
Experimenting with Link
Time Optimization

Jon Degenhardt
Silicon Valley D Language Meetup

Dec 14, 2017

Today’s meetup: Testing the LTO support
released with LDC 1.5.0
• Agenda:
• Link Time Optimization overview
• LTO support in LDC 1.5.0
• Overview of the benchmark applications: eBay’s TSV utilities
• Benchmark results: Improved runtimes, smaller executables

• About me
• Search relevance and search engine architecture at eBay
• Programming in D for about two years

Link Time Optimization (LTO)
• Whole program optimizations at link-time
• Interprocedural optimizations difficult or impossible when

considering only part of the program (e.g. an individual source file)
• Supported by both GCC and LLVM
• LLVM approach
• Compilation: Write LLVM IR bitcode to .o files rather than machine code
• Link-time: Read LLVM bitcode from all files. Pass the program to LLVM

optimization modules
• GCC LTO uses a similar approach

Link Time Optimization (cont)
• LLVM’s LTO requires special support in the linker

• macOS: Supported by system linker (Xcode)
• Linux: GNU “gold” linker. Uses a plugin architecture to support optimizers
• LLD: New LLVM linker, supports LTO natively

• Full vs Thin LTO
• Full – Loads a program’s entire IR code into memory for optimization

• General issue: Significant memory use, long compile times
• Thin – Loads module “summaries” instead of full IR. Retains most

optimization benefits, but with faster builds and less memory use.
• Thin and Full are not compatible, all code used in a build must be built

using the same method.

LTO support in LDC
• LDC 1.1.0 (Jan 2017) – Initial LTO support

• macOS supported out-of-the-box via Xcode linker
• Linux requires separate install of the GNU “gold” linker

• LDC 1.2.0, 1.3.0 – Ongoing fixes and improvements
• LDC 1.4.0 (Sep 2017)

• Ships with LLVM LTO plugin for the ‘gold’ linker. Linux support out-of-the-box.
• ldc-build-runtime tool

• Downloads D standard library source (druntime, Phobos) and compiles with LTO.
• Interprocedural optimizations across D standard library and application code!!

• LDC 1.5.0 (Nov 2017) – Critical bug fixes
• LTO with D standard libraries is now viable
• Experimental support for Windows LTO

LTO Benchmarks
• Not many published LTO benchmarks

• Published benchmarks show mixed results. Executable size reduction is common.
Runtime performance improves on occasion.

• Common sentiment: Programs most likely to benefit are those that have not been
hand optimized.

• Basis for this benchmark report: eBay’s TSV utilities
• One of many tools used for large data set processing. Filtering, statistics,

sampling, etc.
• Written in D as part of an exercise exploring the language
• Benchmark well compared to similar tools written in native languages

• March 2017 study: https://github.com/eBay/tsv-utils-dlang/blob/master/docs/Performance.md
• Takeaway: Benchmark study suggests at least a reasonable level of optimization
• Latest TSV utilities release is built with LTO on Travis-CI

https://github.com/eBay/tsv-utils-dlang/blob/master/docs/Performance.md

March 2017 benchmarks: Top-4 in each test (No LTO)

• Macbook Pro, 16 GB RAM, SSD drives. Times in seconds. Comparison includes 9 separate tools (C, Rust, Go)

Benchmark Tool/Time Tool/Time Tool/Time Tool/Time

CSV-to-TSV csv2tsv csvtk xsv

(2.7 GB, 14M lines) 27.41 36.26 40.40

Summary statistics tsv-summarize Toolkit 1 Toolkit 2 Toolkit 3

(4.8 GB, 7M lines) 15.83 40.27 48.10 62.97

Numeric row filter tsv-filter mawk GNU awk Toolkit 1

(4.8 GB, 7M lines) 4.34 11.71 22.02 53.11

Regex row filter tsv-filter GNU awk mawk Toolkit 1

(2.7 GB, 14M lines) 7.11 15.41 16.58 28.59

Column selection tsv-select mawk GNU cut Toolkit 1

(4.8 GB, 7M lines) 4.09 9.38 12.27 19.12

Join two files tsv-join Toolkit 1 Toolkit 2 Toolkit 3

(4.8 GB, 7M lines 20.78 104.06 194.80 266.42

Benchmark results with LTO: macOS
Compiler LTO csv2tsv tsv-

summarize
tsv-filter
(numeric)

tsv-filter
(regex)

tsv-select tsv-join

LDC 1.2.0 None 29.41 15.33 4.28 7.85 4.05 20.84

LDC 1.2.0 App; Thin 23.99 15.70 4.25 7.54 4.04 20.66

LDC 1.2.0 App; Full 23.86 15.59 4.25 7.54 4.05 20.73

LDC 1.5.0 None 25.54 22.52 4.96 7.78 4.28 21.33

LDC 1.5.0 App; Thin 25.70 22.55 5.01 7.65 4.19 21.24

LDC 1.5.0 App; Full 24.10 21.81 5.16 7.60 4.21 21.38

LDC 1.5.0 D libs; Thin 21.48 10.44 3.65 7.14 4.05 20.11

Delta from 1.2.0/None 27% 32% 15% 9% 0% 4%

Delta from 1.5.0/None 16% 54% 26% 8% 5% 6%

• Improvements in most benchmarks
• No material improvement from app-only LTO (except csv2tsv in LCD 1.2.0)
• Significant gain from including D standard libraries

