
Semester project
Exhaustive symbolic execution engine for verifying Python programs

Loı̈c Montandon
EPFL, Switzerland

loic.montandon@epfl.ch
June 2022

Abstract—As symbolic execution (SE) engines are
usually not for formal verification, this semester projects
aims to move an existing SE tool for verifying Python
programs towards being exhaustive. Focus will be made
on handling non-deterministic functions and implement-
ing it in a concrete case: the SVSHI smart home system1.

I. INTRODUCTION

While several symbolic execution engines exist,
most of them aim for finding as many bugs as possible,
in opposition to being exhaustive. The reason for this
is that covering all possible cases is hard, in particular
for languages such as Python, which allows a large
flexibility to the programmer and offers a wide range
of features. Additionally, SE analysis is limited by
the path explosion: every if statement encountered
doubles the number of paths to explore.

The goal of this project is to develop/improve
an SE engine towards exhaustively verifying Python
programs, for later use in the SVSHI smart home
infrastructure.

To address the path explosion problem, code is
analyzed on a per-function basis, where each function
is annotated with contracts it needs to satisfy. If a
function becomes too big to be analyzed in reasonable
time, it can be split in multiple smaller functions.
This design is based on [1]. Its main specificity is
that it is based on a peer architecture, rather than on
defining a new interpreter or compiler (which would be
bound to one specific version of the language). Instead,
verification is run in the same process as the target code
and makes use of object-oriented programming. The
key idea is to define classes for each symbolic type.

1SVSHI - Secure and Verified Smart Home Infrastructure, https:
//github.com/dslab-epfl/svshi.

Those classes redefine all methods used to interact with
other objects. For example a SymbolicInt would
define the method __add__, which is used for addition
with another object. This way all interaction with
other objects can be recorded in a state holding all
symbolic variables together with the constraints on
those variables leading to the current path in the code.
To verify contracts, it uses a SMT solver to check if
the constraints are satisfied. For more details on this
SE design as well as a good introduction to symbolic
execution, refer to their article [1].

In this report, I will first discuss the reason of
choosing CrossHair as the SE engine to work on (II-A),
with a brief description of how it works and its main
limitations (II-B and II-C). In part II-D, I will present
the design of how to address the main limitation:
non-determinism. Next, I will describe some of the
implementation details, focusing on the difficulties
encountered (III). I will finally present how the same
problem of non-determinism was solved for the SVSHI
system (IV), followed by a conclusion on the main
results and limitations of the proposed solution.

II. DESIGN

A. Choice of the symbolic execution engine

The first step for this project was to chose on top of
which SE engine to further improve. One possibility
was to build an SE engine from scratch. This would
have the advantage of having full control on the design
and have it targeted for formal verification. However,
by looking at the complexity of existing SE engines,
it appeared that in the time of one semester, it would
only be possible to build a very basic engine with very
limited functionalities. It would have been exhaustive
on the few things it is able to check but would
not be able to check most of Python’s code. So, to

1

https://github.com/dslab-epfl/svshi
https://github.com/dslab-epfl/svshi

take advantage of existing work, I chose to go with
CrossHair2, an SE engine based on [1], with many
further improvements.

The main reasons to choose this SE engine is that
this is one of the most advanced and active SE tools
in Python. Additionally, this is already the tool used
in SVSHI (thus leading to less integration effort by
the team). And Phillip Schanely3, the main maintainer
of CrossHair was interested in this additional work
and available for support. I want to thank him here
for his great help in understanding the complexities of
CrossHair!

As most SE tools, CrossHair has for goal to find
as many bugs as possible, not necessarily covering
all paths. To understand its limitations for exhaustive
execution, we will first quickly see how it works.

B. How CrossHair works

CrossHair is based on [1] and analyzes each func-
tion individually based on pre- and post-conditions
(predicates) written by the user in the docstring of the
function. It creates symbolic variables for each of the
arguments of the function, constrains them to satisfy
the precondition, executes the function on the symbolic
variables and checks if the postcondition is satisfied.
Below is an example of a function with a pre- and a
post-condition. CrossHair verifies that if both x and y

are negative, then the returned value should be positive.

def multiply(x: int, y: int) -> int:
"""
pre: x < 0 and y < 0
post: __return__ > 0
"""
return x * y

CrossHair works the following way that it explores all
possible paths until having covered all paths or until
reaching a timeout. CrossHair has three possible anal-
ysis results (run crosshair check with the option
--report_all to get such results):

• CONFIRMED - ”confirmed over all paths”: All
paths were explored exhaustively, the postcondi-
tions are always satisfied, on any input satisfying
the preconditions.

2CrossHair, An analysis tool for Python that blurs the line
between testing and type systems, https://github.com/pschanely/
CrossHair/.

3Phillip Schanely, https://github.com/pschanely.

• REFUTED - ”a counterexample was found”:
CrossHair found a counterexample, where some
postcondition is not satisfied. A concrete instance
of the counterexample is displayed to the user.

