
Extending the verification of SVSHI
applications with time-sensitive constraints

Aymeri Servanin

June 24, 2022

Abstract

In this paper, we extend SVSHI’s verification process to time-
sensitive applications. Two approaches were explored, both of them
using CrossHair, a python concolic execution tool. The first approach
introduces the possibility to make application sleep. The second one
converts functions into z3 expression to verify any properties. The
last approach was taken as it keeps the event driven architecture.

Contents

1 Introduction 4

2 Quick introduction to SVSHI internals definitions 4

3 Related work 6

4 Assumptions 6

5 First approach - Adding sleep to keep track of previous events 8
5.1 Basic application without changing SVSHI 8
5.2 Creating an application that only monitors the device 8
5.3 Tracking previous executions 9
5.4 Updating the monitoring app at compile time 10
5.5 Adding time on SVSHI applications 10

5.5.1 Defining virtual time 10

1

5.6 Integration on the runtime function 10
5.7 Conclusion of the first approach 11

6 Second approach - Modeling functions into z3 expressions 11
6.1 Representing previous states by a list 11
6.2 Current limitations with CrossHair 12
6.3 Adding time to SVSHI to ease the verification 12
6.4 Modifying CrossHair . 13

6.4.1 Getting the paths . 13
6.4.2 Extracting the symbolic return 14
6.4.3 Simple example . 14

6.5 From CrossHair to SVSHI . 15
6.6 Creating a user-friendly function 17

6.6.1 Definition for the developer 17
6.6.2 Internals of the check function 18
6.6.3 Integration with CrossHair 19

6.7 A concrete example . 19
6.8 Limitations . 21
6.9 Future work . 21

7 Conclusion 21

2

Acknowledgments

I would like to thank Samuel Chassot and Professor George Candea for their
guidance during this project. A special thanks to Ladina Roffler for par-
ticipating in this project. Also all the SVSHI team of this semester (Löıc
Montandon, Léo Alvarez, Isis Daudé) and the PhD students (Can Cebeci
and Solal Pirelli) for their advice.

3

1 Introduction

The core statement of SVSHI (Secure and Verified Smart Home Infrastructure)[1]
is to build a smart home hub using apps that are formally verified. SVSHI
checks if the application and its stated properties never conflict with other ap-
plications. SVSHI performs verification by using CrossHair [2]. It is a python
library that performs concolic (”a portmanteau of concrete and symbolic”[3])
execution to test the stated contracts. Before this paper, SVSHI used the
Check function on contracts written by the app developers.
The contract would be enforced as pre and post-conditions. Therefore SVSHI
checks if, after an execution, the application remains in a valid state. This
could cause an issue when SVSHI is initialized or when entering a transition
state.
To demonstrate this, let’s take the example of the first SVSHI’s whitepaper
[1], ”If the switch is on then the light is on”. Once the button is pressed, a
telegram will be sent to SVSHI and the state of the light is off but the state of
the switch is on. This is not tested when formally verifying the application,
as there can’t be an invalid state before calling the application.
Another point we would like to extend is the compliance of smart homes
with the laws. Because the goal of SVSHI is to make a smart home as safe
as possible, it must comply with the local regulations. For example, there
are regulations on boilers in Switzerland. They must be heated up to 60°C
for at least one hour every day.[4]
With this regulation in mind, we attempt to make this rule added to SVSHI.
This means that if the application that is verifying this rule is installed, we
know there is at least one application that makes this smart-home compliant
with this regulation.

2 Quick introduction to SVSHI internals def-

initions

This section is a summary of the important data structures and processes of
SVSHI. More details can be found in [1].

Physical state A class that contains all the Group Addresses (GA). These
Group Addresses represent the last known state by SVSHI at runtime and

4

the actual state when verifying the application.

App State A class that is used to hold values between two executions of
the application.

InternalState A class that holds values that cannot be accessed by the
developer.

SVSHI App structure and workflow The developer creates an appli-
cation in SVSHI by providing a list of the devices in a JSON file. This file
is used by SVSHI to generate the template of the application. It is made of
two functions, the invariant and iteration function.
The iteration function is the core, where devices are manipulated. The
invariant is where the properties of the application are stated. It must be
satisfied every time an application is run.
Developers install their applications by compiling them using the CLI or
GUI. This step ensures that there are no conflicts with other applications.
If none of them occurs, then the application is installed. Otherwise, it is
considered a ”fail” and does not install. A detailed explanation of a failure
is given in the next section.

Defining a ”fail” using CrossHair A ”fail” is when CrossHair finds a
counterexample in the stated properties. That is when an invariant of an
application is broken after the execution of another application.
For example, we define a function with a post condition that states the return
is strictly greater than 0.

def f(i:int) -> int:

"""

post: __return__ >0

"""

if i>0:

return i

else:

return -1*i

When running check, it gives a counterexample and we have this output mes-
sage ”error: false when calling f(i = 0) (which returns 0)” and a non-zero exit

5

code. We consider this application as a ”fail”. In SVSHI, functions, and con-
ditions are more complex, but if a counterexample is shown the application
does not install.

3 Related work

Regarding the verification of smart-home applications, most of the related
work is already mentioned in the first SVSHI paper [1]. Modeling time-
sensitive application in python or more generally verifying Python code is
not widely covered. Regarding the time aspect, papers such as [5] uses UP-
PAAL [6] to verify part of Python’s core.
For the verification of python code, only a few tools are available. SVSHI
uses CrossHair [2] and can perform formal verification under specific condi-
tions mentioned here. Additionally, there is Nagini [7], a front end tool for
Viper. It stands for Verification Infrastructure for Permission-based Reason-
ing and ”is a language and suite of tools developed at ETH Zurich, providing
an architecture on which new verification tools and prototypes can be devel-
oped simply and quickly.”[8]. This tool requires more advanced knowledge
in making proofs, therefore a developer would have to be trained to use this
tool. However, the goal of SVSHI is to make verification as easy as possible
for the user.

