

The .NET Compiler Platform (“Roslyn”)

Getting Started: Syntax Transformation

March 2014

Prerequisites
 Getting Started: Syntax Analysis

 Getting Started: Semantic Analysis

 Visual Studio 2013

 “Roslyn” End User Preview

 “Roslyn” SDK Project Templates

Introduction
This walkthrough builds on concepts and techniques explored in the Getting Started: Syntax Analysis

and Getting Started: Semantic Analysis walkthroughs. If you haven’t already, it’s strongly advised that

you complete those walkthroughs before beginning this one.

In this walkthrough, you’ll explore techniques for creating and transforming syntax trees. In combination

with the techniques you learned in previous Getting Started walkthroughs, you will create your first

command-line refactoring!

Immutability and the .NET Compiler Platform
A fundamental tenet of the .NET Compiler Platform is immutability. Because immutable data structures

cannot be changed after they are created, they can be safely shared and analyzed by multiple

consumers simultaneously without the dangers of one tool affecting another in unpredictable ways. No

locks or other concurrency measures needed. This applies to syntax trees, compilations, symbols,

semantic models, and every other data structure you’ll encounter. Instead of modification, new objects

are created based on specified differences to the old ones. You’ll apply this concept to syntax trees to

create tree transformations!

Creating and “Modifying” Trees

Creating Nodes with Factory Methods
To create SyntaxNodes you must use the SyntaxFactory class factory methods. For each kind of node,

token, or trivia there is a factory method which can be used to create an instance of that type. By

composing nodes hierarchically in a bottom-up fashion you can create syntax trees.

Example – Creating a SyntaxNode using Factory Methods

This example uses the SyntaxFactory class methods to construct a NameSyntax representing the

System.Collections.Generic namespace.

NameSyntax is the base class for four types of names that appear in C#:

 IdentifierNameSyntax which represents simple single identifier names like System and

Microsoft

 GenericNameSyntax which represents a generic type or method name such as List<int>

 QualifiedNameSyntax which represents a qualified name of the form <left-name>.<right-

identifier-or-generic-name> such as System.IO

 AliasQualifiedNameSyntax which represents a name using an assembly extern alias such a

LibraryV2::Foo

By composing these names together you can create any name which can appear in the C# language.

1) Create a new C# Roslyn Console Application project.

 In Visual Studio, choose File -> New -> Project… to display the New Project dialog.

 Under Visual C# -> Roslyn, choose “Console Application”.

 Name your project “ConstructionCS” and click OK.

2) Add the following using directive to the top of the file to import the factory methods of the

SyntaxFactory class so that we can use them later without qualifying them:

using Microsoft.CodeAnalysis.CSharp.SyntaxFactory;

3) Move your cursor to the line containing the closing brace of your Main method and set a

breakpoint there.

 In Visual Studio, choose Debug -> Toggle Breakpoint.

4) Run the program.

 In Visual Studio, choose Debug -> Start Debugging.

5) First create a simple IdentifierNameSyntax representing the name of the System namespace

and assign it to a variable. As you build up a QualifiedNameSyntax from this node you will reuse

this variable so declare this variable to be of type NameSyntax to allow it to store both types of

SyntaxNode – DO NOT use type inference:

 NameSyntax name = IdentifierName("System");

6) Set this statement as the next statement to be executed and execute it.

 Right-click this line and choose Set Next Statement.

 In Visual Studio, choose Debug -> Step Over, to execute this statement and initialize the

new variable.

 You will need to repeat this process for each of the following steps as we introduce new

variables and inspect them with the debugger.

7) Open the Immediate Window.

 In Visual Studio, choose Debug -> Windows -> Immediate.

8) Using the Immediate Window type the expression name.ToString() and press Enter to evaluate

it. You should see the string “System” as the result.