• UNKNOWN - ”not confirmed”: No counterex-
ample was found; the engine timed out before
exploring all paths.

Distinguishing these three categories is fundamental
for formal verification, as one would expect CON-
FIRMED to be returned iff the function was exhaus-
tively verified.

Of course, CrossHair is much more complex and
while we will see some more details in section III, you
can refer to the official documentation4 (particularly
section The Details: Contracts), if you wish to learn
more about it.

C. Limitations of CrossHair

From a formal verification perspective, one wants
to ensure the SE engine never returns CONFIRMED
when this is not the case, and it should ideally not
return UNKNOWN too often to still be useful. The first
point is the most critical one, therefore, a necessary
step was to identify such cases in CrossHair (v0.0.22),
which are listed below:

1) Non-determinism - All functions, directly or in-
directly invoked by the function (or its pre/post
conditions) should exhibit the same behavior
when given the same arguments. Examples of
non-determinism are:
• Calls to functions such as random or time.

In the example below, CrossHair will wrongly
output CONFIRMED if verification is done
during another month than July.

from datetime import datetime
def never_July() -> int:

"""post: __return__ != 7"""
return datetime.now().month

• Reading a global variable or reading a cache.
• Functions raising exceptions depending on the

state of the system (e.g. if memory is full).
More generally, the system state should ideally
be the same for verification and for production.

4CrossHair Documentation, https://crosshair.readthedocs.io/en/
latest/index.html.

2

https://github.com/pschanely/CrossHair/
https://github.com/pschanely/CrossHair/
https://github.com/pschanely
https://crosshair.readthedocs.io/en/latest/contracts.html
https://crosshair.readthedocs.io/en/latest/index.html
https://crosshair.readthedocs.io/en/latest/index.html

2) CrossHair assumes code termination. In the code
below, CrossHair will infer from the postcondition
that the inner call to recurs returns a value larger
than 10. This implies that the outer function will
also return a value greater than 10. CrossHair
makes a recursive proof without proving the base
case and outputs CONFIRMED, even if the func-
tion never terminates.

def recurs(x: int) -> int:
"""
pre: x > 0
post[]: _ > 10
"""
return recurs(x)

3) CrossHair requires all arguments to have directly
constructable states. For example, a class having
an integer attribute should allow assigning a value
to it through the __init__ method. The reason
for this is that when a function has an object as
an argument, CrossHair will create this object by
giving symbolic values to __init__. The created
object can only be seen as symbolic if any of its
states can be reached through the constructor.

4) Another assumption made by CrossHair is that
the type hierarchy is known and closed. At
initialization, CrossHair will load the whole class
hierarchy of all modules and packages available
in the current environment. However, if another
module somewhere else in the world defines a
subclass to a type used in your code, and that this
subclass makes the postcondition fail, CrossHair
cannot know that the subclass exists and will not
report a counterexample.

5) Approximated exceptions - To prevent a
premature realize of symbolic variables,
CrossHair might simplify information contained
in exceptions thrown by the standard library. So,
code catching an exception and relying on its
details might behave wrongly during verification.
For example, a call to x.to_bytes(2,

"little") for x a negative integer should
raise OverflowError: "can't convert

negative int to unsigned". While
CrossHair still raises the correct exception
type, the message has been removed. This only
affects exceptions raised by the standard library,

not those in user code or external libraries.
6) Parallelism - CrossHair assumes a single-

threaded execution of the code and will therefore
not be able to detect concurrency problems.

This list of limitations has been shortened to only
keep most important information for the purpose of
this report. You can find the complete list with more
examples (including cases where it always returns
UNKNOWN) in appendix A.

One simple way to have exhaustive SE is to assume
all the above properties hold on the analyzed code.
However, this is not realistic for most projects, partic-
ularly when external libraries are used.

Of course, addressing all limitations in such a small
amount of time is not possible, as most of them would
be individual research subjects. So, after discussing
with the team working on SVSHI, it appeared that
item 1) (non-determinism) was the most useful point
to address.

D. Handling non-determinism

In order to handle non-determinism during the sym-
bolic execution, the proposed solution is to annotate
functions which are source of non-determinism, so that
the SE engine knows their possible outcomes.

More concretely, this allows users to register con-
tracts (pre- and postcondition) on any function, in-
cluding external libraries. Then, when CrossHair en-
counters a registered function, it will check that its
preconditions are met and assume that the returned
value can be any value satisfying the postcondition.

As an example, suppose you are using
random.randint, which takes to integers a

and b and outputs an int at random between a and
b. This is clearly not deterministic. Then you can
register the function the following way:

from crosshair.register_contract import
register_contract↪→

from random import Random
register_contract(

Random.randint,
pre=lambda a, b: a <= b,
post=lambda __return__, a, b: a <=

__return__ <= b,↪→

)

Then, when CrossHair encounters randint(a, b)

during verification, it will create a new symbolic vari-

3

able for the return type, which can be of any value
between a and b.

