
Light Field Toolbox for Matlab
v0.5.2

Copyright (c) 2013-2020 Donald G. Dansereau

This is a toolbox for working with light field imagery in MATLAB. Features
include loading, visualizing, and filtering light fields, and decoding, calibration,
and rectification of lenslet-based imagery.

The most recent release and development versions are here: https://github.
com/doda42/LFToolbox.

The complementary LiFF light field feature toolbox is here: http://dgd.
vision/Tools/LiFF.

What’s New / Development Plan
For a complete list, see CHANGELOG.txt. v0.5 highlights:

• Linear refocus super-resolution using LFFiltShiftSum, see LFDemoRe-
focusSuperres

• New display functions LFDispLawnmower, LFDispTiles, LFDispTilesSub-
figs, LFDispProj, LFDispProjSubfigs

• LFReadESLF, LFWriteESLF

• Improved decode performance and speed
• Improved calibration accuracy
• LFDisp* functions are better behaved, now display in the active figure

window

Future plans include more significant changes to lenslet-based decode and
calibration, and support for a broader range of cameras.

Compatibility
Reverse-compatibility: Changes to interfaces have been minimised, LFDis-

pVidCirc is the main exception, with a new parameter structure.
Previously generated calibration files should be re-generated, and to ben-

efit from performance improvements to decoding, white images should be re-
generated. See Appendix B for details.

Matlab: LFToolbox 0.5 was written in MATLAB 2020a, but should be
compatible with earlier versions.

File Formats: The toolbox can load gantry / array-style folders of images,
ESLF files, and raw lenslet-based images.

https://github.com/doda42/LFToolbox
https://github.com/doda42/LFToolbox
http://dgd.vision/Tools/LiFF
http://dgd.vision/Tools/LiFF

Plenoptic 1.0 cameras are supported through decoding, calibration, and
rectification of imagery. Functions are most easily applied to Lytro imagery.
The toolbox can also be applied to other lenslet-based Plenoptic 1.0 cameras,
but this is not yet well documented. Calibration of Lytro Illum cameras is
experimental.

Plenoptic 2.0 cameras are not well supported. Use with some cameras is
possible but not well documented. Multi-focal lenslet-based cameras are not
well supported.

Lytro Software: The toolbox is compatible with files generated using Lytro
Desktop 4 and 3.

Contributing / Feedback
Suggestions, bug reports, code improvements and new functionality are wel-

come – email Donald.Dansereau+LFToolbox at gmail dot com.

Acknowledgments
Parts of the code were taken with permission from the Camera Calibration Toolbox

for Matlab by Jean-Yves Bouguet, with contributions from Pietro Perona and others;
and from the JSONlab Toolbox by Qianqian Fang and others. LFFigure was originally
by Daniel Eaton. The LFP reader is based in part on Nirav Patel and Doug Kelley’s
LFP readers. Thanks to Michael Tao for help and samples for decoding Illum imagery.

Citing
The appropriate citations for decoding, calibration and rectification and the volu-

metric focus (hyperfan) filter are (see the README file for bibtex):

[1] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, calibration and recti-
fication for lenselet-based plenoptic cameras,” in Computer Vision and Pattern Recog-
nition (CVPR), IEEE Conference on. IEEE, Jun 2013.

[2] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Linear Volumetric Focus for
Light Field Cameras,” in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.

2

Contents
1 Installation 5

1.1 Installing the Toolbox . 5
1.2 Downloading Samples . 5
1.3 Additional Resources . 5

2 Conventions 5
2.1 Optional Function Arguments . 5
2.2 Struct Arguments . 6

2.2.1 Continuous vs Discrete Indices 6
2.3 Light Field Indexing . 6

2.3.1 Colour Channels . 6
2.4 Two-Plane Parameterization . 6

3 A Quick Tour 7
3.1 Working with Lytro Light Fields . 7

3.1.1 Decoding? Calibration? Rectification? 7
3.1.2 Decoding the Samples . 7
3.1.3 Rectifying the Samples . 9
3.1.4 Using a Different Folder Structure 10

3.2 Displaying Light Fields . 10
3.3 Loading Gantry-style Light Fields . 13
3.4 Working with ESLF Files . 13

3.4.1 Reading ESLF Files . 14
3.4.2 Writing ESLF Files . 14

3.5 Basic Filters . 15
3.5.1 Linear Refocus Super-Resolution 16

3.6 Running the Small Sample Calibration 16
3.6.1 Calibrating . 16
3.6.2 Validating . 19
3.6.3 Cleaning Up and Validating . 20

3.7 Beyond the Samples:
Working with Your Own Light Fields 20

3.8 Calibrating the Illum . 21

4 Decoding in Detail 21
4.1 Analyzing White Images . 22
4.2 Decoding a Lenslet Image . 22
4.3 Structure of the Decoded Light Field 22

5 Calibration in Detail 24
5.1 Calibration Results . 24
5.2 Rectification Results . 25
5.3 Controlling Rectification . 25

Appendices 26

3

Appendix A Working with Lytro Files 29
A.1 Extracting White Images . 29
A.2 Locating Picture Files . 29

A.2.1 LFP, LFR, lfp or lfr? . 30
A.2.2 Thumbnails . 30

Appendix B Upgrading from 0.4 31
B.1 Reprocessing White Images . 31
B.2 Reprocessing Calibrations . 31

Appendix C Function Reference 32

4

1 Installation
1.1 Installing the Toolbox
There are three main options for installation:
1. Download a .zip file through the Mathworks site https://au.mathworks.

com/matlabcentral/fileexchange/75250-light-field-toolbox
2. Download a .zip file from Github https://github.com/doda42/LFToolbox
3. Clone the repo from GitHub

Options 2 and 3 have the advantage that you may work with the most recent release
(the master branch), or a development branch with experimental functionality.

Unzip or clone the files into an appropriate location with a meaningful top-level
folder name, e.g. LFToolbox0.5. Run the convenience function LFMatlabPathSetup
to set up the Matlab path. This must be run every time Matlab starts, so consider
adding a line to startup.m, e.g.
run('~/MyMatlabCode/LFToolbox0.5/LFMatlabPathSetup.m')

Be sure to remove any similar calls for previous toolbox versions. To check your
installation:

• Run LFToolboxVersion to check the toolbox version
• Type which LFToolboxVersion to confirm the path to the toolbox folder
• Type help <toolbox folder name>, e.g. help LFToolbox0.5 to display a

list of toolbox functions

1.2 Downloading Samples
• LFToolbox v0.5 Sample Pack, including example ESLF and Lytro F01 and Il-

lum images: http://www-personal.acfr.usyd.edu.au/donald/LFToolbox0.
5_Samples.zip

• Small Sample Calibration: http://www-personal.acfr.usyd.edu.au/ddan1654/
PlenCalSmallExample.zip

• Gantry-style and large collections of ESLF files at Stanford: http://lightfields.
stanford.edu

1.3 Additional Resources
• Questions about the toolbox should go to the Light Field Vision mailing list:

https://groups.google.com/forum/#!forum/lightfieldvision

• Additional datasets and community links: http://dgd.vision/Tools/LFToolbox

2 Conventions
2.1 Optional Function Arguments
Many toolbox functions accept optional function arguments, taking on default values
if no value is provided. Simply omit arguments at the end of the list, or pass an empty
array [] within the list. For example, for the function

5

https://au.mathworks.com/matlabcentral/fileexchange/75250-light-field-toolbox
https://au.mathworks.com/matlabcentral/fileexchange/75250-light-field-toolbox
https://github. com/doda42/LFToolbox
http://www-personal.acfr.usyd.edu.au/donald/LFToolbox0.5_Samples.zip
http://www-personal.acfr.usyd.edu.au/donald/LFToolbox0.5_Samples.zip
http://www-personal.acfr.usyd.edu.au/ddan1654/PlenCalSmallExample.zip
http://www-personal.acfr.usyd.edu.au/ddan1654/PlenCalSmallExample.zip
http://lightfields.stanford.edu
http://lightfields.stanford.edu
https://groups.google.com/forum/#!forum/lightfieldvision
http://dgd.vision/Tools/LFToolbox

LFDispMousePan(LF, ScaleFactor, InitialViewIdx, Verbose)

all arguments except the first are optional. Any of the following are valid:
LFDispMousePan(LF)
LFDispMousePan(LF, 4) % set a scale factor of 4
LFDispMousePan(LF, 4, [3,3]) % .. also set initial view index 3,3
LFDispMousePan(LF, [], [3,3]) % initial view 3,3, default scale
LFDispMousePan(LF, [], [3,3], true) % initial view 3,3, verbose on
LFDispMousePan(LF, 4, [], true) % scale factor 4, verbose on

2.2 Struct Arguments
Some functions accept structs of arguments. A helpful shorthand for calling these is
using MATLAB’s struct function, that allows inline struct construction, e.g.
LFUtilDecodeLytroFolder('Images', [], struct('OptionalTasks', 'ColourCorrect'))

See the help for LFUtilDecodeLytroFolder for more examples of these argument-
passing conventions.

