django

The Definitive Guide to Django:

Web Development Done Right
Adrian Holovaty, Jacob K. Moss

www.djangobook.com
Buy at Amazon

ISBN-10: 1590597257
ISBN-13: 978-1590597255



http://www.djangobook.com
http://www.amazon.com/Pro-Django-Development-Done-Right/dp/1590597257

The Django Book

Table of Contents

1 Introduction to Django. 1
1.1 What IS 8 Web FrameWOTKZ........uvvviiiiiiiiiiiiiee ettt e e e et e e e s e eeaaaaeeeeeseennaaneeeas 1
1.2 The MVC DeSIgN PAtteIM. .. ccveeiteetieieeieeiteeiteeteettet et et et et e b e bt e sbeesbeesbeesbeenbeenbeesbeesbeesbeenbeennes 2
1.3 DJang0 s HISTOTY: . e veeutteteenteeteenttetteteente e it este et et ebe e bt esbee s bt e bt e bt e bt esbeesbeesbeenbeanbeenbeenbeesbeenbeenbeennes 3
1.4 HOoW t0 Read ThiS BOOK.....cciiiieeiiiiiiee ittt eette e e ettt e e e s e eenaaae e e e s seesnnaseeeeessennaaeneeeas 4

1.4.1 Required Programming KNOWIEAZE ......cooueeruieriieiieiiiiiieiieitecetee et 5
1.4.2 Required Python KnOWIEd@e. ........cevueeiuieiiieiieiieiieieeieei ettt 5
1.4.3 New DJango FEAUIES. ... ceoueerueetieieeiteeiteeteet ettt ettt ettt et e bt et e bt e bt e bt e bt e sbeesbeesbeenbeennes 5
1.4.4 GEtNG HEID. .coueeeueieiieieete ettt ettt ettt b e b et e bt e be e sbe e bt e bt e bt e sbeesbeeebeenbeennes 5
1.4.5 WAL S INEXE..eeeeeueeeieieeeeeeieeee e e e e eeeiie et e e e e eeeaaaeeeeeeeessnaaeeeeeeeeessaaaaeeeeeesassasseeesssasnnareeseessssnnresnneeas 6

2 Getting Started 7
2.1 InStAlling PYHOIL ... .eeiiiieei ettt ettt e bt e bt e bt e bt e bt e bt e bt e bt e nbeeaes 7
2.2 InStalling DANGQ. ... eeteeteeieeie ettt ettt ettt et et e et e e bt e bt e bt e bt e bt e s bt e bt e bt e bt e bt e bt e sheeebeenbeenbs 7

2.2.1 Installing an Official REIGASE. ........eerueertiritieiieiieieeteeste ettt ettt ettt st e s sbe e 7
2.2.2 Installing Django from SUDVEISION. .. ceoveeteertieiieieeieerteesteet ettt ettt ettt e e 8
2.3 Setting UpP 8 Database ... .cocueeueeieeiieiieieeite ettt ettt ettt e bt e bt e bt e bt e bt e sbe e s bt e bt e sbe e bt e sbeesbeesbeenbeeas 8
2.3.1 Using Django with POStareSOQL........ciiuiiiiiiiiiiieieiieeieeee ettt 9
2.3.2 Using Django with SQLILE 3. ...coouiiiiiiiiieieeee ettt ettt ettt s sbe e 9
2.3.3 Using Django wWith MYSOQL.......cooiiiiiiiiiiieieeeeete ettt ettt sbe e 9
2.3.4 Using Django Without a Database.........cccueerueerieneiniieniieieeiceieesie ettt 9
2.4 SATHING @ PIOJECE . .uteutieutiiiieete ettt ettt ettt et et et e eateea b e eateeaeeeaeeeatesaeeeabeeabeemteeaeeenteenneeas 10
2.4.1 The DevelOPMENE SEIVEL . ... .eeutetieteeteeteete ettt et eteeiteeateeteeate et e saeesateeabesabeeaeeeneesaeeeneeeas 10
2.5 WAL S INEXEZ. e eevvveiieeeeeeeieee e e e e e eeet ettt e e e e e ettt e e e e e eeenaaaeaeeeeesesasaaeeeeessasssaaeeseessessassseesesssnsstaneeeessannrenes 11

3 The Basics of Dynamic Web Pages 12
3.1 Your First View: Dynamic COMEME.......ueeutruiriieiieieeieeie et ete et ettt etestesiteeateeteeeeeeesaeeeeeens 12
3.2 Mapping URLS 10 VIBWS.....eeuuieuieeiieiieteete et et ettt ettt st sate et et e eate st e satesaeeeabesabeeaeeeaeeeateeaneens 13
3.3 How Django Processes 8 REQUESE.......coouiiiiiiiiiieie ettt sttt st 15

3.3.1 How Django Processes a Request: Complete Details.........ccceeveeieririieniieeiieeieeieeieeieeiee 16
3.4 URLconfs and L.00SE COUPLIMG.....veeuverueerierieeieeie et et ettt ete ettt ettt esatesetesabesabeeaeeeaeesaeeeaeeens 17
3.5 A0 ELTOTS e uuueneesasuaaesaseseaaeeeereeeeeeeeeerereereteteeaeaaaeaaeeeeeeeeeeeeeeeeeeeeesaasssssssssssssssssssssssssssrsrnssrsenerenens 17
3.6 Your Second View: Dynamic URLLS. ....cuoiiuiiiiiiieiieieeie ettt et ettt 18
3.6.1 A Word About Pretty TURLS .....oiuiiiieiieie ettt st ettt st 19
3.6.2 Wildcard URLDPAETIIS. ...veeuveeuteeuteeteeteeteete et et eiteeiteeiteeatesateeateemtesaeesatesatesmtesmeeeneesnsesnsenas 19
3.7 Djang0’s Pretty Brror PAGES......c.ooiuieiiiiieieee ettt ettt et 21
R eIV 4V o 1 1=« o RPN 23

4 The Django Template System. 24
4.1 Template SYStEM BaASICS. .. couutiuieiiiiiiiieiie ettt ettt sb ettt e be e be e b e be e beeneean 24
4.2 Using the Template SYSIEIM.....ueiuerierientiertierttertte ettt ettt et et e st e bt e bt e bt e bt e beesbeebeebeebeeneean 25

4.2.1 Creating Template ObBJECLS .. ..ueeuterierieriieiienieette ettt et et e bt et e bee bt e bt e sbeesbe e beebeebeeneean 25
4.2.2 Rendering @ TEMPIALE. ... ccceeiuieiiiiieitieiee sttt ettt ettt ettt e bt e bt e sbeesbe e beebeebeeneean 27
4.2.3 Multiple Contexts. Same TempPIate........cccceerierierierienierienieeseeee ettt 28
4.2.4 Context Variable LOOKUD.....ccueiiiiieitieiieite ettt ettt ettt ettt ettt sbeesbeesbe e b ebeebeeneean 29
4.2.5 Playing with ConteXt ODJECES .. ..uerutertiertieriantientiertierttesieestee st esbeesbeesbeesbee bt esbeesbeenbeenbeenbeeneeas 31
4.3 Basic Template Tags and FIltOIS.......coueriiiieiieiieiieetieie ettt ettt ettt et e b e e e s 32
e TN I T OSSR 32
R I S L7=) u- VPPN 36
4.4 Philosophies and LimitationS ... ..eeeeeeeerierienieniestiestiesitest et te st e st e st esbee bt e bt esbeesbeesbeebeenbeenbeensean 37
4.5 Using Templates i VIBWS ....coeerierierieetientiertterttesttesttestte st e bt e sbeeste e bt e sbe e bt e bt esbeesbeebeebeenbeeseensean 38

4.6 Template LOAdING ... eeuveeueeieieitie ittt ettt et e sb e s bt e bt e bt e bt e bt e bt e be e be e bt e bt ebeenbean 39



7 Form Processing

The Django Book

Table of Contents

4 The Django Template System

4.6.1 1eNdETr 0 TESPOMSE()..eeueerueeruieruianutertierteesttesttesttesttesttesbeesteesbeesbeanbeebeenbeenbeesbeenbeeseenseenseenseas 41
4.6.2 The 10CAIS() TTICK ...ccuvvveiieee ettt ettt e e e e ettt e e e e e eeaaeaeeeeessennsaaeeeeessessaaeeeeeseans 42
4.6.3 Subdirectories in get eMPIALE().....uerreerreerierieriertierttereesee st e st eenbeerbeenbee bt e sbeesbe e beebeebeeneeas 42
4.6.4 The include Template TaG.......cccuerierierieiieeieeier ettt ettt ettt et et e st e bt e sbe e b ebeeneeas 43

4.7 Template INNETITANCE. ... couverttertieitieeieetie ettt ettt e b e sb e st e e s bt e s bt e bt e bt e bt e beesbe e beebee bt enbeeneean 44
I YA 1 AN 110, 1/ PRRRS 47
5 Interacting with a Database: Models 48
5.1 The “Dumb” Way to Do Database QUeries in VIEWS......ccceerueerieerieeieenieerieeieesieeie et eve s 48
5.2 The MTV Development PALEIT. .. ...ccoueeueeieeieeieeie ettt ettt et ettt ettt e e e beeteebeebeebeebeeneeas 49
5.3 Configuring the DatabDase.........cccueerueeiuieriieieee ettt ettt ettt ettt et et e e be e teebeebeebeebeeneean 50
D4 Y OUL FIISE A DD e utteutteute ettt ettt ettt ettt ettt et e e bt e bt e bt et e e te e be e bt eabeenbe e beenteenbeenbeenbeenbeennean 52
5.5 Defining Models i PYEROM ... .oootiiiiiiieie ettt s 53
I o101 i1 A\ (06 1= RN 54
5.7 Installing the MOAEL.....cccueeuiiiieieeie ettt ettt ettt et ettt et e be e teebeebeebeenbeeneean 55
5.8 BASIC DIALA A CCESS uuvveieiiieieeiiieee e e ettt e e e eeette et e e e e e e aeeeeeeeeeeetareeeeessesaaaeeeeeessanraaeeeeessanarrreeeeseaans 57
5.9 Adding Model String RepreSeNtAtiONS . ... eecveeuveeteeteeieeieetteteerte et esteeteebeebeesbeeeeebeebeebeenbeeneean 58
5.10 Inserting and Updating DAta........c.eeoueeiuieiieiieieeieeie ettt ettt ettt et e be b eee s 59
S.11 SeleCtiNg ODJECLS. ...eeuveeueeeuieeieete et et et et et et et e bt e bt e bt e bt ebe e be e beebeeabeenbeebeenbeenbeenbeenbeenbeansean 60
S 1.1 Fltering DIAta....ccueeeieiieieeieeie ettt ettt ettt ettt et et e e bt e bt e bt e bt ebeebe e be e beebeeneean 61
5.11.2 Retrieving SiNgle OBJECES .. ueeutetieteeieete ettt ettt ettt ettt ettt et e esbeesbeebeebeeneean 61
S.11.3 Ordering DIAA .. ...ueecueeueieieeieeie et ettt ettt ettt ettt e bt et e e bt et e bt e bt e beebe e beebeebeenbean 62
5.11.4 Chaining LOOKUPS. ... ccuuteieeieeitett ettt ettt ettt ettt et et e bt et e bt e bt ebeebe e beebeenbeeneean 63
S.11.5 STHOING DALA ..coueeeiiieieeie ettt ettt ettt ettt et et e et e e bt e bt e bt e bt ebeebe e be e beenbeeneean 63
5.12 DOt ODJECLS. . .veeueeeueeeuteeteete et et et et et et et e bt e bt et e e beebe e te e beebeenbeenbeenbeenteenbeenbeebeenbeensean 64
5.13 Making Changes to a Database SChema........cooveeiiiiiiiiieiieeeeee e 64
S.13.1 AddIing FIEIAS. ...ceueeeuieeieeieee ettt ettt et et ettt ettt et e b et et eeean 64
5.13.2 ReMOVING FIEIAS . ..ccuveeutieiieeieeie ettt et et ettt et et e e be e be e beebeeneean 66
5.13.3 Removing Many-to-Many Fields.........ccccceerirriiiiieiieieeieeie e 66
5.13.4 ReMOVING IMOAEIS. ... ccuuiiuieiiiieieeie ettt ettt ettt et ettt ettt e beebe e beebeebeeneean 66

I N o T [ RN 67
6 The Django Administration Site 68
6.1 Activating the Admin INEEITACE. .. ...eeveeeeeiiiie ettt 68
6.2 Using the Admin INEIrfaCE. .....cccueetieiieiiee ettt ettt s 69
6.2.1 Users. Groups. and PermiiSSIONS ... ceoueeuteeteeteetteteeieeteeteeteeteeteesteeieesatesateemteeneeeaeesneesaeeens 76

6.3 Customizing the Admin INErfaCE . ......coouiriiriiiii et e 77
6.4 Customizing the Admin Interface’s L.ook and Feel..........cccooiiiiiiiiiiiiiiiiiicceeeeeeeee 79
6.5 Customizing the Admin INdeX Page........ccceruiriiiriiiiiiiiiee ettt 79
6.6 When and Why to Use the Admin INterface.........coevueeiieiiiiiiiiiieiecee e 80
6.7 WRAE S INEXEZ. . evveeeeeeeeeeeieeeeeeeeeeet ettt eeeeee e e e e e eeesaaaeaeeeeeseaasaaeeeeessaasaaaeeseessassaaaseesesssnsstaneeeessannnnes 80
81

A 1Y 1 o] o VR 81
P N TSI S5 (Yot 0 L0 6 00 AR 83
7.3 Creating a Feedback FOIML.......iitiiiiiiiee ettt e as 83
7.4 ProcessSing the SUDMIISSION . .....vteteeueeitetteteete et et et et et et et e et e te e bt e be e beebe e teenbeebeenbeenbeensean 86
7.5 Custom Validation RUIES.........cceiiiieuueeieeeeieeiieeeeeeeeeeee e e e e e eetaee e e e e e eeeaaaeeeeeesssnsaaeeesessesssrreesesseans 87
7.6 A Custom LOOK ANd FEEL...uuvvviiiiiiiiiiiiiie ettt e et e e e e e e e e e e s s eenaaeeeeeseens 88
7.7 Creating FOrms from MOAEIS . ......eooueiiieiieieeeee ettt ettt ettt ettt et be e be e e s 89
A 1 P A I\ =D TN 90



The Django Book

Table of Contents

8 Advanced Views and URL confs 91
oI B O 2 T o ¥ il 5 T <RSI 91
8.1.1 Streamlining FUnction TMPOTES.......cueeveeterieiieiie ettt sttt ettt st esaee st e sae e 91
8.1.2 Using Multiple VIEW PrefiXes......ccoeriiriiiiiiieiie ettt sttt sttt s 92
8.1.3 Special-Casing URLS in Debug MOdE.........cooouiriiiiiiiiiiiiieeie ettt 93
8.1.4 USING NAMEA GIOUDS. -+euveeutertteriieriieeieeiteeiteettesitesiteettesatesatesaeesetesatesatesatesseesaeesbeesatesueesseenaes 93
8.1.5 Understanding the Matching/Grouping AIZOTIthIM.......cccuevueriiriiiiirieeeee e 95
8.1.6 Passing Extra Options t0 VieW FUNCHOMS ....cc.verteririiieieeie ettt sttt 95
8.1.7 Using Default VIeW ATZUIMENES ...cc.ueetirierierieriieeiteeiieeitesitesitesetesitesatesstesitesaeesaeesaeesneesneesaes 99
8.1.8 Special-Casing VIBWS. ...cc.eeruierieeiiietieieete ettt ettt et e bt et e bt e bt e bt e bt e be e beenbeenbeenbeenbeenbeas 100
8.1.9 Capturing TeXt in URLLS .. cootiiiiiieiteeee ettt ettt et et e et e b b ebeebeas 100
8.1.10 Determining What the URLconf Searches Against........cccceereereereeneeneeneenieeneeneeeeeeeen 101

8.2 Including Other URILCOMES. .....ccutitiiiieiietieieee ettt ettt ettt ettt ettt et e bt e beesbeenbeebeeneean 102
8.2.1 How Captured Parameters Work with includ@()......cecveerveerieerienniieiieienieeneenieesieeiceieeeen 102
8.2.2 How Extra URLconf Options Work with include().......ccoeerveerernieneenienieenieenieeseeceeeeenn 103

8.3 WAL S INEXE?.oeeeeiieeieeetiieee e e eeettte e e e e eeat e e e e e e e et aeeeeesseesaaaeeeeeeseesasaeeeesssennaaeeeeesessnnnseseeeesssnnrreneeeas 104
9 Generic Views 105
9.1 USING GENETIC VIBWS....ueieutieuiieiiieieeie et et et et et ete e bt e bt e bt eabeenbeebeebeebeebeenbeenbeenbeabeebeenbeensean 105
9.2 Generic VIEWS O ODJECES . .ouveeuteeieiieeteete ettt ettt ettt ettt et e e bt e bt e be e bt ebe e beesbeenbeebeenbeeneean 106
9.3 EXtending GENETIC VIBWS.......eeuieiieiieieeteeteeteete et ete e bt et e bt ebe e bt ebeebeenbeenbeenbeenbeenbeebeenseensean 107
9.3.1 Making “Friendly” Template COMIEXES. ....eeoueerrerrtirrteeriieieerieerieesteeieeteeseeeseeesieesbeesseeneeeneeas 107
9.3.2 Adding EXtra COMEEXE. .. cueeueeeeeieeieeteeieete et ete et ebe et eteebeebeebeebeebeenbeenbeebeenbeenbeansean 108
9.3.3 Viewing SubSets Of ODJECLS. . ...eeiuieiieiieiieieeie ettt ettt ettt ettt et e bt e be e bt ebeesbeenbeeneeas 109
9.3.4 Complex Filtering with Wrapper FUNCHOMNS. ... cccvteveeieeiieieeieeieeieeieeie e 110
9.3.5 Performing EXtra WOTK ......c.coiuiiiiiiiii ettt 110

0.4 WAL S INEXE?..ovvveeeeeieeeeeeeee e e eeeee e e e e ettt e e e e eeaaaeeeeeeesessasaeeeeeessassaaeeeesssaasssaeseesssansssaneeeesssnnrnnes 111
10 Extending the Template Engine 112
10.1 Template L.anguage REVIEW......ccceeruiirieeriieriieitieiiei e sttt ettt e sbte st e st e st e sbeesbtesbeesbeesaeesaeesaeeeas 112
10.2 RequestContext and CONteXt PrOCESSOLS. .. ccvveerriiriiiiiiieniiieniieeniiee ettt ettt svee s 112
10.2.1 django.core.context ProceSSOrS.AULN.......ceviiiierierieiieriieritertte ettt st e st 116
10.2.2 django.core.context processors.debug........covieiieriiiiinienienierie ettt 116
10.2.3 django.core.context ProceSSOLSAl8M. . ciiiriirierieiieiiieiertert ettt sttt 116
10.2.4 django.core.context ProCeSSOLS.TEQUESE .. ccueerttertiertiertiertiertiertteritesteesseesseesseesieesseesseesseennes 116
10.2.5 Guidelines for Writing Your Own ConteXt PrOCESSOIS. ....c.eeveerierienienienienieenie e 116
10.3 Inside Template Loading.......ccoeerteertieneerientieniietiet ettt ettt et sbt e bt e sbe e bt e bt e sbeesbeesbeesaeesaeeeas 117
10.4 Extending the Template SYSEEIM .. ccvueerteerierieitiertiertiertee sttt ettt ettt ettt e sbee st e it e e e eas 118
10.4.1 Creating a Template LADIaIY.......cceveerieiienieiieiest ettt et 118
10.4.2 Writing Custom Template FIlerS.......ceereerierienienieiieieri ettt 119
10.4.3 Writing Custom Template Tags.......ccoeerierienienienienierieterte ettt sttt 120
10.4.4 Shortcut for STMPIE TaZS .. .eerveerteeriieitieiieie ettt sttt st e st e bt e et e e e 124
10.4.5 INCIUSION TAGS .o euveeuteetietietteee sttt ettt e bt sb et e bt e b e sbe e s bt e sbt e s bt e sbtesbtesbeesbeesaeesseenas 125
10.5 Writing Custom Template Loaders. ......ceveerierierieiieniierieesteriei ettt st st 126
10.6 Using the Built-in Template REferenCe........eevuiertierienieiienieiiei ettt 127
10.7 Configuring the Template System in Standalone Mode........c.cceeeerienienienienienienienie e 128
JO.8 WHAL S INEXL e.uvvvveeieeeeieeieeeeee et eeetteeeeeeeeeesateeeeeeseesaaaeeeeessessareeeeessasssassseeesssssssasseesessssnsseseeeesssnnsres 128
11 Generating Non-HTMI. Content 129
11.1 The basics: views and MIME-f¥DES .. ..eerteertteriieriientientesieentteet e stte st et e st et e sbtesbeesbeesaeesaeesaeeeas 129
11.2 Producing CSV ... ..ottt ettt ettt et e bt e bt e s bt e b e e s bt e sbeesbeesbeesbtesbeesbeesatesaeesaeenas 130
11.3 Generating PDES . ...ouiiiiiiee ettt ettt sb e bt e bt e bt e bt e s bt e s bt e s bt e satesaeeeaeeeas 131



The Django Book

Table of Contents

11 Generating Non-HTMIL Content

11.3.1 Installing RepOrtLab........coouiiiiaiiiiieieee ettt ettt st st 131
11.3.2 WIiting YOUL VIBW ..eeueeiuietieiienteenteenteesttesttenttesttesttesttesbeesbtesbeesbeesbeesbeesutesbeesbeesbeesaeesneenns 131
11.3.3 CompPIeX PDIES. .. ..iiiiiiiiiieieeette ettt ettt sttt ettt e sb e st e sateesabeesabaeenbaeenee 132
11.4 Other POSSIDILILIES. ....ceouvvvviieeeieeeteieeeeeeeeeieeeeeeeeeeetaeeeeeeeeeesaaeeeeesessssaseeeessssssnaeseesessssssseseesessennnnes 133
11.5 The Syndication Feed Framework ........ccoeerieiiiiiiniinieiee ettt 133
11.5.1 INItIALIZALION. ..o euvvvveeeeeeeeiieeieeeeeeeeteeeee e e e e ettt e e e e e e eenaaaeeeeeessesnsareeeeessassaseseeeessssnenneesessesnnnnes 134
11.5.2 A SimPIE FEEA ..ueeitiiiieieeeeee ettt ettt st st e st e 134
11.5.3 A More CompleX FEEd.....cc.eiiiiiiiiiiiieieee ettt st st 135
11.5.4 Specifying the Type of Feed.......coiieriiiiiiiiieieeee ettt 137
11.5.5 ERNCIOSUIES. ...cooeuueeeeieeeeeeeiteeeeee e ettt e e e e ettt e e e e e eeamaaaeeeeesseensaaeeeeessesssseseeeessssnsanseesessesnnnees 137
11.5.0 LANGUAZE. ...veeuteenteeteeteete ettt ettt e bt e bt e bt e bt e bt e sb e e bt e bt e sbtesbeesbeesbeeebeeabtesbeesbeesbtesaeesneenas 138

| I A 0 4 5PN 138
11.5.8 Publishing Atom and RSS Feeds in Tandem........cccceveerierienienienienienieee et 138
11.6 The Sitemap FrameWOrK . ......cocueeiuieiiiiieiieiieite ettt ettt ettt e sbee et e saee e e e 139
11.6.1 INSEAITATION. ...ceeeuvvveeeeeeeeeieiieieeeeeeeeieeee e e e e eeeetateeeeeeeeesaaaeeeeeessesnsareeeeessasssseseeeessassenneesessesnnnnes 139
11.6.2 INItIALIZALION. ... uvvvveeeeeeeeeiieeeeeeeeeeiteeeeeeeeeeeiateeeeeeeeeeaaaeeeeeessesnsaseeeeessessnseseesessassanneesesssnnnnnes 139
11.6.3 STteIMAD CIASSES .veeuveeteeteetietienteerteesteesteenteesteesbeesbeesbeesbeesbtesbeesbeesbtessteastesstesbeesbtesseesseannes 140
11.6.4 SIIOTECULS ...eeeeeeeeeeieeeeee e ettt e e e ettt e e e e ettt eeeeeeeasaaaeeeeeesesnbaeeeeeessasssaseeeeeessssnsanseesessesnnnens 141
11.6.5 Creating a Sitemap INAEX.....ccoeerueerieiieieie ettt ettt st 142
11.6.6 PInging GOOZIE .. ccveetiiiietieiieit ettt ettt ettt ettt e sb e bt e sbe e sbe e s bt e sbtesbeesbeesbeesaeesaeeeas 142
L1.7 WHRAE S INEXE?. . oeeveeieeeeeeeeeeeeee e ettt e e e e e et e e e e e eeaaaeeeeesseessaeeeeeessassaseeeeessssnssasneesesesssseseesesssnnnenes 143
12 Sessions, Users, and Registration 144
12,1 COOKIES. vveeeeieeueeeeeeieeeeeeeeeeee e e eeet et e e e e e et ee e e e e e eeeaaaaeeeeesseessaeeeeeeseassssaeeeeeessssasasseesesssssaaseeeessennnnres 144
12.1.1 Getting and Setting COOKIBS ... cerveerveerteertieniientientiestiesttenttesite st e st e sbtesttesbeesbeesbeesaeesaeesseenas 145
12.1.2 The Mixed Blessing Of COOKIES. ...c.ueerueertierianiieniientieniieniierite sttt ettt 146
12.2 Django’s Session FramewWOrk: ... ...coiueerierierieniieiieiertce ettt sttt st 146
12.2.1 ENabling S@SSTONS . .veeteeteertietienteenteenteenttenttesttesttesttesteesbeesbtesbeesbeesbeesbeesbtesbeesbeesbeesaeesneenas 147
12.2.2 USiNg SeSSIONS 10 VIBWS..eeuveetieieentierteentienteentienttesttesttenteesttesseesteesteesstesstesseesseesaeesneesseennes 147
12.2.3 Setting Test COOKIBS .. ueauterteertierteerieenteerteert et te st e st e bt e sbeesttesbeesbeesbeesbtesbeesbeesbeesbeesseesneenns 148
12.2.4 Using Sessions Outside of VIBWS....coceeruieriirienieiieiiesiieriterte ettt 149
12.2.5 When SesSions ATE SAVEd......cooouueeiiiiiiieieiieee et e e e eeaare e e e e e eenaaes 149
12.2.6 Browser-Length Sessions vs. Persistent SeSSIONS........eevueerieriereenienienienie e sieeeiee e 150
12.2.7 Other SeSSION SELMES . ...veerveerteerteerteertientientterttenttesttesteesteesttesbeesbeesbeesstesatesaeesbeesseesseesseennes 150
12.3 Users and AUtheNtiCAtION .......ccouvvvvieeeeiiiieiieeeeeeeeiieeeeeeeeeetaeeeeeeseeesateeeeeeessssaaseeesessssssseseeeesssnsnnes 151
12.3.1 Enabling Authentication SUDDOTIE .......eeeteertierierientieniieniienitesitesieesttesieesitesieesbeesaeesaeesaeenas 151
12.3.2 USIIMG USBIS. e uveeuteenteeteenteenteeteesteesteesteesteenbeanseenseesheesseenseasstenbeesbtesbtesstenstesseesbeesaeesseesseenes 152
12.3.3 1.0g@ing I and OUL......coouiiiiiiiieiieiieiee ettt ettt ettt e st e st e s bt e bt e saeeeaeeeas 153
12.3.4 Limiting Access t0 1.ogged-in USEIS....ccueruiertierieriieniieniieniienitesieesitesitesite e sieesaeesaee s 155
12.3.5 Limiting Access to Users Who Pass @ TeSE.....ccceerieriiiierienienierieieteee et 155
12.3.6 Managing Users. Permissions. and GIOUDS......c.eereerierierierienienienienitestesieeseeeseeesiee s 156
12.3.7 Using Authentication Data in TemMPIates.......ccereerierienienienienie ettt 159
12.4 The Other Bits: Permissions. Groups. Messages. and Profiles.........ccocceveenieiieniienenienieneene. 160
12.4.1 PEIIISSIONS . ..ceeuuvvvrieeeeeeitereeeeeeeieiteeeeeeeeeesareeeeeeessssssaseeeeessasssareeeeessassssresseesssssssssseesessssnnsnes 160
12.4.2 (GIOUDS. e euveeuteeuteanteeteenteesteenteeseenteesbeesbe e bt ebeabeaabeeab e e bt ebee s ee bt enbeeaheeesteaneenbeesbeesheessbasneenes 161
12.4.3 IMIESSAGES. .euveeuveeuteenteeteeteentteseenteesbeesbe e bt ebee bt e bt esbee st e bt e b tenbeesbeesbeeebeeabtenbtesbeesaeesaeesneennes 161
| B B S (o) i [ TR 162
12.5 WHAE S INEXL e.uvvvveeieeeiieeieeeeeeeeeeettteeeeeeeeeateeeeeeeseeeaaaeeeeessessaaeeeeessasssassseeesssssssssseesessssnsseseesesssnnnres 162



The Django Book

Table of Contents

13 Caching 163
13.1 Setting Up the CaChE. ... coouieiiiiietieiieeee ettt ettt b e st sbee et e st e et eas 163
13.1.1 MEMCACHEA. .....uueeeiiiiiiieeeeeeee et e e et e e e s e e eaata e e e e e e s ensaaneeseseennanes 163
13.1.2 Database CaChINE ... ceoveeiueetieiiertieite ettt ettt ettt sttt e st e st e bt et e bt e sbte s bt e saeeeas 164
13.1.3 Filesystem Cachil@......ceoueeruieriienieenieenieesitette sttt ettt ettt et esbe e sbt e st esbtesbtesbeesbeesaeeeaeeeas 165
13.1.4 Local-MemOry CaChing. .. .c.eerueerueerieerieentieniienttentte st et e st e site bt e steesbtesbeesbtesbeesbeesaeesbeesneenas 165
13.1.5 Simple Caching (for DevelOPmMEnt).........cerueertierierienienieriierte e sieesite e seesieesaeesiee s 165
13.1.6 Dummy Caching (for DevelOPMENt).......coceertiertierierieniieriienitesieesitesitesite e sieesieeseee s 165
13.1.7 CACHE BACKEND ATGUIMENLS. ...eeteetietientientientienteenitesttesteesieesttesseesseesseesseesseesseesseennes 166
13.2 The Per-Site CaChE. .. .uvvveieieiieeeieeie ettt e e e e et e e e e e eaata e e e e e esssaaaaeeesesssssaeseeeessennnnees 166
13.3 The Per-VIEW CACRE .. .uvvviieiiieeieeeie ettt ee e e e e e et et e e e e e eaaaaeeesesssssaaseeeessennneees 167
13.3.1 Specifying Per-View Cache in the URLCONE ......cocceeiiiiiiiiiiiiiiiieeeeeeee e 168
13.4 The Low-L.evel CaChe APL........uvvviiiiiieeeee e et e et e e e e e essaareeeeesennanes 168
13.5 UpSIEam CACKES. .. ceeuveerutieiiiieite ettt sttt e ettt e bt esab e sabeesabeeebeeebeeebaeesabeesabeesabeean 169
13.5.1 USing Vary HEadRIS.....cooueeuieiieiieriteieette ettt sttt st st e s e s 170
13.5.2 Other Cache HEAAETS ... uuvvveieiiiiieeiiiie ettt e et e e e e e et e e e e e s saaaaeeesesseennnes 171
13.6 Other OpPUIMIIZALIOMS -+ euveeveeteeteenteerteerteesteenteenteerttesteesteesteesteesseesseesseesbeesseesseesstesseesseesseesseesssennes 172
13.7 Order of MIDDLEWARE CILASSES ..ottt eeee e eeaar e e e s eenanes 172
13.8 WAL S INEXE?..oeeveeieeeeeiteieiee e e eeett ettt e e e e eett e e e e e e eeaaaaeeeeesseensaeeeeeessassaseeseessssnnsaaneesesssssseseeeeessnnnrnes 173
14 Other Contributed Subframeworks 174
14.1 The Django Standard LADIAIY. .....c.eeruierierieiieiie ettt sttt st st st 174
N S 1= VRPN 175
14.2.1 Scenario 1: Reusing Data on Multiple STteS.......cevterierierienienienienieniesee et 175
14.2.2 Scenario 2: Storing Your Site Name/Domain in One Place........cccccevveenieniiniiniienienenne. 175
14.2.3 How to Use the Sites FramEWOTIK .........cooevuvviiiieiiiiiiieeieeeeeeeieeeee e e eeeiareeeeeeeeeenaeeeeeeeeeennnes 175
14.2.4 The Sites Framework’s Capabilities.......ceeeereerierierienienientesee st e sttt seee st 176
14.2.5 CUIT@NESTEEIMANAZEL. ... eeuveeutietieieesteerteenttenteesttesttesttesttesbeesbtesbeesbeesbeesbeesbtesseesbeesaeesaeesneennes 178
14.2.6 How Django Uses the Sites Framework..........ccoceerierieiienieniinienieeieeee et 179
14.3 FIALDAZES. .o ouvveeuveeeieeeniteesiteeette ettt ettt ettt e sttt e st e e sabeeeabeeeabee e bbeesbbeenbbeesabeesabaeenbeeenbaeenbaeesabeesabeesabeeas 180
14.3.1 USING FIAtDAGES .. eeuveeuteetieiieiienieesieeste et et et testtesht e bt e bt e sbtesbeesbeesbeesbeesbtesbtesbeesbeesaeesneenas 180
14.3.2 Adding. Changing. and Deleting Flatpages. ........cccceeruierierienienienienienierte et 181
14.3.3 Using Flatpage TemPIALES ....ccueerveereeriieitieniieriientte sttt site st et et esite st esaeesbeesaeesaeesaeenas 182
T4.4 REAITECES. ...coooueveeeeeee oottt e eeet ettt e e e e ettt e e e e e eaaa e e e eesseessaaeeeeessassaaeeeeeesssnssasneesesssssasseesesssnnneres 182
14.4.1 Using the Redirects FrameWOrk .......coceeruierierienieiieiieiieriiesite ettt st 182
14.4.2 Adding. Changing. and Deleting RedirectS......coeerueeruieniierienienieniesiesierte et 183
14.5 CORE PrOtECHON. . eeceeeeuvvveieeeeeeettteeeeeeeeeettteeeeeeeeetaeeeeeesseessaaeeeeessasssaseeeesssssssssseesessssssseseesesssnnnres 184
14.5.1 A Simple CSRE EXAMPIE....coouieiieiiiitieieiieiieite sttt ettt ettt sbee st st 184
14.5.2 A More Complex CSRE EXAMPIE...c..ueerrueieriiieniiiiniieniieeieeeiee ettt esiteesiteesveesbeeenaeeenne 184
14.5.3 Preventing CSORE ...ttt sttt st st e st 184
14.6 Humanizing DIata........cc.eerieiuiiiiieiietiee ettt ettt ettt sb e s bt e sbeesbeesbt e bt e sbeesbeesaeesaeesaeeeas 186
ST 101101101 0S) S USSP UP USRS 186
14.6.2 INECOMIMNA ....ceeeeueeieieeeeeeeiieeeeeeeeeeeeteeeeeeeeeesateeeeeeesessaaeeeeesssassareeeeessasssaseseesesssssssseesessesnnees 186

| I 1120 (s PO RPN 186
Y X0 (e 11 -1 (PR RRRRRRRRRN 186
14.7 MArKUP FILEETS ...couteeutieteeieete ettt ettt ettt et e bt e bt e bt e sb e e s bt e sbeesbeesbeesbtesbeesbeesaeesaeesaeeeas 187
14.8 WHRAE S INEXE?...veveeiieeeeeieieiee e e ettt e e e e ettt e e e e e eeaaaeeeeessessateeeeesseassaaeeeeessssnssaaseesesssssseseesessennnenes 187
15 Middleware 188
15.1 What's MIAAIEWATED.....vveeeeeeieeeeeeeiee e ettt e e eetee et e e e e et e e e e e e enaaeeeeeeesssaaaeeesessssnseseeeessennneees 188
15.2 Middleware INStAllAtION. ........ooeurrerieeeeiiiiieieeeeeeeeiieeeeeeeeeetareeeeeseeesaaeeeeseeessnnaeeeesessssssrereeeessennnnnes 189
15.3 MiIddIeWare MEtIOMAS. ... ..veeeeeieeeriieieeeeeeieeeeee e ettt e e eeette e e e e e et e e e e e e seaaaaeeesesesssaereeeeesennnenes 189



The Django Book

Table of Contents

15 Middleware
15.3.1 Initializer;: _init (sel

15.3.2 Request Preprocessor: process request(self, request)
15.3.3 View Preprocessor: process view(self. request, view, args. kwargs)
15.3.4 Response Postprocessor: process response(self, request. response)

15.3.5 Exception Postprocessor: process exception(self. request. exception).
15.4 Built-in Middleware

15.4.3 Compression Middleware
15.4.4 Conditional GET Middleware
15.4.5 Reverse Proxy Support (X-Forwarded-For Middleware)

15.4.6 Session Support Middleware
15.4.7 Sitewide Cache Middleware

16 Integrating with I.egacy Databases and Applications.

16.1 Integrating with a [.egacy Database
16.1.1 USing inSPECtAD....ccueeieiiieiieiieieeieeie ettt

17 Extending Django’s Admin Interface
17.1 The Zen of Admin

17.1.1 “Trusted USers ... 0 ..coooveeeeeeeeeeennnnnne
17.1.2 ... editing
17.1.3 ... structured content”.

17.2.1 Custom Model Templates
17.2.2 Custom JavaScript
17.3 Creating Custom Admin Views

18 Internationalization

194
194
194
194
195
196
196
197
198

18.1 Specifying Translation Strings in Python Code

18.1.1 Standard Translation Functions

18.4 How Django Discovers L.anguage Preference.......ccooereerierienienienienieseeseesiete et



The Django Book

Table of Contents

18 Internationalization

18.5 The set 1anguage REdIrECt VIBW.......cevuieruiiriieiiieiieiiesitesitesi ettt sttt sttt 215
18.6 Using Translations in Your OWn PrOJECES.........eeriirierienienienieniienite sttt 215
18.7 Translations and JAVASCIIDE ....veerveertterteertienieeittet ettt ettt ettt et e st e bt e bt e bt e sbeesaeesaeesaeeeas 216
18.7.1 The javascript catalo@ VIBW.......ceereeruieruieniieniieniientienit ettt te sttt et e st e st esite bt e sae e et e saee s 216
18.7.2 Using the JavaScript Translation Catalog........cccceereeruierierienienie ettt 217
18.7.3 Creating JavaScript Translation Catalogs........coveerierienienienienie ettt 218
18.8 Notes for Users Familiar With GEEXE......eereeriertiertiereeiieniientierite et et et site st sieeseeesiee s 218
18.9 WAL S INEXET...eeveeieeeeiiieeeeee e e eeetttee e e e e e e ettt e e e e e eeaaaaeeeeessesssaaeeeeeseasssaseeeeessssnnnasseesesssssaeseeseesennnnres 218
19 Security. 219
19.1 The Theme Of Web SECUIILY:.....tecueerttereerientientiertiert ettt ettt ettt et e sbe e bt e bt e sbeesbeesaeesaeesaeeeas 219
19.2 SOL INJEOTIOM c-teeuteeuteeteeteenteesteertee bt et e esteesbe e bt esbee bt esbeesbeesbeeabeenbeesbeesbeesbeeebeenstesbeesbeesaeesaeesaeenns 219
19.2.1 THE SOIULION. ... uvvveeieeeeeeiiieeeeeeeeeetteee e e ee ettt e e e e e eeataeeeeeessesnsaaeeeeessesssaseseeeesssssanseesessesnnnees 220
19.3 Cross-Site SCripting (XSS ). . ceueetieitieieeiteeniteet ettt ettt et et e st te st e sbeesbtesbeesbtesbeesbeesaeesaeesaeenas 221
19.3.1 THE SOIULION. ..uvvveeieieeeeiiieeeee e e eeette e e ee ettt e e e e e eeaaaeeeeeeeseensaaeeeeessessaseereeessssnsasseesessesnnnees 222
19.4 Cross-Site REQUESt FOTGOIY. . ceoueeitietieriieitieniteittettert ettt ettt ettt sbe e bt e bt e sbt e bt e sbeesaeesaee et e eas 222
19.5 Session FOrging/HijaCKing........eeeueertierieerieniieitieiient ettt ettt sttt e st e bt e sbtesbeesbeesaeesaee et e eas 222
19.5.1 THE SOIULION. ...uvvvvvieeeeeeiiieieeeeeeeeteeeee e e eeeete e e e e e eeaaaeeeeeessesnsaaeeeeessesssaseeeesessasnsanseesessesnnnees 223
19.6 Email Header INJECTION. .o veeveetietietieieestt ettt ettt sttt ettt et esbeesbeesbeesbtesbeesbeesaeesaeesaeeeas 224
19.6.1 THE SOIULION. ..uvvvveieieeeeiiieieeeeeeeeteeee e e e ee ettt e e e e e eeaaaeeeeeesseensaaeeeeessesssaseeeeeessasnsasseesessasnnnnes 224
19.7 DirectOry TIAVETSAL...cccueetieitietietiettete ettt ettt et st et e bt e bt e s bt e sbeesbeesbeesbtesbeesbeesaeesaeesaeeens 224
19.7.1 THE SOIULION. ... uvvvveieieeeeiiieeeeee ettt e e ee ettt e e e e e eeaae e e e e e s seebaaeeeeessessaseeeeeessssnsanseesessennnnens 225
19.8 EXPOSEA EITOT MESSAZES .. eeuveeurieutietienteenieentienttenttenttesteesteesttesbeesbtesbeesbeesbeesbeesstesbeesbeesaeesaeesaeennes 225
19.8.1 THE SOIULION. .. uvvvevieeeeeeiiieeeeee e ettt e e e e ettt e e e e e eeaaaeeeeeesseensaaeeeeeseesssaseseeeessssnsanseesessennnnees 226
19.9 A Final WOTd ON SECULILY: . c.veeveeteerteenteenteenteenteesttenttesteesteesteesbeesbeesbeesbeesteesseesseesseesbeesaeesaeesaeennes 226
1O.10 WAL S INEX L uvvvieieeiiiieieiieeeeeeeettteeeeeeeeesteeeeeeeeessaaeeeeeessessareeeeessasssssseseesssssnsasseesessssssseseeeesssnnnnres 226
20 Deploying Djanga 227
20.1 Shared NOTHIIG. ... veeueeeueeeetertie ettt ettt e s bt e s bt e sb e e sbe e s bt e s bt e bt e bt esbeesbeesbeenbeenbeabeeneean 227
20.2 A Note 0N Personal PreferEnCeS. . ....coovviuuriiiieiieiieeieee ettt ettt e e et e e e e s eenaaeeeeeeesenanaes 228
20.3 Using Django with Apache and mod PYthOm.......coveiiiiiiiiiiiiieee e 229
20.3.1 Basic CONfIgULAION.....co.uerterieeiieitiestteette et ettt te st et esttesbtesbeesbee bt e sbeesbeesbeesbeenbeebeenbean 229
20.3.2 Running Multiple Django Installations on the Same Apache Instance..........ccccceeeerueennen. 230
20.3.3 Running a Development Server with mod pPYthon.........cccccevienienienienienieneeeceeeeen 231
20.3.4 Serving Django and Media Files from the Same Apache Instance........cc.cceeeeveeneeneeenen. 231
20.3.5 Error HANAIIE .. .eoeeieieiiieeieee ettt sttt ettt e be e bbb s 232
20.3.6 Handling a Segmentation Fault..........cccccooiiiiiiiiiiiiiieeete e 232
20.4 Using Django with FAStCGI......cccuoiiiiiiiiiiieiie ettt et be e sbe e as 233
20.4.1 FASICGT OVEIVIEW,...cceieuveeeeeeeeieeiteeeeeeeeeeeitteeeeeeesesssaaeeesessesssareeseessessarsreesessssssseseesesssnsnsens 233
20.4.2 Running Your FastCGI SEIVEL....ccuiitirteiieiiieiieeiiesite sttt ettt siee e et e e b e enbeeneeas 233
20.4.3 Using Django with Apache and FastCGL........ccccooiiiiiiiiiiiiiieeeeeeeeeee e 234
20.4.4 FastCGI and HGRttpd. .. ...eeeiieiiiiieiee ettt 235
20.4.5 Running Django on a Shared-Hosting Provider with Apache........cc.ccceceeveenienieneeneennen. 236
2005 SCALMZ. ..o eeeuteeute ettt ettt ettt sh e s bt e e bt e e bt e e bt e e bt e e bt e sbe e ehe e bt e bt e bt e beesbe e bt e bt e bt enbeebean 237
20.5.1 RUnning on 8 Sin@le SEIVEEL......ccueitiiterieiieeiieetieetie sttt et e st e sieesaeesbeesbeesbeesbeenbeenbeenbeas 237
20.5.2 Separating Out the Database SEIVEL.......cccoueiieriiriirieiie ittt 238
20.5.3 Running a Separate Media SEIVEE......ccoterierierienierie st stte sttt e e e b e e e eneeas 239
20.5.4 Implementing I.oad Balancing and Redundancy.........c.cceveerienienienieneeneenieneeneeieeenn 239
20.5.5 GOING Big .. eiuiieiieeiieeie et b e sttt b et bt b e bt e b e e be e b ebean 241
20.6 Performance TUNING. ... .c.ouerterieeieeieet ettt ettt st e st esbe e s bt e sbe e bt e bt e sbeesbeesbeenbeenbeenbeeneean 241
20.6.1 There’s No Such Thing As Too Much RAM.......ccccoiiiiiiiiiiiinieiietesee e 242



The Django Book

Table of Contents

20 Deploying Django

20.6.2 TUrn Off KEEP-ALLVE ...coueeruiieiiieiieeiieeiie ettt ettt sttt sat e bt e s bt e bt e st e e sbeesbeesbeenbeebeebean 242
20.6.3 USe MEMCACNE......cciiiiiiieiieee ettt e et e e e e e e etaareeeeeesesssaaneeeesssnnnnees 242
20.6.4 Use MmemcaChed OFEN.......uvviiiiiieieiiiiiiieeeieeie et eeere et e e e e e e e e e e esnaereeeeessennees 242
20.6.5 JOIN the CONVEISALION. .. uvvvvveeeeeieeenieeeeeeeeeeeitereeeeeeeeiraeeeeeessasssareereessessareeeeeessssssereesesssnnrsnns 242
20.7 WHAE S INEXE?...evveeeeeeeeeeieeeee e e eeete e e e e eetae e e e e s s eeaaaeeeeesseesaaeeeeesseassaaeaeeeessasssaaseesessasnsaseeeeesannnnes 243
21 Appendix A: Case Studies. 244
21.1 Cast Of CRATACEEIS ....oeeuvvveeeeeeeeeeeeeee e e e eeette e e e e e eeeaeeeeeeeeeeaaeeeeesseassaaeeeeeesssssaaseeeessassrsareeeesssnnnnes 244
21.2 WHY DJANZOZ ettt sttt e a e sa e bt e s bt e s bt e sbe e s bt e bt e bt e bt e beesbe e bt e bt e bt ebeebean 245
21.3 GEHNG STATEE. . .veeueeeeeieieet ettt ettt ettt e bt e s bt e s bt e s bt e s bt e sbe e s bt e sbeesbeesbeenbeenbeebeeneean 246
21.4 Porting EXiSUNG GO .. cuuerueiruieniieeiieeiieei ettt ettt ettt st e bt e sbe e bt e bt e s bt e sbeesbeesbeenbeenbeenbean 246
21.5 HOW DIA TE GO iiiiiieeiieeeie ettt ettt e e ettt e e e e ettt e e e s eeaaaaeeeeessenasaaaeeeessssssaseeeesssnnnnnes 247
21.0 TEAM SIIUCTUIE .....eeeeeeeieeeeeeeeeeeieeeeeeeeeeetteeeeeeeeeetaaeeeeesseesaaeeeeesseessaseeeeeessassaaseesessssssrereeeesssnnnnes 248
21.7 DEPIOVITIEIIE. .euveeeueteenuteeriteeetteette ettt ettt e sttt e sateesubeeeabeeeabeeenbteesateessteesabeesabeeeabeeebeeebaeensseesareesareens 249
22 Appendix B: Model Definition Reference 251
B B =) [ RSP 251
B N L) 21 =3 [« F SRR 251
22.1.2 BOOIEANTFIEIA. .. .vvvvviiiiiieeeeeieee ettt e et e e e e s e eaaae e e e e e e s sensaaneeeeesennenes 252
22.1.3 ChArFIEId......cooeuveeeieee ettt e e e e e e e ettt e e e e e e eaaae e e e e e s s esnaareeeeesannaaes 252
22.1.4 CommaSeparatedIntegerField........ccoooiiiiiiiiiiiiee e 252
N B D F: 1 7=) 3 T=) [ R UORRTRRRRRRRRN 252
22.1.6 DAteTIMEFTEIA . .vvvvieeiiiieiieieee ettt e e e e e e e e e e eaaaeeeeeeesesasaareeeessennnnns 252

