
Exploring D via Benchmarking 
of eBay’s TSV Utilities

Jon Degenhardt, eBay Inc.

DConf 2018



Today’s talk
• Describe performance evaluations of D conducted using eBay's TSV Utilities. 

Studies were part of a larger look at the D programming language


• Talk will describe the larger context behind these studies, what was learned, etc.


About myself 

• Senior member of eBay's Search Science team. Recall, ranking, and search 
engine architecture.


• Over a decade in search at Yahoo and eBay


• Experienced in both engineering and data science



About eBay’s TSV Utilities
• Command line tools manipulating large, tabular data files. e.g. Machine learning data sets. Large 

but still manageable on a single machine. eg. 10GB, 100 million rows.


• Filtering, statistics, sampling, joins, etc. Used alongside standard Unix CLI tools (e.g. grep, sed, 
sort) as well as R, Pandas, etc.


• Written in D to explore the language. Niche tools, but real tools doing real work.


• Eleven tools (executables); 4400 lines of code (CodeCov count)


• Imperative and functional programming throughout; Templates; Object oriented w/ inheritance 
(tsv-summarize), Finite state machine (csv2tsv)


• Standard library use: Algorithms (many); Ranges; Containers (AA, Appender, Binary Heap, DList); 
Regular Expressions; Random numbers; Unicode; Hashing; Math routines; CLI Options (getopt)



TSV Utilities: Key Tools
• tsv-filter - Filter rows by numeric and string comparisons


• tsv-summarize - Summary statistics on fields (sum, median, etc) with optional group-by


• tsv-select - Like Unix cut, but with ability to reorder fields


• tsv-sample - Uniform and weighted random sampling; Distinct sampling


• tsv-join - Join across multiple files


• tsv-uniq - Like Unix uniq, but with fields as key, no sorting required


• tsv-pretty - Print with aligned columns


• csv2tsv - Convert CSV format to TSV (remove CSV escapes, etc)



Why D?
• Looking for simpler alternatives to C++ for performance sensitive 

components of eBay's search stack


• C++ enables great performance, but is complex to write and maintain


• Undesirable barrier for data scientists, who spend most of their time 
writing in other languages (Python, R, Scala, etc), making occasional 
contributions to C++ components


• D has an intriguing mix of high performance, simplified coding, and 
pragmatic features



Evaluation approach
• Write code in a style achievable by a team of programmers


• Straightforward code, use the standard library (Phobos) where possible


• Avoid writing low level code (buffer management, memory management, etc)


• Identify and avoid inefficient code constructs (e.g. auto-decoding)


• Avoid unnecessary GC allocation, but don't avoid GC


• Evaluation considerations: Language and library facilities; ease of use; 
maintainability, testability, tooling, interoperability, performance, etc.



March 2017 Comparative Benchmarks
• Idea: Assess D's performance by comparing against similar tools written in 

other native compiled languages


• Target “normal” code, not highly optimized micro-benchmarks


• Published benchmarks have at least two tools with similar functionality


• Benchmarks were run only after finalizing the TSV Utilities


• 6 benchmarks; 9 other tools in 3 languages (C, Go, Rust); 33 total benchmark 
times


• Caveats: Of course! But nothing to invalidate the big picture results.



Result: TSV Utilities were the fastest on each test

March 2017 Comparative Benchmarks: Top-4 in each test
Benchmark Tool/Time Tool/Time Tool/Time Tool/Time

Numeric row filter tsv-filter GNU awk mawk Toolkit 1
(4.8 GB, 7M lines) 4.34 11.71 22.02 53.11
Regex row filter tsv-filter GNU awk mawk Toolkit 1

2.7 GB, 14M lines 7.11 15.41 16.58 28.59
Column selection tsv-select mawk GNU cut Toolkit 1
4.8 GB, 7M lines 4.09 9.38 12.27 19.12

Summary statistics tsv-summarize Toolkit 1 Toolkit 2 Toolkit 3
(4.8 GB, 7M lines) 15.83 40.27 48.10 62.97

Join two files tsv-join Toolkit 1 Toolkit 2 Toolkit 3
4.8 GB, 7M lines 20.78 104.06 194.80 266.42

CSV-to-TSV csv2tsv csvtk xsv
(2.7 GB, 14M lines) 27.41 36.26 40.40

Quite unexpected. On most tests it was not close.

Macbook Pro, 16 GB RAM, SSD drives. Times in seconds.