2.2.1 Continuous vs Discrete Indices
In formal presentation, discrete indices i, j, k, l are distinct from continuous spatial
coordinates s, t, u, v. In the toolbox, when it is clear that the light field is sampled,
the latter is generally understood to refer to sample indices.

2.3 Light Field Indexing
In MATLAB, to index a 2D colour image I at the coordinates x, y, c corresponding to
horizontal position, vertical position, and colour, we use the indexing order I(y, x, c).

Generalizing this to a 4D light field L which we wish to index at the horizontal,
vertical ray position s, t, horizontal, vertical ray direction u, v, and colour channel c,
we use the indexing order L(t, s, v, u, c).

2.3.1 Colour Channels
Colour light fields have at least three colour channels, one for each of red, green,
and blue. The toolbox can also handle monochrome light fields, with a single colour
channel.

For light fields that also have per-pixel weight information, there is an additional
colour channel. Weight indicates confidence, so for example a pixel that is significantly
amplified to compensate for vignetting will have a proportionally lower weight because
we are less confident of its true value. A weight of zero means we do not know the
value of the pixel.

2.4 Two-Plane Parameterization
The intrinsic matrices generated through calibration use a relative two-plane parame-
terization, with a plane separation D = 1m. This maps each pixel index [i, j, k, l] to a
corresponding ray in space [s, t, u, v], where each of s, t, u and v is measured in meters.
This combination unambiguously defines each ray in metric space including scale.

6

3 A Quick Tour
3.1 Working with Lytro Light Fields
3.1.1 Decoding? Calibration? Rectification?
The toolbox uses the following terminology:
1. Decoding: The lenslet array encodes the 4D light field onto a 2D sensor, and

decoding undoes this process.
2. Calibration: This is characterizing the camera’s optics to map each measured

pixel to a ray in space.
3. Rectification: Removing distortions in the decoded light field to simplify the

pixel-to-ray mapping to a linear relationship. In the simplest case, the resulting
light field looks like what an array of parallel pinhole cameras would measure.

See Sect. 4 and [1] for further details.

3.1.2 Decoding the Samples
1. Install the LF Toolbox and following the instructions in Sect. 1.
2. Download the sample light field pack at http://www-personal.acfr.usyd.

edu.au/ddan1654/LFToolbox0.5_Samples.zip and decompress into its own folder.
The samples folder structure was chosen for easy addition of your own cameras
and calibrations:

Samples Top level of samples
Images Sample light field images

ESLF ESLF images
F01 F01 images
Illum Illum images

Cameras Stores info for one or more cameras
A000424242 Camera used to measure F01 samples

CalZoomedOutFixedFoc A single calibration result
WhiteImages White images for the F01 camera

B5143300780 Camera used to measure Illum samples
WhiteImages White images for the Illum camera

3. cd <sample folder> inside MATLAB to change to the top level of the samples
folder. If you are in the correct location, the Matlab command ls should list
the top-level folders and README file:
Images Cameras README

4. Run LFUtilProcessWhiteImages to build a white image database. This
searches the Cameras folder for white (flat-field) images, generating a lenslet
grid model for each – the grid models are saved as *.grid.json. The database
of white images is saved as Cameras/WhiteFileDatabase.mat, and is used in
selecting the appropriate white image for decoding each light field.
Samples ship with precomputed .grid.json files. These files may be removed
in order to force their re-generation. When doing so, for each lenslet grid model
a set of figures similar to Fig. 1 will be presented for visual confirmation that

7

http://www-personal.acfr.usyd.edu.au/ddan1654/LFToolbox0.5_Samples.zip
http://www-personal.acfr.usyd.edu.au/ddan1654/LFToolbox0.5_Samples.zip

Figure 1: Example of a white (flat-field) image showing estimated lenslet centers
as red dots.

the grid model is a good fit. Each figure shows a small subset of the whole
frame to allow close inspection of the lenslets. Five such images are shown, one
for each image corner and one for the central portion of the image. Each red
dot should appear near the center of a lenslet, as depicted in Fig. 1.

5. Run LFUtilDecodeLytroFolder to decode the sample light fields. The
script searches the Images folder and its sub-folders for light fields and de-
codes each. By default it searches for all compatible Lytro light field formats,
including lfp and raw.
The decoding process selects the appropriate white image for each light field
and saves the decoded 4D light fields, *__Decoded.mat, and thumbnail, *.png,
alongside the input images. A thumbnail of each light field is also displayed as
it is decoded. Thumbnails are histogram-adjusted, but the saved light field is
not. Example thumbnails are shown in Fig. 2.

6. (optional) Re-run LFUtilDecodeLytroFolder to perform colour correction.
Use the commands
DecodeOptions.OptionalTasks = 'ColourCorrect';
LFUtilDecodeLytroFolder([], [], DecodeOptions);

The DecodeOptions argument requests the optional task colour correction be
performed. The first and second arguments are omitted by passing empty
arrays [].
Colour correction applies the information found in the light field metadata,
including basic RGB colour and Gamma correction. The script keeps track of
which operations have been applied to each light field, and so it will not repeat
the decoding process, but will instead load each already-decoded light field,
operate on it, and overwrite it with the colour-corrected light field. Similarly,
subsequent requests will not repeat the already-completed colour correction
operation.
Decoding and colour-correction can be performed in one step by including the
ColourCorrect task in the first call to LFUtilDecodeLytroFolder.

8

Figure 2: Decoded (top) and colour-corrected output (bottom) – the white
speckles in the bird image are due to a pane of grubby glass between the camera
and the bird. Running LFDispVidCirc or LFDispMousePan creates a shifting-
perspective view in which this is more clear.

You may wish to apply histogram stretching using LFHistEqualize. Illum im-
agery is not gamma-corrected. Example colour-corrected output is shown in
the bottom row of Fig. 2, and in Fig. 3.

3.1.3 Rectifying the Samples
Still operating from the top level of the samples folder:
1. Run LFUtilProcessCalibrations to locate and catalogue camera calibra-

tions. The result is stored in Cameras/CalibrationDatabase.mat.
2. Run LFUtilDecodeLytroFolder to rectify a specific light field:

DecodeOptions.OptionalTasks = 'Rectify';
LFUtilDecodeLytroFolder(...

'Images/F01/IMG_0002__frame.raw', [], DecodeOptions);

The CalibrationDatabase file allows selection of the calibration appropriate for
each light field. Only one calibration is provided in the Sample Pack, and it is appro-
priate only for the F01 samples 2 and 5.

As in the colour-correction example, we pass an OptionalTasks argument, this
time requesting rectification. The rectified light field overwrites the decoded light
field file, and the decoding script will not repeat already-completed rectifications. The
result of rectifying Sample 2 is shown in Fig. 4.