4 Assumptions

Before starting to enhance the verification process, we need to define SVSHI’s
limitations in the verification process. We assume that SVSHI always holds
the correct and latest value of the real world’s physical state.
We need to assess first the differences between the verification, which simu-
lates the environment and the real world. SVSHI can communicate with any
KNX device which can have any behavior. Because of this multiplicity, at
verification, we can only take a simplistic approach.
An application can set and read the values of devices. All devices receive this
new value in a short time but some devices can take time to reach this new
value. For example, if we set the room thermostat to be at 22°C, the target is
set within seconds but we cannot expect the room to be at 22°C immediately.
With this example in mind, we make the following assumptions.

6

Additionally, given the new structure, we assume the function to be idempo-
tent. Therefore if it changes state, it should be enforced as long as required.

SVSHI’s state is considered to be the correct one at all time We
assume what SVSHI reads and writes on devices is the actual physical state.
SVSHI isn’t aware of the behavior of each device. For example, when SVSHI
is setting a switch to be on, we assume it will be physically on. It may sound
simple as stated, but this means we don’t handle failing devices. Therefore
if the switch is never on when it’s being set to this value (it could be that
the wires were swapped), we sadly can’t do anything about it.
Taking our boiler example, the developer must be aware that it would take
time to heat up. A boiler that is being set to 60°C for exactly one hour is
unlikely to be compliant given that the operational temperature might be
lower, thus taking time to heat up.
Furthermore, we only model explicit dependencies. For example, we can set
a value of one device by reading the other one (an app makes a living room
thermostat to match the kitchen’s thermostat). However, if a device has an
implicit impact on the other one we do not model it (if the thermostat has a
temperature sensor, during formal verification it can read any values at any
time even if after some time the thermostat should approximately match the
thermostat).

Only SVSHI sets the value of the sensors If we don’t control what is
being set then we could not have any guarantee on the system.

Refreshing rate of the device is instantaneous Once the values are
being set, they are not modified until an app changes them. This creates a
gap with the real world. If we take the example of heating a boiler, we rely
on what information the sensor provides us. Therefore if the sensor sends an
update every hour, there will be a gap between the actual temperature and
the last known one.

7

5 First approach - Adding sleep to keep track

of previous events

Having now defined the assumptions, we can start finding a solution to extend
the verification to time-sensitive applications. In this section, we describe
how ”sleep” is introduced in SVSHI. This allows to observe the duration of
a device’s state.

5.1 Basic application without changing SVSHI

The first approach we try with the existing SVSHI is an application that is
overriding the behavior of other applications. The application would guar-
antee that the device is following the given regulations. It applies the regu-
lations by altering the device’s state.
Suppose we want a boiler to be at 60°C for one hour every day. Then one
would write an application that is enforcing this by monitoring if the boiler
has been set to 60°C for one hour continuously. If not, then after 23 hours
have elapsed the boiler would be in an override mode by setting a flag and
set the boiler to 60°C.
Code is available in the appendix A.
If an application is setting the boiler at a lower temperature than 60°C when
the override flag is set, it would fail at compile time and wouldn’t be installed.
The limitation of this application is that it is device-specific, is actively mod-
ifying the device and it would require creating an application or a template
per device.

5.2 Creating an application that only monitors the de-
vice

We create an application that only monitors devices so that the implemen-
tation is not depending on one specific device. We can take the logic of our
previous application but entering in a ”fail” mode when the application was
not satisfying the given constraint. Back to our example, instead of actively
correcting the behavior of the device, we would just set a flag to make the
application fail. On the invariant, if the fail flag is set then the application
would not compile.
However, this would mean that the monitoring application would also fail,

8

as CrossHair would also test when the application enters the fail mode. We
need to find a way to make other applications fail but not the monitoring
application (while keeping the invariants to help verify the app in itself).
The approach we take is to split the invariants into two: one for the app
that would help test and formally verify it . Another where it would fail the
compilation of other applications that are not meeting the correct require-
ment. Then if the app is only monitoring, we set a condition before code
generation. This specifies that the application is only monitoring. We use
the JSON that stores parameters to generate the SVSHI application. This
setting adds a new function called ”invariant rules app” where it would be
put as post conditions of all other applications that are not monitoring apps.
This would work but only to some extent: a valid application would fail,
and CrossHair would give a counterexample when the application would fail
when switching from 60°C to a value below. This is because CrossHair is
running on a single point in time and isn’t aware of what happened before
this.

5.3 Tracking previous executions

To be able to reproduce previous executions of the application, we introduce
the ability to ”wait” for a given task. This way we know for how long the
status of the device was held.
The developer would write a ”wait(time)” or ”wait sensor(sensor, condition,
timeout)” that would pause the execution of the application until the wait
is over. In the background, the application would return the value of the
physical state to propagate the updated state and then go to sleep. The
wait sensor function puts the application into sleep until the given condition
or timeout has been reached. This is helpful at verification time to model
delay and at runtime device failures.
Because we are able to modify the code, at compile time we replace the def-
inition of wait by increasing the time with the given argument.
However, CrossHair still gave us a counterexample as the counters of the
monitoring application weren’t updated. An example would be that at the
start of the execution, the monitoring app is in an invalid state, then the
boiler is at 60°C for one hour and then the app finished its execution. How-
ever, the counters weren’t updated.

