
markbennett.ca

Let’s Git This Party Started! 🎉

A Gentle Introduction to Git and GitHub
Mark Bennett, EDMUG April 2019

markbennett.ca

Mark Bennett, President at Burmis Studio

I’m a software developer, project
manager, and meetup organizer.

I’m @MarkBennett on Twitter and
GitHub.

I love talking about my kids,
cooking, and travel.

markbennett.ca

Connect

Talks, social media, blog posts,

embarrassing web design.

https://markbennett.ca

@MarkBennett

https://markbennett.ca
https://twitter.com/MarkBennett

markbennett.ca

Please hold
questions

We’ll stop every ten minutes for a
question break, with time at the end.

markbennett.ca

Get Help

devedmonton.com

A community of hundreds of local
developers and designers.
Including EDMUG!

Slack link is at the bottom.

https://devedmonton.com/

markbennett.ca

Be Kind.
Be Patient.
Be Open.

markbennett.ca

Time is
limited

markbennett.ca

I’ll give you
these...

markbennett.ca

So you can
do this!

markbennett.ca

~150 slides. Guesses how far
we’ll get?

markbennett.ca

Here we go!

markbennett.ca

What is Git?

markbennett.ca

Git is a distributed version control
system.

markbennett.ca

Ok.

markbennett.ca

But what is a version control
system?

markbennett.ca

Good question!

markbennett.ca

A Version Control System (VCS)
tracks and manages changes
to files in a folder or project.

markbennett.ca

Remember doing a team
project...

markbennett.ca

paper.docx

paper2_FINAL.docx

paper2.docx

paper2_FROM_JANE.docx

markbennett.ca

Now think of how
Google Docs made
this easy.

markbennett.ca

Version Control = Google Docs

markbennett.ca

So what is a change?

markbennett.ca

Changes include things like
adding, deleting or changing
the contents of a file.

markbennett.ca

So why would I want to track
and manage those changes?

markbennett.ca

Usually, it’s because you want
to fix a change that broke
something. Oops. 😳

markbennett.ca

Sometimes you just want to try
things out, without losing your
work.

markbennett.ca

Version Control lets you travel
through the changes you’ve
made to your files, and go back
to older versions.

markbennett.ca

It’s like this!

markbennett.ca

So what makes Git special?

markbennett.ca

Git is popular, open source,
and free.

markbennett.ca

Git also works offline.

The whole team can have their
own copy of all the changes.

markbennett.ca

Git is fast and handles tricky
changes well.*

* Moving and renaming files, or merging changes across branches. More later.

markbennett.ca

Git makes sharing changes
easy.

markbennett.ca

What can I keep in Git?

markbennett.ca

Almost anything!

markbennett.ca

● Program source code
● Open data
● Images & art
● Term papers
● Legislation (really!)

https://github.com/bundestag

markbennett.ca

So what is GitHub?

markbennett.ca

GitHub is a
web-based hosting
service for version
control using Git.

* With a cute mascot, called OctoCat! Check out https://octodex.github.com 😉

https://octodex.github.com

markbennett.ca

GitHub also has basic project
management, code review,
and documentation tools.

markbennett.ca

GitHub has also become a
social network for developers.

markbennett.ca

If you use open source tools,
chances are that they’re using
GitHub.

markbennett.ca

markbennett.ca

Alright! I’ve got it.

Time for lunch right?

markbennett.ca

Just one more question...

markbennett.ca

How do I actually use git?

markbennett.ca

And so the journey begins...And so the journey begins...

markbennett.ca

PAUSEPAUSE

markbennett.ca

What have we learned
so far?

● A Version Control System (VCS)

tracks and manages changes in files.

● Git is a VCS that’s popular, open

source, free, fast and works offline.

● GitHub is a web based Git hosting

service and social network with

project management, code review,

and documentation.

markbennett.ca

Questions?

markbennett.ca

Getting Started With Git

markbennett.ca

Git

● Popular git clients
● Starting a repository
● The commit history
● Committing your changes

● Working with branches
● Merging branches

markbennett.ca

Popular Git Clients

A Git client is a tool you use to work with Git.