To rectify your own light fields, you must calibrate your camera. See Sect. 5.

9

Figure 3: Decoded and colour-corrected Illum images, manually Gamma-
corrected by raising to the power 0.7.

3.1.4 Using a Different Folder Structure
You may wish to organize files differently than the toolbox default. A common use case
is storing the Camera folder in a single global location outside the folder structure of the
images. The toolbox supports this via function parameters specifying file locations.
For example, to decode images using a global camera folder:
cd <top level path of your light field images>
DecodeOptions.WhiteImageDatabasePath = '<path to your cameras folder>';
LFUtilDecodeLytroFolder('.',[],DecodeOptions);

Note that you must still run LFUtilProcessWhiteImages at the top level of your cam-
eras folder. Use RectOptions.CalibrationDatabaseFname to specify the path to cal-
ibration files.

3.2 Displaying Light Fields
1. Load a light field, e.g.

load('Images/Illum/Lorikeet__Decoded.mat','LF');

2. Run LFDisp to display the central view of the light field.
LFDisp(LF)
axis image % for correct aspect ratio

To brighten the display through simple gamma correction, we can raise the
light field to a power, but this first requires us to convert the light field to a
floating point format first:
LF = LFConvertToFloat(LF);
LFDisp(LF.^0.5)
axis image

This is not very efficient, as it raises the entire light field to the power 0.5, then
displays only the central view. You can use the following trick to nest LFDisp
commands:
LFDisp(LFDisp(LF).^0.5)
axis image

10

Figure 4: F01 Sample 2 before and after rectification, with insets showing the
reversal of lens distortion.

This works because LFDisp returns the image as an output argument. The
innermost LFDisp command extracts the central view of the light field, and
only this view is then raised to 0.5. The result is passed to the outermost
LFDisp for display. This approach can be applied with other display functions
including LFHistEqualize:
LFDisp(LFHistEqualize(LFDisp(LF)).^0.5)
axis image

3. Run LFDispMousePan, LFDispVidCirc, or LFDispLawnmower to vi-
sualize the light field with a shifting perspective, e.g.
LFDispMousePan(LF)

LFDispMousePan requires mouse input, click and drag in the window to change
the perspective. The other functions animate through the images in the light
field automatically. Try a larger display with LFDispMousePan(LF, 2) or LFDispVidCirc(LF,
[], 2), which doubles the displayed size.

4. Run LFDisp to display other slices of the light field:
load('Images/Illum/Lorikeet__Decoded.mat','LF');
LFDisp(LF(9,:,226,:,:));

displays a slice in s, u at t = 9, v = 226. This is best viewed with a non-square
aspect ratio by expanding the window horizontally.
LFDisp(LFHistEqualize(LFDisp(LF(9,:,226,:,:))).^0.7)

displays the same contrast-stretched and gamma-corrected.
5. Run LFDispTiles to visualize the light field as a 2D tiling of 2D images:

11

load('Images/F01/IMG_0005__Decoded.mat','LF');
LFDispTiles(LF, 'stuv')

to display a tiling of u, v slices in s, t. This is a large image, you can display a
subset of the views using
LFDispTiles(LF, 'stuv', struct('SubsampRate',2))

which will display every other sample in each of the four dimensions, or
LFDispTiles(LF(:,:, 85:100, 230:245, :))

to display a crop in u, v. As with LFDisp, LFDispTiles returns the displayed
image, allowing nesting:
LFDisp(LFHistEqualize(LFDispTiles(LF(:,:,85:100, 230:245,:))))

stretches the contrast of the previous example.
LFDispTiles(LF, 'uvst')
axis image

will display a tiling of s, t slices in u, v. Zoom in on the display to see individual
lenslet images, or crop the light field when calling the display function, as in
LFDispTiles(LF(:, :, 85:100, 230:245, :), 'uvst')

6. Run LFDispProj to visualize the light field as a projection onto a 2D plane
load('Images/Illum/Lorikeet__Decoded.mat','LF');
LFDispProj(LF, 3,4)
axis image

projects onto dimensions 3 and 4 (v and u) by adding along the remaining
dimensions, s and t. The result is equivalent to refocus at the zero-slope depth.
LFDispProj(LF, 3,4, 'max')
axis image

does the same but finds the maximum value along s, t for each u, v sample,
yielding an interesting effect.
LFDispProj(LF, 1,2)
axis image

projects onto the s, t plane, revealing the lenslet vignetting pattern. It is mostly
flat because it has been corrected in decoding. The weight channel shows us a
better picture of this:
LFDispProj(LF(:,:,:,:,4), 1,2)
colormap gray
axis image

We can also project onto s, u or t, v slices
LFDispProj(LF, 2,4)
axis normal

this is best viewed with a non-square aspect ratio by resizing the window. The
contrast on this image is low since all the differently sloped parts of the scene
are adding together. To get more of the structure apparent in the projection
onto s, u, find the max along s, v rather than the mean:
LFDispProj(LF, 2,4, 'max')

12

3.3 Loading Gantry-style Light Fields
Camera gantries and camera arrays yield ordered collections of individual image files,
with each image corresponding to a different aperture position. LFReadGantryArray
will read such an array of images as a light field.

1. Download an image archive from the Stanford gantry-based light field archive
http://lightfield.stanford.edu, e.g. the LegoKnights light field. Download
the “Rectified and cropped” version.

2. Unzip the archive into a dedicated folder for Stanford samples. Following a
structure like the following will allow LFDemoBasicFiltGantry to run unmodi-
fied.

StanfordGantry Top of Stanford gantry light fields
JellyBeans

rectified Rectified and cropped image files
LegoKnights

rectified Rectified and cropped image files

3. Run LFReadGantryArray from the top-level of the Stanford gantry sam-
ples:
cd <path to top of Stanford gantry samples>
LF = LFReadGantryArray('LegoKnights/rectified', struct('UVLimit', 256));

The UVLimit option scales the images as they’re read to a size of 256x256. By
default LFReadGantryArray looks for .png files, and assumes an array of 17
x 17 images in row major order. See the function help for specifying other
filenames, array sizes, and file orderings.

4. Run size LF to check the light field size: 17 x 17 x 256 x 256 x 3.
5. Run LFDispMousePan or other display functions to display the loaded light

field.

It’s possible to read the Stanford gantry light fields at full resolution, e.g. the
following yields a 17 x 17 x 1024 x 1024 x 3 array, occupying 909 MBytes of RAM:
LF = LFReadGantryArray('LegoKnights/rectified');

Some gantry imagery follows a lawnmower pattern rather than direct raster scan
order. These can be read and adjusted as follows:
LF = LFReadGantryArray('humvee-tree', struct('STSize', [16,16]));
LF(1:2:end,:,:,:,:) = ...
LF(1:2:end,end:-1:1,:,:,:); % correct lawnmower ordering

Some gantry imagery follows a different handedness in horizontal and vertical
directions, effectively flipping the order of images in s or t. The demo function LFDe-
moBasicFiltGantry contains a list of Stanford gantry light fields and demonstrates
how to flip the appropriate ones along s.

3.4 Working with ESLF Files
Many of the large online datasets are stored as ESLF files. These collapse the light
field into a 2D image by tiling s, t slices in u, v. Because they are 2D images, they can

13

http://lightfield.stanford.edu

be saved using any 2D image format. Popular choices are 8-bit and 16-bit png files for
their lossless compression, and jpg files, for their compact size.

png files support storage of an ‘alpha’ channel, and some tools use this as a binary
mask to indicate which pixels are valid. The toolbox can also save weight values in the
alpha channel, indicating per-pixel confidence. By default, LFReadESLF will load the
alpha channel as a weight channel if it is present, but LFWriteESLF will only write
to the alpha channel if this is requested via the command arguments.