9

5.4 Updating the monitoring app at compile time

Given this limitation, before and after every wait we would call the mon-
itoring app so that it updates its counter. Therefore, given a valid app,
the monitoring app would register that the device state and for how long
it is being held. Additionally, we need the application to share the same
time. Calling the monitoring app every time a wait comes with a drawback:
CrossHair has to do an extra task to solve the constraints of the monitoring
app, even if this not necessary as it is tested before.

5.5 Adding time on SVSHI applications

We need that all applications have a shared notion of time. Otherwise,
while performing the verification, multiple apps that are executed sequen-
tially could be at different times.
Getting time was only possible by using an unchecked function, as imports in
iteration were not allowed. For the developer, this usually means returning
time.time()[9] in an unchecked function.
For the verification of time sensitive applications, we need to use one single
shared variable for every app. Fortunately, we have an object shared by every
app, the PhysicalState.
At verification time we have an int value that is determined by CrossHair.
Note: It was suggested by Samuel Chassot to create a class called Internal-
State to store variables that are used only by SVSHI and not the developers.
Therefore we moved the time in this new class.

5.5.1 Defining virtual time

As CrossHair can choose any integer, we need to constrain it to sensible val-
ues. We choose to start time at 0. Therefore, time would be relative, starting
at 0. Every time t is strictly greater than 0, this means the application was
executed at time t+x.

5.6 Integration on the runtime function

Now that applications have the ability to sleep, we need to run them concur-
rently so that one application that goes to sleep doesn’t block the execution
of all applications (and SVSHI as well).
Additionally, every time a function enters a wait, it should return its updated

10

physical state. Therefore at runtime, instead of having the wait moving time
forward, we call asyncio.sleep for the given duration and put the Physical-
State in a queue. Once an item is in the queue, we check that the invariants
are satisfied and propagate the new state to KNX and we also update the
copy of the physical state SVSHI keeps.

5.7 Conclusion of the first approach

We have a working solution that allows verification of time sensitive prop-
erties. However it has a few drawbacks: First, it does not follow the event-
driven model that SVSHI is built on. Functions are expected to run and
quickly return a value. Secondly it constrains the developer to think about
the time being relative. This could cause confusion, especially since SVSHI
can be started at anytime of the day.

6 Second approach - Modeling functions into

z3 expressions

In this section, we discuss the second solution to verify time-sensitive appli-
cations. We model the iteration and invariant functions into z3 expressions
using CrossHair. Then we use z3’s SMT solver to see if the invaraiants con-
straints are satifsfiable given the iteration function. We also provide time
through SVSHI’s API.
With the previous solution being put aside, we redefine what we want to ver-
ify. We reformulate the verification of the boiler and found a mathematical
formula : For all inputs, there exists a continuous time window of one hour
where the boiler is at 60°C. The issue we face again is to give a certain dura-
tion of the state. Therefore we start to think about how we could represent
these previous states.

6.1 Representing previous states by a list

CrossHair models the trace of the system by creating a symbolic list of valid
traces to measure the duration of the device’s state. We put this list and
find a new execution that led to a counterexample. This would form a valid
trace where during a specified timeframe the property would have never been
satisfied.

11

This is also what Philip Schanely suggests, for a limited trace. [10] However
constructing the list leads to path explosion, and running CrossHair with
bigger lists quickly leads to timeouts.
We decide to not keep this approach as it would not scale.

6.2 Current limitations with CrossHair

Looking back at our formula it would be ideal if we could model the ex-
istential quantifier using CrossHair. However, it is not CrossHair’s goal to
model mathematical formulas, so we have to dig deeper to see if we could
use CrossHair’s engine to verify our properties. Currently our applications
are built only with simple types (not complex classes that can be difficult
to model) and we know CrossHair uses symbolic variables to execute the
function. Additionally, CrossHair solves path constraints using z3.
z3 [11] is a SMT solver and we could use it to verify if our property is sat-
isfiable. Therefore, if we’re able to take all the path constraints and the
symbolic return, we could convert them using z3 and thus be able to solve
any equations in first-order logic from a given function.

6.3 Adding time to SVSHI to ease the verification

We add separate bounded variables for every time unit (minute,hour,etc..)
through SVSHI’s API.
When searching for a new solution, we tried to model a simple application
that performs a task every day. Our original definition of time is a UNIX
timestamp. Therefore to do a task every day, the function was using non-
linear arithmetic to get the day. This led to z3 timing out as it is non
decidable.
Therefore we need a way to avoid using non-linear arithmetic. We choose
to split every time variable and bound them. This way we cover all possible
times but without using modular arithmetic.
We now have multiple variables on the internal state: minute, hour, day,
week, month. We did not include seconds as we do not see applications
where one would have conditions on seconds.
The developer can get these variables through convenient functions of SVSHI’s
API. This is added to SVSHI and provided in SVSHI’s API by Ladina Roffler.

Now we can convert our iteration function into a z3 expression where we
can verify any property.

12

6.4 Modifying CrossHair

We need to extract two things to convert our function into a z3 expression:
The path conditions and the return value. The idea is to use CrossHair cover
function, which returns inputs of a corresponding path. A list of specific input
is returned to get as much coverage as possible. Then we can manipulate the
return and combine it with our property to be checked.
We still want to keep the basic structure of SVSHI application: the iteration
where the devices are manipulated and the invariant where properties of the
apps are defined. We check if the iteration function is valid by verifying it
with the property of the invariant. The idea would be to have the following
workflow in Figure 1.

