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Abstract

Adoption of messaging communication
and voice assistants has grown rapidly in
the last years. This creates a demand for
tools that speed up prototyping of feature-
rich dialogue systems. An open-source li-
brary DeepPavlov is tailored for develop-
ment of conversational agents. The library
prioritises efficiency, modularity, and ex-
tensibility with the goal to make it easier
to develop dialogue systems from scratch
and with limited data available. It sup-
ports modular as well as end-to-end ap-
proaches to implementation of conversa-
tional agents. Conversational agent con-
sists of skills and every skill can be decom-
posed into components. Components are
usually models which solve typical NLP
tasks such as intent classification, named
entity recognition or pre-trained word vec-
tors. Sequence-to-sequence chit-chat skill,
question answering skill or task-oriented
skill can be assembled from components
provided in the library.

1 Introduction

Dialogue is the most natural way of interaction be-
tween humans. As many other human skills are al-
ready being mastered by machines, meaningful di-
alogue is still a grand challenge for artificial intel-
ligence research. Conversational intelligence has
multiple real-world applications. Dialogue sys-
tems can significantly ease mundane tasks in tech-
nical support, online shopping and consulting ser-
vices.

However, at the moment the research and de-
velopment in dialogue systems and chatbots are
hampered by the scarcity of open-source baselines

and impossibility to effectively reuse existing code
in new solutions. Therefore, in order to improve
upon state-of-the-art dialogue models one needs
to implement such a system from scratch. This
slows down the progress in the field. In order to
overcome this limitation we create DeepPavlov1

— an open-source library for fast development of
dialogue systems. DeepPavlov is designed for:

• development of production-ready chatbots
and complex conversational systems;

• research in dialogue systems and NLP in gen-
eral.

Our goal is to enable AI application developers
and researchers with:

• a set of pre-trained NLP models, pre-defined
dialogue system components (ML/DL/Rule-
based) and pipeline templates;

• a framework for implementing and testing
their own dialogue models;

• tools for integration of applications with ad-
jacent infrastructure (messengers, helpdesk
software etc.);

• a benchmarking environment for conversa-
tional models and uniform access to relevant
datasets.

The library has a wide range of state-of-the-art
solutions for NLP tasks which are used in dia-
logue systems. These NLP functions address low-
level tasks such as tokenisation and spell-checking
as well as a more complex, e.g. recognition of
user intents and entities. They are implemented
as modules with unified structures and are easily
combined into a pipeline. A user of library also
has a set of pre-trained models for easy start. A

1https://github.com/deepmipt/
DeepPavlov
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model that suits user’s task best can be adapted and
fine-tuned to achieve required performance. Un-
like many other frameworks, DeepPavlov allows
combining trainable components with rule-based
components and neural networks with non-neural
ML methods. In addition to that, it allows end-to-
end training for a pipeline of neural models.

The paper is organised as follows. In section
2 we review the existing NLP libraries and ex-
plain how they differ from our work. Section 3
describes architecture of DeepPavlov, and in sec-
tion 4 we talk about features which are available
for user of the library and ways of extending it.
Section 5 presents some components of the library
and benchmarks. Finally, in section 6 we conclude
and outline directions for future work.

2 Related work

One of the closest analogues of DeepPavlov is
Rasa Stack 2 tool. In terms of purpose it is similar
to our library. It provides building blocks for creat-
ing dialogue agents: natural language understand-
ing, dialogue state tracking and policy. Rasa’s ca-
pabilities are mainly focused on task oriented dia-
logue, so unlike our library, it is not readily appli-
cable for constructing agents with multiple skills
including chit-chat. It is also important that Rasa
Stack exports ML components from other libraries
and DeepPavlov includes its’ own models. That
makes easier for developers to fit trainable parts of
the system to the task at hand or add custom ML
models. In addition to that, DeepPavlov is more
general, and allows defining any NLP pipeline, not
only the one related to task oriented dialogue.

Another framework for dialogue agents is Par-
lAI (Miller et al., 2017). ParlAI is in essence a col-
lection of dialogue datasets and models. It defines
standard interfaces for accessing the data, provides
instruments for training models with any regis-
tered dataset and easy integration with Amazon
Mechanical Turk. ParlAI does not have any re-
strictions on models which are implemented there.
The only requirement is to support the standard in-
terface. This enables efficient sharing, training and
testing dialogue models. Alternatively, in Deep-
Pavlov all agents, skills and models must have a
standard structure to ensure reusability.