3.4.1 Reading ESLF Files
1. cd <sample folder> inside MATLAB to change to the top level of the samples

folder.
2. Run LFReadESLF to read the sample ESLF file:

LF = LFReadESLF('Images/ESLF/Plant.eslf.jpg');

3. Run LFDispMousePan to display the light field:
LFDispMousePan(LF);

4. To load an ESLF file with a different number of pixels per lenslet, Run LF-
ReadESLF with the appropriate option, e.g. after writing Jacaranda.eslf.png
in the next section, read it using
LF = LFReadESLF('Jacaranda.eslf.png', [15,15]);

3.4.2 Writing ESLF Files
1. Load a light field, and Run LFWriteESLF to save it a PNG-compressed

ESLF:
load('Images/Illum/Jacaranda__Decoded.mat','LF');
WriteAlpha = true;
LFWriteESLF(LF, 'Jacaranda.eslf.png', WriteAlpha);

Because the loaded light field is 16-bit and has a weight channel, and we re-
quested the alpha channel be written, the output png is 16-bit and has four
channels, occupying 418 MBytes. If we do not request the alpha channel be
written,
LFWriteESLF(LF, 'Jacaranda.eslf.png');

the file occupies 300 MBytes. If we first convert to 8-bit pixels using LFCon-
vertToInt and omit the alpha channel,
LF = LFConvertToInt(LF, 'uint8');
LFWriteESLF(LF, 'Jacaranda.eslf.png');

the file occupies 102 MBytes.
2. After converting the light field to 8-bit format as above, Run LFWriteESLF

to save a ligt field as a JPEG-compressed ESLF:
LFWriteESLF(LF, 'Jacaranda.eslf.jpg');

The resulting 8-bit lossily compressed light field without a weight channel occu-
pies only 16 MBytes, but upon loading and displaying it you may notice strong
compression artefacts. Adjust the JPEG compression rate to increase quality
LFWriteESLF(LF, 'Jacaranda.eslf.jpg', [], 'Quality', 95);

looks significantly better and occupies 38 MBytes.

14

Figure 5: Three examples of filtering Lytro imagery: the shift-and-sum filter
performing planar focus on the foreground window (left) and on the Lorikeet
(center), and a hyperfan filter performing volumetric focus to pass the Lorikeet
and background building while rejecting the foreground window (right, compare
with Fig. 2).

Figure 6: Three examples of filtering gantry imagery: the shift-and-sum filter
performing planar focus (left), the hyperfan filter performing volumetric focus
(center), and the max between two hyperfan filters, focusing simultaneously on
two planes (right).

3.5 Basic Filters
The toolbox comes with a spatial shift-and-sum filter for planar focus and refocus
super-resolution, and a set of linear 2D and 4D filters for planar and volumetric focus.

Run one of LFDemoBasicFiltLytroF01 or LFDemoBasicFiltIllum for a demo of
some of the filters operating on Lytro imagery. This should be done from the top level
of the Samples folder, after decoding the light fields as described in Sect. 3.1. The
best performance is obtained with rectified light fields.

Run LFDemoBasicFiltGantry for a demo filtering the Stanford gantry light fields.
This should be done from the top of the Stanford gantry light fields folder, after down-
loading and unzipping the samples following the instructions in Sect. 3.3. Uncomment
the appropriate line near the top of LFDemoBasicFiltGantry to select from the 12
input light fields.

Examples of filtering output are shown in Figs. 5, 6, and 7.

15

Figure 7: Examples of filtering Lytro Illum imagery, showing the input (left)
and shift-and-sum filter performing planar focus (right).

3.5.1 Linear Refocus Super-Resolution
New in v0.5 is linear refocus super-resolution. This is a way to simultaneously focus
at a single depth and boost the resolution of the result. The method modifies LF-
FiltShiftSum to upsample each image prior to shifting, effectively allowing fractional
shifts, and boosting resolution in the merged image.

Note that this approach only adds information for fractional slopes, images focused
at integer slopes will see no benefit. Note also that the upsampling ratio does not reflect
the effective resolution increase: upsampling by 10× might only increase effective
resolution by 1.5 − 2×, for example.

Typical results are shown in Fig. 8, for an upsampling rate of 10×. These are
tight crops on the Flowers sample ESLF and IMG_6201.eslf.png from the Flowers
category of the Stanford Multi-View Light Field dataset at http://lightfields.
stanford.edu.

From the figure, we clearly see a dramatic improvement in the visual appearance of
the ‘Super-res’ result compared with the ‘Focus’ result. Comparing with ‘2D Interp’
cubic interpolation, we see a less dramatic but still noticeable improvement more
representative of the effective resolution increase offered by this approach. Better
camera calibration and light field rectification will increase the effectiveness of this
form of super-resolution.

For a demonstration of linear refocus super-resolution, see LFDemoRefocusSuper-
res.

3.6 Running the Small Sample Calibration
3.6.1 Calibrating
The example below assumes you’ve completed the Decoding tour above, including
generating the white image database. The small calibration dataset employed here
is intended only to quickly demonstrate operation of the toolbox, and has several
shortcomings in terms of effectively calibrating the camera:

• The checkerboard is too large for sufficiently short-range poses – a lenslet-based
camera has a small spatial baseline, and calibrating this baseline benefits from
close-up poses

16

http://lightfields.stanford.edu
http://lightfields.stanford.edu

Figure 8: Linear super-resolution using LFFiltShiftSum. The inputs are small
crops from larger light fields; ‘Focus’ shows focus alone, mostly removing noise
and limiting depth of field; ’2D Interp’ shows 2D cubic interpolation applied to
the focus image, for comparison; and ‘Super-res’ shows linear super-resolution
with noticeably finer detail than focus alone or 2D interpolation. See LFDemoR-
efocusSuperres for usage.

• The checkerboard is not very dense – more corners would be appropriate
• There is insufficient diversity in the checkerboard poses – ten or more diverse

images would be appropriate

More realistic (and larger) datasets are available at http://dgd.vision/Tools/
LFToolbox. Good results have been obtained using a 19 × 19 grid with a 3.6 mm
spacing, with at least ten diverse poses.

1. Download the small sample calibration from http://www-personal.acfr.
usyd.edu.au/ddan1654/PlenCalSmallExample.zip. Decompress to your
Samples/Cameras/A000424242/ folder:

Samples Top level of samples
Cameras Stores info for one or more cameras

A000424242 The camera used to measure the samples
CalZoomedOutFixedFoc A single calibration result
PlenCalSmallExample The newly-added calibration
WhiteImages White images for the sample camera

Images Sample light field images

2. Run LFUtilDecodeLytroFolder to decode the calibration light fields. From
within Matlab cd into the top level of the samples folder, then use the command
LFUtilDecodeLytroFolder(...

'Cameras/A000424242/PlenCalSmallExample/');

17

http://dgd.vision/Tools/LFToolbox
http://dgd.vision/Tools/LFToolbox
http://www-personal.acfr.usyd.edu.au/ddan1654/PlenCalSmallExample.zip
http://www-personal.acfr.usyd.edu.au/ddan1654/PlenCalSmallExample.zip

Figure 9: Left: Example of a decoded checkerboard image – no colour correc-
tion is necessary and rectification should not be applied; Right: Example of
checkerboard corners automatically fit to the checkerboard in the first step of a
calibration.

This should find and decode the calibration checkerboard images. Note that
colour-correction is omitted as it is not required, and rectification would inval-
idate the results. A thumbnail of one of the decoded checkerboard images is
shown in Fig. 9.

3. Run LFUtilCalLensletCam to run the calibration. This function automat-
ically progresses through all the stages of calibration. Use the commands
CalOptions.ExpectedCheckerSize = [8,6];
CalOptions.ExpectedCheckerSpacing_m = 1e-3*[35.1, 35.0];
LFUtilCalLensletCam(...