Figure 1: The structure of the new verification module

Additionally, instead of executing apps per GA or timer, we now make
sure that all applications are always executed at the same time and in the
same order. Before, the applications would be executed either periodically
or when one of the devices has changed values.

6.4.1 Getting the paths

For the path conditions, Philip Schanely hinted here [10] that we could
extract the solver state by getting its assertion list for each path before
CrossHair switches paths. By copying the solver state into the result when
the given path is covered, we now have all the paths of our function.

13

What remains is getting the symbolic return value on the given path. The
big advantage of CrossHair is that it executes the function, therefore we know
which variables are modified when getting the symbolic return.

6.4.2 Extracting the symbolic return

We now extract the symbolic values from CrossHair by collecting the return
after one execution of the function in CrossHair. Extracting the symbolic
return on a simple function is suggested by Löıc Montadon. He mentions
this is possible to get it by intercepting the return value after the function
is being executed. On a simple example, he shows us how to collect it by
getting the ”var” attribute from the return.
From this, we discover that the ”var” attribute is actually when the function
returns a SymbolicNumerAble, a CrossHair class that represent a symbolic
number. However, when CrossHair has to realize a condition (it does not
recognize an instruction or OPcode therefore it needs to give the variable
a concrete value), we can only keep the concrete return. For example, this
happens when the return is fixed or when encountering opcodes that are not
managed yet by CrossHair (see [10] for an example of using ”not” that leads
to the realization of the variable).
Once we know to extract simple variables, we can then move on to what
SVSHI currently returns. That is, for the iteration function it returns a
dictionary of dataclasses (the appState, physicalState, and internalState).
Therefore we need to extract the fields and recreate the dataclasses object
by getting their symbolic or realized return value. For the invariant, it returns
a Boolean only and the process is straightforward.

All the details of the modifications are available here [12].

6.4.3 Simple example

Now that we have modified CrossHair, we can show what it is capable of
with a small example. Suppose we have the function

def solar_boiler_app(solar_boiler_app_app_state: AppState, physical_state:

PhysicalState, internal_state: InternalState):

if 21<=svshi_api.get_hour_of_the_day(internal_state) :

float_dev.set(60.0,physical_state, internal_state) #set 60.0 to GA_0_0_4

else:

float_dev.set(float(int_dev.read(physical_state, internal_state))

14

-5.0,physical_state, internal_state)

return {'physical_state': physical_state}

By running our modified CrossHair cover and extracting the attribute result
of each PathSummary from the list of the PathSummary, we have:

[[21 <= time_hour_16], {'PhysicalState': {'GA_0_0_1':

GA_0_0_1_10, 'GA_0_0_2': GA_0_0_2_11, 'GA_0_0_3':

GA_0_0_3_12, 'GA_0_0_4': 60.0}}]

[[Not(21 <= time_hour_16)], {'PhysicalState': {'GA_0_0_1':

GA_0_0_1_10, 'GA_0_0_2': GA_0_0_2_11, 'GA_0_0_3':

GA_0_0_3_12, 'GA_0_0_4': ToReal(GA_0_0_3_12) - 5}}]

The first element of the list is the path constraint and the second is a
dictionary of the physical state (the return values).
Here we can see that the boiler (GA 0 0 4) is either at 60 after 9 pm or
equal to another sensor (GA 0 0 3) - 5 before. The other group addresses
are unmodified and we have their z3 Constants as CrossHair created them.

6.5 From CrossHair to SVSHI

Now that we have all that is required to convert a simple function into a z3
expression, we can adapt it to SVSHI applications. We recall that the app
is built in two parts: the invariant where properties of the application are
stated and the iteration where the logic of the app is written.

To extract the paths, we use our modified CrossHair’s cover function.
First, by running it on the invariant function and then on the interation
function.
On the iteration function, CrossHair outputs the path conditions and the
symbolic return values after taking this path. For each path, we have the
list of assertions of the solver. We make a conjunction of this to build a
path condition. Then we create an expression built with If(pathCondition,
symbolic return, (else)other path condition). We must split functions per GA
as the If in z3py does not handle arrays. This expression is created for each
return value and then stored. If we take our previous example, the function
of GA 0 0 4 is:

15

If(21 <= time_hour_16,60,

If(Not(21 <= time_hour_16), ToReal(GA_0_0_3_12) - 5, -1))

To gather the conditions of the invariant, we also use CrossHair cover
function. Per path, we make a List of z3 expressions from the path and
return the value to have the full condition. Additionally, we ignore paths
that return a False value or a None.

def boiler_inv() ->bool:

if 21<=svshi_api.get_hour_of_the_day(internal_state):

return boiler.read(physical_state, internal_state)>60.0

else:

return True

Running cover outputs:

[[21 <= time_hour_16], {'ret': 60 < GA_0_0_4_13}]

[[Not(21 <= time_hour_16)], {'ret': True}]

Then transformed we have the list:

[[21 <= time_hour_16, 60 < GA_0_0_4_13], [Not(21 <= time_hour_16)]]

Then we replace the GA by their functions and convert the list into a dis-
junction:

Or(

And(

21 <= time_hour_16,

#equiv. to 60 < f_GA_0_0_4 :

60 < If(21 <= time_hour_16,60,

If(Not(21 <= time_hour_16), ToReal(GA_0_0_3_12) - 5,-1))),

Not(21 <= time_hour_16))

Finally, we use z3py’s solver and output a counterexample if the formula is
not satisfiable. Currently it displays this error:

counterexample [time_hour_16 = 21] for condition:

Or(

And(21 <= time_hour_16,

16

60 < If(21 <= time_hour_16,60,

If(Not(21 <= time_hour_16),

ToReal(GA_0_0_3_12) - 5,-1))),

Not(21 <= time_hour_16))

The error is not extremely clear, here it states that after 9 pm the condition
is false. This is because our boiler never goes strictly above 60.

