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Abstract

Within this paper we present our results on the Baxter robot collision dataset,
concerned with anomaly detection. We managed to provide an implementation
of STORN in Keras that seems to perform very well. In the anomaly detection
task, on coarse detection of samples as normal or anomalous we achieved state of
the art accuracy, specificity and sensitivity. Furthermore we were able to generate
better ground truth labels for individual anomalies based on torque data. On a
fine-grained level of detecting individual anomalies we achieved over 88% accuracy
and evaluated the validity of our labels by comparing them with different window
sizes to the original labels.

1 Introduction

Anomaly detection is an important problem in many domains, ranging from data cleaning in general
statistical applications to fraud detection in banking, or intrusion detection in computer networks. In
this project, we deal with the use case of detecting events in sensor data. More specifically, we work
with sensor data from a robotic arm with the goal of detecting collisions, i.e. obstacles or pushes to
the robot arm.

2 Dataset and Preprocessing

We work on the Baxter Collision data set, which includes samples from 1020 "normal" sequences
of measurements and 288 sequences that contain anomalies. Each sequence is around 40 seconds
in duration, and sequences were recorded at different frequencies. We subsampled all sequences
to 15hz and pre-padded them with zeros (ignored by our models) to bring them to the same length.
Fine-grained anomaly labels are supplied as timestamps for when an anomaly occurred. However,
these only indicate when a collision was requested to be triggered by a human, thus the actual anomaly
in the data can occur significantly later than the labels indicate (or in rare cases, not at all).

The sequence data includes seven dimensions representing the angle configurations of the Baxter
robot arm, and additionally includes measurements of measured and commanded torque-like motor
efforts of each joint in the robot arm. However, our anomaly detection task is concerned only with
detecting anomalies from the angle configuration data.
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2.1 Dataset augmentation

In order to improve the quality of the given anomaly labels, we analyzed the measured and commanded
torque data to generate more precise labels for where the anomalies actually occurred in the data.

We computed the mean squared error between the commanded and measured torque, which when
plotted exhibits extreme spikes in places where anomalies occurred. We considered a maximum
window of twelve seconds for each original label. The vast majority of corrected labels lie within two
to six seconds after the original one, with some exceptions ranging up to a ten seconds delay. This
augmentation through adaptive thresholding worked for every but two of the samples. The validity
of these generated labels will be examined in the evaluation section, by comparing results between
original and new labels.

3 Methodology

The task of anomaly detection is defined as finding observations in the data which do not conform to
the normal behavior. There are a number of issues that arise in this context [5]. Arguably, the two
most note-worthy problems are:

• the inherent sparsity of the anomalous data instances

• the lack of precise labels marking exactly when an anomaly has occurred

The first issue stems in the very nature of the problem: data outliers carry a lot of information
and are therefore rare and improbable (information theory). Thus they are always bound to be
underrepresented in any data set. The second problem can be explained with the unavoidable manual
labor necessary to label the data, leading to inconsistencies and sometimes missing labels. [5] The
undefined boundary between anomalous and normal behavior for most applications and the large
variance in the anomaly duration further complicate the matter. Our Baxter Collision Dataset is no
exception to these two rules.

For this reason, fitting a classical binary classifier directly to the data becomes a significant challenge.
Therefore, we approach the problem by first fitting a model to normal data, that does not contain
any anomalies. Once trained, such a model can produce a normality measure (e.g. the loss value)
for any newly presented, unseen observations. Based on this measure, one can distinguish between
anomalous or not anomalous instances.

For the following part, we always held out 20% of the data as a test set (both anomalous and normal),
and used the rest for training. All of our models further had a separate validation set cut off from the
training data, on which the model performance was evaluated during training. We used those scores
for early stopping and checkpointing the best trained models.

3.1 Timeseries Predictor

Our first attempt at solving the anomaly detection task was to build a time-series model flexible
enough to fit the arm movements of the Baxter robot. The purpose was to get an understanding of
where the modelling difficulties are and, if possible, obtain a baseline accuracy score.