OpenDial3 is a toolkit for developing spoken
dialogue systems. It was designed to perform di-

2http://rasa.com/products/rasa-stack/
3http://www.opendial-toolkit.net/
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Dialogue systems (DS) features
Modular architecture of DS X X
Framework for training and testing DS X X
Collection of datasets and DSs X
Interactive data labeling and training X X
Integration with messaging platforms X X
Dialogue manager X X
Slot filling X X
NLP features
Text pre-processing X X X X X X
Word embedding X X X X X X
Intent recognition X X X X
Entity recognition X X X X
POS tagging X X X
Dependency parsing X X X
Semantic role labelling X X
Sentence embedding X X

Table 1: Comparison of DeepPavlov with other li-
braries and frameworks.

alogue management tasks, but then extended for
building full-fledged dialogue systems, integrat-
ing speech recognition, language understanding,
generation, speech synthesis, multimodal process-
ing and situation awareness. OpenDial includes a
number of advanced components but lacks recent
deep learning models. Unfortunately ecosystem
of deep learning models in Python is not easily ac-
cessible from OpenDial because it is Java-based.

AllenNLP (Gardner et al., 2017) is another ex-
ample of a powerful NLP framework. It contains
numerous solutions for NLP tasks, but does not in-
clude any dialogue models yet. Tailored for NLP
research deep learning components of AllenNLP
implemented in PyTorch (Paszke et al., 2017) li-
brary, which is more convenient for research, then
for industrial applications. On the other hand,
DeepPavlov by default uses TensorFlow4 produc-
tion grade machine learning framework. Another
limitation of AllenNLP is the fact that it has only
neural models, whereas in DeepPavlov it is pos-
sible to combine in a single pipeline heteroge-
neous components, such as rule-based modules,
non-neural ML models and neural networks.

General NLP frameworks can be also used for
development of dialogue systems, as they provide
low-level operations such as tokenisation, lemma-
tisation, part-of-speech tagging and syntactic pars-

4https://www.tensorflow.org/
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ing. The most notable examples of such frame-
works are Stanford CoreNLP (Manning et al.,
2014) and spaCy5. Both frameworks provide a
set of pre-trained NLP models and functionality
for training but have no specific tools and compo-
nents related to the development of dialogue sys-
tems. Stanford tools are in Java, which compli-
cates their integration with a trove of deep learning
models in Python.

Table 1 gives comparison of DeepPavlov with
other related frameworks.

3 Architecture

The high-level architecture of the library is shown
in figure 1. It has several core concepts.

The smallest building block of the library is
Model. Model stands for any kind of function
in an NLP pipeline. It can be implemented as
a neural network, a non-neural ML model or a
rule-based system. Besides that, Model can have
nested structure, i.e. a Model can include other
Model(s). The library currently has models for
intent classification, entity recognition, dialogue
state tracking, spell-checking and ranking of texts
by similarity.

Models can be joined into a Skill. Skill
solves a larger NLP task compared to Model.
However, in terms of implementation Skills are
not different from Models. The only restriction
for Skills is that their input and output should
both be strings. Therefore, Skills are usually
associated with dialogue tasks. There are currently
three Skills implemented in the library, namely,
modular and sequence-to-sequence goal-oriented
skills as well as question answering module.

Finally, the core concept of the library is an
Agent. Agent is supposed to be a multi-purpose
dialogue system that comprises several Skills
and can switch between them. It can be a dialogue
system that contains a goal-oriented and chatbot
skills and chooses which one to use for generating
the answer depending on user input.

The choice of Skill relevant to the cur-
rent dialogue state is managed by a Skills
Manager. This is similar to architecture of Mi-
crosoft Cortana (Sarikaya et al., 2016) where Ex-
perience providers correspond to Skills, and
selection between them is conducted by a sepa-
rate module based on context and providers’ re-
sponses. Systems with multiple skills and their

5https://spacy.io/

dynamic selection are state of the art in develop-
ment of dialogue agents, but there is currently no
available implementations of such technique.
Models are joined in a Skill via Chainer.