6.6 Creating a user-friendly function

Once we have our invariant function represented as a z3 expression, we can
start working on modeling a template that we would use to check any prop-
erty for a given duration. Then we provide a simple function to the devel-
opers. Indeed, we want to make the verification process as easy as possible
and therefore we do not expect developers to write z3 expressions. Then we
create the function that converts the conditions to a z3 expression to finally
integrate them on the invariant.

6.6.1 Definition for the developer

We create a function in SVSHI’s API for the developer that keeps the con-
dition as a high level. First, we define our condition. A developer wants to
verify a condition for a given frequency and duration for every possible input.
Given that time is redefined by SVSHI, to give how long should be the fre-
quency and duration, we should also provide a way to indicate days, months,
etc...
Therefore we created a class called DateObj, where we can easily instantiate
duration. For example, Day(5) would be five days.
In this class, the amount of time is stored and in the superclass DateObj we
also provide the name of SVSHI time variables. We store the name of the
variables to create afterward a dictionary between the original name of the
variable and CrossHair’s. This is because CrossHair gives a different name
to the variable, in the following format: originalVariableName counter.
Now that we provided time, what remains is to get the condition we need
to verify. We expect the developer to write the condition given the device
they defined as it seems a straightforward procedure for them. It is a more
challenging task for us, as we need to extract the GA of the condition for

17

each object. The extraction is done by running CrossHair cover. It is imple-
mented by Ladina Roffler.
Finally, our function would look like this for an application developer :

svshi_api.check_time_property(frequency=Day(1),

duration=Hour(1),

property=a_sensor.read() > 5)

6.6.2 Internals of the check function

Now that we have a high-level definition of the function, we need to convert
it to a z3 expression. First, we need to gather the variables names used by
CrossHair and map them back to their original name. We do this by creating
a dictionary between their name and the z3 expression after running cover.
To model the duration, we convert this expression ”There exists a t, such
that for all times between t and the duration, the property is true”. In the
”for all times”, we also add smaller times unit of the duration. For example,
if the duration is Hour(1), the z3 expression is:

Exists(t,

And(And(t >= 0, t <= 22),

ForAll(time_hour,

Implies(

And(t <=time_hour,

time_hour <=t + 1),

OurCondition))))

Then we add the frequency, that is either ”ForAll frequency” or if it is not
occurring every time unit, we split it on multiple expressions to cover all.
For example, if we have ”frequency=Day(3)” that is every three day we have

ForAll(days,

Or(Implies(1<=day<=3,condition),

Implies(4<=day<=6,condition),

Implies(day==7,condition))

The condition is the duration. In this example, we see one of the limitations
of the current state of the verification. That is, we cannot check when it is
the last day, then go back to the first one and second one to model a three
day duration. Limitations will be explained later on.

18

6.6.3 Integration with CrossHair

Note: Code integration in SVSHI was done by Ladina Roffler. We only
explain here the idea at a high level.
Once we have defined our function, we need to provide it to the developer.
If they use the fully defined check function on the invariant, two issues arise:
CrossHair will attempt to cover the paths of our check function and CrossHair
is not built to add z3 expressions into its solver. Therefore we replace the
check calls on the invariant function with a dummy variable to use as a marker
of the check call. Here the idea is to track where check time property calls
happen by making a simple path constraint that CrossHair will get during
its execution.
To do this, we can add an internalState variable called c0 that is constrained
per check call. Instead of having to go to check(), we replace it with a
function that constrains c0. For example, this condition:

def invariant() ->bool:

return svshi_api.check(frequency=Day(1),

duration=Hour(1),

boiler.read()>60.0)

Will be replaced by this:

def dummy_check(internal_state,v):

return internal_state.c0 == 0

def invariant() ->bool:

return dummy_check(internal_state,v)

When we have a path constraint where it contains c0 == 0, we know it’s the
first check call.
Additionally, we still have to convert what the developer has provided as
conditions. To make our lives easier, we can run cover on this fragment of
function the same way we do it for the iteration function.
Once we have the marker, we can replace the dummy variable with the actual
z3 expression of the mentioned condition.

6.7 A concrete example

Let’s suppose we have a boiler that is plugged into the solar heater. The
boiler can be heated by electricity using its heating element or by turning on

19

the circulator pump of the solar heater. We want the boiler to reach 45°C at
anytime but never go above 65°C and prioritize the solar heating. We build
an application that does this :

def iteration():

if 65 >= solar_heater.read() >= 45:

solar_heater_circulator.on()

boiler.set(0.0)

else:

solar_heater_circulator.off()

boiler.set(45.0) #GA_0_0_4

Then after installing this app, we notice that the boiler should be compliant
with our local laws in Switzerland. That is, the boiler should be at 65°C for
one hour [4]. We install the application to be compliant :

def invariant() ->bool:

return svshi_api.check(frequency=Day(1),

duration=Hour(1),

boiler.read()>60.0)

See in D for the Z3 expression of the invariant function, where the condition
is replaced with f GA 0 0 4 > 60. However when installing it, it outputs an
error as the condition is not satisfied. (currently shows ”solver unsat”, but
error message will be changed to Check condition ”check(frequency=Day(1),
duration=Hour(1), boiler.read()¿60.0)” is unsat, please install a valid app to
satisfy this constraint”) Therefore we rewrite our application to be:

def iteration():

if 21<=svshi_api.get_hour_of_the_day() <=23:

solar_heater_circulator.off()

boiler.set(65.0) #GA_0_0_4

elif 65 >= solar_heater.read() >= 45:

solar_heater_circulator.on()

boiler.set(0.0)

else:

solar_heater_circulator.off()

boiler.set(45.0) #GA_0_0_4

See in C for the Z3 expression of the iteration function for GA 0 0 4’s func-
tion. Then here the condition is satisfied and the new application is installed.