We settled on a recurrent deep learning model, comprising of a number of RNN units stacked on top
of each other. Additionally we placed feed-forward layers right after the input and before the last
output of the network, accounting for better feature extraction from the data. At each time step we
fed xt−1 as 7-dimensional input and provided xt, the next sequence element, as a target. That way
the network attempts to learn a generative model for p(xt|x1:t−1). We trained the so-formed network
on normal data, taking MSE as a loss function and the rmsprop optimizer. Using MSE corresponds to
a negative log likelihood with a Gaussian assumption for the aforementioned distribution, without
any prior distribution placed on the network weights.

Unsurprisingly, the model performed well on the normal test set, managing to follow the changes
in the joint angle values very precisely. However, as shown in Section 4, this was not sufficient for
proper anomaly detection. The model showed early signs of overfitting, approximating the anomalies
in the data nearly as well as normal data, rendering the produced loss values useless in terms of outlier
detection. Introducing 0.3 dropout as a counter-measure did not lead to any significant improvements.
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3.2 STORN

We attribute the failures of the previous model to the lack of explicit probabilistic modeling of the
inherent structure in the angle configurations data. Data sets, such as the Baxter robot arm movement,
exhibit two main properties: there is high signal to noise ratio (SNR) and there are hidden factors
(e.g. the human commands that drive the arm movement) that explain nearly all the variability in
the observed data through complex relationships. Modeling the latent random variables explicitly is
therefore adequate.[2]

Joint distribution of the complete data set
We denote the observed angles at time step t with xt, and the corresponding latent factor at the same
time step with zt. Let x1:t denote all elements in a sequence up to time step t. We first consider the
(complete) joint probability distribution of the data in a sequence of length T :

p(x1:T , z1:T ) =

T∏
t=1

p(xt, zt|x1:t−1, z1:t−1) =

T∏
t=1

p(xt|x1:t−1, z1:t)︸ ︷︷ ︸
p(xt|zt,history)

p(zt|x1:t−1, z1:t−1)︸ ︷︷ ︸
p(zt|history)

(1)

where we have used the product rule of probabilities and Bayes‘ rule to decompose into 2-term
products. We stress that the second term in the product is conditioned on x1:t−1, z1:t−1, only up to
step t− 1, making it a prior for the latent factor zt at step t. Note that we do not have observations
for zt, but we will need this distribution later when we specify the loss of our model.

Bayesian graphical model
We choose to implement the distribution p(xt|x1:t−1, z1:t) with a RNN unit. Let ht denote the hidden
state of the RNN, with inputs zt and xt−1 at time step t:

ht = f(xt−1, zt, ht−1) (2)

Since the state ht is a recursive deterministic function, it encompasses z1:t, x1:t−1, therefore
p(xt|ht) = p(xt|x1:t−1, z1:t). Thus, the RNN implements the first term in the product in equa-
tion (1) correctly. This is depicted in the top part of the graphical model in Figure 1.

Figure 1: Graphical model for STORN with a trending prior.

For the latent prior distribution we essentially have 2 choices: we could assume that the latent factors
zt at step t are independent from any past data, simplifying p(zt|x1:t−1, z1:t−1) to p(zt). This
assumption was presented in the original STORN [1] paper. It simplifies the Bayesian graphical
model greatly, and does not require the implementation of a trending prior. However, we argue that
such modeling is too restrictive for our use case. It disregards any temporal dependencies between
the latent states, which we would naturally want to model, as equation (1) already shows. Thus we
decided to add a trending prior (courtesy to [4]) to our graphical model, depicted in Figure 1. The
graphical model now follows the original equation (1) without any unjust simplifications. Note that
we again implement the latent trending prior p(zt|x1:t−1, z1:t−1) with a RNN unit with hidden state
hprior
t at step t given by:

hprior
t = f(xt−1, zt−1, h

prior
t−1 ) (3)
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Again, because of the recursion hprior
t is a deterministic function of x1:t−1, z1:t−1, and thus

p(zt|ht) = p(zt|x1:t−1, z1:t−1). The final graphical model in Figure 1 now correctly reflects
the joint distribution between observed and latent random variables.