Chainer takes configuration file in JSON format
and sets parameters of Models and the order of
their execution. Joining heterogeneous models is a
striking feature of DeepPavlov library which dis-
tinguishes it from other frameworks. Unlike Al-
lenNLP or Tensor2Tensor where all adjacent mod-
els need to be neural, in DeepPavlov the pipeline
can include neural networks, other ML models,
and rule-based models.

4 Usage

The DeepPavlov library is implemented in Python
3.6 and uses Keras and TensorFlow frame-
works. It is open-source and available on GitHub
under Apache 2.0 license.

A typical use scenario is the following. A devel-
oper takes a pre-build agent, for example, a mod-
ular task-oriented bot, and adapts it to the target
task. Alternatively, an agent can be built from
scratch. In this case skills or models are selected
from available Skills and Models, or created
by developer. The models which are included into
the agent are trained according to a pipeline de-
fined in a JSON file. DeepPavlov has a collection
of pre-trained models, so training is not needed in
many cases.

4.1 Training

DeepPavlov supports end-to-end training.
Models implemented on top of TensorFlow
can be stacked and trained jointly. This feature
is sought after in many NLP tasks, in particular
in goal-oriented dialogue systems. Usually
task-oriented modular systems consist of indepen-
dently trained building blocks, such as, natural
language understanding module, user intent
classification module, dialogue policy manager,
etc. (Chen et al., 2017). There exist efforts of
training such systems in the end-to-end mode (Li
et al., 2018). However, such works are difficult
to replicate and build upon because of lack of
open implementations of end-to-end training.
To the best of our knowledge, DeepPavlov is
the only NLP framework which allows easy
and configurable end-to-end training of dialogue
agents created from interchangeable functional
neural network blocks.

https://spacy.io/


Figure 1: Conceptual architecture of DeepPavlov library.

4.2 Extension of the library

User can easily extend DeepPavlov library by reg-
istering a new Model or Skill. In order to in-
clude a new Model, a developer should imple-
ment a number of standard classes which are used
to communicate with the environment:

• dataset reader — reads data and returns it in
a specified format,

• dataset iterator — partitions data into train-
ing, validation and test sets, divides the data
into batches,

• vocabulary — performs data indexing, e.g.
converts words into indexes,

• model — performs training.

The library contains base classes which im-
plement these functions (DatasetReader,
DatasetIterator, Vocab classes). Develop-
ers can use them or write their own classes inher-
ited from these base classes. Class for a model can
be inherited from an abstract class NNModel if it
is a neural network, or from a class Estimator
if it is a non-neural ML model. In addition to that,
a user should define a pipeline for the model.

5 Implemented Models and Skills

The library is currently being actively developed
with a large set of Models and Skills already
implemented. Some of them are available for in-
teractive online testing.6

Skill: Goal-Oriented Dialogue System. The
skill implements Hybrid Code Networks (HCNs)
described in (Williams et al., 2017). It allows pre-
dicting responses in goal-oriented dialogue. The
model is configurable: embeddings, slot filling
component and intent classifier can be switched
on and off on demand. Table 2 shows the perfor-
mance of our goal-oriented bot on DSTC2 dataset
(Henderson et al., 2014). The results demonstrate

6http://demo.ipavlov.ai

that our system is close to the state-of-the-art per-
formance.

Model Test accuracy
Bordes and Weston (2016) 41.1%
Perez and Liu (2016) 48.7%
Eric and Manning (2017) 48.0%
Williams et al. (2017) 55.6%
Deeppavlov∗ 55.0%

Table 2: Accuracy of predicting bot answers on
DSTC2 dataset. ∗Figures cannot be compared di-
rectly, because DeepPavlov model used a different
train/test data partition of the dataset.

Model: Entity Recognition. This model is
based on BiLSTM-CRF architecture described in
(Anh et al., 2017). It is also used for the slot-filling
component of the library. Here fuzzy Levenshtein
search is used on the recognition results, since the
incoming utterances could be noisy. In addition
to that, we provide pre-trained NER models for
Russian and English. The performance of entity
recognition on OntoNotes 5.0 dataset7 is given in
table 3. It shows that our implementation is on par
with best-performing models.

Model F1-score
DeepPavlov 87.07 ± 0.21
Strubell at al. (2017) 86.84 ± 0.19
Spacy 85.85
Chiu and Nichols (2015) 86.19 ± 0.25
Durrett and Klein (2014) 84.04

Table 3: Performance of DeepPavlov NER module
on OntoNotes 5.0 dataset. Average F1-score for
18 classes.