This way, as long as non-deterministic functions
are registered, CrossHair is told how non-deterministic
functions behave and can correctly think about them.

III. IMPLEMENTATION

A. Faking a condition parser

In order to implement this feature of registering
contracts for external functions, the key idea was to
make use of the condition parsers of CrossHair. Those
parsers are used to find the pre- and post-conditions of
a function. We have already seen the PEP 316 syntax
based on the docstring, but other syntaxes based on
decorators, like icontract or deal, are also supported
by CrossHair. See the documentation5 for supported
syntaxes.

Knowing this, implementing contract registration is
done by adding a new parser, hidden to the user.
This parser simply returns the registered contract for
the current function (from a hashmap containing all
registered contracts).

With that, CrossHair knows contracts for registered
functions. However, this does not mean that such
functions will be skipped. Indeed, CrossHair skips
functions only if the following conditions are met:
either the function is annotated with # crosshair:

specs_complete=True, or all arguments to the func-
tion are symbolic and are marked as not mutable6

This means that skipping functions already exist, the
solution is to force it when the function has a registered
contract.

B. Parsing from the stubs

For the above solution to work, the registered func-
tion needs to be type-annotated. Otherwise, CrossHair
does not know its return type and cannot create a
symbolic variable of that type when skipping the
function.

Unfortunately, even the standard library and the
builtins are not type-annotated. Instead, separate files,
called stub files (.pyi extension), are available in the

5Contract syntaxes, https://crosshair.readthedocs.io/en/latest/
kinds of contracts.html.

6Mutable arguments are defined inside square brackets after the
post keyword. Empty bracket means no argument is mutated
by the function. https://crosshair.readthedocs.io/en/latest/kinds of
contracts.html#pep-316-contracts.

typeshed repository7. Proposed solution is that when-
ever registering a contract for a function, CrossHair
would first verify if the function is type-annotated. If
this is not the case, it would parse the corresponding
stub file to get the signature of the function.

Parsing stub files is not easy for one main reason:
those files are not meant to be executed or used
at runtime. Even importing such a file would likely
fail. For instance, you might encounter the code be-
low (for the random module), which raises the fol-
lowing: AttributeError: "'ellipsis' object

has no attribute 'randint'".

_inst: Random = ...
randint = _inst.randint

Furthermore, some functions might be annotated with
some types which are internal to typeshed and
not available at runtime. An example is the type
SupportsLenAndGetItem[T], which represents a
type implementing both __len__ and __getitem__.
This is to reflect Python’s duck typing, but those types
have no runtime equivalent.

Another difficulty with stub files is that those are
written using Python 3.11’s latest syntax, which is not
backwards compatible. So, to use it in earlier versions
of Python, conversions need to be done.

It quickly appeared that parsing stub files reliably
would not be possible for all functions. Instead, the
proposed solution is a best-effort parser working the
following way: It opens the stub file for the correspond-
ing module and loads it with ast8. Then it iterates over
the __qualname__ of the function (the path inside the
module), to find each enclosing object one by one until
the function definition is found. On the way, it executes
all assignments encountered, in case those are needed
for the function signature. It finally parses the signature
itself and if an error occurs, the signature is not used.

To support cases where the stub parser does not
succeed, as well as functions which have no stub
file, the contract registration API was augmented with
an optional signature the user can provide. See the
documentation9 on how to specify a signature.

7https://github.com/python/typeshed.
8Abstract Syntax Trees, https://docs.python.org/3/library/ast.html
9Adding Contracts to External Functions,

https://crosshair.readthedocs.io/en/latest/plugins.html#
adding-contracts-to-external-functions.

4

https://crosshair.readthedocs.io/en/latest/kinds_of_contracts.html
https://crosshair.readthedocs.io/en/latest/kinds_of_contracts.html
https://crosshair.readthedocs.io/en/latest/kinds_of_contracts.html#pep-316-contracts
https://crosshair.readthedocs.io/en/latest/kinds_of_contracts.html#pep-316-contracts
https://github.com/python/typeshed
https://docs.python.org/3/library/ast.html
https://crosshair.readthedocs.io/en/latest/plugins.html#adding-contracts-to-external-functions
https://crosshair.readthedocs.io/en/latest/plugins.html#adding-contracts-to-external-functions

Finally, note that some functions might
have multiple signatures (using the decorator
@typing.overload10). In such a case, the stub
parser will return all signatures. The correct one will
be chosen at runtime, according to the type of the
arguments given to the function.

C. Special case of builtins and C modules

One thing to note in Python is that builtins
and C modules11 often behave differently. For ex-
ample, while all other functions have attributes
__name__, __qualname__ and __module__, this is
not the case for builtins and C functions. Similarly,
inspect.signature(fn) raises an exception if fn
is a builtin or a C function. This is why it was
important to keep this in mind when using such
attributes and to test all features with builtins and
C functions as well. Such objects are often wrapped
into a descriptor12 and a workaround is to extract
information from that descriptor. For example, one can
get the module name of function fn, wrapped into
a MethodDescriptor or a WrapperDescriptor,
through fn.__objclass__.__module__. This was
needed in the stub parser, where the module name is
necessary to know which stub file to parse.