Most allow you to create a Git repository, add or change files, and
collaborate with other people.

markbennett.ca

Popular Git Clients

Git Command Line Visual Studio Code SourceTree

markbennett.ca

Popular Git Clients

I’ll use GitHub Desktop for some of
my examples.

Any Git client should also work.

https://desktop.github.com

https://desktop.github.com

markbennett.ca

Starting a repository

markbennett.ca

Starting a repository

Before you can track changes to your files you need to create a repository.

A repository is where all the files in your project go. The repository also
included the Commit History and git settings. More on those later.

markbennett.ca

Starting a repository

repository = repo

markbennett.ca

Starting a repository

Most git clients keep the repository
settings in hidden files and folders:

● .git

● .gitignore

● .gitattributes

If you see these files in a folder then
you’re probably looking at a Git
repository. 😉

markbennett.ca

Starting a repository

markbennett.ca

The Commit History

markbennett.ca

The Commit History

The Commit History stores
snapshots, called commits, of your
project from the start of the
repository.

markbennett.ca

The Commit History

Each commit is a snapshot of the
entire project at the point you
commit.*

* Don’t worry about space, it’s compressed as you work.

markbennett.ca

The Commit History

Think of the Commit History as the
story of your repository.

Each commit has a summary and
description.

These tell how your commit fits into
the story of the repository’s history.

markbennett.ca

The Commit History

Git calculates a special code, called
the hash, from the entire snapshot
of a commit.

Each commit is identified by a hash.

Changing even 1 bit of the contents
and the entire hash changes.

markbennett.ca

Committing Your Changes

markbennett.ca

Committing Your Changes

You need to commit changes to the
history manually.

They’re not saved automatically.

markbennett.ca

Committing Your Changes

1. Make the changes
2. Stage the changes
3. Commit the changes

markbennett.ca

Committing Your Changes

Make the changes in your editor or
application then save them to the
disk.

markbennett.ca

Committing Your Changes

Stage the changes you’d like to add
to the next commit.

You don’t need to stage all the
changes you’ve made, and you can
stage or unstage them until you’re
happy.

markbennett.ca

Committing Your Changes

Once your changes are staged,
review them.

If you’re satisfied add the summary
(and description) then commit the
changes to the repo!

markbennett.ca

Committing Your Changes

Your changes now appear as a new
commit in the Commit History.

Congratulations!

markbennett.ca

Committing Your Changes

Try to remember you’re telling a
story you might care about later.

Comic courtesy of XKCD.

https://xkcd.com/1296/

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review ● Create a repository to start using Git.

● A commit is like a snapshot of the
whole project.

● We edit, stage, then commit changes.

● The commit history tells the story of
your project.

markbennett.ca

Questions?

markbennett.ca

If each commit is snapshot of
the whole repository, why isn’t
my Git folder huge?

markbennett.ca

You’ve been paying attention!

markbennett.ca

Git uses compression and
some advanced data
structures so that only the
differences between commits
are stored.

markbennett.ca

Because of this it uses much
less space than if it kept a
fresh copy every time.

markbennett.ca

Working With
Branches

markbennett.ca

Sometimes you want to work on a
new feature, fix a big, or just
experiment.

Git branches let you do this safely
and easily.

Working With Branches

markbennett.ca

You’ve actually got a branch
already!

It’s called the master branch and is
made for you when you start your
repository.

Working With Branches

markbennett.ca

By default, “master” is the currently
checked out branch.

The checked out branch is where all
your commits will go as you work.

Working With Branches

markbennett.ca

Working With Branches

As you make commits, the “master”
branch automatically points to the
latest commit you’ve made.

C1

C2

C3master

master

master

markbennett.ca

Working With Branches

A branch is like a special pointer to a
commit which changes as you work.

C1

C2

C3master

markbennett.ca

Working With Branches

Here “master” points to the third
commit (C3).

C1

C2

C3 master

markbennett.ca

Working With Branches

Making new branches and checking
them out is easy!

markbennett.ca

Working With Branches

You branch off an existing commit.

Here both “master” and “bugFix”
point to the same commit.

C1

C2

C3*master bugFix

markbennett.ca

Working With Branches

You can only checkout one branch
at a time.

We’ll use a “ * “ to indicate which
branch is checked out.

Here’s we’ve checked out “master”.