Model: Intent Classification. The model im-
plements neural network architecture based on
shallow-and-wide Convolutional Neural Network

7https://catalog.ldc.upenn.edu/
ldc2013t19

http://demo.ipavlov.ai
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https://catalog.ldc.upenn.edu/ldc2013t19


(Kim, 2014) and allows multi-label classification
of sentences. We do benchmarking for this model
on SNIPS dataset8 and compare its performance
with a number of available NLP services. The re-
sults given in the table 4 show that our intent clas-
sification model is comparable with other existing
solutions.

Model F1-score
DeepPavlov 99.10
api.ai 98.68
IBM Watson 98.63
Microsoft LUIS 98.53
Wit.ai 97.97
Snips.ai 97.87
Recast.ai 97.64
Amazon Lex 97.59

Table 4: Performance of DeepPavlov intent recog-
nition on SNIPS dataset. Average F1-score for 7
categories. All scores except DeepPavlov are from
Inten.to study10.

Model: Spelling Correction. The component
is based on work (Brill and Moore, 2000) and
uses statistics-based error model, a static dictio-
nary and an ARPA language model (Paul and
Baker, 1992) to correct spelling errors. We tested
it on the dataset released for SpellRuEval11 —
a competition on spelling correction for Rus-
sian. In table 5 we compare its performance with
Yandex.Speller12 service and open-source spell-
checker GNU Aspell13. Our model is worse than
Yandex.Speller, but it is better then Aspell which
is the only freely available spelling correction tool.
Even our baseline model outperforms Aspell by
large margin, and use of a language model further
boosts its performance.

Other Models. The library also contains a
sequence-to-sequence goal-oriented bot, and a
model for ranking texts by similarity. There are
also models which are currently being developed
and prepared for publication.

8https://github.com/snipsco/
nlu-benchmark/tree/master/
2017-06-custom-intent-engines/

11http://www.dialog-21.ru/en/
evaluation/2016/spelling_correction/

12https://tech.yandex.ru/speller/
13http://aspell.net/

Method Precision Recall F-score
Yandex.Speller 83.09 59.86 69.59
DeepPavlov 41.42 37.21 39.20
DeepPavlov + LM 51.92 53.94 52.91
GNU Aspell 27.85 34.07 30.65

Table 5: Performance of DeepPavlov spell-
checker for Russian.

6 Conclusion

DeepPavlov is an open-source library for develop-
ing dialogue agents in Python. It allows assem-
bling a dialogue system from building blocks that
implement models for required NLP functional-
ity. These blocks can be recombined and reused
in agents for different dialogue tasks. Such mod-
ularity opens possibilities for fast prototyping and
knowledge transfer. The library supports creation
of multi-purpose agents with diverse Skills.
This is important for real life application scenarios
because skills can be added, upgraded or removed
independently when a dialogue system is already
deployed. New products and conversational solu-
tions can utilise existing skills for faster develop-
ment. The library currently contains a range of
Models for solving various NLP tasks, as well as
three Skills: two goal-oriented and a question-
answering one. The library can be easily extended
with new Models and Skills.

DeepPavlov is now being actively developed,
and there are many directions for future work. Im-
plementation of models for Skill Manager to
enable developers assemble full-fledged dialogue
agents with a possibility to switch between multi-
ple Skills is one of the priorities. Other changes
are in progress to improve the usability of the li-
brary. Users will be able to define the pipeline
directly in the code bypassing a JSON config file.
Furthermore, data loading and reading will be sim-
plified, i.e. the majority of datasets will be loaded
by a universal data reader.

Finally, we are working on publishing pre-
trained models for Russian. This often involves
not only training of a model on a Russian dataset,
but sometimes changing the model itself.

We recognise that collaboration is an essen-
tial part of any scientific, technological and open-
source project. DeepPavlov is open to comments,
bug reports, feature requests and contributions to
our GitHub repo.

https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines/
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines/
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines/
http://www.dialog-21.ru/en/evaluation/2016/spelling_correction/
http://www.dialog-21.ru/en/evaluation/2016/spelling_correction/
https://tech.yandex.ru/speller/
http://aspell.net/
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