'Cameras/A000424242/PlenCalSmallExample', CalOptions);

These options tell the calibration function that the checkerboard spacing is
35.1 × 35.0 mm, and that there are 8 × 6 corners. Note that edge corners are
not included in this count, so a standard 8 × 8 square chess board yields 7 × 7
corners. These values are available in the README file that came with the cal-
ibration sample. Calibration automatically proceeds through corner identifica-
tion, parameter initialization, parameter optimization without lens distortion,
then with lens distortion, and a final stage of parameter refinement. These are
described in more detail in Sect. 5.
During the parameter initialization step, a pose estimate display is drawn re-
sembling that shown in Fig. 10. This display is updated throughout the remain-
ing stages, reflecting the refinement of the pose and camera model estimates.
Reprojection errors are also shown in the text output. Typical final root mean
squared error (RMSE) values for the small calibration example are in the vicin-
ity of 0.2 mm.
The ultimate product of the calibration process is the calibration information
file, CalInfo.json, which contains pose, intrinsic and distortion parameters, as
well as the lenslet grid model used to decode the checkerboard light fields.

18

−0.4

−0.2

0

0.2

0.4

−0.100.10.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

x [m]

Estimated camera poses

y [m]

z
[m

]

−0.4

−0.2

0

0.2

0.4

−0.100.10.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

x [m]

Estimated camera poses

y [m]

z
[m

]

Figure 10: The estimated camera pose display; Left: After parameter initial-
ization, and Right: After completion of a calibration; Gray: initial estimate,
Green: optimized without distortion, Blue: optimized with distortion, and Red:
after refinement.

3.6.2 Validating
One way of validate a calibration is to rectify the checkerboard images. The process
closely resembles the rectification step described in the Decoding tour:

1. Run LFUtilProcessCalibrations to add the newly-completed calibration to
the calibration database. Note from the output of that function that the small
calibration example is very close to the sample calibration provided with the
sample pack, differing only by a few focus steps.

2. Copy all the files from Cameras/A000424242/PlenCalSmallExample/01 into a
new folder, Samples/Images/PlenCalSmallExample. This will allow rectifica-
tion of the images while maintaining the unrectified versions for comparison.

3. Run LFUtilDecodeLytroFolder to rectify the images. Use the command
DecodeOptions.OptionalTasks = 'Rectify';
LFUtilDecodeLytroFolder('Images/PlenCalSmallExample', ...

[], DecodeOptions);

Examining the text output, notice that the rectification has automatically se-
lected the small sample calibration for these images, based on their zoom and
focus settings.
A visual inspection of the rectified images probably shows poor results, due to
the limitations of the small calibration dataset. When calibrating with your
own camera, rectification should ideally show good results.

19

3.6.3 Cleaning Up and Validating
As discussed earlier in this section, the CalInfo.json generated from the small sample
calibration is not very good. When finished with the sample calibration, you should
remove this file from
Cameras/A000424242/PlenCalSmallExample and re-run LFUtilProcessCalibrations. Re-
peating the above validation procedure with the better, default sample calibration in
place yields more reasonable validation results, such as those shown in Fig. 11, even
despite a slight mismatch in camera parameters.

Figure 11: A rectified checkerboard; Run Fig. 4. More complete datasets are
explored in [1].

3.7 Beyond the Samples:
Working with Your Own Light Fields

Processing images from your own camera closely mirrors the examples covered so far.
First, create a new folder parallel to the Cameras/A000424242 folder, to contain your
camera’s white images and any calibrations you perform. A good convention is to
name this folder to match your camera’s serial number. Next, create a sub-folder for
your white images. Your tree structure should now look like:

Samples Top level of samples
Cameras Stores info for one or more cameras

A123412123 Your camera’s top level folder
WhiteImages Your camera’s white images

A000424242 The camera used to measure the samples
CalZoomedOutFixedFoc A single calibration result
WhiteImages White images for the sample camera

Images Sample light field images

20

Following the procedure described in Appendix A, extract your camera’s white
images and place them in the newly created WhiteImages folder. Any calibrations you
perform should sit in their own folders alongside the WhiteImages folder.

From the top level of the samples folder, run LFUtilProcessWhiteImages to process
your camera’s white images. The resulting grid models will be added to the white
image database, and automatically applied to pictures taken with your camera.

You may end up with a complex tree structure with many sub-folders under Images.
LFUtilProcessWhiteImages will search this structure recursively, decoding anything it
identifies as a light field.

To rectify your own images, you will need to calibrate your camera. Follow
the procedure described in the tour above, except using your own images stored
within your own camera’s folder. Your first calibrations might, for example, go in
Samples/A123412123/CalZoomedOut.

3.8 Calibrating the Illum
Calibration for the Lytro Illum remains experimental, and the toolbox can struggle for
certain focal lengths. Samples near the edges of lenslets are especially challenging, and
short focal lengths (with the camera zoomed out) are also more challenging. To make
things easier for calibration, try calibrating with the lens zoomed in somewhat, and
increasing CalOptions.LensletBorderSize to 2 or 3 pixels. Future toolbox versions
will address this shortcoming.

4 Decoding in Detail
The toolbox decodes lenslet-based light field images into a 4D light field structure
following the process described in [1]. At its core, the inputs to this process are a
white image and a lenslet image.

The white image is a flat-field image that reveals the vignetting pattern of the
camera, the darkening near the edges of images and lenslets. White images are mea-
sured by taking an image of an evenly-illuminated white surface, by taking an image
through a diffuser, or by using a specialized tool like an internally illuminated inte-
grating sphere. The toolbox uses these images to correct for vignetting and to build a
grid representing the locations of lenslet centers.

Each Lytro camera comes preloaded with a unique set of white images correspond-
ing to a variety of zoom and focus settings. When decoding a light field picture, the
white image is selected which most closely matches the zoom and focus settings of the
camera when it took the picture. The white images can be extracted from the Lytro
files following the instructions in Sect. A.1.

Before decoding light field pictures, the white images must be analyzed. This
builds a series of grid models, one per white image, and a database listing available
images. This only needs to be done once per camera, and the utility function LFUtil-
ProcessWhiteImages automates the process.

For each picture to decode, a white image appropriate to that picture is selected
based on the camera serial number and zoom and focus settings. The white image and
raw lenslet image are passed to a decoding function which builds the 4D light field.
The function LFSelectFromDatabase selects the appropriate white image for a light
field, and is used by LFLytroDecodeImage.

21

The following sections describe this workflow in more detail, and assumes that you
have extracted the white images and copied light fields into a folder structure similar
to that used in the quick tour, above. See Appendix A for details on dealing with the
Lytro files.

4.1 Analyzing White Images
Each white image needs to be analyzed once in order to match a grid model to the
lenslet locations. The utility LFUtilProcessWhiteImages builds a grid model for each
white image in your white image folder. If you wish to store your white images in
a structure other than the default, change the WhiteImageDatabasePath variable in
LFUtilProcessWhiteImages to point to your white images folder, or use the function
argument FileOptions.WhiteImageDatabasePath.

In the F01 camera, the white images come in two exposure levels. Only the brighter
of the two is used by this toolbox. The set of white images also generally includes
some very dark images. These are not ignored by the toolbox.

As LFUtilProcessWhiteImages steps through the white images, it saves the grid
models as .grid.json files in the white images folder. It simultaneously builds a
database keeping track of the serial number, zoom and focus settings associated with
each white image. It saves this as WhiteFileDatabase.mat. This is utilized by the
function LFSelectFromDatabase to select the white image appropriate for decoding a
given light field picture.

4.2 Decoding a Lenslet Image
The decode procedure is demonstrated in LFLytroDecodeImage. This script first loads
a lenslet image and associated metadata, selects the appropriate white image using
LFSelectFromDatabase, then passes the lenslet image, metadata and white image to
LFDecodeLensletImageSimple, which handles the bulk of the work.

LFSelectFromDatabase selects the appropriate white image based on serial num-
ber, zoom and focus settings. Presently zoom is prioritized over focus, though whether
this is the optimal approach is an open question.

