for performing addition. rnn2 is a memory network
obtained using an RNN trained on the bAbI dataset for
question-and-answer systems.

B. Comparison of search methods

We compared AMBS (using a random forest model) with
random search (RS), a genetic algorithm (GA), and hyperband
(HB). In this case, we conducted our experiments using 128
Theta nodes. We used a fixed budget of 2 hours of wall
clock time for the evaluation and compare the performance
with respect to the number of evaluations performed as well
as the accuracy achieved. Figure 1 depicts the number of
hyperparameter evaluations performed by each search method
within this budget. From the results, we observe that AMBS
significantly outperforms other search methods with respect
to the number of evaluations. In particular, AMBS performs
more than twice the number of evaluations in comparison with
the two batch synchronous methods GA and HB on all six
benchmarks. This result can be attributed to the training time
variability associated with hyperparameter configurations. A
key factor here is the difference in the number of epochs used
in the evaluations—different values for this hyperparameter
result in significant training time differences. Consequently, at
each iteration, the batch synchronous methods need to wait
for the slowest evaluation to finish in order to proceed to the
next iteration. We observe that RS does not achieve a large
number of evaluations. For most benchmarks, fewer epochs
are sufficient to obtain higher accuracy, and a larger number
of epochs result in overfitting. Despite being asynchronous,
RS did not have a feedback mechanism to learn this fact,
and therefore, it sampled hyperparameter configurations with
a large number of epochs.

Fig. 1. Comparison of different search methods in DeepHyper on 128 nodes
with respect to the number of evaluations. The results show that AMBS with
the random forest model (rf) performs more evaluations than do the other
search methods.

Fig. 2. Comparison of different search methods in DeepHyper on 128 Theta
nodes with respect to the accuracy (fraction of number of evaluations). The
results show that AMBS with the random forest model (rf) samples and
evaluates higher-quality hyperparameter configurations compared with other
methods.

Next, we compared the search methods with respect to their
achieved accuracy. Here, for each method, we computed the
fraction of hyperparameter configurations that obtained more
than 80% accuracy. The results are shown in Figure 2. From
the results, we observe that AMBS outperforms the other
methods. For the mnistmlp, mnistcnn, and gcn, AMBS obtains
high-quality hyperparameter configurations—more than 50%
of the configurations obtain accuracy greater than 80%. For
rnn1 and rnn2, the fractions are 0.08 and 0.15, respectively.
An exception is that cifar10cnn benchmark, where none of
the search methods obtain hyperparameter configurations with
more than 80% accuracy. The effectiveness of AMBS can be
attributed to the asynchronous search mechanism that results
in learning the search space more effectively and sampling a
large number of evaluations from the promising regions of the
search space.

C. Comparison of regression methods in AMBS

We study the impact of different regression methods in
AMBS with respect to the accuracy. For this purpose, we
compare the default random forest model (RF) with extra
trees (ET), gradient boosting regression trees (GBRT), and
Gaussian process (GP) regression methods. Figure 3 shows

Fig. 3. Comparison of different regression methods in AMBS on 128 Theta
nodes with respect to the accuracy (fraction of number of evaluations).

Fig. 4. Time-averaged Theta compute node utilization plotted for AMBS, GA,
and RS search methods on the rnn2 benchmark. A temporal utilization profile
is generated from Balsam, giving the fraction of worker nodes actively running
a hyperparameter evaluation task at any given time. The time average of this
value, starting from the first evaluation, is plotted for each search method
as we scale from 256 to 1,024 nodes. In parentheses above each bar is the
number of completed evaluations per hour (each experiment was run under a
user-specified time constraint of 2̃ hours).

the fraction of hyperparameters that obtain accuracy above
80% for different regression methods. We observe that RF
outperforms ET, GBRT, and GP on all but one benchmark
(gcn), where ET is slightly better than RF. From a functional
point of view, RF produces an ensemble of piecewise constant
approximations compared with the ensemble of ET’s piecewise
multilinear approximations. For the benchmarks considered,
the ensemble of piecewise constant models results in better
accuracy. The poor performance of GP can be attributed to
the mixed-integer search space, in particular, the presence
of nonordinal hyperparameters such as activation function
and optimizer. While GP can handle the real-valued hyper-
parameters well, the nonsmoothness introduced by nonordinal
hyperparameters can pose significant difficulties and requires
special or custom kernels. GBRT differs from RF and ET by
adopting a boosting approach for regression, where a number
of tree models are built sequentially. From the results, we
observe that such sequential tree models do not result in high-
quality hyperparameter configurations.

