
Smart Home KNX System Simulator

Léo Alvarez & Isis Daudé

School of Computer and Communication Sciences
Master Semester Project Report

Supervisor
Samuel Chassot
EPFL / DSLAB

Supervisor
Prof. George Candea

EPFL / DSLAB

June 2022



Smart Home KNX System Simulator

Léo ALvarez & Isis Daudé
EPFL, Switzerland

leo.alvarez@epfl.ch & isis.daude@epfl.ch

1 Introduction

When designing or debugging a Smart home KNX [1]
infrastructure composed of several devices, one must pos-
sess all the physical devices and wires to test the system.
This implies an important cost in money and time before
being able to test a certain functionality, even a simple
one. The same problem arises when testing Secure and
Verified Smart Home Infrastructure (SVSHI, [2]) applica-
tions for correctness, or when verifying that they achieve
the desired behavior. To address this problem, we devel-
oped a simulator software that represents a KNX system
without physical devices, and models its evolution in time
in response to user interactions and physical world influ-
ence. With the proposed solution, one user can configure a
KNX system with visual feedback, interact with it and test
applications developed with SVSHI before implementing
them in a real physical KNX system.

2 Background: KNX systems and
SVSHI

In this section, we provide some background informa-
tion about KNX systems and SVSHI software. More de-
tailed information can be found on KNX website [1], and
in SVSHI paper [2].

2.1 KNX systems

KNX is a communication protocol for smart homes that
allows to establish a connection, physical or wireless, be-
tween several devices in a building. All devices are con-
nected to a bus on which they send & receive telegrams
(name given to KNX data packets) to interact with each
other.

2.1.1 KNX Certified Devices

Devices that can connect to the bus are certified by
KNX Association. They can be split in two main types:
System devices and End devices. For the sake of this
project, we focus on the System device IP interface and
End devices Sensors and Actuators.

• IP Interface: Device that bridges an internal KNX
system to an external module/network using IP pro-
tocol (e.g. sending a request from your smartphone
to the IP interface to start the heater while on your
way home).

• Sensors: Devices that perceive physical states and
transmit information on the bus (e.g. temperature).

• Actuators: Devices that react to information from
the bus and act on a physical world state (e.g. heater
acts on temperature).

Each device is assigned an Individual Address de-
noting its location on the KNX bus, with the following
format: Area.Line.Device. Also, devices exposes com-
munication objects on the bus, akin to IO ports visible
by the system. Each communication object can be linked
to one or more group addresses (see Section 2.1.2).

2.1.2 KNX Bus

As stated earlier, the KNX Bus allows communication
between all KNX devices in the system. It transmits in-
formation encapsulated in packets called telegrams.

For instance, an actuator can receive a telegram sent by
a sensor on the bus and adjust its state accordingly. They
are composed of several fields, the most important ones in
our context are:

• Address Field: It contains the individual address
of the sender and the destination address (group ad-
dress).

• Data field: It contains the telegram’s payload (e.g.
temperature value or binary state).

To implement a functionality, the KNX protocol makes
use of the group address concept: when a telegram is
sent to a particular group address, all devices assigned to
it accept and process the telegram, and all others ignore
the telegram. For this system to work, each group address
must implement exactly one functionality.

2.1.3 Configuration of KNX Systems

To configure a KNX system, users need to use the soft-
ware ETS [3] developed by KNX Association. All man-
ufacturers provide a KNX catalog entry for each of their
devices, whose format vary from one manufacturer to an-
other. Users use catalog entries to represent the whole
system in ETS, define the KNX topology in the building
and configure devices to achieve the desired functional-
ities. This is done by creating group addresses, linking
them to appropriate devices’ communication objects and
setting their parameters.

This process is cumbersome, very error-prone and time-
consuming. SVSHI was created to overcome these limita-
tions by facilitating and verifying KNX system configura-
tions.

