
Improving SVSHI’s Verification Method

Ladina Roffler
Project partner: Aymeri Servanin

Supervisor: Samuel Chassot, Prof. George Candea
EPFL DSLAB

June 10, 2022

Abstract

In order to check recurring, time dependant properties such as ”a boiler is above 60 ◦C for
one hour every day”, the verification strategy needed to be changed from ”given a valid state,
an app cannot put SVSHI in a invalid state” to ”given an invalid state, apps will make the state
valid in the future”. To do so, SVSHI needed to be made time aware. Several methods to change
the verification where tried, a symbolically constructed list, adding functions to stop the app
execution until a certain condition and constructing a condition manually to pass to a z3 solver.
The method using the z3 solver was selected as the new verification method, since it was the only
feasible approach. The changes to the verification required some changes to the runtime of SVSHI.
Apps are now combined to one single app that is run when SVSHI is run.

1 Introduction

The high-level goal of this project was to improve SVSHI’s verification capabilities.

1.1 Background on SVSHI

SVSHI stands for ”Secure and Verified Smart Home Infrastructure”. It was developed by Samuel
Chassot and Andrea Veneziano and aims to provide an infrastructure for developing smart home
applications that is easy to use, reliable and secure. [CV22] The developer implements the application
in python and the verification of the app’s behaviour is done automatically at install time.

Every time a developer wishes to install a new application to the SVSHI engine, it is first verified by
crosshair. Crosshair is a tool to analyse a python program using symbolic execution. [Cro] It provides
a function called check, which ensures that given some preconditions, after running a function the
function’s postconditions are met.

Figure 1: When a developer wants to install an app, the app is first verified using crosshair.

Every SVSHI app has two functions, the invariant function and the iteration function. The
invariant function is used to impose conditions on apps that need to be true at all times. The
iteration function is used for implementing an app’s behaviour. At verification time, crosshair’s
check function is used on the iteration function. As a precondition, it is assumed that before
running iteration, the invariants were true. Crosshair then checks that after running the iteration
function, the invariants are still true.

1



Figure 2: The structure of an app’s code.

This means that previously, SVSHI’s verification ensured that given a valid state of the engine,
an app could not put SVSHI into an invalid state. This works for many cases but not all, as will be
explained in the next chapter.

1.2 The Boiler Example

Legionella is bacteria that can be found in water. When ingested it can cause symptoms that are
similar to pneumonia. To prevent this illness, the Swiss government requires that boilers should set
the water temperature to be above 60 ◦C for at least one hour every day in order to kill the bacteria.
[BAG]

Let us assume we write an application that fulfills this requirement. At 22:00 the developer sets
the boiler to 60 ◦C until 23:45. He then sets it back to 40 ◦C, where it will remain until 22:00 on the
next day.

Although one can quickly see that this application should pass verification, since the application
only results in a valid state after 23:00 and is in an invalid state until that point, SVSHI’s previous
verification method would fail the application and not install it.

1.3 Project Aim

The aim of this project was to allow for SVSHI to handle situations such as the previously mentioned
boiler example. In order to do this, the verification strategy needed to change. The strategy needed
to be moved from ”given a valid state, an app cannot put SVSHI in an invalid state” to ”given an
invalid state, ensure that in the future, the apps will set SVSHI to a valid state”.

To achieve this goal, the SVSHI engine needed to be made time aware, which is detailed in section
2. The tried verification strategies, including the ultimately chosen one are presented in section 3.
Section 4 details the changes that were required to SVSHI’s runtime and finally the report is concluded
in section 5.

2 Time Integration

In order to be able to check time dependent conditions, the SVSHI engine required a notion of time.
SVSHI already keeps state for every application’s variables using a class called AppState. It also

keeps state of sensor values in a class called PhysicalState.
A class was added called InternalState. It was originally created to keep track of the engine’s

time but can be expanded to include anything that the engine needs to be aware of. Unlike AppState
and PhysicalState, a developer does not have access to the variables of InternalState.

A second class was added to SVSHI called the SVSHI API. It provides already implemented functions
that a developer can use as a black box. It includes functions such as get hour or get day of the week,
thus providing a developer indirect, controlled access to the InternalState.

2



3 Verification Approaches

Three possible solutions were implemented, only the last of which was a feasible approach.

3.1 Symbolic List

One approach was to create a list containing tuples of time and the corresponding state. The list would
never actually be created physically, instead its elements were heavily constrained with preconditions.
The list would need to meet certain conditions, like having two consecutive items contain states where
the boiler is above 60 ◦C.

When asking crosshair to check whether the list meets the required conditions, the list would then
be built symbolically in such a way that it meets all the given constraints. If the list meets the
conditions, the app being verified can be installed.

This approach worked for lists containing only very few items. The time required to verify the
conditions grew exponentially as more items where added, and reached a timeout for lists with more
than 10 elements. The same behaviour was observed when using a dictionary instead of a list.

The underlying issue is that crosshair is ill-equipped to deal with containers of variable length.
Such cases lead to path explosion very quickly. Given the fact that we not only required using lists of
variable size, but also of much greater size than just 10 elements, this approach was not feasible for
our purposes.

3.2 Wait-Based Verification

Another approach was to add two functions to the SVSHI API, a function called wait and a function
called wait sensor.

The wait sensor function suspends the app’s execution until a sensor meets a specified condition.
This is needed to handle the fact that physical systems require time to change state, so a boiler would
not reach 60 ◦C immediately after being set to that temperature. At verification time, this behaviour
was simulated by having the boiler sensor’s temperature read-out increase linearly for a given time
delta before reaching its steady state at the set temperature. The wait function suspends the app’s
execution until a specified point in time.

