Copyright © Microsoft Corporation

The Scanner Framework
This document is an overview of some algorithms that are implemented in the various source files; the comments in those files reference this document, particularly figure numbers. Any changes here should therefore be propagated to those source files.

Our brush-filled geometric shapes are 2D regions represented in terms of their boundaries. Every boundary is a collection of closed figures, and it partitions the plane into 3 classes of points: points inside the region, points outside it, and points on the boundary. Given point in the plane, we determine its containment by casting an infinite ray from the point, tallying its intersections with the boundary, and applying some fill rule. Avalon currently supports two such rules, Even/Odd and Winding.
This in/out containment query on a single point is straightforward, but some queries and constructions require much deeper analysis and processing of the boundary itself. The common theme in these applications is that they require examining the non-intersecting pieces of the boundary, identifying redundant pieces, and classifying the non-redundant pieces according to their orientation relative to the filled region. The class CScanner (defined and implemented in Scanner.cpp/h) provides a framework for implementing such algorithms.
1. Usage

Specific tasks are performed by subclasses of CScanner. The following classes are currently implemented:
· COutline (Boolean.cpp/h) computes an intersection-free outline of a shape.

· CBoolean (Boolean.cpp/h) computes the union, intersection or difference of two shapes.

· CTessellate (Tessellate.cpp/h) computes a tessellation of the shape into non-overlapping triangles.

· CArea (Area.cpp/h) computes the area of a shape.

· CRelation (Boolean.cpp/h) determines the contain/overlap/disjoint relationship between shapes.
The scanning algorithm works on polygons, so curved shapes need to be approximated by polygons (flattened) prior to scanning. The scanning algorithm works in its own workspace, so the SetWorkspaceTransofrm should be called with a valid bounding box prior to entering the geometry (otherwise CScanner will simply round the input to integers). Every figure of the input geometry is then entered by calling StartFigure, followed by a sequence of AddVertex calls terminated by EndFigure.

After the data is entered, a call to the Scan method will perform the required task.

2. Implementation
2.1. Chains

The algorithm works by scanning the polygon’s vertices in descending order. For this purpose, the order is lexicographic, by y coordinate, or by x coordinate when y coordinates are equal. We refer to this order as height. A chain is a segment of the polygon with vertices in descending height. The chain has a generic m_pTaskData pointer which is used for holding on to any additional data that it may need for the specific task.
At input time the polygon is broken into chains, and its vertices are transformed into the scanner workspace, whose coordinates span between ±226. The chains are inserted in the main chain list, sorted by the height of their head vertices. Ascending vertex sequences are constructed as chains in reverse (but their original direction is recorded).
The vertices are processed in decreasing height. The most recently processed vertex on a chain is the chain’s cursor. The next vertex down the chain is the chain’s candidate vertex. A chain becomes active when its head is encountered, and will be deactivated after its last vertex has been processed. CScanner maintains two working lists of chain references. The active chains list contains the chains that have edges at the current processing height, sorted horizontally from left to right. The candidate list contains the active chains sorted by the height of their candidate vertices.
The first (highest) vertex in a chain is its head, and the last (lowest) vertex is its tail. When any other vertex is processed, the scanner examines the edge below that vertex for intersections with its left and right neighbors in the active list. Having found an intersection, chains are split there, and the newly split chains (below the intersection) are inserted in the master list. This part of the algorithm roughly follows the Bentley-Ottman algorithm for identifying all the intersections between a given set of line segments [1]. After splitting at intersection, the task-specific virtual function ProcessCurrentVertex of the derived class is called to perform its task on the edge above that vertex.

A chain in the main list is activated by inserting it into the working lists – the active list and the candidate list – and its cursor is then placed at its head. After its tail has been processed, an active chain is removed from the working lists. If a chain is being split (at an intersection) it is removed from the candidate list and reinserted according the height of the intersection vertex, which is now the chain’s candidate (and tail) vertex.

When a vertex is picked for processing from the candidate list, we remove its chain from that list, move the cursor to the candidate, and process it at the cursor. If there is a vertex below it, it becomes the candidate, and we reinsert the chain in the candidate list according to the height of that candidate vertex. If there is no candidate vertex, we set up and process a junction there, and the chain will be deactivated after the junction is processed.

2.2. Junction
When a new chain is activated, or when the tail of an existing chain is processed, a junction is established and populated with all the chains whose heads or tails coincide with it. The former are called head-chains and the latter tail-chains. If triggered by activating a new chain then the junction’s location among the active chains is set by examining its position relative to their active edges. Neighboring chains are grabbed and added to the junction as tail-chains if their tails coincide with the junction. Additional chains are added to a junction from the master list as head-chains if their heads coinscides with the junction. The head-chains are sorted from left to right by their direction at the junction. Any pair of chains whose first edges are collinear are split at the tip of the shorter edge. The junction’s leftmost and rightmost head-chains are tested and split if they intersect with their neighbors. If the junction has no head-chains then its left and right neighbors (who will become each other’s neighbors after the junction is gone) are tested and split at if they intersect. All the new head-chains are then classified (as left, right or redundant) using a classifier object. There are currently two types of classifiers:

· The default CClassifier which classifies a single shape based on its fill rule.