The STORN model
With the correct modeling in hand, we can now build a deep learning model to train on the normal
movements data. Because of the presence of latent factors zt, the most meaningful way to train the
network is via a Variational Auto-Encoder (VAE) [3], replicated at each time step t. In short, a VAE
first models the reverse (encoding) distribution p(z|x) with a recognition model, and then reconstructs
(decodes) x back by modeling p(x|z) with a generating model. Since we have time-series data, we
need to replicate this behavior across all time steps from 1 to T , which can be achieved with RNNs.

To this purpose, three RNN units come together to form a Stochastic Recurrent Neural Network
(STORN), first introduced in [1]. The network structure of our STORN implementation is presented
in Figure 2:

Figure 2: Network structure of the STORN model. The same color scheme is used as in the graphical
model in Figure 1

We can already recognize the trending prior model and generating model, whose hidden states hprior
t

and ht were already depicted in the graphical model in Figure 1. Additionally, we introduce a
recognition model with the purpose of "encoding" xt into zt at every time step. It is also implemented
with a RNN, with xt as input in every step t. All of the three models output sufficient statistics of
distributions. Given the nature of our data set, we assume multi-variate Gaussian distributions for all
three of them. Between the recognition model and the generating model we first sample a specific zt
from the output statistics of the former model, and then feed this zt as input to the generating model.
The need for sampling will become clear in the next subsection.

Training
Since the generating distribution p(xt|zt)1 is modeled via a strong non-linearity (a RNN, i.e. a
neural net in every time step), the "inverse" distribution p(zt|xt) is not analytically tractable. This
renders techniques such as EM impossible to use in this setting. Instead we use the training method
of Stochastic Gradient Variational Bayes (SGVB). Similar to [3], we use Jensen’s inequality and
equation (1) to obtain the following upper bound of the NLL, which we use as our loss:

1Omitting conditioning on previous time steps x1:t−1, z1:t−1 for clarity of the notation
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NLL = −logp(x1:T ) = −log
∫
z1:T

p(x1:T , z1:T )dz1:T

= −log
∫
z1:T

T∏
t=1

p(xt|x1:t−1, z1:t)︸ ︷︷ ︸
p(xt|ht)

p(zt|x1:t−1, z1:t−1)︸ ︷︷ ︸
p(zt|hprior

t )

dz1:T

= −log
∫
z1:T

qz|x(z1:T )

qz|x(z1:T )

T∏
t=1

p(xt|ht)

T∏
t=1

p(zt|hprior
t )︸ ︷︷ ︸

:=pz(z1:T |h
prior
1:T

)

dz1:T

≤ Eqz|x(z1:T )

(
−

T∑
t=1

logp(xt|ht)

)
−KL(qz|x(z1:T )||pz(z1:T |hprior

1:T )) = LOSS

where at line 2 we substitute for the hidden states of the generating model and trending prior
model RNNs to simplify notation. At line 3 we define the "joint prior" distribution pz(z1:T |hprior

1:T ).
Furthermore, qz|x(z1:T ) represents the distribution implemented via the recognition model RNN,
which is an approximation of the true (and not tractable) latent factor posterior distribution.

Since we chose isotropic multivariate Gaussian distributions for both qz|x(z1:T ) and pz(z1:T |hprior
1:T ),

there is a closed formula for the KL divergence based on the output statistics of the recognition model
and the trending prior model.

Following SGVB, we approximate the expectation term in the loss with MCMC sampling from the
recognition distribution qz|x, setting the number of samples L to 1. This is the reason why we have the
necessary sampling step in the STORN network on top of the statistics produced by the recognition
model (Figure 2). Note that with the given distribution assumptions, the specified upper bound loss
decomposes into separate terms for each time step t.

With this loss, we can train the STORN network using normal BPTT (Back-propagation through
time) and any gradient descend optimization method (e.g. sgd, rmsprop).