9) Next, construct a QualifiedNameSyntax using this name node as the left of the name and a new

IdentifierNameSyntax for the Collections namespace as the right side of the

QualifiedNameSyntax:

 name = QualifiedName(name, IdentifierName("Collections"));

10) Execute this statement to set the name variable to the new QualifiedNameSyntax node.

11) Using the Immediate Window evaluate the expression name.ToString(). It should evaluate to

“System.Collections”.

12) Continue this pattern by building another QualifiedNameSyntax node for the Generic

namespace:

 name = QualifiedName(name, IdentifierName("Generic"));

13) Execute this statement and again use the Immediate Window to observe that name.ToString()

now evaluates to the fully qualified name “System.Collections.Generic”.

Modifying Nodes with With* and ReplaceNode Methods
Because the syntax trees are immutable, the Syntax API provides no direct mechanism for modifying an

existing syntax tree after construction. However, the Syntax API does provide methods for producing

new trees based on specified changes to existing ones. Each concrete class that derives from

SyntaxNode defines With* methods which you can use to specify changes to its child properties.

Additionally, the ReplaceNode extension method can be used to replace a descendent node in a

subtree. Without this method updating a node would also require manually updating its parent to point

to the newly created child and repeating this process up the entire tree – a process known as re-spining

the tree.

Example – Transformations using the With* and ReplaceNode methods.

This example uses the WithName method to replace the name in a UsingDirectiveSyntax node with the

one constructed above.

1. Continuing from the previous example above, add this code to parse a sample code file:

 SyntaxTree tree = CSharpSyntaxTree.ParseText(

@"using System;

using System.Collections;

using System.Linq;

using System.Text;

namespace HelloWorld

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine(""Hello, World!"");

 }

 }

}");

 var root = (CompilationUnitSyntax)tree.GetRoot();

 Note that the file uses the System.Collections namespace and not the

System.Collections.Generic namespace.

2. Execute these statements.

3. Create a new UsingDirectiveSyntax node using the UsingDirectiveSyntax.WithName method to

update the “System.Collections” name with the name we created above:

 var oldUsing = root.Usings[1];

 var newUsing = oldUsing.WithName(name);

4. Using the Immediate Window evaluate the expression root.ToString() and observe that the

original tree has not been changed to contain this new updated node.

5. Add the following line using the ReplaceNode extension method to create a new tree, replacing

the existing import with the updated newUsing node, and store the new tree in the existing root

variable:

 root = root.ReplaceNode(oldUsing, newUsing);

6. Execute this statement.

7. Using the Immediate Window evaluate the expression root.ToString() this time observing that

the tree now correctly imports the System.Collections.Generic namespace.

8. Stop the program.

 In Visual Studio, choose Debug -> Stop debugging.

9. Your Program.cs file should now look like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Microsoft.CodeAnalysis;

using Microsoft.CodeAnalysis.CSharp;

using Microsoft.CodeAnalysis.CSharp.Syntax;

using Microsoft.CodeAnalysis.CSharp.SyntaxFactory;

namespace ConstructionCS

{

 class Program

 {

 static void Main(string[] args)

 {

 NameSyntax name = IdentifierName("System");

 name = QualifiedName(name, IdentifierName("Collections"));

 name = QualifiedName(name, IdentifierName("Generic"));

 SyntaxTree tree = CSharpSyntaxTree.ParseText(

@"using System;

using System.Collections;

using System.Linq;

using System.Text;

namespace HelloWorld

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine(""Hello, World!"");

 }

 }

}");

 var root = (CompilationUnitSyntax)tree.GetRoot();

 var oldUsing = root.Usings[1];

 var newUsing = oldUsing.WithName(name);

 root = root.ReplaceNode(oldUsing, newUsing);

 }

 }

}

Transforming Trees using SyntaxRewriters
The With* and ReplaceNode methods provide convenient means to transform individual branches of a

syntax tree. However, often it may be necessary to perform multiple transformations on a syntax tree in

concert. The SyntaxRewriter class is a subclass of SyntaxVisitor which can be used to apply a

transformation to a specific type of SyntaxNode. It is also possible to apply a set of transformations to

multiple types of SyntaxNode wherever they appear in a syntax tree. The following example

demonstrates this in a naïve implementation of a command-line refactoring which removes explicit

types in local variable declarations anywhere where type inference could be used. This example makes

use of techniques discussed in this walkthrough as well as the Getting Started: Syntactic Analysis and

Getting Started: Semantic Analysis walkthroughs.

