![]() |
NumCpp
2.3.1
A Templatized Header Only C++ Implementation of the Python NumPy Library
|
Data Structures | |
class | Poly1d |
Functions | |
template<typename dtype > | |
NdArray< double > | chebyshev_t (uint32 n, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | chebyshev_t (uint32 n, dtype x) |
template<typename dtype > | |
NdArray< double > | chebyshev_u (uint32 n, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | chebyshev_u (uint32 n, dtype x) |
template<typename dtype > | |
NdArray< double > | hermite (uint32 n, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | hermite (uint32 n, dtype x) |
template<typename dtype > | |
NdArray< double > | laguerre (uint32 n, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | laguerre (uint32 n, dtype x) |
template<typename dtype > | |
NdArray< double > | laguerre (uint32 n, uint32 m, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | laguerre (uint32 n, uint32 m, dtype x) |
template<typename dtype > | |
NdArray< double > | legendre_p (int32 n, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | legendre_p (int32 n, dtype x) |
template<typename dtype > | |
NdArray< double > | legendre_p (int32 n, int32 m, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | legendre_p (int32 n, int32 m, dtype x) |
template<typename dtype > | |
NdArray< double > | legendre_q (int32 n, const NdArray< dtype > &inArrayX) |
template<typename dtype > | |
double | legendre_q (int32 n, dtype x) |
template<typename dtype1 , typename dtype2 > | |
std::complex< double > | spherical_harmonic (uint32 n, int32 m, dtype1 theta, dtype2 phi) |
template<typename dtype1 , typename dtype2 > | |
double | spherical_harmonic_i (uint32 n, int32 m, dtype1 theta, dtype2 phi) |
template<typename dtype1 , typename dtype2 > | |
double | spherical_harmonic_r (uint32 n, int32 m, dtype1 theta, dtype2 phi) |
NdArray<double> nc::polynomial::chebyshev_t | ( | uint32 | n, |
const NdArray< dtype > & | inArrayX | ||
) |
Chebyshev Polynomial of the first kind
n | the order of the chebyshev polynomial |
inArrayX | the input value |
double nc::polynomial::chebyshev_t | ( | uint32 | n, |
dtype | x | ||
) |
Chebyshev Polynomial of the first kind
n | the order of the chebyshev polynomial |
x | the input value |
NdArray<double> nc::polynomial::chebyshev_u | ( | uint32 | n, |
const NdArray< dtype > & | inArrayX | ||
) |
Chebyshev Polynomial of the second kind
n | the order of the chebyshev polynomial |
inArrayX | the input value |
double nc::polynomial::chebyshev_u | ( | uint32 | n, |
dtype | x | ||
) |
Chebyshev Polynomial of the second kind
n | the order of the chebyshev polynomial |
x | the input value |
NdArray<double> nc::polynomial::hermite | ( | uint32 | n, |
const NdArray< dtype > & | inArrayX | ||
) |
Hermite Polynomial
n | the order of the hermite polynomial |
inArrayX | the input value |
double nc::polynomial::hermite | ( | uint32 | n, |
dtype | x | ||
) |
Hermite Polynomial
n | the order of the hermite polynomial |
x | the input value |
NdArray<double> nc::polynomial::laguerre | ( | uint32 | n, |
const NdArray< dtype > & | inArrayX | ||
) |
Laguerre Polynomial
n | the order of the leguerre polynomial |
inArrayX | the input value |
double nc::polynomial::laguerre | ( | uint32 | n, |
dtype | x | ||
) |
Laguerre Polynomial
n | the order of the leguerre polynomial |
x | the input value |
NdArray<double> nc::polynomial::laguerre | ( | uint32 | n, |
uint32 | m, | ||
const NdArray< dtype > & | inArrayX | ||
) |
Associated Laguerre Polynomial
n | the order of the leguerre polynomial |
m | the degree of the legendre polynomial |
inArrayX | the input value |
Associated Laguerre Polynomial
n | the order of the leguerre polynomial |
m | the degree of the legendre polynomial |
x | the input value |
NdArray<double> nc::polynomial::legendre_p | ( | int32 | n, |
const NdArray< dtype > & | inArrayX | ||
) |
Legendre Polynomial of the first kind
n | the order of the legendre polynomial |
inArrayX | the input value. Requires -1 <= x <= 1 |
double nc::polynomial::legendre_p | ( | int32 | n, |
dtype | x | ||
) |
Legendre Polynomial of the first kind
n | the order of the legendre polynomial |
x | the input value. Requires -1 <= x <= 1 |
NdArray<double> nc::polynomial::legendre_p | ( | int32 | n, |
int32 | m, | ||
const NdArray< dtype > & | inArrayX | ||
) |
Associated Legendre Polynomial of the first kind
n | the order of the legendre polynomial |
m | the degree of the legendre polynomial |
inArrayX | the input value. Requires -1 <= x <= 1 |
Associated Legendre Polynomial of the first kind
n | the order of the legendre polynomial |
m | the degree of the legendre polynomial |
x | the input value. Requires -1 <= x <= 1 |
NdArray<double> nc::polynomial::legendre_q | ( | int32 | n, |
const NdArray< dtype > & | inArrayX | ||
) |
Legendre Polynomial of the second kind
n | the order of the legendre polynomial |
inArrayX | the input value. Requires -1 <= x <= 1 |
double nc::polynomial::legendre_q | ( | int32 | n, |
dtype | x | ||
) |
Legendre Polynomial of the second kind
n | the order of the legendre polynomial |
x | the input value. Requires -1 <= x <= 1 |
std::complex<double> nc::polynomial::spherical_harmonic | ( | uint32 | n, |
int32 | m, | ||
dtype1 | theta, | ||
dtype2 | phi | ||
) |
Returns the value of the Spherical Harmonic Ynm(theta, phi). The spherical harmonics Ynm(theta, phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.
n | order of the harmonic |
m | degree of the harmonic |
theta | Azimuthal (longitudinal) coordinate; must be in [0, 2*pi]. |
phi | Polar (colatitudinal) coordinate; must be in [0, pi]. |
double nc::polynomial::spherical_harmonic_i | ( | uint32 | n, |
int32 | m, | ||
dtype1 | theta, | ||
dtype2 | phi | ||
) |
Returns the imaginary part of the Spherical Harmonic Ynm(theta, phi). The spherical harmonics Ynm(theta, phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.
n | order of the harmonic |
m | degree of the harmonic |
theta | Azimuthal (longitudinal) coordinate; must be in [0, 2*pi]. |
phi | Polar (colatitudinal) coordinate; must be in [0, pi]. |
double nc::polynomial::spherical_harmonic_r | ( | uint32 | n, |
int32 | m, | ||
dtype1 | theta, | ||
dtype2 | phi | ||
) |
Returns the real part of the Spherical Harmonic Ynm(theta, phi). The spherical harmonics Ynm(theta, phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.
n | order of the harmonic |
m | degree of the harmonic |
theta | Azimuthal (longitudinal) coordinate; must be in [0, 2*pi]. |
phi | Polar (colatitudinal) coordinate; must be in [0, pi]. |