Take-aways
• Using a native compiled language won't by itself make a program fast


• TSV processing is a useful benchmark basis because there are multiple alternative tools


• D shined on these benchmarks:


• Solid optimization throughout the standard library


• LDC compiler optimizations are quite good


• D's programming paradigms are good fit for this class of problem:


• Easy to write code for these tools


• Ranges, lazy algorithms, etc.


• Throughput oriented (GC pauses are immaterial)


• Meaningful stuff not tested: Concurrency/threading; Latency oriented applications (e.g. service requests); 
Larger variety of memory allocation patterns (e.g. many small objects)



Link Time Optimization and 
Profile Guided Optimization

Fall 2017 evaluations



LTO and PGO evaluation: Fall 2017

• LTO and PGO are LLVM technologies exposed by LDC (LLVM D Compiler)


• Link Time Optimization (LTO): Whole program optimization at link-time


• Profile Guided Optimization (PGO): Compiler optimizations using profile 
data from an instrumented build


• Recent LDC innovation: Support both LTO and PGO across application 
code and druntime/phobos libraries


• TSV Utilities are already fast - How much headroom remains?



More about LTO and PGO
Link Time Optimization 

• Inter-procedural optimizations difficult or impossible when considering only part of a program (e.g. an 
individual source file)


• LLVM approach: Compiler writes LLVM IR bitcode to .o files. Linker reads IR bitcode from all files to 
perform whole program optimization


• Common optimizations: Cross-module inlining, dead code elimination (smaller binaries)


• Full vs Thin LTO: Full LTO reads entire IR code, Thin LTO reads module “summaries”. Thin is faster, uses 
less memory, but has less information. Thin LTO generally optimizes nearly as well as Full LTO.


Profile Guided Optimization 

• Main challenge is creating representative workloads


• Common optimizations: Improved inlining decisions; branch prediction



LTO and PGO performance 
Same tests as the 2017 Comparative Benchmarks

LTO/PGO tsv-summarize csv2tsv tsv-filter 
(numeric)

tsv-filter 
(regex)

tsv-select tsv-join

None 21.79 25.43 4.98 7.71 4.23 21.33

ThinLTO: App Only 22.40 25.58 5.12 7.59 4.17 21.24

ThinLTO: App+Libs 10.41 21.41 3.71 7.04 4.05 20.11

ThinLTO+PGO: 
App+Libs 9.25 14.32 3.50 7.09 3.97 Not tested

Improvement

ThinLTO: App+Libs 52% 16% 26% 9% 4% 6%

PGO vs ThinLTO 11% 33% 6% -1% 2% Not tested

ThinLTO+PGO 58% 44% 30% 8% 6% Not tested

• Macbook Pro, 16 GB RAM, SSD drives; LDC 1.5.0. Times in seconds. 
• Linux benchmarks showed similar improvements



LTO Executable sizes
macOS sizes (bytes)

LTO tsv-summarize csv2tsv tsv-filter tsv-select tsv-join

None 7,988,448 6,709,936 8,137,804 6,890,192 6,945,336
ThinLTO: App Only 6,949,712 6,643,344 6,639,844 6,676,000 6,688,392
ThinLTO: App+Libs 3,082,068 2,679,184 3,172,648 2,734,356 2,738,700

Reduction 61% 60% 61% 60% 61%

Linux sizes (bytes)
LTO tsv-summarize csv2tsv tsv-filter tsv-select tsv-join

None 1,400,672 995.760 1,743,288 1,026,344 1,049,176
Full-LTO: App Only 1,300,792 998,432 1,547,656 1,024,312 1,036,648
Full-LTO: App+Libs 1,154,808 826,064 1,359,554 856,064 868,736

Reduction 18% 17% 22% 17% 17%



Take-aways
• Substantial performance gains from both LTO and PGO


• Key was using LTO and PGO on both application code and libraries


• Hard to predict gains in advance. Some apps gained more from LTO, 
others from PGO.


• LTO compile times not significantly longer for TSV Utilities apps. Larger 
apps are likely to be more impacted.


• A couple edge-case bugs were encountered with LTO. Having a good test 
suite was helpful to identify these.