· The derived CBooleanClassifier which in addition classifies the boundary of two shapes based on mutual containment of each other’s edges and marks redundant chains based on the type of Boolean operation.

Finally, the task-specific virtual function ProcessTheJunction of the derived class is called to perform its task at the junction.
2.3. Robustness
The robustness of geometric algorithms depends on correct answers for queries such as the order of intersection points along a line or the position (left-right-on) of a point relative to a line. Such queries invariably rely on comparing real numbers that are the results of computations. The scanner relies on the exact line segment intersection computation and queries defined and implemented in LineSegmentIntersection.cpp/h for achieving full robustness.
Upon input, all vertex coordinates are inflated and rounded to a grid of integers. In addition to their approximate coordinates, new vertices formed by edge intersections store all the information of the intersecting segments that formed them. Instead of comparing approximate numbers, queries on such vertices compare the expressions that define the numbers that need to be compared. The interval arithmetic package (defined and implemented in IntervalArithmetic.h) computes an interval that is guaranteed to contain the numerical result of every computation. Comparing the computation results can then be done unambiguously as long as the compared intervals are disjoint, which is most of the time. When the compared intervals do overlap, the algorithm resorts to the (much more expensive) computation done by the exact arithmetic package (defined and implemented in ExactArithmetic.cpp/h) for a definite answer.

2.4. Performance

The master, active and candidate chain lists are currently implemented as doubly linked lists. Since a doubly linked list does not support binary search, the time performance of searches and insertions is linear in list sizes. Assuming that the total number of chains (counting splits) is bounded, the time performance of the algorithm is linear in the total number of vertices. If scenarios where this assumption is no longer true will be encountered in practice, the performance of the algorithm will be need to be enhanced by implementing these lists using a data structure that supports binary search as well as insertion and deletion (e.g. AVL tree).
3. Applications

3.1. Outline
Computing the outline of a region means breaking its boundary to non-intersecting pieces, removing the redundant ones, and connecting the remaining ones into simple consistently-oriented loops. It is performed by the class COutline, defined and implemented in Boolean.cpp/h. COutline constructs instances of the class CPreFigure, which holds a linked list of chains that will eventually yield a simple figure when closed. Every chain in the list points to its pre-figure with its m_pTaskData pointer.
The implementation of ProcessCurrentVertex does nothing, and all the work is performed by the implementation of ProcessTheJunction, whose actions may be:
· Start a pre-figure with a pair of head-chains (Fig. 1)

· Continue a pre-figure by connecting a tail-chain to a head-chain (Fig. 2).

[image: image1.emf]

Figure 1

 Figure 2

· Connecting two tail chains and –

· Concatenate their pre-figures if they are distinct (Fig. 3).

· Harvest a closed figure if they belong to the same pre-figure (Fig 4).

[image: image3.emf]

[image: image4.emf]
Figure 3

 Figure 4

The decision which actions to take is based on the classification of chains (as left, right or redundant) performed by the base class, and on the counts and parity of head and tail chains at the junction. More details can be found in the Tessellation section.
3.2. Boolean Operations

The class is derived from COutline, which provides the construction of figures from the result of the Boolean operation. The only differences are in –

· Having each chain record which shape (first or second) it was created from.

· Having a second pass of classification of chains as redundant, based on their containment in the other shape and the desired Boolean operation. This overriding behavior is achieved by having CBoolean use CBooleanClassifier as its classifier.
3.3. Relationship between Shapes
The class CRelation is derived from CBoolean, overriding its ProcessTheJunction method. It essentially performs the Boolean Intersect operation, but instead of constructing the resulting geometry it merely reports the existence of an intersection once a non-redundant edge is found.
3.4. Area

The class CArea is derived from CScanner. Its implementation of ProcessCurrentVertex adds the contribution of the current edge to the total area with the appropriate sign, based on the classification of the chain as left or right. The implementation of ProcessTheJunctions just adds the contribution of last edges that may have been overlooked.

3.5. Tessellation
Tessellation is implemented by CTessellator, derived from CScanner, defined and implemented in Tessellate.cpp/h. It generates within bands, using an algorithm that is an extension of the algorithm presented in [2]. A band has two chains – left and right – and a sequence of points called ceiling connecting them. Triangles are carved between the chains and under the ceiling. Bands are started, terminated, merged or split when a junction is processed. The left and right chains of a new band have a common head, and their ceiling consists of that common head. As edges are processed, triangles are carved out and the ceiling moves down. A Band may split into two bands when a new head is encountered between its chains. Two bands may merge when their chains meet at a common tail. A band may be extended when a new chain starts where one of its chains ends. In practice, the band is formed when two chains point to the left and right ends of a ceiling with m_pTaskData pointers. The ceiling is a doubly linked list of CvertexRef, which represents a reference to an existing vertex.
CTessellator::ProcessCurrentVertex
If the vertex is on a left chain then the chain is a left chain of some band, and we process it with the ceiling of that band, carving out triangles from the left in the following way:

Insert the vertex as the v0 in the ceiling.