Fig. 5. Theta compute node utilization plotted for AMBS and GA search methods on the rnn2 benchmark on 256, 512, and 1024 nodes.

D. Scaling DeepHyper on the Theta supercomputer

Figure 4 compares the time-averaged utilization of Theta
compute nodes between AMBS, GA, and RS search methods
for the rnn2 benchmark. This utilization is defined as the
fraction of compute nodes actively running a hyperparameter
evaluation task at any given time and can be directly inferred
from the BalsamJob database postrun. We present the time-
average utilization, which takes into account the utilization for
the duration from when we initially dispatch of hyperparame-
ter evaluation tasks until the end of the experiment. We notice
that for RS, the compute nodes are busy with hyperparameter
evaluation tasks nearly 100% of the time. Thus, the random
sampling and Balsam execution layers pose no bottleneck to
the search and scale effectively.

GA sustains only about 50% worker utilization owing to
the default mutation and crossover parameters, which are set
such that about half of each generation produced during the
search remains unchanged from its parent generation. From
the temporal utilization profile (bottom row of Figure 5), we
notice a periodic sawtooth profile, where the utilization spikes
down to 0 at the end of each call to await_evals, which
is characteristic of all batch-synchronous search algorithms.

In contrast, AMBS fails to effectively scale beyond 256
nodes for the rnn2 benchmark. This can be attributed to the
current design consisting of a single search process invoking
sample_configs. This result can be viewed as a single-
server bottleneck, and the utilization suffers as the search fails
to generate sufficient hyperparameter configurations quickly
enough once a large batch of evaluations finishes concurrently.
The prolonged stall in sampling is evident in the top row
of Figure 5; at 1,024 nodes, the search stalls completely on
sample_configs after the majority of initial configurations
have been evaluated. We compare this observation for the

Fig. 6. Time-averaged Theta compute node utilization compared for the
AMBS search on rnn2 and cifar10cnn benchmarks. The values in parentheses
give the number of completed evaluations-per-hour (cifar10cnn and rnn2
experiments were run for approximately 1 and 2 hours, respectively.)

rnn2 benchmark with the behavior of the same search on
the cifar10cnn benchmark (Figure 6). Since the runtimes
of the cifar10cnn hyperparameter evaluations have a larger
variance, with many runs taking significantly longer than the
average, the arrival of evaluation results is both slower and
more staggered than the results for rnn2. This reduces the
load on the hyperparameter configuration generation process.
Thus, AMBS is able to generate sufficient configurations and
sustain the worker utilization to over 90% for the cifar10cnn
hyperparameter searches.

As a partial remedy to improve the performance of AMBS
at scale, we evaluated the same search at 1,024 nodes with
a batch generator function. The generator divides a large
request for new hyperparameter configurations down into
batches of a given size (default 20). The constant liar sampling
yields execution for Balsam job injection once each sampled

Fig. 7. Total number of completed cifar10cnn evaluations after a 1 hour run
are compared between AMBS and RS searches on 8 to 64 Cooley nodes.
For an n node run, up to 2n − 1 evaluations would run simultaneously (1
per GPU). The values in parenthesis give the time-averaged Cooley node
utilization, which is essentially constant at 100%.

batch is completed. This mitigates some of the performance
bottlenecks associated with AMBS and provides an improve-
ment over the blocking call to the hyperparameter generation
scheme. We observe an improved utilization, hovering between
10 and 20%, instead of 0% previously. We plan to address this
issue using more scalable BO approaches [13].

E. Scaling AMBS on the Cooley GPU cluster

Next, we demonstrate the portability of the DeepHyper
package via experiments on Cooley, a 126-node GPU cluster.

Figure 7 depicts the total number of evaluations for the
cifar10cnn hyperparameter configurations generated by AMBS
and RS as we scale from 8 to 64 Cooley nodes (using two
independent GPU workers per node given the dual GPU per
node) given a user-specified wall clock constraint of 1 hour.
We observe that the utilization is essentially constant at 100%,
even for the largest Cooley runs with AMBS. Consequently,
as one would hope, the number of completed evaluations
increases as we scale the number of compute nodes. This
increase is more pronounced with AMBS, because the search
converges toward configurations with few tens of training
epochs that finish faster, while the RS method uniformly
samples configurations over a wide range and thus take longer
to finish. Even with 128 GPU workers (64 nodes), the RS
produces only 2 cifar10cnn models with validation accuracy
better than 50%. In contrast, the number of models with greater
than 50% accuracy increases from 1 to 19 as we scale with
AMBS from 8 to 64 nodes.

