

1

Summary

Regression is an interesting technique of estimating the

values among variables. In this experiment, I implement

and test three algorithms of regression (batch gradient

descent, stochastic gradient descent, and maximum

likelihood estimation) using the gaussian function as a

basis function to fit random noisy data I generate that

represent the cosine function (plus noise).

1. Introduction

The experiment is divided into three tasks, each task

dedicated to an algorithm for regression.

1.1. Language

I chose to use python is a programming language.

However, I did not use any existing libraries for estimating

or fitting regression models. All the math was done using

the numpy library only. The sklearn library was used to

split the data into a training and test set.

1.2. Code structure

The code submitted consists of three methods, each
method corresponding to an algorithm that I implemented:

BGD(), SGD() and MLE(). To test each of the functions,

call them in the main conditional at the bottom of the code

file.

Please note that a different random dataset was

generated and used for each of batch gradient descent,

stochastic gradient descent and maximum likelihood

estimation algorithms.

2. Task One: Batch Gradient Descent

Batch gradient descent is an algorithm for optimization

that allows us to find the minimum/maximum of a function

by summing up over all the samples we have and update

our parameters (weights) [1]:

w = w – α ∇w J(w)

The weights here are represented as a vector w. The

learning rate, which how big we want our jump to be in

our descent is represented by α, and J(w) refers to the cost

function (error function) that we want to minimize. We

want the gradient of that with respect to w. For the sake of

completion, the cost function is the following:

J(w) =
1

2
∑ {𝑦(𝑥𝑛 , 𝐰) − 𝑡}2𝑁
𝑛=1

In the cost function above, we have a total of N samples,

and we square the difference between our prediction

y(xn,w) and our real value t.

We use the gradient of this function in our gradient

descent algorithms, thus obtaining and learning the

weights w. After applying batch gradient descent with the

gaussian function as the basis on a synthetic dataset that

was generated using the cosine algorithm (with noise

added), I have obtained the following graph:

This graph represents the fitted line that was trained on

80% of the data generated (800 points) over 1000

iterations with a learning rate of 0.1 in order to learn the

weight vector, and the weights learned were used to fit this

line to the test set that represents 20% of the data and

shown on the graph. The weights obtained are as follows:

w0 0.5600160878291915

w1 0.8387175360173834

w2 -0.8945401969027631

A safe and true assumption to make during training is

that when the iteration number increases, the cost (error)

function decreases. This is intuitive due to the fact that we

are learning and updating the weights at each iteration,

Batch Gradient Descent, Stochastic Gradient Descent and Maximum Likelihood

Estimation using Python

Abdulellah Abualshour

King Abdullah University of Science and Technology

Visual Computing Center
abdulellah.abualshour@kaust.edu.sa

2

getting more accurate and closer to the true target value.

The following graph shows this:

We notice that the graph is smooth, since we sum over

all the samples every time. This will be important for
discussion when compared to stochastic gradient descent.

Calculating the Root-Mean-Square error (RMS) yields the

following value:

RMS = 0.07617236735307292

3. Task Two: Stochastic Gradient Descent

The only difference between batch gradient descent and

stochastic gradient descent is that, in stochastic gradient

descent, we do not sum over all the points in each iteration.
Instead, we randomly choose a point to be used at each

iteration [2] when we want to make a prediction and update

the weights. Applying SGD yields the following nice graph:

We observe a very similar graph, since we’re using the

same gaussian basis function. The weights obtained are:

w0 0.6136568593629471

w1 0.8022259994534873

w2 -0.8846340759095672

One interesting thing to observe has how the cost

decrease figure is plotted:

We can clearly see how the line is jittered. This is due to

randomness in our choice of points at each iteration.
Sometimes we choose a bad point randomly, and therefore

we do not get a better prediction. But over time, we get

closer and closer to the target value regardless. Calculating

the Root-Mean-Square error (RMS) yields the following

value:

RMS = 0.08903546008888479

4. Task Three: Maximum Likelihood Estimation

In maximum likelihood estimation, we have a different

approach of calculating and learning the weights that

involves more linear algebra. We need construct the

following matrix [2]:

𝜙 = [
𝑝0(𝑥1) ⋯ 𝑝𝑛(𝑥1)

⋮ ⋱ ⋮
𝑝0(𝑥𝑛) ⋯ 𝑝𝑛(𝑥𝑛)

]

This matrix corresponds to the basis functions applied to

all the points in the data. Each column corresponds to on

weight value in the vector w, and each row corresponds to
a point in the data. Once all the basis functions represented

by ps are calculated, we take this matrix and plug it into the

following equation to get our final values of w:

wML = (ΦT Φ)-1 ΦT t

Implementing this yields the following plot whenfitted

over the test set:

3

We can se a nice fit to the graph. The obtained

coefficients are as follows:

w0 0.5582245956473079

w1 0.8345758279127222

w2 -0.8969190415053565

Calculating the Root-Mean-Square error (RMS) yields

the following value:

RMS = 0.07928460601014468

5. Conclusion and Comparison

We can see that all the three algorithms yield similar

results using the gaussian basis function. The only

difference that I have noticed in my implementation is that

MLE finishes faster than both SGD and BGD, and SGD

finishes faster than BGD due to the number of calculations

needed for the algorithms to terminate. In addition, the

numpy library in python is optimized for linear algebra
and this can contribute to MLE good performance

compared to the other two algorithms.

References

[1] Christopher M. Bishop. Pattern Recognition and Machine
Learning. 2007

[2] Zhang, Xiangliang. “Linear Regression.” Google Docs,
Google, 2019,
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZG
VmYXVsdGRvbWFpbnxrYXVzdDIyOW1hY2hpbmVsZ
WFybmluZ3xneDozMjBmOTYwNjQ2MWI1YTIw.

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrYXVzdDIyOW1hY2hpbmVsZWFybmluZ3xneDozMjBmOTYwNjQ2MWI1YTIw
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrYXVzdDIyOW1hY2hpbmVsZWFybmluZ3xneDozMjBmOTYwNjQ2MWI1YTIw
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxrYXVzdDIyOW1hY2hpbmVsZWFybmluZ3xneDozMjBmOTYwNjQ2MWI1YTIw