LFDecodeLensletImageSimple proceeds as described in [1] to decode the light field.
This involves demosaicing, devignetting, transforming and slicing the input lenslet
image to yield a 4D structure. More sophisticated approaches exist which combine
steps into joint solutions, and they generally yield superior results, particularly near
the edges of lenslets. The approach taken here was chosen for its simplicity and
flexibility.

Some of the specifics of the decode process can be controlled, see the help text for
the above functions.

4.3 Structure of the Decoded Light Field
A light field is fundamentally a four-dimensional structure. Roughly speaking, each
pixel corresponds to a ray, and two dimensions define that ray’s position, while the
other two define its direction. In the case of the the images measured by a lenslet-
based camera such as the Lytro, two dimensions select a lenslet image, and two select
a pixel within that lenslet’s image. By the convention followed in [1], the lenslet is
indexed by the pair k, l (k is horizontal), and the pixel within the lenslet is indexed by
i, j (i is horizontal). When it is clear that discrete indices are being discussed, these

22

are often referred to using their continuous-domain equivalents, s, t for i, j, and u, v
for k, l.

The Lytro F01’s lenslets each yield approximately 9 × 9 useful pixels, and so the
output of LFUtilDecodeLytroFolder has a size approximately 9 in i and j. Similarly,
after removing the hexagonal sampling associated with the hexagonal lenslet array,
the Lytro imagery yields approximately 380 pixels in both k and l. The Illum has
more lenslets and more pixels per lenslet. The actual number of samples in a light
field depends on how the lenslet grid is aligned with the sensor, and can vary by a few
samples between cameras.

Examining the output of LFDecodeLensletImageSimple, we see that it yields a
light field LF which is a 5D array of size around 9 × 9 × 380 × 380 × 3. As discussed in
Sect. 2, the indexing order for LF is j, i, l, k, c, where c is the RGB colour channel.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 12: Light field for Sample 1 and its associated weight channel viewed in
the i and j dimensions.

To examine a slice through the k and l dimensions, you might use the command
imshow(squeeze(LF(5,5,:,:,:))), yielding a view from the center of the i and j
dimensions similar to the output of LFDisp(LF). To examine a slice through the i and j
dimensions, you might use the command imshow(squeeze(LF(:,:,380/2,380/2,:))),
with an output similar to that shown in Fig. 12. Notice this shows the shape of the
image under a lenslet, with darkened corner pixels that contain little or no information.
See Sect. 3.2 for more ways of displaying light fields.

LFDecodeLensletImageSimple provides a weight channel LFWeight, which repre-
sents the confidence associated with each pixel. A slice in i and j of such a channel is
shown in Fig. 12. The weight channel is useful in filtering applications which accept a
weighting term.

Note that LFLytroDecodeImage tacks the weight channel onto the variable LF to
yield a four-channel structure, and it is in this four-channel format that LFUtilDecode-
LytroFolder saves light fields. This is a convenient format for the light field, as the
weight channel is often useful in processing light fields. LFHistEqualize, for example,
uses this channel to ignore zero-weight pixels.

23

To work with a light field without the weight channel – for example to visualize
slices – simply index the first three channels, as in
imshow(squeeze(LF(5,5,:,:,1:3))).

5 Calibration in Detail
LFUtilCalLensletCam progresses through the following calibration stages:

Checkerboard corner identification. Corner finding is the most time-consuming
step, especially for dense checkerboards. First the zoom and focus settings of all the
input images are compared, and a warning message is displayed if any of them differ.
Next corners are automatically located in 2D slices of the checkerboard light fields.
Output resembling that shown on the right in Fig. 9 allows visual confirmation that
the extracted corners are sensible. It is normal that not all sub-images will have
all corners successfully identified, due to vignetting and bleedthrough between lenslet
images. Checkerboard corners for each image are stored in *_CheckerCorners.mat
files alongside each input file.

Initialization of pose and intrinsic parameters. This begins by summarizing the
checkerboard corner information into a single file at the top level of the calibration,
Cameras/A000424242/PlenCalSmallExample/CheckerboardCorners.mat. Initial pose
and intrinsic estimates are then computed and stored at the same level, in the cali-
bration info file CalInfo.json.

Optimization without distortion. Intrinsics and poses are optimized, and the
results are saved to CalInfo.json. The pose estimate display is updated with the new
pose estimates. The text display shows the progress of the optimization, including the
RMSE before and after each stage of the optimization. Each optimization stage also
shows a Matlab-generated optimization display, showing first-order optimality – see
Matlab’s documentation for more on this.

Optimization with distortion. This completes the camera model by including
lens distortion. Again the pose estimate display and text output are updated.

Refinement. This simply repeats optimization with distortion to further refine
the camera model and pose estimates.

5.1 Calibration Results
The calibration results are stored in the calibration information file, CalInfo.json.
The calibrated estimates are described in detail in [1], and include:

• Lenslet grid model: describes the rotation, spacing and offset of the lenslet
images on the sensor.

• Plenoptic intrinsic model: a 5 × 5 matrix H relating a pixel index n =
[i, j, k, l, 1]T to an undistorted ray φu = [s, t, u, v, 1]T, following φu = Hn. As
described in Sect. 2, the intrinsic model follows a relative two-plane parameter-
ization with plane separation D = 1m.

• Distortion parameters: describe radial distortion in ray direction, employing
the small angle assumption such that θ = [θ1, θ2] ≈ [dx/dz, dy/dz] for each ray.
The five distortion parameters are b = [bs, bt] and k = [k1..3], where b captures
decentering and k are radial distortion coefficients. The complete distortion
vector is in the order d = [b,k]. If θu and θd are the undistorted and distorted

24

2D ray directions, respectively, then
θd = (1 + k1r

2 + k2r
4 + · · ·)

(
θu − b

)
+ b, r =

√
θ2

s + θ2
t .

Toolbox v0.4 and earlier incorrectly employed as the third polynomial term k3r
8.

As of v0.5 this has been corrected to k3r
6.

Because the lenslet grid model forms part of the calibration, it is crucial that light
fields to which a calibration is applied be decoded with the same grid parameters used
during the calibration process. The software performs a rudimentary check and raises
a warning if the lenslet grid model used to rectify a light field differs significantly from
that used to decode it.

5.2 Rectification Results
Finding the ray to which a light field sample corresponds in an unrectified light field
is relatively complex, requiring application of both the intrinsic matrix and distortion
model. Once a light field is rectified, however, the rectified light field’s intrinsic matrix
directly relates samples to rays, as in φ = Hn. The rectified intrinsic matrix is saved
in each rectified light field as RectOptions.RectCamIntrinsicsH.

As a simple example, for the small calibration example dataset,
n = [1,1,1,1,1]';
p = RectOptions.RectCamIntrinsicsH * n;

Results in the ray p = [0.0015, 0.0015,−0.34,−0.34, 1]T. Similarly,
n = [5, 5, 190.5, 190.5, 1]′ yields the ray p = [0, 0, 0, 0, 1]T, because this n corresponds
to the center of the sampled light field (recall the light field size is 9 × 9 × 380 × 380),
and so corresponds to the central ray.

5.3 Controlling Rectification
Rectification accepts as an optional parameter the desired intrinsics of the rectified
light field – i.e. you can specify the value you want in RectOptions.RectCamIntrinsicsH.
By default the calibrated intrinsic matrix takes on a conservative value yielding square
pixels in s, t and in u, v. You may wish to change this if, for example, non-square pixels
are desired.

LFCalDispRectIntrinsics is a helper function for building this matrix. The recom-
mended usage pattern is to load a light field, call LFCalDispRectIntrinsics once to set
up the default intrinsic matrix, manipulate the matrix, then visualize the manipulated
sampling pattern prior to employing it in one or more rectification calls. Assuming
IMG_001 has been decoded but not rectified, a typical process might look like this:
load('Images/IMG_0001__Decoded.mat');
RectOptions = ...
LFCalDispRectIntrinsics(LF, LFMetadata, RectOptions);

this loads the light field then sets up the default intrinsic matrix, generating a display
showing the sampling pattern, as in Fig. 13.