V. RELATED WORK

Traditionally, in DL research, hyperparameter search is
limited to tuning the hyperparameters of a DL algorithm by
trial and error or enumeration of hyperparameters on a grid.
Recently, new algorithmic methods have been developed. They
can be grouped into neural architecture and hyperparameter
search methods. Neural architecture search methods search
over model descriptions of neural network specifications. They
are grouped into discrete search-space traversal [14], [15],

reinforcement learning [16]–[18], and evolutionary algorithms
[19]–[22]. Hyperparameter search approaches try to find best
values for the hyperparameters for a fixed neural architecture.
Examples include random search [23], Bayesian optimization
[2], [24], [25], Bandit-based methods [3], [24], metaheuris-
tics [26], [27], and population-based training [28], [29] ap-
proaches. For a comprehensive overview of hyperparameter
search methods, we refer the reader to [1]. Most of the existing
open-source DL search codes are method-centric and ill-suited
for experimental research in DL search methods.

mlrMBO [30] is a R toolbox for BO that addresses the
problem of expensive black-box optimization using surrogate
regression model. It provides interface for batch synchronous
parallel evaluations for single node multicore parallelization,
which is not particularly suitable for DL hyperparameter
search on large multinode HPC systems. Scikit-optimize [31]
is a Python library to minimize expensive and noisy black-box
functions. It uses regression methods in scikit-learn [7] for
surrogate modeling. While it has functions for asynchronous
interface, it does not provide large-scale manager-worker
interface for parallelizing hyperparameter evaluations. We
used scikit-optimize codebase for implementing DeepHyper.
Hyperopt [25] is a Python package that provides distributed
asynchronous search interface and contains random and BO
search methods. They can be run either serially, or in parallel
by communicating via MongoDB. ROBO [2] is a new BO
framework that offers an easy-to-use Python interface inspired
by the API of SciPy. RoBO offers implementations of BO
with Bayesian neural networks, multi-task optimization, and
fast Bayesian hyperparameter optimization on large datasets.
It performs one hyperparameter evaluation at a time and does
not provide approaches and interface for parallel evaluations.
A key limitation across all of the existing packages is that
they tend to exist as research prototypes or do not target
scalability and portability concerns of HPC systems. A closely
related package is Ray Tune [32], a scalable hyperparameter
optimization framework based on Ray, a general purpose
Python-based distributed execution engine. It contains sev-
eral search methods and provides evaluator interface similar
to DeepHyper. However, it does not have workflow system
integration to hide the complexities of HPC platforms.

VI. CONCLUSION AND FUTURE WORK

Motivated by the lack of production-ready DL hyperparam-
eter search packages for large HPC systems, we developed
DeepHyper, a Python package and infrastructure that targets
experimental research in DL search methods, scalability, and
portability across HPC systems. It comprises three mod-
ules: benchmarks, a collection of extensible and diverse
set of DL hyperparameter search problems; search, a set
of search algorithms for DL hyperparameter search; and
evaluators, a common interface for evaluating hyperpa-
rameter configurations on HPC platforms. We implemented an
asynchronous model-based search method, random search, a
batch-synchronous genetic algorithm, and hyperband. We eval-
uated the efficacy of these methods on CPU- and GPU-based

HPC systems and studied their scaling limits on a diverse set
of benchmarks. By using the Balsam workflow system, we
isolate search method implementation and deployment from
the complexities of running large numbers of hyperparameter
configurations in parallel on HPC systems.

Our future work includes scalable BO methods to address
the scaling limitations of AMBS, multiple-manager-worker ap-
proaches, extension of benchmarks with respect to the number
of parameters and type of architecture, architecture search,
deployment of DeepHyper on scientific DL applications, and
portability on other HPC systems.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy (DOE), Office of Science, Office of
Advanced Scientific Computing Research, under Contract DE-
AC02-06CH11357. This research used resources of the Ar-
gonne Leadership Computing Facility, which is a DOE Office
of Science User Facility.