Implementation
We implemented STORN entirely in keras (a theano framework). To our knowledge this is the first
such implementation. We augmented the STORN network with deep feed-forward units (6 dense
layers) around every RNN unit for optimal feature extraction. The biggest challenges we experienced
were working around keras, since it was missing some functionality, and the very long training times
because of the model complexity. We obtained our best results with GRU recurrent units and tanh
activation functions, optimizing with rmsprop.

3.3 Anomaly detection from a loss curve

Figure 3: Anomaly detection approaches

The basic idea for detecting an anomaly is to consider the loss values of STORN (or the Time-series
Predictor) to predict if a sequence occurred. We distinguish different classification approaches which
are grouped in Figure 3.
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3.3.1 Offline Detection

Offline detection for this dataset means to predict whether a given sample contains an anomaly
or is free of those. Hence, we have a binary classification problem with the whole sequences as
observations.

Max Value Logistic Regression A basic approach is to learn a linear separator to detect whether
or not a time series sequence is anomalous. Instead of finding the loss threshold manually we can
compute the threshold on the fly by using the maximum loss spike as representation of each sequence.
We train the classifier on these values and are able to separate the two classes with this approach.

RNN Classification We attempted to train an RNN sequence classifer to detect anomalous se-
quences. This consisted simply of feeding the error at each time step into an RNN with a logistic
regression classifier on the last hidden state and training the model with gradient descent on binary
classification targets (sequence is normal vs. anomalous). Unfortunately, this idea did not work out,
and we could not get the model to successfully predict anomalies, likely because we had too few
anomalous sequences in the data, and anomalies within these occurred only very sparsely (only about
0.1% of all timesteps were anomalous).

1D Convolutional Network To further improve the results, we used a 1D Convolutional net to get
better classification. We figured out this approach after trying a simple feed forward neural network.
Since the anomalies occur on different positions it was hard to train such a simple feed forward
network. Therefore, we introduced a simple 1D convolutional layer to be able to train the network
such that the convolutional layer minimizes the problem of having anomalies on different positions
and intensities.

3.3.2 Online Detection

In the online detection case, we try to predict an anomaly in an online fashion. This means, that
we only have the information of the current and the previous timesteps without knowing the future.
Hence, we want to rather detect each anomaly and not just binary classify whether or not a whole
sequence contains any anomalies.

Basic Thresholding One of the most basic ideas is to just predict an anomaly online if the current
spike is higher than a predefined threshold value. This simple approach gave us quite reasonable
results in predicting the anomalies in an online fashion.

Reinforcement Learning We tried to use the Q-learning algorithm to train a simple reinforcement
learning neural network to this task, by structuring it as a game wherein a series of loss values is
presented, and the agent places "bets" on whether they are anomalous or not, and accordingly gets
a payoff or penalty. Unfortunately, as in the offline-detection RNN case, we faced the problem of
having extremely sparse positive anomaly labels. In the end, the agent would simply learn to always
predict non-anomaly at every step, since that locally minimized the risk of false-positive penalties
(which are much more common than true-positive payoffs).

4 Evaluation

4.1 Approximating normal data

As seen in Figure 4a, the joint movements are predicted accurate as long as no anomalies occur.
If there are anomalies then the actual movement and the predicted curve differ at the place of the
anomaly. This is very important since the later steps of the anomaly detection rely on highly accurate
normal data predictions. Otherwise, normal data cannot be distinguished from anomalous data.

4.2 Anomaly detection from a loss curve

Those gaps between the actual movement and the prediction result in high spikes in the loss curves.
This is a result since the loss function explodes on such irregular behaviors. For the detection

6



(a) STORN fits the data perfectly but predicts
different curve shapes at anomalies

(b) STORN loss is high on positions where STORN
loss predicts a different curve

afterwards, it is crucial that non anomalous steps have a low loss. An example of the loss curve
behavior of STORN can be found in Figure 4b.