While the ceiling v0,…,vm contains more than one vertex, and v0,v1,v2 turns right

Carve out the triangle (v0,v1,v2).

Remove v1 from the ceiling.

End while

[image: image5.emf]V

0

V

1

V

2

Figure 5: Processing a vertex on a left chain

If the vertex is on a right chain then process it with the ceiling in a similar way from the right.

CTessellator::ProcessThejunction

If the counts of heads and tails are both odd then the junction separates between interior and exterior portions of the fill set. If the chain immediately to the left of the junction is a right chain then the rightmost tail chain must be a left chain, so we extend that chain (and thus its band) with the rightmost head chain. The rest of the tails terminate existing bands, and the rest of the heads start new bands.

[image: image6.emf]Junction

Leftmost

Head

Leftmost

tail

A right

chain

Rightmost

head

extends

rightmost

tail

Figure 6: Odd counts, a right chain on our left

Similarly, if the chain immediately to our left is a left chain then we extend the leftmost tail chain with the leftmost head chain and create bands from the remaining head chains.

[image: image7.emf]Junction

Leftmost

head

extends

leftmost

tail

Rightmost

head

Rightmost

tail

A left

chain

Figure 7: Odd counts, a left chain on our left

Now suppose that the counts of heads and tails at the junction are both even.

If the chain immediately to the left of the junction is a right chain then the junction lies outside the existing bands, and then every pair of tails terminates an existing band, and every pair of heads starts a new band.

[image: image8.emf]Junction

Heads

Tails

Figure 8: Even counts, outside the fill set

If the junction on our left is a left chain then the junction lies inside the fill set, and there is a right chain immediately to its right. If both counts (of heads and tails) are nonzero then we extend the leftmost tail with the leftmost head and the rightmost tail with the rightmost head. The remaining tail chains terminate bands (in pairs), and the remaining head chains start new bands (in pairs).

[image: image9.emf]Rightmost

head

extends

rightmost

tail

Leftmost

head

extends

leftmost

tail

Figure 9: Even nonzero counts, inside the fill set

The tricky cases are when either (head or tail) count is 0, and the junction lies between the left and right chain L and R of a band B.

If there are no tails we split that band in the following way:

Let v0,…,vm be the ceiling of B, and let vj the lowest vertex in that ceiling.
Split the ceiling at vj (thus breaking the band B)

Create a band BL by attaching the ceiling v0,…,vj to L on the left and to the leftmost head chain on the right.

Process v on the leftmost head chain.

Create band BR by attaching the ceiling v,vj,…,vm to the rightmost head chain on the left an to R on the right.

Process v on the rightmost head chain.

[image: image10.emf]V

C

eiling of B

V

j

L

R

C

e

i

l

i

n

g

o

f

B

R

C

e

i

l

i

n

g

o

f

B

L

Leftmost

Head

Rightmost

Head

Figure 10: No tails; split the band

If there are no heads then the junction’s tails separate a band BL on its left from a band BR on its right. Let L be the chain on the left and R the chain on the right. We merge these bands by joining the two ceilings.

[image: image11.emf]V

J

o

i

n

e

d

c

e

i

l

i

n

g

L

R

C

e

i

l

i

n

g

o

f

B

R

C

e

i

l

i

n

g

o

f

B

L

Leftmost

Tail

Rightmost

Tail

Figure 11: No heads; merge the bands

References

1. M.R. Garey, D.S. Johnson, F.P. Preparata and R.E. Tarjan, Triangulating a simple polygon, Information Processing Letters 7 (1978), p.175.

2. F.P. Preparata and M.I. Shamos, Computational Geometry, Springer Verlag, 1985.

9

_1154328534.vsd

_1154328711.vsd

_1154341208.vsd

_1154328548.vsd

_1087885781.vsd
�

Junction�

Leftmost head extends leftmost tail�

Rightmost head�

�

�

Rightmost tail�

�

A left
chain �

_1087910965.vsd
Junction�

Heads�

Tails�

_1087984385.vsd
�

�

V�

�

Ceiling of B�

Vj�

L�

R�

Ceiling of BR�

Ceiling of BL�

Leftmost Head�

Rightmost Head�

_1087987022.vsd
�

V�

Joined ceiling�

L�

R�

Ceiling of BR�

Ceiling of BL�

Leftmost Tail�

Rightmost Tail�

�

_1087910999.vsd
Leftmost head extends leftmost tail�

Rightmost head extends rightmost tail�

_1087910888.vsd
�

V0�

�

V1�

V2�

_1087885299.vsd
�

Junction�

Leftmost Head�

Rightmost head extends rightmost tail�

�

�

Leftmost tail�

�

A right chain �

