CAS protocol

The CAS protocol is a simple and powerful ticket-based protocol
developed exclusively for CAS. A complete protocol specification may
be found here.
It involves one or many clients and one server. Clients are embedded in
CASified applications (called “CAS services”) whereas the CAS server is a
standalone component:
The CAS server is responsible for authenticating users and
granting accesses to applications
The CAS clients protect the CAS applications and retrieve the
identity of the granted users from the CAS server.
The key concepts are:
The TGT (Ticket Granting Ticket), stored in the CASTGC
cookie, represents a SSO session for a user
The ST (Service Ticket), transmitted as a GET parameter in
urls, stands for the access granted by the CAS server to the
CASified application for a specific user.

Versions

The current CAS protocol is the version 3.0. The draft version of the
protocol is available as part of the CAS codebase, which is hereby
implemented. It’s mainly a capture of the most common enhancements
built on top of the CAS protocol revision 2.0. Among all features, the
most noticeable update between versions 2.0 and 3.0 is the ability to
return the authentication/user attributes through the new
/p3/serviceValidate response (in addition to the
/serviceValidate endpoint, already existing for CAS 2.0 protocol).

Web flow diagram

Page 1 of 5

er

CAS Browser Single-Signon Sequence Diagram

Browser '

CAS Server I

Protected App] I Protected App #2]

Goto "app"

Display CAS
Login Form

GET https://app.example.com/

| =y

302 Location: https://cas.example.com/cas/login

Access is unauthenticated so

2 forward to CAS for authentication.

"service" query parameter

GET https://cas.example.com/cas/login?
service=https% 3A%2F%2Fapp.example.com%2F

https:f/app. nple.com/
is URL encoded

CAS Login Form

|
‘ I User does not have an SSO Session so

Display "app"

POST https://cas.example.com/cas/login?
service=https% 3A%2F%2Fapp.example.com%2F

| present login form

)

username, password, and login ticket

are POSTed in the body

]

Set-Cookie: CASTGC=TGT-2345678

302 Location: https://app.example.com/?
| | ticket=S5T-12345678

Authenticate user

User is authenticated so create Single-signon (SSO) session
CASTGC cookie contains the Ticket Granting Ticket (TGT)

GET https://app.example.com/?ticket=ST-12345678

The TGT is the session key for the users SSO session

CAS returns an XML document which includes
an indication of success, the authenticated
subject, and optionally attributes

GET https://cas.example.com/serviceValidate?

service=https%3A%2F%2Fapp.example.com%2F&
ticket=ST-12345678

Protected app validates Service
Ticket (ST) at CAS server over https

]

00 [XML Content]

Set-Cookie: JSESSIONID=ABC1234567
302 Location: https://app.example.com/

Set the session cookie and forward
the browser back to the application with

Cookie: JSESSIONID=ABC1234567 GET https://app.exa

the service ticket stripped off
This optional step prevents the browser
address bar from displaying the ST

mple.com/

200 [Content of https://app.example.com/]

Validate session cookie

Request resource

d Access To Same Application :

Display resource

Cookie: JSESSIONID=ABC1234567
GET https://app.example.comj/resource

Session Cool sent

"200 [Resource Content]"

along with the request

Validate session cookie

Goto "app2"

! First Access To S

GET https://app2.example.com/

302 Location: https://cas.example.com/cas/login?
service=https%3A%2F%2Fapp2.example.com%2F

Cookie: CASTGC=TGT-2345678
GET https://cas.example.com/cas/login?
service=https% 3A%2F%2Fapp2.example.com%2F

Location: https://app2.example.com/?

Validate TGT

ticket=ST-345678 |

CAS validates the TGT so no login is required B‘

GET https://app2.example.com/?ticket=ST-12345678

[EOO [XML Content]

GET https://cas.example.com/serviceValidate?
service=https%3A%2F%2Fapp2 mple.com%2F&
ticket=ST-12345678

Set-Cookie: MOD_AUTH_CAS_S=XYZ1234567
302 Location: https://app2.example.com/

Cookie: MOD_AUTH_CAS_S=XYZ1234567 GET https://3

app2.example.com/

200 [Content of https:/fapp2.example.com/]

Validate session cookie

Display "app2"

user

Browser

20of 5

CAS Server I

Protected App] I Protected App #2]

Proxy web flow diagram
One of the most powerful feature of the CAS protocol is the ability for a
CAS service to act as a proxy for another CAS service, transmitting the

user identity.

