Dylan Murphy
CSI 333
Assignment 3

| decided to write my code in LISP because | found out that it’s the second oldest High Level
Programming Language. It first appeared in 1958. It is a beautiful language

((if)(you)(don’t)(mind)(looking)(at)(parentheses)) and | just like how old it is. It is written in true

prefix notaion or “Polish Notation” ex:
(operator operand operand)

(+22) =>4

(myFunction myParam myParam)

| used the application LispWorks to run my code with the necessary applications to run

Common Lisp code

‘e Install LispWorks Personal Edition a

Do you want to move the “LispWorks

N Personal Edition” Installer to the Trash?
Introducti¢ - To keep this package in its current location,
click Keep.

Read Me

: LM MovetoTrash)
| License

Destination Select —

sl s The installation was successful.

Al The software was installed.

Summary

ﬁ

/

Due to my lack of experience with LISP | first
took to Youtube and started absorbing the
syntax structure and basic fundamentals. Once |
knew what | needed to do | started coding some
other basic List functions then | made my
counter function. It takes an atom and counts
how many times it occurs in a list. It does this
recursively using LISPs super easy list splitting
functions cdr to get the rest of the list besides
the first item and car which returns the first
item. | only got it to work for numbers because
when I’'m setting up the list with chars it wasn’t

<>

& untitled.lisp

untitled.lisp

(defun m-length (list)
(if (null list)
0
(+ 1 (m-length (cdr list)))
)
y

(defun print-list (list)
(

(null list))
(progn
(princ (car list))
(print-list (cdr list))
)
)
)]

(defun m-count (a list)
((null 1list)
0
(progn
(it (a (car list))
(+ 1 (m-count a (cdr list)))
(m-count a (cdr list))
)

working. | think It had something to do with how | was creating the list.

| really enjoyed messing around with LISP and | really like it. Following the lamda calculus
model excellently it was really easy to understand how things are structured in lisp and

provides very little ambiguity. It was also very fast to debug because there was no compilation

step you can just put code into the listener and let it rip!

@ LispWorks Personal File Edit Expression Values Debug History Window

@) B w pag g K 0 <€ ORS A

[NON) Listener 1

e HdxoRSS2rCRD € »

New File OpenFile Save Cut Copy Paste Listen Source Inspect Class Refresh Clone Preferences

r e D Programming_CM
| |

CL-USER 1 >
(defun m-count (a list)
(if (null list)
]

(progn
(ifCequal a (car 1list))
(+ 1 (m-count a (cdr list)))
(m-count a (cdr list))

D)
M-COUNT
CL-USER 2 > (m-count x (listbx x sassbxxxxxxnnnkhk))

Error: The variable X is unbound.
1 (continue) Try evaluating X again.
2 Return the value of :X instead.
3 Specify a value to use this time instead of evaluating X.
4 Specify a value to set X to.
5 (abort) Return to level 0.
6 Return to top loop level @.

Type :b for backtrace or :c <option number> to proceed.

Type :bug-form "<subject>" for a bug report template or :? for other options.
CL-USER 3 : 1 > (m-count @ (1ist 1111011111100000))

6

CL-USER 4 : 1 >

Ready.

In C | wrote a similar code to count occurrences of a char in a specific string

not doing this functionally but it is doing it iteratively.
[BON) c a3.c

4> untitled.lisp a3.c

<stdio.h>
<string.h>
int total;
int count(char i, charx array){
int j;

(j = 0; j <= strlen(array); j++){
(array[j]l == 1) {
total++;

total;

int main(){
char *a = "010101010100202101202132400231240234";
printf("s%sd", count('@', a));
0;

. The C program is