REFERENCES

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” Preprint arXiv:1802.09941,
2018.

[2] A. Klein, S. Falkner, N. Mansur, and F. Hutter, “RoBO: A flexible
and robust Bayesian optimization framework in python,” in NIPS 2017
Bayesian Optimization Workshop, 2017.

[3] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: Bandit-based configuration evaluation for hyperparameter
optimization,” in ICLR, 2017.

[4] D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi, “Winner’s curse?
on pace, progress, and empirical rigor,” in ICLR Workshop, 2018.

[5] Z. Ronaghi, R. Thomas, J. Deslippe, S. Bailey, D. Gursoy, T. Kisner,
R. Keskitalo, and J. Borrill, “Python in the NERSC exascale science
applications program for data,” in PyHPC17. ACM, 2017.

[6] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” J. Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[8] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” J. Machine
Learning Research, vol. 13, pp. 2171–2175, 2012.

[9] J. T. Childers, T. D. Uram, D. Benjamin, T. J. LeCompte, and M. E.
Papka, “An edge service for managing HPC workflows,” in HUST’17.
ACM, 2017, pp. 1:1–1:8.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: a system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[11] F. Chollet et al., “Keras,” https://keras.io, 2015.
[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” in ICLR, 2017.
[13] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,

M. Patwary, M. Prabhat, and R. Adams, “Scalable Bayesian optimization
using deep neural networks,” in International conference on machine
learning, 2015, pp. 2171–2180.

[14] R. Negrinho and G. Gordon, “DeepArchitect: Automatically designing
and training deep architectures,” Preprint arXiv:1704.08792, 2017.

[15] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,”
Preprint arXiv:1712.00559, 2017.

[16] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in ICLR, 2017.

[17] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[18] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” Preprint arXiv:1802.03268,
2018.

[19] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From architec-
tures to learning,” Evolutionary Intelligence, vol. 1, pp. 47–62, 2008.

[20] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
encoding for evolving large-scale neural networks,” Artificial Life,
vol. 15, no. 2, pp. 185–212, 2009.

[21] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
GECCO. ACM, 2017, pp. 497–504.

[22] D. Wierstra, F. J. Gomez, and J. Schmidhuber, “Modeling systems with
internal state using Evolino,” in GECCO. ACM, 2005, pp. 1795–1802.

[23] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Machine Learning Research, vol. 13, pp. 281–305, 2012.

[24] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in NIPS, 2012, pp. 2951–2959.

[25] J. Bergstra, D. Yamins, and D. D. Cox, “HyperOpt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
12th Python in Science Conf., 2013, pp. 13–20.

[26] P. R. Lorenzo, J. Nalepa, L. S. Ramos, and J. R. Pastor, “Hyper-
parameter selection in deep neural networks using parallel particle
swarm optimization,” in GECCO. ACM, 2017, pp. 1864–1871.

[27] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving
deep neural networks,” in Artificial Intelligence in the Age of Neural
Networks and Brain Computing, R. Kozma, C. Alippi, Y. Choe, and
F. C. Morabito, Eds., 2018.

[28] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan et al., “Pop-
ulation based training of neural networks,” Preprint arXiv:1711.09846,
2017.

[29] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments. ACM, 2015, p. 4.

[30] B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang,
“mlrMBO: A modular framework for model-based optimization of
expensive black-box functions,” Preprint arXiv:1703.03373, 2017.

[31] scikit-optimize. [Online]. Available: https://scikit-optimize.github.io/
[32] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,

W. Paul, M. I. Jordan, and I. Stoica, “Ray: A distributed framework
for emerging AI applications,” Preprint arXiv:1712.05889, 2017.

The submitted manuscript has been cre-
ated by UChicago Argonne, LLC, Opera-
tor of Argonne National Laboratory (Ar-
gonne). Argonne, a U.S. Department of En-
ergy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonex-
clusive, irrevocable worldwide license in
said article to reproduce, prepare deriva-
tive works, distribute copies to the pub-
lic, and perform publicly and display pub-
licly, by or on behalf of the Government.
The Department of Energy will provide
public access to these results of federally
sponsored research in accordance with the
DOE Public Access Plan. http://energy.gov/
downloads/doe-public-access-plan

https://keras.io
https://scikit-optimize.github.io/
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