Comparative Benchmark Update 
Update to the March 2017 study



Comparative benchmark update (April 2018)

• Same benchmarks as before, plus a narrow file column selection test


• Used the fastest programs from the March 2017 benchmarks


• Both MacOS and Linux (2017 tests were MacOS only)


• Performance related changes in TSV Utilities:


• Compiler/language: LDC 1.1 -> 1.5; druntime/phobos 2.071 -> 2.075


• LTO & PGO (including druntime/phobos)


• Output buffering - Addresses several output inefficiencies (stdio.write[f|ln], algorithm.joiner)



Result: TSV Utilities have gotten faster

Times in seconds 
MacOS: Mac mini, 16 GB RAM, SSD drives, 3 GHz Intel i7 (2 cores) 
Linux: Commodity cloud machine: 16 CPUs (Intel Haswell 2095 MHz), 32 GB RAM 
TSV Utilities v1.1.11 used to generate the March 2017 benchmark equivalent

TSV Utilities performance improvements
MacOS Linux

March 2017 
(v1.1.11)

April 2018 
(v1.1.19) Delta March 2017 

(v1.1.11)
April 2018 
(v1.1.19) Delta

Numeric row filter 4.25 3.35 21% 6.32 5.48 13%

Regex row filter 10.11 8.28 18% 9.72 8.80 9%

Column selection 4.26 2.93 31% 5.52 4.79 13%

Column selection: narrow 25.12 10.18 59% 15.41 8.26 46%

Summary statistics 16.97 9.82 42% 22.68 15.78 30%

Join two files 23.94 21.17 12% 28.77 26.68 7%

CSV-to-TSV 30.70 10.91 64% 34.65 20.30 41%



Result: TSV Utilities are still the fastest overall 
But… the other tools have gotten faster too
MacOS: Top-4 in each test

Benchmark Tool/Time Tool/Time Tool/Time Tool/Time
Numeric row filter tsv-filter mawk GNU awk csvtk
(4.8 GB, 7M lines) 3.35 15.06 24.25 39.10
Regex row filter xsv tsv-filter GNU awk mawk

(2.7 GB, 14M lines) 7.03 8.28 16.47 19.40
Column selection tsv-select xsv csvtk mawk
(4.8 GB, 7M lines) 2.93 7.67 11.00 12.37

Column selection: narrow xsv tsv-select GNU cut csvtk
(1.7 GB, 86M lines) 9.22 10.18 10.65 23.01
Summary statistics tsv-summarize xsv csvtk GNU datamash
(4.8 GB, 7M lines) 9.82 35.32 45.59 71.60

Join two files tsv-join xsv csvtk
(4.8 GB, 7M lines) 21.78 60.03 82.43

CSV-to-TSV csv2tsv xsv csvtk
(2.7 GB, 14M lines) 10.91 14.38 32.49

Times in seconds 
Mac mini, 16 GB RAM, SSD drives, 3 GHz Intel i7 (2 cores)



Linux results - Similar
Linux: Top-4 in each test

Benchmark Tool/Time Tool/Time Tool/Time Tool/Time
Numeric row filter tsv-filter mawk GNU awk csvtk
(4.8 GB, 7M lines) 5.48 11.31 42.80 53.36
Regex row filter xsv tsv-filter mawk GNU awk

(2.7 GB, 14M lines) 7.97 8.80 17.74 29.02
Column selection tsv-select mawk xsv GNU cut
(4.8 GB, 7M lines) 4.79 9.51 9.74 14.46

Column selection: narrow GNU cut tsv-select xsv mawk
(1.7 GB, 86M lines) 5.60 8.26 13.60 23.88
Summary statistics tsv-summarize xsv GNU datamash csvtk
(4.8 GB, 7M lines) 15.78 44.38 48.51 59.71

Join two files tsv-join xsv csvtk
(4.8 GB, 7M lines) 26.68 68.02 98.51

CSV-to-TSV csv2tsv xsv csvtk
(2.7 GB, 14M lines) 20.30 26.82 44.82

Times in seconds 
Commodity cloud machine: 16 CPUs (Intel Haswell 2095 MHz), 32 GB RAM



Concluding thoughts

• D makes it easy to develop fast programs!


• LTO and PGO really work!


• Developing real tools, though simple, has proven quite valuable for 
exploring D’s many features


• Having benchmark data, even if incomplete or flawed, is preferable to 
having no data or only anecdotal data.



References

• eBay's TSV Utilities GitHub repository - Tools, documentation, and 
benchmark details


• Link Time Optimization (LTO), C++/D cross-language optimization - Johan 
Engelen’s blog post describing LTO in the LDC compiler


• ThinLTO: Scalable and Incremental Link-Time Optimization. CppCon 
2017, Teresa Johnson. The talk to see if you want to understand LTO.

https://github.com/eBay/tsv-utils-dlang
http://johanengelen.github.io/ldc/2016/11/10/Link-Time-Optimization-LDC.html
https://www.youtube.com/watch?v=p9nH2vZ2mNo