20

6.8 Limitations

With the new module, we cannot verify what is between two time units. This
is because each time unit is independent and no links are represented. For
example, we cannot verify that a switch is on for one hour if it is set between
2:30 pm and 3:30 pm.
The way we extract conditions on the check only allows variables that are
defined globally. Therefore a developer cannot introduce variables that were
defined in the function scope.

6.9 Future work

As mentioned in the related work, one could explore verification of SVSHI
applications using the Nagini [7] tool. To use it with SVSHI’s invariants,
this would require manipulation of the code. However, if the new solution
provided in this paper is not sufficient to verify the runtime module, it seems
Viper could help. This would require an important rewriting of the code but
will enhance the reliability of SVSHI.
Regarding the limitations, we cannot statically model the environment. One
could create links between GAs, either by reading the KNX file and/or letting
the user provide how devices react to each other. Another possibility is to use
the KNX Simulator[13] when doing the compilation to give more trust to the
applications. Furthermore, we could use the InternalState’s time argument
at runtime to be shared with the simulator. It would only be a simulation,
however, it would help the user understands the link between the devices and
the environment.

7 Conclusion

In this report, we proposed two approaches to model time-sensitive proper-
ties for extending SVSHI’s verification process. We chose the last approach
that converts functions into z3 expressions and provides time to the user
through SVSHI’s API. It was chosen as it keeps the event driven architec-
ture of SVSHI.
The challenge was to sketch time and especially what happens with previous
executions. Indeed, when using CrossHair and observing counterexamples it
could not infer previous executions from the code. We end up with coun-
terexamples when the path to go from the valid property to another one is

21

being taken. Even if the path is constructed with a sufficient duration.
We added sleep to make the execution ”longer” in real-time and therefore
would solve the issue. However, SVSHI applications should be executed
quickly and thus we need to explore other solutions.
We decided to convert SVSHI applications to z3 expression so that we could
model any properties. Then by using an SMT solver we know whether the
condition is valid or not. This comes with a set of limitations that were pre-
viously mentioned, but it can also help the verification of the python modules
in SVSHI.
Some of the limitations can be a reduced by using the simulator [13]. This
introduces dependencies between devices and the environment, which can
help the verification process.

Appendix

A Application that enforces a valid boiler be-

havior

from instances import app_state, BOILER_SENSOR

def invariant() -> bool:

Write the invariants of the app here

It can be any boolean expressions containing the read properties of

the devices and constants↪→

You CANNOT use external libraries here, nor unchecked functions

set_to_60_deg_in_last_24h = app_state.BOOL_0

return set_to_60_deg_in_last_24h or BOILER_SENSOR.read() >= 60

def iteration():

Write your app code here

You CANNOT use external libraries here, encapsulate calls to those

in functions whose names start↪→

with "unchecked" and use these functions instead

reading and defining constants

period = 10 # time period in seconds when the app is ran

last_time_set_to_60 = app_state.FLOAT_0

time_at_60_deg = app_state.INT_1

22

set_to_60_deg_in_last_24h = app_state.BOOL_0

override_sequence = app_state.BOOL_1

last_run = app_state.FLOAT_1

if last_run < 1:

last_run = unchecked_get_current_time(last_run)

if BOILER_SENSOR.read() >= 60:

time_at_60_deg+= unchecked_get_current_time(last_run) - last_run

if time_at_60_deg >= 60:

last_time_set_to_60 = unchecked_get_current_time(last_run)

set_to_60_deg_in_last_24h = True

time_at_60_deg = 0

else:

time_at_60_deg = 0 # reset the counter

day_in_sec = float(24 * 60 * 60)

time_delta = unchecked_get_current_time(last_run) -

last_time_set_to_60↪→

if time_delta >= day_in_sec:

set_to_60_deg_in_last_24h = False

assigning the constants into the app state

app_state.FLOAT_0 = last_time_set_to_60

app_state.FLOAT_1 = unchecked_get_current_time(last_run)

app_state.BOOL_0 = set_to_60_deg_in_last_24h

app_state.INT_1 = time_at_60_deg

app_state.BOOL_1 = override_sequence

def unchecked_get_current_time(x:float) -> float:

"""

post : __return__ > x

post: __return__ > 0

"""

import time

return time.time()

B Example with waits

def wait(value, physical_state: PhysicalState) -> None:

physical_state.time += value

physical_state.time_state += value

23

def wait_sensor(sensor, physical_state:PhysicalState, fct, timeout:int,

polling_frequency:int = 10)-> tuple[↪→

bool, bool]:

return

fct(sensor.read(physical_state)),(fct(sensor.read(physical_state))

and physical_state.time_state >= timeout)

↪→

↪→

class GenericSetReadDPT9_boiler_rules_boiler_sensor():

def set(self, temp:float , physical_state: PhysicalState):