C1

C2

C3*master bugFix

markbennett.ca

Working With Branches

Now we’ve checked out “bugFix”
instead.

C1

C2

C3master *bugFix

markbennett.ca

Working With Branches

As we make commits “bugFix” will
move.

“master” still points to our old
commit.

C1

C2

C3master

*bugFix

C4

C5

markbennett.ca

Working With Branches

If we checkout “master” again and
make some commits, something
interesting happens!

Note I’ve cutoff (C1) to save space.

C2

C3

*master bugFix

C4C6

C7 C5

markbennett.ca

Working With Branches

We’ve got commits with the same
parent, but with different changes
after!

C2

C3

*master bugFix

C4C6

C7 C5

markbennett.ca

How do we get our bug fix back
into our project?

markbennett.ca

We’ll answer in a moment!

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review ● Branches let you work and commit

independently from one another.

● Branches are used for bug fixes,

experiments, new features, work in

progress.

● New commits are added to the branch

you’ve checked out.

● You always have one branch checked

out.

● By default every repository has a

“master” branch.

markbennett.ca

Questions?

markbennett.ca

Merging Branches

markbennett.ca

Merging Branches

Before you understand merging
branches you must understand
commits and the commit history.

Each commit has a parent.

C1

C2

C3

markbennett.ca

Merging Branches

We’ve talked about branches as
pointers, but a branch also says
that, “I want to include the work of
this commit and all its parents”.

C1

C2

C3

markbennett.ca

Merging Branches

“master” includes C2, C3, C6, C7

“bugFix” includes C2, C3, C4, C5

C2

C3

*master bugFix

C4C6

C7 C5

markbennett.ca

Merging Branches

Each commit can actually have zero
(C1), one (C2 and C3), or many
parents (C4)!

C1

C2

C4

C3

markbennett.ca

Merging Branches

How do we get our bug fix back into
our project?

C2

C3

*master bugFix

C4C6

C7 C5

markbennett.ca

Merging Branches

C2

C3

*master bugFix

C4C6

C7

We can get the changes from
“bugFix” into “master” by merging.

C5

markbennett.ca

Merging Branches

Git understands which work is in
each branch.

It can calculate and apply the
differences between the branch
commits.

markbennett.ca

Merging Branches

Each merge creates a new commit in
the commit history.

Here we merged “bugFix” into
“master”.

You can see the commits from
“bugFix” in “master” now”

markbennett.ca

Merging Branches

Note that by default GitHub
Desktop and many other tools don’t
show merge commits.

You can use the command-line and
`git log` to see merge commits.

markbennett.ca

Merging Branches

C3

*master

bugFix

C4C6

C7

After the merge our “master” branch
points to a new commit (C8) with
the work from “bugFix” included.

This commit has two parents (C5
and C7)

C5

C8

markbennett.ca

Merging Branches

C3

*master

bugFix

C4C6

C7

Sometimes a merge fails because
changes you’re merging in would
conflict with changes in your
branch. C5

C8

markbennett.ca

Merging Branches

C3

*master

bugFix

C4C6

C7

When there is a conflict, you’re Git
client will stage all the changes it
can automatically.

Both copies of the conflicting
changes will also be included.

C5

C8

markbennett.ca

Merging Branches

C3

*master

bugFix

C4C6

C7

You must manually edit the files
and stage these changes to resolve
the conflict.

Once it’s resolved you can commit
the staged changes and the merge
is done!

C5

C8

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review ● Branches point to a commit.

● Branches track all the commits

included in them.

● Commits can have more than one

parent.

● Merging branches makes a new

commit with two parents.

● Merging is usually automatic, but

conflicts must be fixed manually then

committed.

markbennett.ca

Questions?

markbennett.ca

Keeping The Git Log Clear

C3

*master

bugFix

C4C6

C7

`git merge` is safe but can result in
a confusing log when a commit has
more than one parent.

Git offers a tool called `git rebase`
you can use to edit your commit log
to make it cleaner before sharing.

C5

C8

markbennett.ca

Git Rebase

By rebasing you take the commits in
one branch and create new
commits by replaying the changes
from each commit against another
branch. The original commits are
then deleted!