1

mailto:leo.alvarez@epfl.ch
mailto:isis.daude@epfl.ch


2.2 SVSHI

SVSHI stands for Secure and Verified Smart Home In-
frastructure acts like a KNX device in the system as it
sends and receives telegrams respectively on and from the
bus. By assigning it to every group address, it inter-
prets all telegrams from the bus, runs the user application
and send back telegrams to appropriate group addresses.
SVSHI allows users to develop and run secured and verified
Python applications in a KNX system, that respect a set
of constraints (invariants) provided by the user (more de-
tails in SVSHI paper [2]. Its aim is to reduce the amount
of time spent on ETS and the complexity of configura-
tions. This leads to fewer errors committed, with easier
and quicker debugging.

3 Related work

In this section, we present the current existing free sim-
ulation software for KNX systems called KNX Virtual.
Other costly software exist but are not considered as they
mainly focus on electrical connection and configuration for
KNX professionals and trainings.
KNX Virtual [4] is a free and closed-source software

able to simulate KNX systems. It is used in combina-
tion of ETS to display the configuration and state in real-
time. But it is very limited. The virtual devices are too
simple and does not exist outside the simulator: a user
cannot test its configuration with real devices simulated.
The amount of virtual devices available is very small, and
their settings are simplified. The Graphical User Inter-
face is not user-friendly and too complex. Finally, there is
no representation of the physical world (weather, time...)
that could influence the devices in the system and its be-
havior in time.
The goal of the proposed simulator is to overcome most

of these limitations with a more usefull and truthful simu-
lation of a real KNX system and its environment, through
a user-friendly interface.

4 Simulation

We now present the simulator we created with the as-
sumptions and choices made to represent the KNX system
and the physical world it evolves in. The object-oriented
programming capabilities of Python are exploited to rep-
resent and manage the system and its interactions.

4.1 Simulating a KNX system

First, we explain our choices to model KNX devices and
communication in the simulator.

4.1.1 General implementation

We limited the simulation to a single room environment,
because the targeted user of our simulator would typically
implement a KNX system for a small space, such as a
bedroom.

In the code, a central Room object contains all the
system components’ objects (KNX Bus, devices, World
states, SVSHI interface, ...), as the room is shared by all
of them in a physical system. A major distinction is made
between the simulation of KNX components, which should
be as close as possible to real KNX elements, and physi-
cal world states, which should represent environment con-
ditions interacting with the KNX system. All elements
are represented by Python class instances and their inter-
actions are defined with specific methods respecting the
general behavior of a real KNX system.

Indeed, the KNXBus object permits the exchange
of Telegram objects, created using a Payload ob-
ject (Binary or Dimmer), between Device objects.
GroupAddress objects are assigned to devices defined
with an IndividualAddress object. As explained in Sec-
tion 4.2, the World object manages evolution of physical
states and time with class instances as well (e.g. Time,
Temperature, Humidity, CO2, Light).

4.1.2 Device interactions

As seen on Figure 1, we chose to implement three types
of devices: Actuator, Sensor and FunctionalModule
(type specific to simulator, considered as sensors by KNX).

Figure 1: Components’ interactions in our simulator

Most of KNX certified devices’ communication objects
can be represented using one of the three simulator’s de-
vice classes. The abstraction of KNX devices takes place
at a communication object level, making possible to im-
plement complex devices from a combination of the ones
defined in the simulator.

Their interactions with the bus, the world and the user
are well-defined:

• Actuators receive telegrams from the bus, update
their state depending on the information transmitted
by the telegram, impact or not the physical world
state. For instance, a heater is an actuator: if it
receives a telegram ordering to turn on, it will start
heating the room and room’s temperature will rise.

• Sensors send their telegrams on the bus with in-
formation on their current state and value(s) sensed.
Their value attribute is set and updated by the World
object at every tick of our simulated clock (see Sec-
tion 4.1.4). For instance, a thermometer will regularly
send its value on the bus, which is exactly how real
KNX sensors behave. In the simulator implementa-
tion, sensors are devices that users cannot interact

2



physically with. Users can only use sensors’ value
sent on the bus to implement SVSHI applications.

• Functional modules are a type of KNX sensors
that we decided to introduce in order to represent
user actionable devices, compared to physical states
sensors. They are lightly mentioned in KNX docu-
mentation, see [5]. From a KNX point-of-view, users
are part of the environment and any physical user ac-
tion is considered part of the world influence on the
system, that KNX sensors could capture. The distinc-
tion between Functional modules and other sensors is
explained by a major behavior differences: users can-
not interact with sensors. It permits to handle both of
them optimally in the code, and make it also clearer
for developers.

• Telegrams are a representation of KNX telegrams
in our simulated environment. They are composed of
the addresses of the source (individual address) and
of the destination (group address), but also of the
data (payload). The latter is represented by an ab-
stract class Payload that can be initialized with two
child classes: BinaryPayload, used for binary con-
tent like a switch with on/off, and FloatPayload,
used for decimal float content (e.g., temperature in
degrees of a thermometer). These two data represen-
tation classes are compliant with KNX’s data encod-
ing. Indeed, The payload content of KNX telegrams
respect some datatypes (called DPT) where the in-
stances DPTBinary is used for boolean values, sim-
ilarly to our BinaryPayload, and DPTArray is used
for float and integers, similarly to our FloatPayload.
Those two can represent most datatypes used in tele-
gram payloads, and cover all the ones supported by
SVSHI.

• KNX Bus is the representation of the physical bus
used to connect all devices in a real system. In or-
der to simulate this component, that permits com-
munication between devices, we chose to implement
a two-way Observer Design Pattern with a central
class: KNXBus. As you would connect the device
to the bus in the real world, we make every new ac-
tuator device subscribe to the KNX bus object, so
that it is notified when the bus receives a telegram to
an assigned group address. We make the KNX bus
object subscribe to every new sensor/functional mod-
ule device, so it can be notified when these devices
want to send telegrams on the bus. The bus trans-
mits telegrams it receives to concerned actuators. The
implementation described allows for simple and com-
plex communication through the notification concept,
basically calling observer methods, without requiring
to emulate real message exchanges through internal
sockets and communication protocols, which would
be very cumbersome and potentially not robust.

4.1.3 System configuration

The system configuration can be done either by:

• parsing a JSON file provided by the user,

• calling configuration functions and methods in the
source code,

• dynamically interacting with the system through the
Graphical User Interface (see Section 6.2),

• combining these approaches.

The easiest way is to configure the JSON file before start-
ing the simulation. As explained in Section 6.2, users can
visually set up the devices in the room using the GUI,
save the configuration using the SAVE button and launch
the simulation with the generated JSON configuration file,
that can be completed manually by users.

Regarding KNX components, the configuration of de-
vices includes their class (e.g. LED, Button), their loca-
tion in the room and on the KNX bus, and their assigned
group address(es).

On the other hand, for World components, users can
configure the system dt , the speed factor (see Section
4.1.4), the indoor/outdoor physical states (temperature,
humidity, co2), the initial date and time, the weather
(clear, overcast, dark), the room insulation and the win-
dows (if any). The effect of world components on KNX
devices and their behavior is explained in Section 4.2.

4.1.4 Program logic

The end goal of our simulator is to test SVSHI apps on
simulated KNX systems. As SVSHI runs in real-time for
now, the simulator should be able to also evolve in time.
It is also interesting for users to see their system change
dynamically. To model the environment impacting the
system, there should be scheduled updates of physical
states (see Section 4.2). These updates occur every
system dt (see Section 4.1.3) real seconds, and correspond
to system dt × speed factor simulated seconds. These
two variables allow users to control both the real updates
time interval (system dt), and the simulated time gap
between them. Simultaneously to the scheduled updates,
users should be able to interact with the program through
the process’ command shell or the GUI.

Because of the interactive nature of the simulator and
the dynamic evolution of the system in time, an asyn-
chronous implementation is necessary to interpret the user
actions & commands while running the backend logic.

When the GUI is not used, the user interactions take
place in the command shell (or via a script parser, see
Section 6.3). The Python library asyncio [6] is used to
manage this asynchronous wait for user input. It allows
defining tasks and running them in an infinite loop (e.g.
await user input()). At the same time, the program
can schedule the world updates with AsyncIOScheduler

function from apscheduler library. Our choice is based
on the performances of those libraries, and the important
support from the python community. Also, other possible
libraries such as multi-threading or multi-processing im-
prove CPU-intensive programs (e.g. ML model training),
but not the interactive IO-intensive simulator program,
that is limited by the time wasted waiting for the user
input.

3



With the GUI running, the graphical library pyglet
manages the updates scheduling and user interactions
(see Section 6.2). This library is event-based and work
by listening to keyboard, mouse or screen actions (e.g.
mouse pressed, key released, ...). Specific functions are
called when an event is detected, and some code updates
the graphical window.

As mentioned in previous sections, the simulator com-
ponents are defined as class instances, that interact be-
tween each other with specific methods to emulate the
behavior of a KNX system. An Observer Design Pattern
is implemented between the KNX bus and the devices to
model the internal behavior of the system and transmit
telegrams between devices. Scheduled updates simulate
the evolution of the surrounding environment states (e.g.
Temperature). As explain in Scetion 5.2.2, when using
SVSHI program to run applications, an additional thread
is run in background to exchange telegrams with SVSHI.

4.2 Simulating the physical world

To expand functionalities of KNX Virtual (and most
of existing KNX simulators), we implemented a model-
ing of the physical world states’ evolution in time. This
is managed by the object World that contains the ob-
jects Time, AmbientTemperature, AmbientLight,
AmbientHumidity, AmbientCO2, SoilMoisture and
Presence. The last two are specific for sensors of humid-
ity in soil (for plants), and presence sensor. Their state
changes only after a particular user action. The Time
instance manages the scheduling of world updates, and of
the simulation time and date.
The others are the most important ones and their state

changes almost at each world updates. They are executed
with the function World.update() that is scheduled every
system dt seconds. The logic of these states’ evolution is
based on a few online references, personal physics knowl-
edge and intuition, but it can be in no case considered as
a perfect modeling of a real world environment. There are
in reality too many factors and unknown, and the under-
standing of physical states dynamics is not the purpose
of this project. For this reason, technical explanations re-
mains general in this report, without many details because
it is half arbitrary. However, our simple models are some-
what realistic and give a real world effect in the simulation.
They also allow a user to test applications depending on
external factors.

4.2.1 Temperature

Both the indoor and outdoor temperature are consid-
ered in Celsius degrees. The outdoor temperature can be
set by the user in the JSON configuration file, or by an
API command in script mode (see Section 6.3). We con-
sider that it won’t change during the simulation (except
in Script mode).
The indoor temperature evolution in time depends on:

• Room’s insulation (perfect, good, average or bad)

• Outdoor temperature

• Temperature actuators’ state (heater and ac can re-
spectively rise and lower room’s temperature)

The insulation level is mapped to an arbitrary factor (0,
0.1, 0.2 or 0.4), used to compute the update tempera-
ture delta (> 0 or < 0). Without any temperature actua-
tor ON, indoor temperature tends to outdoor temperature
value. In the other case, the temperature is first updated
with the effective power of the actuator, and then updated
with outdoor and insulation influence.

4.2.2 Brightness

Both the indoor and outdoor brightness are considered.
Outdoor light depends on the time of day (sunrise, sun-
set, midday, twilight, ...), and on the weather (clear, over-
cast or dark). Outdoor brightness value in lux is deduced
from outdoor conditions [7], and its influence on indoor
brightness depends on the room’s windows location and
size/area. Indoor brightness is also influenced by light ac-
tuators. Users can set outdoor weather using the JSON
configuration file, or using script API (see Section 6.3).

Light intensity can be measured in several units, but
we only consider lux and lumen. Lumen is the luminous
flux and measures the total quantity of visible light emit-
ted by a light source per unit of time [8]. On the other
side, lux measure the lumen per square meter (area unit).
Brightness sensors measure light intensity in lux, and light
source’s intensity are defined in lumens. By considering
the fact that light intensity decrease exponentially with
the distance from source, the light received at a sensor
location can be precisely computed, depending on light
sources locations (light actuators and windows), and their
light intensity (effective lumen of light actuators, weather
and time of day for windows). It is also possible to com-
pute the global room’s brightness, by considering the light
reaching room’s floor [7]. This computation considers the
beam angle of sources, and room specific factors [9].

4.2.3 Humidity & CO2

Both indoor and outdoor humidity and co2 levels are
considered, humidity in percentage, co2 in ppm. Users can
set outdoor CO2 level and humidity in JSON configuration
file, or using script API (see Section 6.3). Outdoor levels
are considered stable during simulation, except in Script
mode. CO2 indoor level tends to outdoor level, with the
room’s insulation impacting the speed of evolution. No
device can act on indoor levels yet (HVAC systems are
not implemented in the simulator because of the complex
feedback loop to control air states, and windows remain
closed).

Regarding humidity, to get closer to reality, we use the
indoor and outdoor temperature levels to compute indoor
and outdoor saturation and actual vapor pressure of water
[10]. They respectively represent the maximum proportion
possible of water particles in air at a certain temperature,
and the actual proportion of water particles in air. The
ratio of them is a percentage corresponding to the rela-
tive humidity (simply called humidity in this report). To
model the evolution of humidity, we consider the indoor
and outdoor temperatures to compute the vapor pressures,

4



we update the indoor vapor pressure with the outdoor one
and the room insulation, and the relative humidity is com-
puted as the ratio:

100× vapor pressure of water

saturation vapor pressure of water

5 Simulation of SVSHI applica-
tions

We now detail the integration of SVSHI apps to control
the simulated system.

5.1 Compliance with SVSHI

As of the current state of SVSHI, the supported devices
are:

• Binary sensors

• Temperature sensors

• CO2 sensors

• Humidity sensors

• Switch actuators

To couple SVSHI program and the simulator, all these de-
vices are implemented and supported by our simulator too.
Additional devices that SVSHI does not support are also
implemented in the program, such as a heater, a dimmer
button, a LED,... They all can be represented by one of
SVSHI-supported device types. For instance, the SVSHI
switch can be linked to the simulator heater, led or AC,
the SVSHI binary sensor can be linked to the simulator
button or dimmer button (thus losing its dimming func-
tionality). As mentioned in Section 4.1.2, those simulated
devices are in fact representing communication objects of
real KNX certified devices. SVSHI considers also devices
as communication objects, and this shows that the simu-
lator is compliant with SVSHI.

5.2 Communication with SVSHI

For its communication with a real KNX system, SVSHI
uses an external Python library: xknx[11]. The advantage
of this library is its simplicity and well-defined representa-
tion of KNX objects (e.g. GroupAddress, Telegram, ...).
To interact with SVSHI, modules of this library must be
used in our simulator, and a new device that acts as the
communication module for the simulator must be added
to the system. This device corresponds to the KNX IP
Interface device mentioned in previous sections. In the
simulator, the IP Interface contains a module that gathers
communication sockets (send and receive) and functions
used for sending and receiving information through the IP
network (locally) between the simulator and SVSHI.
The communication protocol is divided in two main

parts: setting up the connection (similarly to a TCP hand-
shake) and transmitting information (similar to a TCP
Tunneling).

5.2.1 Connection

Before being able to handle information exchange, i.e.
telegram transmission between our simulator and SVSHI,
a tunnel connection with SVSHI must be established.

Figure 2: Connection set up with SVSHI

In the figure above, we can observe the different mod-
ules involved in the connection: the red box represents the
whole simulator which contains the communication inter-
face, as well as the core of the simulation (room, devices,
world representation...) The aim is to make SVSHI think
that the simulator is a real system with physical devices.
A deep analysis of exchanged packet on a real network
allowed to create messages that enable this imposture:

1. receive a connection request from SVSHI,

2. reply to the connection request with a connection re-
sponse,

3. receive the ACK from SVSHI to confirm that the con-
nection was established.

This procedure is done twice, because SVSHI starts a first
connection to read the states of the devices and then starts
a second connection to launch its applications.

5.2.2 Transmission

Once the tunneled connection is set up, the exchange of
telegrams with SVSHI can start! To this end, we decided
to start a new background thread, with the threading
[12] library for Python, that would constantly listen for
incoming packets from SVSHI and process packets to
be sent from the simulator. This implementation allows
the simulator to remain fully independent of SVSHI and
respects the isolation of the simulated KNX system from
the network. It also lets the simulation be non-blocking
for the receiving of SVSHI telegrams. The data structure
used to store the telegrams that need to be sent to SVSHI
is a Queue which is thread-safe in the Python language.

Even though the IP Interface handles the transmission
of telegrams, it is not enough because we need to translate
our simulated telegrams to real KNX telegrams (and op-
positely). Indeed, there is no real use to simulate perfectly
the XKNX telegrams, and the current implementation is
very clear for developer. To answer this problem, a parser
module is added to the IP Interface class that parses tele-
grams in the two ways to send the correctly encoded pack-
ets to SVSHI or the simulator, see Figure 3.

5



Figure 3: Telegram parsing and exchange

For coherence and correct functionality, users need to
set the group address of the devices according to the
generated ones by SVSHI (assignments file). This can
easily be done through the configuration files or on the
Graphical User Interface after the simulation started.

Finally, the core of the simulator is able to send tele-
grams through the IP Interface as it is considered as an
actuator that is automatically assigned to every group ad-
dress assigned to at least one device. Thus, it receives all
telegrams transmitted on the bus and can easily forward
them to the communication module, which then parses
them and sends them to SVSHI. When it comes to receiv-
ing telegrams from SVSHI, the IP Interface module has
direct access to the object representing the KNX Bus, so it
can directly call the function that transmits telegrams on
the bus knxbus_transmit telegrams() to the correspond-
ing group address after the telegrams have been parsed
from KNX telegrams to simulator telegrams.

6 User Experience

In this section, we explain the front-end of our simula-
tor, the possible user interactions and the reasons behind
our choices.

6.1 Simulator modes

There are multiple possible modes to launch the simu-
lator:

• CLI mode: no visual feedback, users can get in-
formation and interact with the system through the
command-line shell with a defined set of commands
(see README).

• GUI mode: visualize the system in a graphical win-
dow with which users can interact with, the CLI com-
mands are still accessible by the user through a GUI
command box.

• Script mode: no visual feedback, no dynamic user
interaction, a set of API commands is parsed from a
.txt file and executed in sequence by the simulator.

• SVSHI mode: all the previous modes can be used
when running SVSHI applications. However, some
delay can occur due to the exchange of telegrams to
and from SVSHI program, but there should be no
loss of packets (telegrams). SVSHI must be run in a
separated process, there is no automated launching of
SVSHI program along with the simulator’ process.

6.2 Graphical User Interface

The best way to understand what is happening during
a KNX system simulation is to visualize it. With the sim-
ulator, we provide a Graphical User Interface, which you
can see an example of in Figure 4. It is important to note
that the GUI is coded around the KNX simulation, and
does not interfere with it. Telegrams are exchanged as in
a real KNX system and the GUI simply represent the sys-
tem state. It is thus possible to run SVSHI applications
in GUI mode.

6.2.1 pyglet library to represent the GUI

The GUI is based on pyglet library. In order to let the
possibility of improving the simulator to visualize rooms in
fancy 3D representations similar to the Sim’s game, a li-
brary suited for games programming is necessary. It must
provide a lot of flexibility and a large range of choices
for visual features. Basic GUI libraries such as pyQT or
Tkinter are very simple and do not expand well for our
project. Our choice was motivated by mainly three rea-
sons: performance, visual possibilities and code simplic-
ity. Pygame was considered, but despite the great com-
munity support, pyglet’s simplicity and render are more
suited for our project [13]. It is one of the most pow-
erful graphical Python libraries, and its object-oriented
implementation makes it even better for the simulator.
Furthermore, pyglet can implement a scheduler to regu-
larly update the physical world states through the method
World.update(). This allows the system to be fully im-
plement using a single library for asynchronous actions
and interactions when using the GUI.