At verification time, when one of the two API functions is reached, the InternalState’s time is
manipulated. This allows us to jump to the future and analyze the state at the future point in time.
At runtime, the functions would have been implemented using python asyncio calls.

Although this approach worked, unfortunately it would have defeated SVSHI’s event based nature,
which is why it was discarded.

3.3 Current Implementation

The condition that should be verified is the following:

∀S(∃t : f(t, S).boiler > 60 ∧ ∀t < t′ < t + 1h(∀S′(IfS′.boiler > 60thenf(t′, S′).boiler > 60))) (1)

In words this means that for all states S, there exists a point in time t where the boiler is above
60◦C and for all points in time t’ that are between t and t plus one hour, the state remains at 60 ◦C.

It is not possible to verify this condition with crosshair, since crosshair does not support the notion
of a ”there exists”. However, internally crosshair uses a z3 solver which does provide a ”there exists”.

The idea of this approach is to manually create the condition expressed by equation 1 and then to
pass it to a z3 solver to verify whether the condition is satisfied or not.

To create the condition manually, a f(t, S) needed to be obtained. This is done by using a crosshair
function called cover, which extracts all paths from a function. If all the apps are combined into one
function, cover can be used to extract all the paths from the SVSHI engine. These paths are then
concatenated to a z3 readable condition.

To build the time dependant components of equation 1 a new function called check time property

was added to the SVSHI API. check time property takes three arguments, a frequency, a duration
and a condition. For the boiler example, the arguments would be one day, one hour and boiler > 60◦C.

3



During verification, when a check time property function call is encountered in the invariants,
it is extracted and converted to a z3 readable format. Together with the extracted and concatenated
paths, the condition in equation 1 can be created.

The functions to create the condition in equation 1 and to use the condition in a z3 solver were
combined into a python module. At verification time, this new module is now called instead of calling
crosshair’s check function.

Figure 3: The workflow of the new verification method. Paths are extracted then concatenated to a
z3 readable condition. Z3 checks whether the condition is satisfied.

4 Runtime Changes

The changes made to SVSHI’s verification required some changes to SVSHI’s runtime.

4.1 System Behaviour Function

In order to extract all paths from the SVSHI Engine at verification time, all of the app’s iteration
functions needed to be combined into one single function. This function is called system behaviour.

Previously, every app was run one by one, either when something in the PhysicalState changed
that affects the app, or periodically according to the app’s timer. The switch from singular iteration
functions to the combined system behaviour function means that individual apps are no longer
needed. There is only one app, called JointApp, which calls the system behaviour function every
time something in the PhysicalState changes. If apps are present that have a timer, the JointApp is
run periodically, using the minimal timer of all the apps.

Figure 4: Apps are no longer run separately. Only one app is run which calls the joint iteration
functions. The timer is set to be the minimum timer of all the apps.

4.2 Check time property calls

The check time property calls used for verification need to be handled at runtime as well. To do so,
each function needs to store state.

This was solved by adding a new class CheckState. CheckState includes four variables, that are
needed to keep state for one check time property call:

• An integer to store the time the frequency last passed.

• An integer to store the time the condition was last valid.

• A boolean to mark whether the condition is currently valid.

4



• A boolean to mark whether the condition was valid for the given duration in the given frequency.

Each check time property call is assigned a CheckState object, which is stored in the InternalState.
Every time the call is made, the object is updated. check time property returns True so long as the
frequency has not passed yet. Once the frequency has passed, it either returns True if the condition
was valid for the given duration, otherwise it returns False.

5 Conclusion

In order to check recurring, time dependant properties such as ”a boiler is above 60 ◦C for one hour
every day”, the verification strategy needed to be changed. A shift needed to be made away from the
method ”given a valid state, an app cannot put SVSHI in a invalid state” towards the new method
”given an invalid state, apps will make the state valid in the future”.

To achieve this shift, the verification is no longer done by crosshair’s check function. Instead, the
required condition is created manually and then passed to a z3 solver which checks that the condition
is satisfied.

Part of the condition is constructed by extracting SVSHI’s paths with crosshair’s cover function.
The other part is constructed by extracting check time property functions, which is a new function
added to the SVSHI API, from the invariants.

Several new classes were added to SVSHI. The CheckState class keeps state for one check time property

call at runtime. The CheckState objects are stored in a new class InternalState, which is also used
to give SVSHI a notion of time. Finally, the new class SVSHI API provides already implemented
functions that the developer can use as black boxes in their code.

Since extracting all of SVSHI’s paths required joining all of the app’s iteration functions into one
joint function, SVSHI now only runs one app, a JointApp, which calls the joint iteration function. If
apps have timers, then the JointApp runs periodically using the minimal timer of all the apps.

References

[BAG] Bundesamt für Gesundheit: Legionellose. https://www.bag.admin.ch/bag/de/home/

krankheiten/krankheiten-im-ueberblick/legionellose.html. Accessed: 2022-06-09.

[Cro] CrossHair Documentation. https://crosshair.readthedocs.io/en/latest/. Accessed:
2022-06-09.

[CV22] Samuel Chassot and Andrea Veneziano. Svshi: Secure and verified smart home infrastructure,
January 2022.

5

https://www.bag.admin.ch/bag/de/home/krankheiten/krankheiten-im-ueberblick/legionellose.html
https://www.bag.admin.ch/bag/de/home/krankheiten/krankheiten-im-ueberblick/legionellose.html
https://crosshair.readthedocs.io/en/latest/

	Introduction
	Background on SVSHI
	The Boiler Example
	Project Aim

	Time Integration
	Verification Approaches
	Symbolic List
	Wait-Based Verification
	Current Implementation

	Runtime Changes
	System Behaviour Function
	Check_time_property calls

	Conclusion