D. An infinite recursion problem

When analyzing a function, CrossHair copies all
arguments using copy.deepcopy to make their
initial value available through the __old__ key-
word in the postcondition, even if the arguments
were mutated by the function. An infinite recur-
sion occurs when copying an argument (indirectly)
calls a registered function. As an example, con-
sider the function Random.getstate(self), where
self is an instance of the Random object. If
one registers this function, when CrossHair ana-
lyzes it, it calls copy.deepcopy implicitly call-
ing Random.__reduce__, which in turn calls
Random.getstate(self), thus causing an infinite
recursion. A solution would be to avoid registering
functions which are directly or indirectly called by

10typing.overload, https://docs.python.org/3/library/typing.html#
typing.overload

11Code compiled in C, but available as a python module. A well-
known example is numpy.

12https://docs.python.org/3/library/types.html#types.
WrapperDescriptorType

the copying process. A better solution, which Phillip
Schanely (the main contributor of CrossHair) will
implement is to not do the copy when it is not needed
(i.e. when the __old__ keyword is not used in the
postcondition). An intermediate solution is currently
implemented, where CrossHair will not try to analyze
the recursive call to the function if it occurs inside the
copying process.

E. Functions returning objects

A final difficulty was to handle functions returning
non-trivial objects. For example, datetime.now()

returns a datetime object. So, if one registers the
method now, CrossHair would skip it at runtime by
returning a symbolic datetime object (feeding sym-
bolic arguments to its __init__ method). However,
CrossHair needs to construct a valid datetime object.
For instance, its hour attribute must be between 0 and
23, otherwise an exception is raised. Additionally, a
timezone object needs to be created as well and also
has constraints on its values.

To allow CrossHair successfully building such
classes, a solution is to register a contract to their
__init__ method. This contract has a precondition,
specifying the constraints on the expected arguments.
However, we don’t want CrossHair to skip executing
the __init__ method at runtime, so the contract reg-
istration API was augmented with one more argument:
skip_body=True, which specifies if the function
should be skipped or not.

IV. HANDLING NON-DETERMINISM IN SVSHI

After adding support to non-determinism in
CrossHair, the goal was to use the new feature into
SVSHI, a toolchain for developing and running for-
mally verified smart infrastructure13. In SVSHI, apps
are run using their iteration function. This function
takes as input the current state of the system and
might update the state and notify other devices of the
changes. We want to allow users to import and use any
library they want, while still ensuring that the speci-
fications of the system are formally verified. As third
party libraries might behave non-deterministically, this
is where registering contracts would be useful.

13For more information about SVSHI (Secure and Verified
Smart Home Infrastructure), see https://github.com/dslab-epfl/
svshi private.

5

https://docs.python.org/3/library/typing.html#typing.overload
https://docs.python.org/3/library/typing.html#typing.overload
https://docs.python.org/3/library/types.html#types.WrapperDescriptorType
https://docs.python.org/3/library/types.html#types.WrapperDescriptorType
https://github.com/dslab-epfl/svshi_private
https://github.com/dslab-epfl/svshi_private

SVSHI uses CrossHair to verify that invariants of
the system still hold after executing the iteration func-
tions of the different apps. However, SVSHI recently
switched to use crosshair cover instead of the
regular crosshair check. The contract registration
feature is not meant to be used for crosshair cover,
so we took a different approach here.

The first thing to note is that calls to external
libraries are unsafe, as they might crash (i.e. network or
credential error) or they might have non-determinism.
At the same time, those calls are usually slow. And
since we want to keep SVSHI being responsive, it is
necessary to isolate such functions.

The proposed solution is therefore to allow calls to
external libraries only in two kind of functions, whose
name starts with periodic or on_trigger. Both are
executed asynchronously, so they have no impact on
the main iteration. Periodic functions are not allowed
to have any argument and are executed on a periodic
basis, with the period in seconds provided by the user
in the docstring. On trigger functions can be executed
using svshi_api.trigger_if_not_running(fn,

arg1, arg2, ...) and may have arguments. To get
the returned values of such functions, the user can use
svshi_api.get_latest_value(fn). Below is an
example of both types of function and their usage.

from external_library import weather,
send_message↪→

def on_trigger_send_message(message:
str) -> bool:↪→

return send_message(message)

def periodic_get_weather_forecast() ->
float:↪→

"""period: 60"""
return weather.rain_probability()

def iteration():
rain = svshi_api.get_latest_value(

periodic_get_weather_forecast
)
if rain is not None and rain > 0.5:
some code to close the windows...
svshi_api.trigger_if_not_running(

on_trigger_send_message,
"Closing windows because of rain"

)

For verification, we assume such function can re-

turn any value of the correct type (or None if the
function has never been executed). This is the rea-
son why users have to sanitize the returned value,
by checking it is not None and it is in the ex-
pected range. At verification time, we replace calls
to svshi_api.get_latest_value by a symbolic
variable of the correct type14.

The strength of this design is that we do not assume
anything about what happens inside those functions,
which is good, since calls to external libraries cannot
be verified and might be unsafe. Such functions are
allowed to do anything or even crash, which will not
impact any of the installed apps. The only assumption
made is that they return a value of the correct type.
This property is checked at runtime and if it happens
to not be the case, a warning if thrown and the returned
value is ignored.

V. RESULTS

The feature of registering contracts has now been
merged into CrossHair and conduced to version 0.0.23
of CrossHair15. Furthermore, this feature is already
in use by default for the non-deterministic functions
of the random and time modules (v0.0.24). The
documentation is available online16 and we offer it as a
plugin. This means anyone can write patches for non-
deterministic functions in a plugin and publish it to
other people. Then plugins can be installed with pip
and CrossHair will automatically use them.

VI. FURTHER WORK

A possible improvement to registering contracts
would be to make the stub parser handle more complex
cases that it currently does. While the type checker
Mypy17 does not offer an API to parse stubs, it might
be interesting to see how they parse stub files and if it
is possible to inspire from that. Mypy is a huge project,
so it may not be easy to do it.

Further work could be done on CrossHair in the
direction formal verification to address (or at least

14To be more exact, an object containing one symbolic value for
each periodic or on trigger function is given as an argument to the
iteration function.

15Release notes: https://pschanely.github.io/2022/05/17/
handling-nondeterminism.html.

16Adding Contracts to External Functions,
https://crosshair.readthedocs.io/en/latest/plugins.html#
adding-contracts-to-external-functions.

17Mypy, https://github.com/python/mypy.

6

https://pschanely.github.io/2022/05/17/handling-nondeterminism.html
https://pschanely.github.io/2022/05/17/handling-nondeterminism.html
https://crosshair.readthedocs.io/en/latest/plugins.html#adding-contracts-to-external-functions
https://crosshair.readthedocs.io/en/latest/plugins.html#adding-contracts-to-external-functions
https://github.com/python/mypy

detect and cap the result to UNKNOWN) other of
the identified limitations (see appendix A). While this
is hard to do exhaustively, due to the complexity of
Python, there remains some steps to do in this direction
to cover more cases.

Another approach would be to limit available fea-
tures of the language, in order to have easier as-
sumptions where exhaustive symbolic execution would
be possible. This would however significantly reduce
utility of the program and disallow using any library
which is not compliant.

VII. CONCLUSION

To conclude, we have seen that implementing an
exhaustive SE engine in Python is hard, due to the
complexity of the language. Furthermore, we saw with
the limitations listed in part II-C that being exhaustive
highly depends on the assumptions made about the
code analyzed. The proposed way of handling non-
determinism is to tell the verifier the possible values a
function can return, so that it can skip the function and
create appropriate symbolic return values. A similar
approach was chosen for SVSHI, with the addition that
unsafe code is isolated to ensure it has no impact on
the core code of the system.

REFERENCES

[1] A. M. Bruni, T. Disney, and C. Flanagan, “A peer
architecture for lightweight symbolic execution,” 2011.

APPENDIX A.
LIMITATIONS OF CROSSHAIR AS OF MAY 11TH

2022 (CROSSHAIR V0.0.22)

Document converted from markdown, available on-
line18.

The aim of this document is to list the limitations of
CrossHair19 as of May 11th 2022 (CrossHair v0.0.22).
You can find an up-to-date version of this list here20.

Edit (June 7th 2022): Note that since some of the
limitations have been addressed in more recent versions
of CrossHair. So, some of the examples below might
not work anymore (for example non-determinism has
been partially addressed in v0.0.24).

A. Cases where CrossHair might return CONFIRMED
instead of REFUTED

The following is a list of cases were CrossHair might
report a wrong analysis result because it made some
assumptions which your code does not satisfy.

• Non-determinism: All functions, directly or indi-
rectly invoked by the function (or its pre/post con-
ditions) should exhibit the same behavior when
given the same arguments. Here are some ex-
amples21 of non-determinism. For cases raising
NotDeterministic, see section below22. Ex-
amples of non-determinism are:

• Calls to functions with randomized output (exam-
ple: random library), functions depending on the
system’s state (example: time and datetime
libraries), or functions whose output depends on
previous queries.

• Reading a global variable or using a cache.
• Functions raising exceptions depending on the

state of the system (e.g. if memory is full).
CrossHair will only trigger exceptions which de-
pend on the function’s args.

• Self-modifying code is also a kind of non-
determinism, as different executions of the same
function might lead to different results.

18Limitations of CrossHair as of May 11th 2022
(CrossHair v0.0.22), https://gist.github.com/lmontand/
4108e889070a857dfce0b3f4f76282f2.

19<https://github.com/pschanely/CrossHair>
20<https://github.com/pschanely/CrossHair/discussions/156>
21<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=

report all&gist=30122ad2cae84d22ca38d8c36acfe7ce>
22<#cases-where-an-exception-is-raised-and-analysis-aborted>

7

https://gist.github.com/lmontand/4108e889070a857dfce0b3f4f76282f2
https://gist.github.com/lmontand/4108e889070a857dfce0b3f4f76282f2
https://github.com/pschanely/CrossHair
https://github.com/pschanely/CrossHair/discussions/156
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=30122ad2cae84d22ca38d8c36acfe7ce
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=30122ad2cae84d22ca38d8c36acfe7ce
#cases-where-an-exception-is-raised-and-analysis-aborted

If you still wish to use such functions in your code,
you might want to register contract for those to help
CrossHair understand them. See plugins and contract
registration23.

• Code termination: Verification requires that the
code terminates on all inputs. (why? Think about
it like an inductive proof - the inductive step only
works if you also have a ”base case”). A real
verification tool will have you write a termination
proof before reasoning about the property to be
verified; CrossHair simply assumes termination.
If your code does not terminate, CrossHair may
declare a contract confirmed over all paths when
it isn’t. Here is an example24.

• All arguments have states that are directly con-
structable: Problematic examples: classes with
mutable private members like this25. A list con-
taining itself as a member26 (this is also an
example of the aliasing problem below). To en-
sure CrossHair correctly understand your classes,
please follow these guidelines27.

• Aliases: Aliasing problems might happen when
you are using containers/collections holding non-
trivial objects. CrossHair remembers instances
created before and is able to detect some cases.
However, CrossHair is not able to correctly reason
about all cases: see this issue28 which contains
two interesting examples. More to this topic,
you should avoid comparing objects with the is
keyword. Here is an example29 of what could go
wrong. The only cases you might use it are for
is None or for comparison with the value of an
Enum.

• Closed type hierarchy: CrossHair will detect
and attempt to use subclasses that have already
been defined in the interpreter (warning, see ex-

23<https://crosshair.readthedocs.io/en/latest/plugins.html>
24<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=

report all&gist=b5ed75907e16742939965211163ffa95>
25<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=

report all&gist=9ec95667e2965ed7a2ddca237c0922ff>
26<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=

report all&gist=e5f3f25ec8886a9dae92b591d0c67a6f>
27<https://crosshair.readthedocs.io/en/latest/hints for your

classes.html?highlight=dataclass#hints-for-your-classes>
28<https://github.com/pschanely/CrossHair/issues/47>
29<https://crosshair-web.org/?gist=

fe18a54ca442aa0be028dbf3b7b98732&crosshair=0.1&python=
3.8&flags=report all>

ceptions below under ”IMPORTANT”), but will
not consider the possibility of additional sub-
classes. Path exhaustion will happen after all
known subclasses have been attempted. As an
example, suppose you run CrossHair on some
module module1 containing the class class
Class1. Suppose another module module2
contains class Class2(Class1) (i.e. a sub-
class of Class1). If module2 is not loaded
by the interpreter, CrossHair will have no way
of knowing that Class2 exists. So, the analysis
result might be ”confirmed over all paths” even if
Class2 breaks some postconditions.

IMPORTANT: classes defining either
__copy__, __deepcopy__, __reduce__
or __reduce_ex__ are not considered in the
possible subclasses, because they have a non-trivial
implementation of copying. Here is an example30.

Another similar and important note is that CrossHair
won’t detect subclassing that is revealed via dynamic
isinstance hooks, e.g. __subclasscheck__ and
__subclasshook__.

• Catching exceptions: If you do some ”advanced”
exception handling - not only based on the excep-
tion type itself, but on other information carried
with the exception - your code handling the ex-
ception might not behave the correct way when
CrossHair runs it. The reason for this is that
CrossHair simplifies information of some excep-
tions of the standard library, to avoid unnecessary
realization of symbolic variables. This only con-
cerns exceptions thrown by the standard library,
if your code throws some exceptions, they will
remain untouched. Here is an example31 where
handling the exception depends on the excep-
tion’s message, which is missing when executing
CrossHair.

• Callables with TypeVar: If your function takes
as input a Callable[X, Y], where X and/or Y
is/contains a TypeVar, CrossHair might return
”confirmed over all paths”, even when the post-
condition is wrong. See this issue32 as an example.