If we wanted to sample closer to the horizontal u edges of this light field and work
with non-square pixels, we could increase H(3, 3), as in:
RectOptions.RectCamIntrinsicsH(3,3) = ...
1.1 * RectOptions.RectCamIntrinsicsH(3,3);

RectOptions.RectCamIntrinsicsH = LFRecenterIntrinsics(...
RectOptions.RectCamIntrinsicsH, size(LF));

LFCalDispRectIntrinsics(LF, LFMetadata, RectOptions);

25

This increases the extent of the samples along u, then re-centers the sampling via
LFRecenterIntrinsics, then displays the resulting sampling pattern, as shown in Fig. 13.

Finally, the appropriate call to LFUtilDecodeLytroFolder will rectify multiple light
fields with the requested intrinsic matrix:
DecodeOptions.OptionalTasks = 'Rectify';
LFUtilDecodeLytroFolder([], [], DecodeOptions, RectOptions);

Note that the same matrix can be applied to any light field, but that the resulting
sampling pattern will differ for different cameras and focus / zoom settings. Fig. 14
shows the result of applying the example rectifications from Fig. 13 – note that more
of the recorded imagery is visible in the second image, but its non-square pixels must
be accounted for in subsequent processing steps.

26

Figure 13: The default and adjusted sampling patterns. Here the sampling
pattern has been stretched horizontally, incorporating more of the measured
image, but yielding rectangular pixels. The following figure shows the result of
applying each of these.

27

Figure 14: Rectification applied with the default and adjusted sampling patterns
described in the previous figure.

28

Appendix A Working with Lytro Files
A.1 Extracting White Images
Every camera has a unique database of white images needed in decoding. On Windows
machines, the white image data is found in a folder of the form
<drive_letter>:\Users\<username>\AppData\Local\Lytro\cameras\ ...

sn-<serial_number>

while on a MAC, the relevant location is (on Mac OS 10.10.2 running Lytro Desktop
4.1.2)
/Users/<username>/Library/Application Support/Lytro/cameras/sn-<serial_number>

note that for previous versions of the MAC software these files were stored at
/Users/<username>/Lytro.lytrolib/cameras/sn-<serial_number>

A concrete example on a Windows machine is
C:\Users\Bob\AppData\Local\Lytro\cameras\sn-A000424242

The Lytro Illum can save its white images in a compressed file on its SDCard
as part of the “pairing process” – see the Lytro literature on creating this “Pairing
Data”. The data folder or pairing data file contain files named data.C.0, data.C.1
and so on. These are in a Lytro-specific storage format, and can be unpacked using
LFUtilUnpackLytroArchive.

For example, after uncompressing the pairing data or copying the contents of the
data folder into Cameras/<YourSerial>/WhiteImages, run LFUtilUnpackLytroArchive
from the top of the Samples folder. The function will by default search the Cameras
folder for all archives and unpack them.

Of the resulting extracted files, those we are interested in have names like
MOD_0000.RAW
MOD_0000.TXT
MOD_0001.RAW
MOD_0001.TXT
...

The raw files are white images corresponding to a variety of zoom and focus set-
tings, while the txt files contain the metadata we require to sort out which is which.
The other files contain a wealth of information about your Lytro, but are not utilized
in this revision of the toolbox. Once unpacked, you may safely remove the copied
data.C.* files.

A.2 Locating Picture Files
The toolbox can read Lytro LFP files directly using the function LFReadLFP. The
toolbox is also compatible with .raw files extracted using an external LFP tool.

Lytro Desktop version 4 and higher make it easy to find LFP files, as they are
stored in your operating system’s default Pictures folder – look for a folder of the form
My Pictures/Lytro Desktop/Libraries/Lytro Library.lytrolibrary/. The pic-
ture library takes on a complex directory structure, with many sub-folders. You may
copy this structure directly into your working folder – the toolbox will recursively
search sub-folders when decoding light fields.

The desktop software can also export light fields to a location of your choice.

29

If working with an Illum, you may copy the files straight off the camera, as it
directly exposes its file system over USB.

If you’re running an older versions of the Lytro Desktop software, Lytro picture
files may be found in an images folder alongside the cameras folder where the white
images are stored. i.e. on a Windows machine the default location is
<drive_letter>:\Users\<username>\AppData\Local\Lytro\images*

and on a MAC it’s
/Users/<username>/Lytro.lytrolib/images/*

where the ‘*’ at the end takes on numerical values, like 01, 02 and so on.

A.2.1 LFP, LFR, lfp or lfr?
The Lytro LFP is a container format, and may contain one of several types of data. The
files containing light fields are generally obvious based on their size – about 16 MBytes
for the F01, and 55 MBytes for the Illum. The file extension varies based on the source
of the files, with exported files, on-camera files and image library files variously taking
on the four variants of extension shown in this section’s heading.

By default, LFUtilDecodeLytroFolder recursively searches for files with any of
these extensions, as well as the raw files employed by previous toolbox versions, and
decodes anything it can make sense of. Focal stacks and other files are also stored as
.lfp files, and LFUtilDecodeLytroFolder will ignore these files.

A.2.2 Thumbnails
Thumbnails are built into some LFP files. The function LFUtilExtractLFPThumbs
extracts thumbnails and saves them to disk.

30

Appendix B Upgrading from 0.4
There have been minor performance improvements to how white images are analyzed
to build grid files, and to how calibration distortion parameters get applied.

For those not using calibration or rectification, no action is required. Re-doing
white image analysis will result in a small improvement in decoded light field quality.

Users employing calibration / rectification should not use previously generated
calibration files with the new toolbox, and should reprocess their calibrations.

B.1 Reprocessing White Images
LFUtilProcessWhiteImages fits a grid to each of the white images in the Cameras
folder. To force it to redo this process, pass in a FileOptions parameter with the
ForceRedo field set to true. Alternatively, delete all the .grid.mat files and the
WhiteImageDatabase.mat file in the Cameras folder, then run white image analysis.

After new grid models are generated, every future image decode will benefit from
the improved grid fit.

B.2 Reprocessing Calibrations
It is not recommended to rectify files using calibrations built using earlier toolbox
versions, as interpretation of distortion parameters has changed.

First, reprocess white images as above, and re-decode calibration files, to benefit
from the improved grid fit. Then, remove CalibrationDatabase.mat, and either use
function parameters to force the calibration to redo previously complete steps, or delete
generated files and re-run calibration. The relevant parameters to LFUtilCalLenslet-
Cam are CalOptions.ForceRedoCornerFinding and CalOptions.ForceRedoInit. Or,
if removing files, the relevant files to remove are CheckerboardCorners.mat,
CalInfo.json, and *__CheckerCorners.mat.

Once complete, run LFUtilProcessCalibrations.

31

Appendix C Function Reference
This is a partial list of top-level functions organized by task. See also
help <LFToolbox top folder name>

for a more complete list. Refer to the documentation in each function for further in-
formation. The SupportFunctions folder contains additional functions used internally
by the toolbox.

Decoding

LFLytroDecodeImage
Decode a Lytro image from an LFP or raw file. Can be called directly to
decode a single image into memory, or called indirectly through LFUtilDe-
codeLytroFolder.

LFUtilDecodeLytroFolder
Utility for decoding, colour correcting and rectifying Lytro imagery. Can
process multiple light fields; recursively searches folder structures; accepts
filename specifications including wildcards. Selects appropriate white images
and calibration files from multiple cameras across multiple zoom and focus
settings. Will incrementally apply operations to files so that, for example,
previously-decoded light fields can be incrementally colour-corrected, rectified
or both without needing to repeat operations. Results are saved to disk. See
Figs. 2, 4 and 11 for example output.
Demonstrates LFLytroDecodeImage, LFColourCorrect, LFHistEqualize, and
LFCalRectifyLF.
Decoding relies on a white image database having been constructed by
LFUtilProcessWhiteImages, and rectification similarly relies on a calibration
database having been created by LFUtilProcessCalibrations.