4.2.1 Coarse Detection

(a) Coarse anomaly detection (b) ROC curves, for the Max Value Log. Regression and
ConvNet classifiers (with Area Under Curve metric)

As discussed in the methodology section, we tried different approaches for the offline detection.
This anomaly detection, also called coarse detection, is easily measurable and comparable since we
know the ground truth of whether a sample contains at least one anomaly. Hence, we could train the
network on a train and validation set and test it on a test set. Comparing the ground truth with the
binary classification output, we calculated various statistics for the different approaches. The most
important values are highlighted in Figure 5a.

Max Value Logistic Regression We measured the max value logistic regression approach for both
the STORN and the simple RNN Timeseries Predictor. We figured out, that there is a huge gap
between those two models. The test set accuracy of the Simple RNN Predictor is with 82.4% quite
low compared to the 98.9% of the STORN loss. This huge gap between the two prediction approaches
lies in the fact that the sensitivity of the STORN approach is way higher. This is a result of the better
fitting of STORN to the latent structure in the original data. Hence, the loss values differ significantly
between anomalous and normal movements.

1D Convolutional Network By introducing a convolutional network we were able to further
optimize the classification rates. Even though the differences to the Max Value Logistic Regression is
very minor we can see that a more complex network is able to detect the anomalies slightly better.

As Figure 5b shows, STORN clearly outperforms the simple Timeseries Predictor, with AUC score
of roughly 1.0 for both the ConvNet and the Max Value LogRegression classifiers.

4.2.2 Fine-Grained Detection

It must be made clear that the fine-grained anomaly detection quality is directly limited by the quality
of the provided anomaly labels. Still, we tried to use our improved torque labels and provide some
rough ballpark estimates of the quality of STORN’s online capabilities. As already mentioned in
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Section 3.3.2, we first considered more complex algorithms like Reinforcement learning or a RNN
classifier running on overlapping windows of length 2s over the STORN loss. Unfortunately, these
models quickly saturated during training as the gradient steps became too small to train.

Logistic Regression Thresholding Taking into account the training difficulties of more complex
models, we eventually went for thresholds of the STORN loss in the fine-grained case as well. While
simplistic in nature, this approach proved to provide good enough results. We used the threshold
obtained from the coarse detection Logistic Regression classifier. We then considered two heuristic
regions for where an anomaly should be: up to 5s after an original anomaly label, or -3s to +3s
around an improved torque label. Loss spikes exceeding the threshold outside of these regions were
considered false positives. Table 1 shows a summary of the results:

Table 1: Fine-grained anomaly detection with STORN
Interval (Heuristic) TP (properly detected) FP (falsely detected) FN (missed)
[0, +5s] after original label 141 14 19
[-3s, +3s] around torque label 141 6 19

Both experiments provided similar results, with ca. 90% sensitivity in both cases. Using the torque
labels led to fewer false positives. However, we stress that numbers like these are ambiguous and
should be taken with great caution, as we do not have a proper ground truth for the fine-grained case.

5 Future Work

Here we discuss possible improvements to our results that seem worth looking into.

5.1 Improved labels

One of the biggest challenges with the dataset is that the anomalous ground truth labels are not
accurate at all. The biggest room for improvement is thus with acquiring accurate labels, because
it can both impact the results of the existing solution and ensure the validity of the approach of
generating more accurate labels through data augmentation.

Of course also this approach can use more sophisticated methods than adaptive thresholding to
achieve better results. The problem with generating ground truth labels yourself is that credibility
of results based on a handpicked ground truth is very low. Thus having accurate labels from a third
party or within the data set is preferable to generating them along with the solving approach.

5.2 Fine-Grained Detection

For our work we mainly focused on coarse detection, i.e. classifying a whole sample as anomalous
or normal. We did try fine grained detection and achieved decent results. However, compared to
coarse detection there is still a lot of optimizations we have not tried yet. This is mainly due to the
difficulties we had when dealing with ground truth labels.

Apart from improving on ground truth data, which we consider the most desirable improvement, we
would have liked to further investigate the reinforcement learning approach in particular.
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