Typically, you rebase a feature
branch against `master`.

markbennett.ca

Git Rebase

C3

*master bugFix

C4C6

C7 C5

For example, imagine you’ve got a
`bugFix` branch that you want to
rebase so your changes follow the
head of the `master` branch (C7)

markbennett.ca

Git Rebase

C3

master *bugFix

C4C6

C7 C5

If you run:

git checkout bugFix

git rebase master

Then Git will take the changes in C4
and apply them to C7 to make a new
commit C8. It then applies changes
from C5 to make C9.

C8

C9

markbennett.ca

Git Rebase

C3

master

*bugFix

C4C4C6

C7 C5

Now that the new commits have
been created, the branch is updated
to point to C9.

The old commits are then deleted.

C8

C9

C5

markbennett.ca

Git Rebase

C3

*master, bugFix

C6

C7

If you merge the `bugFix` branch
into `master`, Git doesn’t need to
edit the history at all.

Git updates `master` to point to the
latest commit in the `bugFix`
branch.*

C8

C9
* A merge where Git just has to move the
branch to the latest commit is very easy
and has a special name, a fast-forward
merge.

markbennett.ca

NEVER REBASE A BRANCH
YOU’VE SHARED!

`git rebase` can only delete
commits from your local branch!*

If you shared commits, then send
rebase commits the changes will be
shared twice!

WARNING: Git Rebase

* Technically, you can force push a local branch, more later.

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review ● Keeping your Git log clean is helpful

● `git rebase` can be a useful tool

● Using `git rebase` takes care

● NEVER REBASE COMMITS YOU

HAVE SHARED!

markbennett.ca

Questions?

markbennett.ca

Getting Started With GitHub

markbennett.ca

GitHub

● Sharing your code
● Your GitHub repo
● Issues
● Contributing and Pull Requests
● Exploring GitHub

markbennett.ca

Sharing Your Code

markbennett.ca

Sharing Your Code

Git works great on it’s own, but
GitHub makes it a great way to
share your code too!

markbennett.ca

Sharing Your Code

To start sharing a repo you’ve
created you need to publish it to
GitHub.*

Some Git clients can publish
directly, others require you to
create the repo on the GitHub site.

* You also need to register for a GitHub account, but I’m not going to walk you through that. ;)

markbennett.ca

markbennett.ca

Sharing Your Code

markbennett.ca

Sharing Your Code

Now that it’s up on GitHub your
friends and co-workers can clone
your repo to download your project
on their computer.

There’s even a shortcut to clone and
open in GitHub Desktop!

markbennett.ca

Sharing Your Code

This works if you want to clone
other peoples projects to use on
your computer as well!

markbennett.ca

Sharing Your Code

As you work, you’ll need to push
commits and branches you make on
your computer to GitHub.

Your work isn’t shared until you
push your changes.*

* This gets me all the time. :P

markbennett.ca

Your GitHub Repo

markbennett.ca

Your GitHub Repo

Every GitHub repository has a few
interesting features on top of what
Git provides.

● Issues
● Pull Requests
● Wiki
● Project webpage *

* Optional, and off by default

markbennett.ca

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review

● GitHub hosts Git repositories and

makes coding social.

● Repositories on GitHub have code as

well as issues, pull requests, and

documentation.

● You can quickly make your own

repository to share your projects.

● Your repositories can be public or

private.

● Clone a repository to your computer.

● Don’t forget to push changes!

markbennett.ca

Questions?

markbennett.ca

Issues

markbennett.ca

markbennett.ca

Issues

Issues... allow you to report and
track issues!

You can apply labels to keep them
organized, assign them to people,
and add them to a milestone to do
at a certain time.

markbennett.ca

Issues

Each issue includes
discussion, and can
be closed when it’s
addressed.

Note Labels,
Assignees, etc. on the
right.

markbennett.ca

Issues

Issue numbers in any
description or
comment
automatically link to
the issue.

markbennett.ca

Issues

Use the “@” symbol
to mention someone.

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review ● Use issues to organize your work.

● You can discuss issues.

● Mention other issues using a “#” and

other people using “@”.

● Issues can be assigned to people and

milestones.