LFUtilProcessWhiteImages
Processes a folder populated with white images, generating a grid model
(.grid.json) for each, and a white image database (WhiteFileDatabase.mat)
used to select the white image appropriate to a light field. Dark images are
detected and skipped.

32

Filtering

LFBuild2DFreqFan
Construct a 2D fan filter in the frequency domain. Apply this filter with
LFFilt2DFFT.

LFBuild2DFreqLine
Construct a 2D line filter in the frequency domain. The cascade of two line
filters, applied in s,u and in t,v, is identical to a 4D planar filter, e.g. that
constructed by LFBuild4DFreqPlane. Apply this filter with LFFilt2DFFT.

LFBuild4DFreqDualFan
Construct a 4D dual-fan filter in the frequency domain. Apply this filter with
LFFilt4DFFT.

LFBuild4DFreqHypercone
Construct a 4D hypercone filter in the frequency domain. Apply this filter
with LFFilt4DFFT.

LFBuild4DFreqHyperfan
Construct a 4D hyperfan filter in the frequency domain. This is useful for
selecting objects over a range of depths from a lightfield, i.e. volumetric focus.
Apply this filter with LFFilt4DFFT.

LFBuild4DFreqPlane
Construct a 4D plane filter in the frequency domain. This is useful for se-
lecting objects at a single depth from a lightfield, and is similar in effect to
refocus using, for example, the shift sum filter LFFiltShiftSum. Apply this
filter with LFFilt4DFFT.

LFDemoBasicFiltLytroF01
Demonstrates some of the basic filters on Lytro F01-captured imagery.

LFDemoBasicFiltIllum
Demonstrates some of the basic filters on Lytro Illum-captured imagery.

LFDemoBasicFiltGantry
Demonstrates some of the basic filters on Stanford light field archive light
fields.

LFDemoRefocusSuperres NEW

Demonstrates linear refocus-based super-resolution, see Sect. 3.5.1.

LFFilt2DFFT
Applies a 2D frequency-domain filter to a 4D light field using the FFT.

LFFilt4DFFT
Applies a 4D frequency-domain filter using the FFT.

LFFiltShiftSum
The shift sum filter is a spatial-domain depth-selective filter, with an effect
similar to planar focus. NEW: Use the UpsampRate parameter for linear
refocus super-resolution.

33

Image Adjustment

LFColourCorrect
Applies a colour balance vector, an RGB colour correction matrix, and gamma
correction. Usage is demonstrated in LFUtilDecodeLytroFolder.

LFHistEqualize
Adjusts the brightness of a light field based on histogram stretching. Capable
of handling colour and monochrome images – colour images are converted to
HSV, and the value channel is equalized. Capable of handling different input
dimensionalities including 2D images and 4D light fields. If a weight channel
is present as a fourth colour channel, it is used to ignore zero-weight pixels.
Usage is demonstrated in LFUtilDecodeLytroFolder.

34

Visualization

LFDisp
Convenience function to display a static, 2D slice of a light field. The center-
most image is taken in s and t. Also works with 3D arrays of images and 2D
images. Can be nested as demonstrated in Sect. 3.2.

LFDispLawnmower NEW

Similar to LFDispVidCirc, but visits every light field view in sequence follow-
ing horizontal and vertical lawnmower patterns.

LFDispMousePan
Interactively display 2D slices of the light field with a parallax effect. Click
and drag in the image to change the point of view. An optional parameter
controls the display size. Note that darkening at the edges of lenslet-based
light fields mean that the effect is best near the center of the spatial range.

LFDispProj NEW

Displays the light field by projecting it onto a plane.

LFDispProjSubfigs NEW

Uses LFDispProj to display six different projections of the light field.

LFDispTiles NEW

Displays the light field as a 2D tiling of 2D images.

LFDispTilesSubfigs NEW

Uses LFDispTiles to display six different tilings of the light field.

LFDispVidCirc
Animated display showing 2D slices of the light field, similar to LFDisp-
MousePan except the motion is preset to a circular path. Optional parame-
ters include the radius of the circular path, animation speed, and display size.

LFFigure
Replacement for Matlab’s “figure” which doesn’t steal focus, originally sfigure
by Daniel Eaton.

35

Calibration

LFCalDispEstPoses
Visualize camera pose estimates. Called by LFUtilCalLensletCam.

LFCalDispRectIntrinsics
Helper for setting up and visualizing intrinsics requested in rectification, see
also LFRecenterIntrinsics.

LFCalRectifyLF
Applies a calibration to rectify a light field. The desired intrinsic matrix
can be provided, or computed automatically from the calibrated intrinsics.
Demonstrated by LFUtilDecodeLytroFolder.

LFRecenterIntrinsics
Recenters a light field intrinsic matrix, useful for modifying intrinsics re-
quested in LFCalRectifyLF, see LFCalDispRectIntrinsics.

LFUtilCalLensletCam
Runs through all the steps of a lenslet-based camera calibration.

LFUtilProcessCalibrations
Builds a database of calibrations to allow selection of the appropriate calibra-
tion for a given light field.

36

File I/O

LFFindFilesRecursive
Recursively searches a folder for files matching one or more patterns. Re-
fer to this to understand the path parameters to LFUtilDecodeLytroFolder,
LFUtilExtractLFPThumbs and LFUtilUnpackLytroArchive.

LFReadESLF NEW

Reads ESLF light field images, as generated by the Lytro Power Tools.

LFReadGantryArray
Loads gantry-style light fields, e.g. the Stanford gantry light fields found at
http://lightfield.stanford.edu.

LFReadLFP
Reads Lytro lfp/lfr light field files.

LFReadMetadata
Reads json files.

LFReadRaw
Reads 10, 12 and 16-bit raw image files.

LFWriteESLF NEW

Writes ESLF light field images.

LFWriteMetadata
Writes json files.

Utility / Convenience

LFConvertToInt NEW

Converts to uint8 or uint16, with automatic scaling.

LFConvertToFloat
Converts to single or double, with automatic scaling.

LFMatlabPathSetup
Sets up the Matlab path to include the LF Toolbox. This must be re-run
every time Matlab restarts, so consider adding a line to startup.m as shown
in Sect. 1.

LFUtilUnpackLytroArchive
Extracts white images and other files from a multi-volume Lytro archive.

LFUtilExtractLFPThumbs
Extracts thumbnails from LFP files and writes them to disk.

37

http://lightfield.stanford.edu

	Installation
	Installing the Toolbox
	Downloading Samples
	Additional Resources

	Conventions
	Optional Function Arguments
	Struct Arguments
	Continuous vs Discrete Indices

	Light Field Indexing
	Colour Channels

	Two-Plane Parameterization

	A Quick Tour
	Working with Lytro Light Fields
	Decoding? Calibration? Rectification?
	Decoding the Samples
	Rectifying the Samples
	Using a Different Folder Structure

	Displaying Light Fields
	Loading Gantry-style Light Fields
	Working with ESLF Files
	Reading ESLF Files
	Writing ESLF Files

	Basic Filters
	Linear Refocus Super-Resolution

	Running the Small Sample Calibration
	Calibrating
	Validating
	Cleaning Up and Validating

	Beyond the Samples:Working with Your Own Light Fields
	Calibrating the Illum

	Decoding in Detail
	Analyzing White Images
	Decoding a Lenslet Image
	Structure of the Decoded Light Field

	Calibration in Detail
	Calibration Results
	Rectification Results
	Controlling Rectification

	Appendices
	Appendix Working with Lytro Files
	Extracting White Images
	Locating Picture Files
	LFP, LFR, lfp or lfr?
	Thumbnails

	Appendix Upgrading from 0.4
	Reprocessing White Images
	Reprocessing Calibrations

	Appendix Function Reference