Page 3 of 5

@

CAS Proxy Sequence Diagram

@

user
P
Load "Proxy App*
GET https://proxy.example.com/
is unauthenticated so
302 Location: htps://cas. example.com/cas/login? ':mcc"‘qs:sy ::.":"":':":"“"m
senvice=https% 3A% 2F% 2Fproxy. example.com%2F example,com/
is URL encoded
GET hitps://cas. oxamp!o comlcasllog-n?
% 2F%2F¢
CAS Login Form Il User does not have an SSO Session so
| present login form
Display CAS
Login Form
ubmit CAS
gin Form
POST https://cas.axample.com/cas/login? username, password, and login ticket
senvice=https%3A% 2F%2Fproxy. example. com%2F are POSTed in the body
Authenticate user
Set-Cookie: CASTGC=TGT-2345678 User is authenticated so create Single-signon (SSO) session
302 Location: https://proxy.example, com/? CASTGC cookie contains the Ticket Granting Ticket (TGT)
ticket=ST-12345678 The TGT is the session key for the users SSO session
GET https://proxy.example. com/?ticket=ST-12345678
Proxy validates Service
GET https://cas. example. 3456788
senice=https%3A%2F%. ’chw:y example.com%2F& I:::S&rarcﬁ:;? MM.‘;’:.::: o (PGT)
2) . com%
L2 paYEaAR 27 342F prcvy 2FpgtCalibackURL 1 || 2t any URI controlled by the proxy application
CAS calls back to the PGT URL to hand
back the PGT and PGTIOU. This is done so that GET https://proxy. example.com/pgtCallbackURL?
CAS can validate the identity of the proxy via plid=TGT-23456769&pqtlou=PGTIOU-12345678
Centificate validation on the hitps connaction
Store the PGTIOU to PGT mapping for Store mapping of PGTIOU to PGT
lookup in the next step
CAS retums a PGTIOU which is matched
against the previously stored PGTIOU->PGT 200 [XML Content including PGTIOU-12345678]
mapping,
Look up PGT using PGTIOU
0 =)
Set-Cookie: JSESSIONID=ABC1234567
Location: https://proxy.example.com/
19: JSESSIONID=ABC1234567 GET https://proxy.4xample.com/
Validate session cookie
200 [Content of https://proxy.exampla.com/]
Display "Proxy App”
e e ek
Access to via proxy
R
Request App Via Proxy
Cookie: JSESSIONID=ABC1234567 Session Cookie is sent
GET https://app.example.com/resource along with the raquest
Validate session cookie
S;Z.;g{ ;‘;’:;;j;:mm' comlproxy? Rallrim a proxy ticket to access the app b'
targetSenvice=https%3A%2F %2F app.axample.com%2F using the PGT that was previously acquired
ST-2345678
GET https://app.example.com/ticket=ST-2345678
proxyValidate must be used instead of GET https://cas.example. com/proxyValidate?
senviceValidate to validate a proxy senice=https%3A%2F%2Fapp. example.com%2F&
ticket ticket=ST-12345678
Response includes the proxy callback URI
https://proxy.example.com/pgtCallbackURL
[T R PR T\
Look at the chain of proxy URI's and
validate that this chain is trusted. Validate Proxy Chain
This prevants rogue applications from
acting as a proxy for the user.
Set-Cookie: MOD AUTH_CAS _ &XYZ‘W
Cookis: MOD_AlﬂH_CAS_&XYZnSASGT
GET https://app.example.com/
Validate session cookie
200 [Content of https://app2.example.com/]
Procass rasponse
200 [Resource Content]”
Display resource

user

Browser

|cASSamrI

Proxy

E.ﬂ

Page 4 of 5

Other protocols

Even if the primary goal of the CAS server is to implement the CAS
protocol, other protocols are also supported as extensions:
OpenlID
OAuth
SAML

Delegated Authentication

Using the CAS protocol, the CAS server can also be configured to
delegate the authentication to another CAS server.

Source: http://jasig.github.io/cas/development/protocol/CAS-
Protocol.html

Page 5 of 5