● Close an issue when it’s resolved.

markbennett.ca

Questions?

markbennett.ca

Pull Requests

markbennett.ca

markbennett.ca

Pull Requests change
everything!

markbennett.ca

Pull Requests

Pull requests are a request to
merge one branch into another.

markbennett.ca

Pull Requests

You can discuss and link to requests
like a normal issue.

When you’re done you can merge or
close the request.

markbennett.ca

Pull Requests

GitHub shows the changes included
in the branch.

These changes update as the source
branch is changed.

markbennett.ca

Pull Requests

You can comment on any line.

Comments can be a single comment
or you can start a review.

markbennett.ca

Pull Requests

Reviews include many comments.

At the end of review you can
approve the pull request, require
changes, or just comment.

markbennett.ca

Pull Requests

Reviews appear in the pull request
discussion.

This makes it easy to see if a pull
request has been reviewed and
approved or if changes are required.

markbennett.ca

Pull Requests

When a pull request is done the
repository you can merge the pull
request.

You can also close the pull request
if you’re not going to use the work.

markbennett.ca

But there’s more!

markbennett.ca

Pull Requests

If your repository is public, then
people can help you out and submit
pull requests!

You’re users submit pull requests,
you choose which to merge and
close.

markbennett.ca

Pull Requests

This is why open source projects like
GitHub so much. It’s so easy to
accept and review work from the
public! 😊

markbennett.ca

Pull Requests

Open Source on GitHub

=

Free Bug Fixes & Features

markbennett.ca

Pull Requests

Teams use pull requests to review
and share their work.

You can even make a draft pull
request to share and get feedback
while you’re still working.

markbennett.ca

Forking A Repository

Start contributing by forking a
repository. This makes your own
copy of the repo you can commit to.

Commit your changes to your repo,
then you can create a pull request
to the repo you forked.

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review

● Pull requests define GitHub for many

people.

● A pull request is a request to merge a

branch into another.

● Teams use pull requests to review

work.

● A pull request can carry on for a while

well work is done.

● Open source projects use pull

requests to receive contributions.

markbennett.ca

Questions?

markbennett.ca

Exploring GitHub

markbennett.ca

Exploring GitHub

Notifications alert you to
important information and
changes in the repositories you
own and watch on GitHub.

markbennett.ca

Exploring GitHub

markbennett.ca

Exploring GitHub

Topics allow you to find new
repositories and projects.

https://github.com/topics/

https://github.com/topics/

markbennett.ca

PAUSEPAUSE

markbennett.ca

Review ● Branches let you work and commit

independently from one another.

● Branches are used for bug fixes,

experiments, new features, work in

progress.

● New commits are added to the branch

you’ve checked out.

● You always have one branch checked

out.

● By default every repository has a

“master” branch.

markbennett.ca

Questions?

markbennett.ca

Next Steps

markbennett.ca

Advanced Git

● .gitignore

● git log

● git stash

● git blame

● git bisect

● git rebase -i

● git commit --amend

● git push --force (don’t!)

● git remote add upstream

markbennett.ca

Advanced GitHub

● GitHub pages

● .gitignore

● Forking repositories

● CONTRIBUTING

● LICENSE

● .github

markbennett.ca

Getting Help

● Dev Edmonton Slack
● Learn Git
● Learn GitHub

markbennett.ca

Resources

● Atlassian Git Tutorials
● Git entry on Wikipedia
● Learn Git Branching
● github/gitignore
● Oh, s**t, git!
● Zero To Git

https://www.atlassian.com/git/tutorials
https://en.wikipedia.org/wiki/Git
https://learngitbranching.js.org/
https://github.com/github/gitignore
https://ohshitgit.com/
https://github.com/dgmouris/zero_to_git

markbennett.ca

Acknowledgements

● Linus Torvald
● Dev Edmonton Slack

markbennett.ca

Get Help

devedmonton.com

A community of hundreds of local
developers and designers.
Including EDMUG!

Slack link is at the bottom.

https://devedmonton.com/

markbennett.ca

Feedback

Git and GitHub are challenging
topics to teach.

@MarkBennett or DES Slack

markbennett.ca

Thank-you!

markbennett.ca

Questions?

markbennett.ca

Is Git secure?

markbennett.ca

Yes.

Each commit is digitally
fingerprinted, and repositories
are transferred securely.

