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Summary 

 

Regression is an interesting technique of estimating the 

values among variables. In this experiment, I implement 

and test three algorithms of regression (batch gradient 

descent, stochastic gradient descent, and maximum 

likelihood estimation) using the gaussian function as a 

basis function to fit random noisy data I generate that 

represent the cosine function (plus noise). 

 

1. Introduction 

The experiment is divided into three tasks, each task 

dedicated to an algorithm for regression. 

1.1. Language 

I chose to use python is a programming language. 

However, I did not use any existing libraries for estimating 

or fitting regression models. All the math was done using 

the numpy library only. The sklearn library was used to 

split the data into a training and test set. 

1.2. Code structure 

The code submitted consists of three methods, each 
method corresponding to an algorithm that I implemented: 

BGD(), SGD() and MLE(). To test each of the functions, 

call them in the main conditional at the bottom of the code 

file. 

Please note that a different random dataset was 

generated and used for each of batch gradient descent, 

stochastic gradient descent and maximum likelihood 

estimation algorithms. 

2. Task One: Batch Gradient Descent 

Batch gradient descent is an algorithm for optimization 

that allows us to find the minimum/maximum of a function 

by summing up over all the samples we have and update 

our parameters (weights) [1]: 

w = w – α ∇w J(w) 

The weights here are represented as a vector w. The 

learning rate, which how big we want our jump to be in 

our descent is represented by α, and J(w) refers to the cost 

function (error function) that we want to minimize. We 

want the gradient of that with respect to w. For the sake of 

completion, the cost function is the following: 

J(w) = 
1

2
∑ {𝑦(𝑥𝑛 , 𝐰) − 𝑡}2𝑁
𝑛=1  

In the cost function above, we have a total of N samples, 

and we square the difference between our prediction 

y(xn,w) and our real value t. 

We use the gradient of this function in our gradient 

descent algorithms, thus obtaining and learning the 

weights w. After applying batch gradient descent with the 

gaussian function as the basis on a synthetic dataset that 

was generated using the cosine algorithm (with noise 

added), I have obtained the following graph: 

 
This graph represents the fitted line that was trained on 

80% of the data generated (800 points) over 1000 

iterations with a learning rate of 0.1 in order to learn the 

weight vector, and the weights learned were used to fit this 

line to the test set that represents 20% of the data and 

shown on the graph. The weights obtained are as follows: 

w0 0.5600160878291915 

w1 0.8387175360173834 

w2 -0.8945401969027631 

A safe and true assumption to make during training is 

that when the iteration number increases, the cost (error) 

function decreases. This is intuitive due to the fact that we 

are learning and updating the weights at each iteration, 
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getting more accurate and closer to the true target value. 

The following graph shows this: 

 
We notice that the graph is smooth, since we sum over 

all the samples every time. This will be important for 
discussion when compared to stochastic gradient descent. 

Calculating the Root-Mean-Square error (RMS) yields the 

following value: 

RMS = 0.07617236735307292 

3. Task Two: Stochastic Gradient Descent 

The only difference between batch gradient descent and 

stochastic gradient descent is that, in stochastic gradient 

descent, we do not sum over all the points in each iteration. 
Instead, we randomly choose a point to be used at each 

iteration [2] when we want to make a prediction and update 

the weights. Applying SGD yields the following nice graph: 

 
We observe a very similar graph, since we’re using the 

same gaussian basis function. The weights obtained are: 

w0 0.6136568593629471 

w1 0.8022259994534873 

w2 -0.8846340759095672 

 

One interesting thing to observe has how the cost 

decrease figure is plotted: 

 
We can clearly see how the line is jittered. This is due to 

randomness in our choice of points at each iteration. 
Sometimes we choose a bad point randomly, and therefore 

we do not get a better prediction. But over time, we get 

closer and closer to the target value regardless. Calculating 

the Root-Mean-Square error (RMS) yields the following 

value: 

RMS = 0.08903546008888479 

 

4. Task Three: Maximum Likelihood Estimation 

In maximum likelihood estimation, we have a different 

approach of calculating and learning the weights that 

involves more linear algebra. We need construct the 

following matrix [2]: 

𝜙 = [
𝑝0(𝑥1) ⋯ 𝑝𝑛(𝑥1)

⋮ ⋱ ⋮
𝑝0(𝑥𝑛) ⋯ 𝑝𝑛(𝑥𝑛)

] 

This matrix corresponds to the basis functions applied to 

all the points in the data. Each column corresponds to on 

weight value in the vector w, and each row corresponds to 
a point in the data. Once all the basis functions represented 

by ps are calculated, we take this matrix and plug it into the 

following equation to get our final values of w: 

wML = (ΦT Φ)-1 ΦT t 

Implementing this yields the following plot whenfitted 

over the test set: 
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We can se a nice fit to the graph. The obtained 

coefficients are as follows: 

w0 0.5582245956473079 

w1 0.8345758279127222 

w2 -0.8969190415053565 

Calculating the Root-Mean-Square error (RMS) yields 

the following value: 

RMS = 0.07928460601014468 

5. Conclusion and Comparison 

We can see that all the three algorithms yield similar 

results using the gaussian basis function. The only 

difference that I have noticed in my implementation is that 

MLE finishes faster than both SGD and BGD, and SGD 

finishes faster than BGD due to the number of calculations 

needed for the algorithms to terminate. In addition, the 

numpy library in python is optimized for linear algebra 
and this can contribute to MLE good performance 

compared to the other two algorithms. 
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