6.2.2 GUI features

For a complete explanation of our GUI functionalities,
we redirect interested readers to the README of our
GitHub repository. Here is a presentation of main fea-
tures.

Figure 4: GUI Window example

The first aim of the GUI is to provide a visual feedback
of the simulator’s behavior. The GUI displays the cur-
rent configuration with devices’ (and windows) locations.

6



Users can activate Functional Modules, and see the Ac-
tuators connected to the same group address having their
state change (e.g. on Figure 4, the button2 turned the
heater1 ON). Sensors values are automatically updated at
each world update and displayed on the side of the GUI
window. Some sensors’ state are displayed directly on the
device representation (e.g. the presencesensor1 and hu-
miditysoil1 on Figure 4). Room devices are also displayed
with their individual and group addresses on the side of
the GUI, to give feedback on the current configuration.
Finally, the simulation time, date, weather and outside
physical states are shown to users.
The other most useful functionality is the ability to con-

figure a system using the GUI. Available devices on the
side can be dragged and dropped on the precise location
wanted by users. It is then possible to assign a group ad-
dress to it by using the command box on the top right
of the window (see the README for more details). By
pressing the SAVE button, users can generate a JSON con-
figuration file based on the initial configuration file, with
new devices and their group addresses added to it.

6.3 API for automated scripts

One of the most interesting features of our simulator is
the possibility to execute automated scripts to test the
good functioning of the system created. The program
can take a .txt script file containing well-define API com-
mands, and parse it to executes the commands sequen-
tially. For now, scripts cannot be run with the GUI vi-
sualization, and users cannot interact with the system in
script mode.
Commands can be:

• wait for a certain amount of time (real time or simu-
lated time),

• set a certain device’s state or value,

• store one system value if a variable,

• assert a comparison between two stored variables, val-
ues, attributes or states,

• show displays a certain system value

• end terminates the script execution.

We redirect interested readers to the README of our
project for more details.
The program terminates when all commands are exe-

cuted successfully, when an end command is reached, or
if one assert command failed. A summary of all stored
variables and assertion results is provided to users when
the script stops.

7 Future work

In this section, we discuss potential future work and
improvement possibilities for this project.
First, concerning the back-end of the project, there are

a few potential improvements:

• Handling multiple rooms: For the moment, users can
configure a single room and its environment. It could
be interesting to be able to have different rooms at
once and make their devices interact together as well.

• Devices: Even though the simulator presented sup-
ports more devices than KNX Virtual, we could think
about adding more devices to be used for new func-
tionalities.

• Physical World modelling: To be even more truthful
to our real world, the simulator could fetch informa-
tion from real weather forecast and integrate it in its
calculations for brightness, humidity or temperature
levels.

Then, concerning the front-end for users, we could think
of transforming our 2D representation of the room to a 3D
representation. This could give the opportunity to users
to visualize better the model they created and potentially
implement multiple 3D rooms.

8 Conclusion

We developed and created a solution for developers and
users to test their KNX systems’ functionality and con-
figurations without the need to invest time and money in
real devices. They are now able to observe the behavior
of their devices and track their impact on the surrounding
environment, and vice-versa. This solution can be used as
a tool, for instance for a SVSHI user who wants to test
their apps, or as a main development interface for their
KNX system. It could also be linked to a real KNX sys-
tem and interact with it as an IP Interface device.

Here is a link to the code: https://github.com/

dslab-epfl/svshi_private/tree/simulator.

7

https://github.com/dslab-epfl/svshi_private/tree/simulator
https://github.com/dslab-epfl/svshi_private/tree/simulator


References

[1] “Knx association.” https://www.knx.org/knx-en/for-professionals/.

[2] S. Chassot and A. Veneziano, “Svshi: Secure and verified smart home infrastructure,” , EPFL - DSLAB, 2022.

[3] “Ets software.” https://www.knx.org/knx-en/for-professionals/software/ets-professional/.

[4] “Knx virtual.” https://www.knx.org/knx-en/for-professionals/get-started/knx-virtual/.