Example – Creating a SyntaxRewriter to transform syntax trees.

1) Create a new C# Roslyn Console Application project.

 In Visual Studio, choose File -> New -> Project… to display the New Project dialog.

 Under Visual C# -> Roslyn, choose “Console Application”.

 Name your project “TransformationCS” and click OK.

2) Insert the following using directive at the top of your Program.cs file:

using System.IO;

using Microsoft.CodeAnalysis;

using Microsoft.CodeAnalysis.CSharp;

3) Add a new class file to the project.

 In Visual Studio, choose Project -> Add Class…

 In the "Add New Item" dialog type TypeInferenceRewriter.cs as the filename.

4) Add the following using directives.

using Microsoft.CodeAnalysis;

using Microsoft.CodeAnalysis.CSharp;

using Microsoft.CodeAnalysis.CSharp.Syntax;

5) Make the TypeInferenceRewriter class extend the CSharpSyntaxRewriter class:

 public class TypeInferenceRewriter : CSharpSyntaxRewriter

 {

6) Add the following code to declare a private read-only field to hold a SemanticModel and initialize it

from the constructor. You will need this field later on to determine where type inference can be

used:

 private readonly SemanticModel SemanticModel;

 public TypeInferenceRewriter(SemanticModel semanticModel)

 {

 this.SemanticModel = semanticModel;

 }

7) Override the VisitLocalDeclarationStatement method:

 public override SyntaxNode VisitLocalDeclarationStatement(

 LocalDeclarationStatementSyntax node)

 {

 }

 Note that the VisitLocalDeclarationStatement method returns a SyntaxNode, not

LocalDeclarationStatementSyntax. In this example you’ll return another

LocalDeclarationStatementSyntax node based on the existing one. In other scenarios one

kind of node may be replaced by another kind of node entirely – or even removed.

8) For the purpose of this example you’ll only handle local variable declarations, though type inference

may be used in foreach loops, for loops, LINQ expressions, and lambda expressions. Furthermore

this rewriter will only transform declarations of the simplest form:

Type variable = expression;

The following forms of variable declarations in C# are either incompatible with type inference or left

as an exercise to the reader 

// Multiple variables in a single declaration.

Type variable1 = expression1,

 variable2 = expression2;

// No initializer.

Type variable;

9) Add the following code to the body of the VisitLocalDeclarationStatement method to skip rewriting

these forms of declarations:

 if (node.Declaration.Variables.Count > 1)

 {

 return node;

 }

 if (node.Declaration.Variables[0].Initializer == null)

 {

 return node;

 }

 Note that returning the node parameter unmodified results in no rewriting taking place for

that node.

10) Add these statements to extract the type name specified in the declaration and bind it using the

SemanticModel field to obtain a type symbol.

 VariableDeclaratorSyntax declarator = node.Declaration.Variables.First();

 TypeSyntax variableTypeName = node.Declaration.Type;

 ITypeSymbol variableType =

 (ITypeSymbol)SemanticModel.GetSymbolInfo(variableTypeName)

 .Symbol;

11) Now, add this statement to bind the initializer expression:

 TypeInfo initializerInfo =

 SemanticModel.GetTypeInfo(declarator

 .Initializer

 .Value);

12) Finally, add the following if statement to replace the existing type name with the var keyword if the

type of the initializer expression matches the type specified:

 if (variableType == initializerInfo.Type)

 {

 TypeSyntax varTypeName =

 SyntaxFactory.IdentifierName("var")

 .WithLeadingTrivia(

 variableTypeName.GetLeadingTrivia())

 .WithTrailingTrivia(

 variableTypeName.GetTrailingTrivia());

 return node.ReplaceNode(variableTypeName, varTypeName);

 }

 else

 {

 return node;

 }

 Note that this conditional is required because if the types don’t match the declaration may

be casting the initializer expression to a base class or interface. Removing the explicit type in

these cases would change the semantics of a program.

 Note also that var is specified as an identifier rather than a keyword because var is a

contextual keyword.

 Note that the leading and trailing trivia (whitespace) is transferred from the old type name

to the var keyword to maintain vertical whitespace and indentation.

 Note also that it’s simpler to use ReplaceNode rather than With* to transform the

LocalDeclarationStatementSyntax because the type name is actually the grandchild of the

declaration statement.

13) Your TypeInferenceRewriter.cs file should now look like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Microsoft.CodeAnalysis;

using Microsoft.CodeAnalysis.CSharp;

using Microsoft.CodeAnalysis.CSharp.Syntax;

using Microsoft.CodeAnalysis.CSharp.SyntaxFactory;

namespace TransformationCS

{

 public class TypeInferenceRewriter : CSharpSyntaxRewriter

 {

 private readonly SemanticModel SemanticModel;

 public TypeInferenceRewriter(SemanticModel semanticModel)

 {

 this.SemanticModel = semanticModel;

 }

 public override SyntaxNode VisitLocalDeclarationStatement(

 LocalDeclarationStatementSyntax node)

 {

 if (node.Declaration.Variables.Count > 1)

 {

 return node;

 }

 if (node.Declaration.Variables[0].Initializer == null)

 {

 return node;

 }

 VariableDeclaratorSyntax declarator = node.Declaration.Variables.First();

 TypeSyntax variableTypeName = node.Declaration.Type;

 ITypeSymbol variableType =

 (ITypeSymbol)SemanticModel.GetSymbolInfo(variableTypeName)

 .Symbol;

 TypeInfo initializerInfo =

 SemanticModel.GetTypeInfo(declarator

 .Initializer

 .Value);

 if (variableType == initializerInfo.Type)

 {

 TypeSyntax varTypeName =

 SyntaxFactory.IdentifierName("var")

 .WithLeadingTrivia(

 variableTypeName.GetLeadingTrivia())

 .WithTrailingTrivia(

 variableTypeName.GetTrailingTrivia());

 return node.ReplaceNode(variableTypeName, varTypeName);

 }

 else

 {

 return node;

 }

 }

 }

}

14) Return to your Program.cs file.

15) To test your TypeInferenceRewriter you’ll need to create a test Compilation to obtain the

SemanticModels required for the type inference analysis. You’ll do this step last. In the meantime

declare a placeholder variable representing your test Compilation:

 Compilation test = CreateTestCompilation();

16) After pausing a moment you should see an error squiggle appear reporting that no

CreateTestCompilation method exists. Press Ctrl+Period to open the smart tag and then press Enter

to invoke the Generate Method Stub command. This will generate a method stub for the

CreateTestCompilation method in Program. You’ll come back to fill this in later:

17) Next, write the following code to iterate over each SyntaxTree in the test Compilation. For each one

initialize a new TypeInferenceRewriter with the SemanticModel for that tree:

 foreach (SyntaxTree sourceTree in test.SyntaxTrees)

 {

 SemanticModel model = test.GetSemanticModel(sourceTree);

 TypeInferenceRewriter rewriter = new TypeInferenceRewriter(model);

 }

18) Lastly, inside the foreach statement you just created, add the following code to perform the

transformation on each source tree and conditionally write out the new transformed tree if any

edits were made. Remember, your rewriter should only modify a tree if it encountered one or more

local variable declarations that could be simplified using type inference:

 SyntaxNode newSource = rewriter.Visit(sourceTree.GetRoot());

 if (newSource != sourceTree.GetRoot())

 {

 File.WriteAllText(sourceTree.FilePath, newSource.ToFullString());

 }

19) You’re almost done! There’s just once step left. Creating a test Compilation. Since you haven’t been

using type inference at all during this walkthrough it would have made a perfect test case.