"""

pre:

post: physical_state.GA_0_0_1 == temp

"""

physical_state.GA_0_0_1 = temp

def read(self, physical_state: PhysicalState) -> float:

"""

pre:

post: physical_state.GA_0_0_1 == __return__

"""

return physical_state.GA_0_0_1

class GenericSetReadDPT9_boiler_set_temp_boiler_sensor():

def set(self, temp:float , physical_state: PhysicalState):

"""

pre:

post: physical_state.GA_0_0_1 == temp

"""

physical_state.time += 60*60

physical_state.time_state = 0

physical_state.GA_0_0_1 = temp

def read(self, physical_state: PhysicalState) -> float:

"""

pre:

post: physical_state.GA_0_0_1 == __return__

"""

return physical_state.GA_0_0_1

24

BOILER_RULES_BOILER_SENSOR =

GenericSetReadDPT9_boiler_rules_boiler_sensor()↪→

BOILER_SET_TEMP_BOILER_SENSOR =

GenericSetReadDPT9_boiler_set_temp_boiler_sensor()↪→

def boiler_rules_invariant(boiler_rules_app_state: AppState,

boiler_set_temp_app_state: AppState, physical_state: PhysicalState)

->bool:↪→

set_to_60_deg_in_last_24h = boiler_rules_app_state.BOOL_0

return set_to_60_deg_in_last_24h

def boiler_rules_iteration(boiler_rules_app_state: AppState,

boiler_set_temp_app_state: AppState, physical_state: PhysicalState,

):

"""

pre: boiler_rules_invariant_rules_app(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)↪→

pre: boiler_set_temp_invariant(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)↪→

pre: boiler_rules_app_state.FLOAT_1 < physical_state.time

post: boiler_rules_invariant_rules_app(**__return__)

post: boiler_set_temp_invariant(**__return__)

"""

boiler_rules_unchecked_get_current_time = physical_state.time

last_time_set_to_60 = boiler_rules_app_state.FLOAT_0

set_to_60_deg_in_last_24h = boiler_rules_app_state.BOOL_0

time_at_60_deg = 60*60

success,out = wait_sensor(BOILER_RULES_BOILER_SENSOR, physical_state,

lambda x: x >= 60, timeout=time_at_60_deg)↪→

if success and out:

last_time_set_to_60 = physical_state.time

set_to_60_deg_in_last_24h = True

day_in_sec = float(24 * 60 * 60)

time_delta = boiler_rules_unchecked_get_current_time -

last_time_set_to_60↪→

if time_delta > day_in_sec:

set_to_60_deg_in_last_24h = False

25

boiler_rules_app_state.FLOAT_0 = last_time_set_to_60

boiler_rules_app_state.FLOAT_1 =

boiler_rules_unchecked_get_current_time↪→

boiler_rules_app_state.BOOL_0 = set_to_60_deg_in_last_24h

return {'boiler_rules_app_state': boiler_rules_app_state,

'boiler_set_temp_app_state': boiler_set_temp_app_state,

'physical_state': physical_state}

def boiler_rules_invariant_rules_app(boiler_rules_app_state: AppState,

boiler_set_temp_app_state: AppState, physical_state: PhysicalState)

->bool:↪→

last_time_set_to_60 = boiler_rules_app_state.FLOAT_0

set_to_60_deg_in_last_24h = boiler_rules_app_state.BOOL_0

last_run = boiler_rules_app_state.FLOAT_1

time_delta_above_24h = last_time_set_to_60 + float(24 * 60 * 60) <

last_run↪→

return (last_time_set_to_60 >= 0 and last_run >= 0 and

time_delta_above_24h ^ set_to_60_deg_in_last_24h and↪→

last_time_set_to_60<=last_run)

def boiler_set_temp_invariant(boiler_rules_app_state: AppState,

boiler_set_temp_app_state: AppState, physical_state: PhysicalState)

->bool:↪→

last_set_at_60 = boiler_set_temp_app_state.BOOL_0

return (last_set_at_60 and physical_state.GA_0_0_1 == 60

) or (not last_set_at_60 and physical_state.GA_0_0_1 == 0)

def boiler_set_temp_iteration(boiler_rules_app_state: AppState,

boiler_set_temp_app_state: AppState, physical_state: PhysicalState):

"""

pre: boiler_rules_invariant_rules_app(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)↪→

pre: boiler_set_temp_invariant(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)↪→

post: boiler_rules_invariant(**__return__)

post: boiler_set_temp_invariant(**__return__)

"""

last_set_to_60 = boiler_set_temp_app_state.BOOL_0

BOILER_SET_TEMP_BOILER_SENSOR.set(60, physical_state)

wait_sensor(BOILER_SET_TEMP_BOILER_SENSOR, physical_state, lambda

x:x>=60, timeout=0)↪→

boiler_rules_iteration_no_cdt(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)

26

boiler_set_temp_app_state.BOOL_0 = True

wait(2*60*60,physical_state)

boiler_rules_iteration_no_cdt(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)

BOILER_SET_TEMP_BOILER_SENSOR.set(0, physical_state)

wait_sensor(BOILER_SET_TEMP_BOILER_SENSOR, physical_state, lambda

x:x==0, timeout=0)↪→

boiler_rules_iteration_no_cdt(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)

boiler_set_temp_app_state.BOOL_0 = False

wait(2*60*60,physical_state)

boiler_rules_iteration_no_cdt(boiler_rules_app_state,

boiler_set_temp_app_state, physical_state)

return {'boiler_rules_app_state': boiler_rules_app_state,

'boiler_set_temp_app_state': boiler_set_temp_app_state,

'physical_state': physical_state}

Note : boiler rules iteration no cdt is boiler rules iteration without the doc-
string that contains the pre and post condtions.