30<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=
report all&gist=6260ee385c2d993e91b70963b18674b5>

31<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=
report all&gist=684dda56d3741c6619925a69a697d189>

32<https://github.com/pschanely/CrossHair/issues/85>

8

https://crosshair.readthedocs.io/en/latest/plugins.html
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=b5ed75907e16742939965211163ffa95
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=b5ed75907e16742939965211163ffa95
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=9ec95667e2965ed7a2ddca237c0922ff
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=9ec95667e2965ed7a2ddca237c0922ff
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=e5f3f25ec8886a9dae92b591d0c67a6f
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=e5f3f25ec8886a9dae92b591d0c67a6f
https://crosshair.readthedocs.io/en/latest/hints_for_your_classes.html?highlight=dataclass#hints-for-your-classes
https://crosshair.readthedocs.io/en/latest/hints_for_your_classes.html?highlight=dataclass#hints-for-your-classes
https://github.com/pschanely/CrossHair/issues/47
https://crosshair-web.org/?gist=fe18a54ca442aa0be028dbf3b7b98732&crosshair=0.1&python=3.8&flags=report_all
https://crosshair-web.org/?gist=fe18a54ca442aa0be028dbf3b7b98732&crosshair=0.1&python=3.8&flags=report_all
https://crosshair-web.org/?gist=fe18a54ca442aa0be028dbf3b7b98732&crosshair=0.1&python=3.8&flags=report_all
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=6260ee385c2d993e91b70963b18674b5
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=6260ee385c2d993e91b70963b18674b5
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=684dda56d3741c6619925a69a697d189
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=684dda56d3741c6619925a69a697d189
https://github.com/pschanely/CrossHair/issues/85

• Parallelism: The code is assumed to be single-
threaded and to not have any other kind of par-
allelism. Therefore, CrossHair provides no de-
tection for deadlocks, concurrent writes, racing
conditions, ... Here is a sample example33 which
works perfectly fine in a single-threaded setting,
but could be wrong when adding parallelism.

• Pointers: Using the ctypes library and modify-
ing pointers, it’s easy to have CrossHair return
incorrect results. To demonstrate the power of
ctypes, one could even redefine the value of
134, thus totally breaking the behavior of Python.

• Python environment: Similarly, do not expect
any guarantees if you try to modify part of the
standard library. Results only apply to a fresh and
unmodified python interpreter and library.

Additionally note that if you supply wrong pre-
or postconditions or that you write incorrect type
annotations to your functions, analysis results have
high chances to be incorrect as well.

B. Cases where the result is caped to UNKNOWN

Below is a list of cases CrossHair has troubles
handling with and the result is often UNKNOWN. You
can find an example for most of them in this gist35.

• Because CrossHair approximates float values as
real numbers, it will never report ”Confirmed over
all paths” when it uses a symbolic float.

• If CrossHair needs to realize a symbolic value
of type object or Any (both are treated the
same way), it will only try the subtypes int
and str and it will cap the result to UNKNOWN.
This is because trying all subclasses of object
is clearly not feasible in a reasonable amount
of time. Note that in some rare circumstances
where only some trivial operations are performed
on symbolic objects, CrossHair does not need to
realize the object and can still prove your result.
Here is an example36.

• Using TypeVar with constraints (for exam-
ple TypeVar("T", int, str)) is currently

33<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=
report all&gist=7f0cebe03912ba551be4670d4891e496>

34<https://www.reddit.com/r/Python/comments/2441cv/can
you change the value of 1/>

35<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=
report all&gist=fa89d612822941d23f109659a2bb4b2c>

36<https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=
report all&gist=427739cf93932cf43e7626f9ce1eefe1>

not supported and the result is caped to
UNKNOWN. Note that this is different from
using TypeVar("T", bound=Union[int,
str]), which is supported. For more information
about the difference, see this post37.

• Symbolic values are simulating real values. How-
ever, this illusion is not perfect. And some func-
tion might raise a TypeError when receiving
a SymbolicInt instead of a regular int, for
example. If CrossHair detects such a case, the
result is caped to UNKNOWN. If this was not
detected, the result will be REFUTED and it will
directly report you the TypeError.

• If the signature of a constructor is not found or
incomplete, CrossHair will not be able to create
a proxy for it (it will not know what types of
symbolic values to feed to the constructor). Here
again, the result is caped to UNKNOWN. This can
happen for some of the builtins and for some
external C-based modules.

• Currently, CrossHair does not support symbolic
functions with an ellipsis as argument type (i.e.
Callable[..., <some_return_type>])
or with typing.Paramspec or
typing.Concatenate. In such cases,
the result is caped to UNKNOWN.

• Slices with a step different from 1 are cur-
rently not supported and the result is caped to
UNKNOWN.

• Most operations over inputs of arbitrary size
(lists, strings, dicts, etc) explicitly or implicitly
trigger an infinite number of execution paths. In
such cases, CrossHair timeouts and the result is
UNKNOWN.

• Similarly, if you write very complicated con-
straints, the SMT solver might have a hard time
solving them and will timeout. In such cases, the
result cannot be better than UNKNOWN, as some
paths are not explored.