[5] “Knx basics.” https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Basics/

KNX-Basics_en.pdf.

[6] “asyncio library.” https://realpython.com/async-io-python/#the-10000-foot-view-of-async-io.

[7] “Outdoor light lux levels and indoor light computation.” https://www.engineeringtoolbox.com/

light-level-rooms-d_708.html.

[8] “Lumen wiki.” https://en.wikipedia.org/wiki/Lumen.

[9] “Room factors for global brightness computation.” https://www.fuzionlighting.com.au/technical/

room-index.

[10] “Formula for saturation vapor pressure of water.” https://journals.ametsoc.org/view/journals/apme/

57/6/jamc-d-17-0334.1.xml#:~:text=New%20formulas%20for%20saturation%20vapor%20pressure%20of%

20water%20and%20ice.

[11] “Xknx library.” https://xknx.io/.

[12] “Threading library.” https://docs.python.org/3/library/threading.html.

[13] “Comparison pygame-pyglet.” https://www.pythonpool.com/pyglet-vs-pygame/#:~:text=Pygame%20uses%

20SDL%20libraries%20and,to%20subclass%20to%20do%20anything.&text=It%20has%203D%20support.

,create%20a%20simple%202D%20game.

8

https://www.knx.org/knx-en/for-professionals/
https://www.knx.org/knx-en/for-professionals/software/ets-professional/
https://www.knx.org/knx-en/for-professionals/get-started/knx-virtual/
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Basics/KNX-Basics_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Basics/KNX-Basics_en.pdf
https://realpython.com/async-io-python/#the-10000-foot-view-of-async-io
https://www.engineeringtoolbox.com/light-level-rooms-d_708.html
https://www.engineeringtoolbox.com/light-level-rooms-d_708.html
https://en.wikipedia.org/wiki/Lumen
https://www.fuzionlighting.com.au/technical/room-index
https://www.fuzionlighting.com.au/technical/room-index
https://journals.ametsoc.org/view/journals/apme/57/6/jamc-d-17-0334.1.xml#:~:text=New%20formulas%20for%20saturation%20vapor%20pressure%20of%20water%20and%20ice
https://journals.ametsoc.org/view/journals/apme/57/6/jamc-d-17-0334.1.xml#:~:text=New%20formulas%20for%20saturation%20vapor%20pressure%20of%20water%20and%20ice
https://journals.ametsoc.org/view/journals/apme/57/6/jamc-d-17-0334.1.xml#:~:text=New%20formulas%20for%20saturation%20vapor%20pressure%20of%20water%20and%20ice
https://xknx.io/
https://docs.python.org/3/library/threading.html
https://www.pythonpool.com/pyglet-vs-pygame/#:~:text=Pygame%20uses%20SDL%20libraries%20and,to%20subclass%20to%20do%20anything.&text=It%20has%203D%20support.,create%20a%20simple%202D%20game.
https://www.pythonpool.com/pyglet-vs-pygame/#:~:text=Pygame%20uses%20SDL%20libraries%20and,to%20subclass%20to%20do%20anything.&text=It%20has%203D%20support.,create%20a%20simple%202D%20game.
https://www.pythonpool.com/pyglet-vs-pygame/#:~:text=Pygame%20uses%20SDL%20libraries%20and,to%20subclass%20to%20do%20anything.&text=It%20has%203D%20support.,create%20a%20simple%202D%20game.

	Introduction
	Background: KNX systems and SVSHI
	KNX systems
	KNX Certified Devices
	KNX Bus
	Configuration of KNX Systems

	SVSHI

	Related work
	Simulation
	Simulating a KNX system
	General implementation
	Device interactions
	System configuration
	Program logic

	Simulating the physical world
	Temperature
	Brightness
	Humidity & CO2


	Simulation of SVSHI applications
	Compliance with SVSHI
	Communication with SVSHI
	Connection
	Transmission


	User Experience
	Simulator modes
	Graphical User Interface
	pyglet library to represent the GUI
	GUI features

	API for automated scripts

	Future work
	Conclusion