Unfortunately, creating a Compilation from a C# project file is beyond the scope of this walkthrough.

But fortunately, if you’ve been following instructions very carefully there’s hope. Replace the

contents of the CreateTestCompilation method with the following code. It creates a test

compilation that coincidentally matches the project described in this walkthrough:

 SyntaxTree programTree =

 CSharpSyntaxTree.ParseFile(@"..\..\Program.cs");

 SyntaxTree rewriterTree =

 CSharpSyntaxTree.ParseFile(@"..\..\TypeInferenceRewriter.cs");

 SyntaxTree[] sourceTrees = { programTree, rewriterTree };

 MetadataReference mscorlib =

 new MetadataFileReference(typeof(object).Assembly.Location);

 MetadataReference codeAnalysis =

 new MetadataFileReference(typeof(SyntaxTree).Assembly.Location);

 MetadataReference csharpCodeAnalysis =

 new MetadataFileReference(typeof(CSharpSyntaxTree).Assembly.Location);

 MetadataReference[] references = { mscorlib, codeAnalysis, csharpCodeAnalysis };

 return CSharpCompilation.Create("TransformationCS",

 sourceTrees,

 references,

 new CSharpCompilationOptions(

 OutputKind.ConsoleApplication));

20) Your Program.cs file should look like this now:

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Microsoft.CodeAnalysis;

using Microsoft.CodeAnalysis.CSharp;

namespace TransformationCS

{

 internal class Program

 {

 private static void Main()

 {

 Compilation test = CreateTestCompilation();

 foreach (SyntaxTree sourceTree in test.SyntaxTrees)

 {

 SemanticModel model = test.GetSemanticModel(sourceTree);

 TypeInferenceRewriter rewriter = new TypeInferenceRewriter(model);

 SyntaxNode newSource = rewriter.Visit(sourceTree.GetRoot());

 if (newSource != sourceTree.GetRoot())

 {

 File.WriteAllText(sourceTree.FilePath, newSource.ToFullString());

 }

 }

 }

 private static Compilation CreateTestCompilation()

 {

 SyntaxTree programTree =

 CSharpSyntaxTree.ParseFile(@"..\..\Program.cs");

 SyntaxTree rewriterTree =

 CSharpSyntaxTree.ParseFile(@"..\..\TypeInferenceRewriter.cs");

 SyntaxTree[] sourceTrees = { programTree, rewriterTree };

 MetadataReference mscorlib =

 new MetadataFileReference(typeof(object).Assembly.Location);

 MetadataReference codeAnalysis =

 new MetadataFileReference(typeof(SyntaxTree).Assembly.Location);

 MetadataReference csharpCodeAnalysis =

 new MetadataFileReference(typeof(CSharpSyntaxTree).Assembly.Location);

 MetadataReference[] references = { mscorlib, codeAnalysis, csharpCodeAnalysis };

 return CSharpCompilation.Create("TransformationCS",

 sourceTrees,

 references,

 new CSharpCompilationOptions(

 OutputKind.ConsoleApplication));

 }

 }

}

21) Cross your fingers and run the project.

 In Visual Studio, choose Debug -> Start Debugging.

22) You should be prompted by Visual Studio that the files in your project have changed. Click “Yes to

All” to reload the modified files. Examine them to observe your awesomeness 

 Note how much cleaner the code looks without all those explicit and redundant type

specifiers.

23) Congratulations! You’ve just used the Compiler APIs to write your own refactoring that searches all

files in a C# project for certain syntactic patterns, analyzes the semantics of source code that

matches those patterns, and transforms it. You’re now officially a Refactoring guru!