C. Cases where an exception is raised (and analysis
aborted)

Below is a list of operations which are not blocked
by CrossHair. When detected, analysis is directly
stopped with an exception. Cases are listed below
according to the type of exception they raise.

37<https://stackoverflow.com/questions/59933946/
difference-between-typevart-a-b-and-typevart-bound-uniona-b>

9

https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=7f0cebe03912ba551be4670d4891e496
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=7f0cebe03912ba551be4670d4891e496
https://www.reddit.com/r/Python/comments/2441cv/can_you_change_the_value_of_1/
https://www.reddit.com/r/Python/comments/2441cv/can_you_change_the_value_of_1/
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=fa89d612822941d23f109659a2bb4b2c
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=fa89d612822941d23f109659a2bb4b2c
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=427739cf93932cf43e7626f9ce1eefe1
https://crosshair-web.org/?crosshair=0.1&python=3.8&flags=report_all&gist=427739cf93932cf43e7626f9ce1eefe1
https://stackoverflow.com/questions/59933946/difference-between-typevart-a-b-and-typevart-bound-uniona-b
https://stackoverflow.com/questions/59933946/difference-between-typevart-a-b-and-typevart-bound-uniona-b

Here also, you might find contract registration38

useful, if you still want to use such functions.
• raise NotDeterministic: If a function is

detected to have a different behavior between
two executions, a NotDeterministic er-
ror is raised. This is detected by CrossHair
when the condition or the path to reach some
part of the code changed between two exe-
cutions. This detection is not exhaustive and
you should also read the ”non-determinism” bul-
let of this section39. You can have a look at
crosshair/statespace.py if you wish to
see the implementation details.

• raise SideEffectDetected: CrossHair has a
list of side-effect events which will be blocked.
The main reason for that is that CrossHair
does execute your program and such side effects
might cause undesirable changes on your com-
puter. Upon detection, code execution is directly
stopped. Note that this protection is only applied
for python ¿= 3.8 and that it is not perfect
(notably, it will not prevent actions taken by C-
based modules). So, your code should better not
have any side-effect.

• When using open, write operations are blocked
(os.O_WRONLY, os.O_RDWR, os.O_APPEND,
os.O_CREAT, os.O_EXCL and os.O_TRUNC
are blocked). An exception is made for the file
/dev/null.

• The following events are
blocked: "winreg.CreateKey",
"winreg.DeleteKey",
"winreg.DeleteValue",
"winreg.SaveKey",
"winreg.SetValue",
"winreg.DisableReflectionKey",
"winreg.EnableReflectionKey".

• The following events are allowed:
"os.putenv", "os.unsetenv",
"os.listdir", "os.scandir",
"os.chdir", "os.fwalk",
"os.getxattr", "glob.glob",
"os.listxattr", "os.walk",
"pathlib.Path.glob",
"socket.gethostbyname",

38<https://crosshair.readthedocs.io/en/latest/plugins.html>
39<#cases-where-crosshair-might-return-confirmed-instead-of-refuted>

"socket.__new__".
• Other events (not listed above) in the

following list are blocked: "os", "fcntl",
"ftplib", "glob", "imaplib",
"msvcrt", "nntplib", "os",
"pathlib", "poplib", "shutil",
"smtplib", "socket", "sqlite3",
"subprocess", "telnetlib",
"urllib", "webbrowser".

D. Others

A current limitation of CrossHair is that you can-
not use the new python 3.10 syntax for Union
(PEP60440). An issue41 is open for this. In the mean-
time, you should stick to the python ¡= 3.9 syntax for
unions.

Also note that Consuming values of an iterator or
a generator in a pre- or post-condition will produce
unexpected behavior42. So you should avoid doing it.

E. Note on the execution environment

Code analysis should be run on the same platform
and with the same interpreter where the code will be
used for production. This is because some python code
depend on the platform and/or on the python version.

40<https://peps.python.org/pep-0604/>
41<https://github.com/pschanely/CrossHair/issues/161>
42<https://github.com/pschanely/CrossHair/issues/9>

10

https://crosshair.readthedocs.io/en/latest/plugins.html
#cases-where-crosshair-might-return-confirmed-instead-of-refuted
https://peps.python.org/pep-0604/
https://github.com/pschanely/CrossHair/issues/161
https://github.com/pschanely/CrossHair/issues/9

	Introduction
	Design
	Choice of the symbolic execution engine
	How CrossHair works
	Limitations of CrossHair
	Handling non-determinism

	Implementation
	Faking a condition parser
	Parsing from the stubs
	Special case of builtins and C modules
	An infinite recursion problem
	Functions returning objects

	Handling non-determinism in SVSHI
	Results
	Further work
	Conclusion
	References
	Appendix A: Limitations of CrossHair as of May 11th 2022 (CrossHair v0.0.22)
	Cases where CrossHair might return CONFIRMED instead of REFUTED
	Cases where the result is caped to UNKNOWN
	Cases where an exception is raised (and analysis aborted)
	Others
	Note on the execution environment