C Z3 expression of f GA 0 0 4

If(And(21 <= time_hour_16, 23 >= time_hour_16),

65,

If(And(Not(21 <= time_hour_16), Not(45 < GA_0_0_3_12)),

45,

If(And(21 <= time_hour_16,

Not(23 >= time_hour_16),

Not(45 < GA_0_0_3_12)),

45,

If(And(21 <= time_hour_16,

Not(23 >= time_hour_16),

45 < GA_0_0_3_12),

0,

If(And(Not(21 <= time_hour_16),

45 < GA_0_0_3_12),

0,

ToReal(-1))))))

27

D Z3 expression of the example check condi-

tion

[[ForAll([time_hour_16,

GA_0_0_3_12,

time_min,

time_day,

time_weekday,

time_month,

time_year],

Implies(And(time_day >= 1,

time_day <= 7,

time_hour_16 >= 0,

time_hour_16 <= 23,

time_weekday >= 1,

time_weekday <= 4,

time_month >= 1,

time_month <= 12,

time_min >= 0,

time_min <= 59),

Exists(t,

And(And(And(t >= 0, t <= 22),

ForAll(time_hour_16,

Implies(And(t <=

time_hour_16,

time_hour_16 <=

t + 1),

60 <

If(And(21 <=

time_hour_16,

23 >= time_hour_16),

65,

If(And(Not(21 <=

time_hour_16),

Not(45 < GA_0_0_3_12)),

45,

If(And(21 <=

28

time_hour_16,

Not(23 >=

time_hour_16),

Not(45 < GA_0_0_3_12)),

45,

If(And(21 <=

time_hour_16,

Not(23 >=

time_hour_16),

45 < GA_0_0_3_12),

0,

If(And(Not(21 <=

time_hour_16),

45 < GA_0_0_3_12),

0,

ToReal(-1))))))))),

And(time_day >= 1,

time_day <= 7,

time_hour_16 >= 0,

time_hour_16 <= 23,

time_weekday >= 1,

time_weekday <= 4,

time_month >= 1,

time_month <= 12,

time_min >= 0,

time_min <= 59)))))]]

References

[1] S. Chassot and A. Veneziano, “Svshi - secure and veri-
fied smart home infrastructure,” EPFL - DSLAB, 2022. [On-
line]. Available: https://github.com/dslab-epfl/svshi/blob/main/src/
documentation/documentation.md

[2] P. Schanely, “Crosshair,” GitHub, 06 2022. [Online]. Available:
https://github.com/pschanely/CrossHair

29

https://github.com/dslab-epfl/svshi/blob/main/src/documentation/documentation.md
https://github.com/dslab-epfl/svshi/blob/main/src/documentation/documentation.md
https://github.com/pschanely/CrossHair

[3] “Concolic testing,” Wikipedia, 04 2022. [Online]. Available: https:
//en.wikipedia.org/wiki/Concolic testing

[4] A. Cordin, V. Bernhard, and B. Stefan, “Hpt an-
nex 46 domestic hot water heat pumps task 1 mar-
ket overview country report switzerland,” 2016. [Online].
Available: https://www.fws.ch/wp-content/uploads/2018/10/Market
Overview Country Report Switzerland Annex 46 DHWHP Task1.pdf

[5] B. Kordic, M. Popovic, and S. Ghilezan, “Formal verification of python
software transactional memory based on timed automata,” Acta Poly-
technica Hungarica, vol. 16, no. 7, pp. 197–216, 2019.

[6] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” 2006.

[7] M. Eilers, “marcoeilers/nagini,” GitHub, 06 2022. [Online]. Available:
https://github.com/marcoeilers/nagini

[8] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in Verification, Model
Checking, and Abstract Interpretation (VMCAI), ser. LNCS, B. Jobst-
mann and K. R. M. Leino, Eds., vol. 9583. Springer-Verlag, 2016, pp.
41–62.

[9] “time — time access and conversions — python 3.10.5
documentation,” docs.python.org. [Online]. Available: https:
//docs.python.org/3/library/time.html#time.time

[10] “Using crosshair to convert simple functions into z3 expres-
sions to verify time sensitive applications · discussion #165
· pschanely/crosshair.” [Online]. Available: https://github.com/
pschanely/CrossHair/discussions/165

[11] L. de Moura and N. Bjørner, “Z3: an efficient smt solver,” vol. 4963, 04
2008, pp. 337–340.

[12] “Dslab’s crosshair fork,” 06 2022. [Online]. Available: https:
//github.com/dslab-epfl/CrossHair

[13] L. Alvarez and I. Daudé, “Smart home knx system simulator,” EPFL -
DSLAB, 2022.

30

https://en.wikipedia.org/wiki/Concolic_testing
https://en.wikipedia.org/wiki/Concolic_testing
https://www.fws.ch/wp-content/uploads/2018/10/Market_Overview_Country_Report_Switzerland_Annex_46_DHWHP_Task1.pdf
https://www.fws.ch/wp-content/uploads/2018/10/Market_Overview_Country_Report_Switzerland_Annex_46_DHWHP_Task1.pdf
https://github.com/marcoeilers/nagini
https://docs.python.org/3/library/time.html#time.time
https://docs.python.org/3/library/time.html#time.time
https://github.com/pschanely/CrossHair/discussions/165
https://github.com/pschanely/CrossHair/discussions/165
https://github.com/dslab-epfl/CrossHair
https://github.com/dslab-epfl/CrossHair