Benchmark results with LTO: Linux
Compiler LTO csv2tsv tsv-

summarize
tsv-filter
(numeric)

tsv-filter
(regex)

tsv-select tsv-join

LDC 1.2.0 None 41.74 25.46 7.03 12.34 5.88 34.10

LDC 1.5.0 None 46.84 30.34 7.61 12.12 6.25 34.01

LDC 1.5.0 App; Thin 47.38 30.05 7.91 12.48 6.30 34.36

LDC 1.5.0 App; Full 48.97 30.28 7.73 12.30 6.23 34.58

LDC 1.5.0 D libs; Full 33.44 17.87 6.20 10.48 5.94 32.65

Delta from 1.2.0/None 20% 30% 12% 15% -1% 4%

Delta from 1.5.0/None 29% 41% 19% 14% 5% 4%

• Slower machine than macOS benchmark (commodity cloud box)
• No material improvement from app-only LTO
• LTO including D libraries is a clear improvement

Executable sizes: macOS (bytes)
Compiler LTO csv2tsv tsv-summarize tsv-filter tsv-select tsv-join

LDC 1.2.0 None 3,841,420 5,144,720 6,217,924 4,066,664 4,118,700

LDC 1.5.0 None 6,709,936 7,988,448 8,137,804 6,890,192 6,945,336

LDC 1.5.0 App; Thin 6,643,344 6,949,848 6,639,876 6,675,664 6,687,840

LDC 1.5.0 App; Full 6,643,344 6,949,712 6,639,844 6,676,000 6,688,392

LDC 1.5.0 D libs; Thin 2,679,184 3,082,068 3,172,648 2,734,356 2,738,700

Delta from 1.5.0/None 60% 61% 61% 60% 61%

Compiler LTO csv2tsv tsv-summarize tsv-filter tsv-select tsv-join

LDC 1.2.0 None 726,880 1,117,040 1,416,952 756,456 776,472

LDC 1.5.0 None 995,760 1,400,672 1,743,288 1,026,344 1,049,176

LDC 1.5.0 App; Thin 998,624 1,296,496 1,547,944 1,023,880 1,031,984

LDC 1.5.0 App; Full 998,432 1,300,792 1,547,656 1,024,312 1,036,648

LDC 1.5.0 D libs; Full 826,064 1,154,808 1,359,544 856,064 868,736

Delta from 1.5.0/None 17% 18% 22% 17% 17%

Executable sizes: Linux (bytes, dynamic libc. Static adds 1.35MB)

Example: Building with LTO
• Use code from blog post Faster Command Line Tools in D,

version 4b.

• Build command, no LTO:
$ ldc2 -release -O faster_cmd_v4b.d

• Build commands, with LTO for D standard libraries:
$ ldc-build-runtime --reset --dFlags="-flto=thin" BUILD_SHARED_LIBS=OFF
$ ldc2 -release -O -flto=thin -L-L./ldc-build-runtime.tmp/lib faster_cmd_v4b.d

https://dlang.org/blog/2017/05/24/faster-command-line-tools-in-d/

Concluding Remarks
• Many thanks to the LDC team for help with this work

• Special thanks to Johan Engelen and Martin Kinkelin
• LTO is now a real option with the LDC 1.5.0 release

• Easy to try if you are using LDC on macOS or Linux
• Still an early technology. Good test coverage is quite valuable to detect problems.
• Current recommendation: Use Thin LTO on macOS, Full on Linux

• Significant improvements on the TSV utilities apps
• The big win comes from running LTO on the D standard libraries
• Cross-module inlining likely the most significant source of performance gains
• TSV utilities are small, build times are not an issue for either Thin or Full LTO

• Need benchmarks from a wider variety of apps
• Profile Guided Optimization (PGO) is the obvious thing to try next

References
• LDC: LLVM D Compiler wiki. The LDC compiler home page.
• Link Time Optimization (LTO), C++/D cross-language optimization,

Johan Engelen’s blog
• Building LDC runtime libraries. LDC docs for LTO on runtime libraries.
• ThinLTO: Scalable and Incremental LTO, LLVM Project Blog
• ThinLTO: Scalable and Incremental Link-Time Optimization. CppCon

2017, Teresa Johnson. The talk to see if you want to understand LTO.
• LLVM Link Time Optimization: Design and Implementation
• Optimizing real world applications with GCC Link Time Optimization, T.

Glek, J. Hubicka. Describes building Firefox with LTO

https://wiki.dlang.org/LDC
http://johanengelen.github.io/ldc/2016/11/10/Link-Time-Optimization-LDC.html
https://wiki.dlang.org/Building_LDC_runtime_libraries
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0ahUKEwixlp7bzcnXAhWDLmMKHWmZCjsQtwIIRDAF&url=https://www.youtube.com/watch?v=p9nH2vZ2mNo&usg=AOvVaw2RkBdXPrQcEE9VjTYAr88v
https://llvm.org/docs/LinkTimeOptimization.html
https://llvm.org/docs/LinkTimeOptimization.html
https://arxiv.org/abs/1010.2196