22. 1.7 EMAIFIEIA. ....ccoouveeeiieee ettt e ettt e e e e et e e e e s eeaaaeeeeeeesenssaaneeeesssnnnnes 252
P R 51 (=) i T=) [ ORI RORRRRRRRRRN 252
22.1.9 FIlEePAtRFIEIA. .. ..vvveiiiiiiceieeieee ettt e et e e e e e e eaaar e e e e e e s ennsaareeeeesennnees 253
22. 1. T0 FIOALFIELA. ... ouevveeeeeee ettt ettt e et e e e e s e eaaaeeeeeeesesssaaneeeeesennnnes 254
22.1. 11 TMageFIEld ... eeoueeeeieeiie ettt bttt be b an 254
22.1.12 INEEGEIHIEIA. ..ottt et b et be s 254
22.1. 13 TPAAAIESSEIEIA. .. . cciiiueeeiieee ettt e e e e e e e e e e eaaaeeeeeeesesnsaaneeeesssnnnens 254
22.1.14 NUllBOOIEANFTEIA. .....ccuvvvvvieeeiiieiieieeee ettt eee e e e e e e e e e e s eeanaareeeeesennnnes 254
22.1.15 PhoneNUMDETFIEI. ......uvvviiiiiiiieeieeee ettt e e e e e eaaaaae e e e e s seneaes 254
22.1.16 Positivelnte@erField. ......c.cueiiiiiiiiiiie ettt 255
22.1.17 PositiveSmallIntegerField..........couiriiiieiieiieeie ettt 255
22.1.18 STUGHIEI. .. ettt sttt sb e b e b e s bt e s bt e b e nbee bt ebeebean 255
22.1.19 SmallINteGEIFIEId. ... .ceiueeiiiieiiieie ettt st 255
22.1.20 TeXLFIEIA. ....ccoeveeeieeeeeeeeeeee ettt e ettt e e e e et e e e e e e eaaaeeeeeeesesssaareeeessennnenes 255
22.1.21 TIMEFTEIA. ... cuveeiieie ettt et e e e e et e e e e e e eaaaaeeeeeesesssaaneeeesssnnnrnes 255
22,122 URLFIEIA....cccuueeiiieeeeeeeeeee ettt ettt e e e e et e e e s s eeaaaeeeeeeesssssaaneesesssnnnenes 255
22.1.23 USSLAEFIEIA. . .uvvveeiiiieeieeieee ettt e e e e e e e e e eaaaeeeeeeesesssaaneeeesssnneees 255
22.1.24 XIMILFIEIA ....ccuvveeeeeeeeeeeeeee ettt e ettt e e e e s et e e e e seesaaeeeeeesssnnsaaneesesssnnnnnns 256
22.2 Universal Field ODIONS. .. co.utrterieeieeiieiteeitesite sttt ettt te st te st e sbeesbte s bt e bt e sbeesbeesbeesbeesbeenbeenbeeneean 256
A 1 1111 | RO 256
22.2. 2 BDLANK e vvveeeieeeeeeeee et e e e e e e e e e e e e e e aa i ——ereeeeeana—arreeeesenraaareeeesannrraes 256
22.2.3 CRIOICES cuvvveieeeeeeitteeee ettt ettt e e e e et e e e e e et et e e e e sea i —— e e e e e e e e atar et eeesenraaareeeesaanraes 256
22.2.4 dD COIUIMIL....ooouvviieieee ettt ee e e e e e et e e e e e s eetaaeeeeessessaaseeeeessenssaaseesesssnnnrnes 257
22.2.5 D ANAEX weiiiiiiieiiiiiieee ettt e e e e e e e e e e e et ——reeeesenraaareeeesannraes 257
A X =6 11721 o) (=R 257
N 115 | o T 1=« RSOSSN 257
22.2.8 DIINATY KOV . utiiuiiiiieitieeite ettt ettt et e st e b e s bt e sbeesbeesbeesbe e bt e bt e sbeesbeesbeenbeebeabeenbean 257
AR v 1o 1 To . 16 11 1 V1 o DRSO 258



The Django Book

Table of Contents

22 Appendix B: Model Definition Reference

23 A

22.2. 10 UNIGUE ..o eueeeuteeueeeiteetteetteette et e ettesttestteshteshtesueesbtaabeesbeesbeesbeesbeesbe e bt e bt esbeesbeeabeenbeenbeanbeenbean 258
22.2.11 Unique fOr daB.....ooeeriiiiieiieiie ettt ettt et b e b e b bean 258
22.2.12 unique fOr MIOMEN. ...ceiuiiiiiieiie ittt ettt et et b e ae s 258
22.2.13 UNIQUE fOT WAL .. eerueiiuiiiuiieiieei ettt ettt ettt e bt e sbe e sbe e s bt e sbe e bt e bt e s bt e sbeesbeenbe e beebeebean 258
22.2.14 VEIDOSE MNAIMIE . .uvveeeeeieireeeeeeeeeeeeteeeeeeeeeeeetteeeeeeeeessaaaeeeeessasssareeseessesssarseeeeessssssaeseesesssnnrees 258
22.3 RelatiONSIIDS o uveeuteeuieeiieeiteei ettt h et e b e sb e e s b e s bt e s bt e s bt e bt e bt e bt e bt e sbe e bt e bt e bt ebeenbean 259
22.3.1 Many-to-One RelationShiPs........eeteiterieiieiieiiei ettt 259
22.3.2 Many-to-Many RelationShiPs . .....ccouevterieiienienien ettt 261
22.4 Model Metadata OPLOMS. .. ..eerueeruteruieriieritesitesitesiteette st esttesttesteesbeesueesbeesbeesbeesbeesbeesbeesseenseenseesean 262
R O e | X 71 ) (= RO 262
22.4.2 GO LAtESE DY ueiiuieiiiieiie ittt bttt ettt b e s b e bt e bt e be e beebean 263
22.4.3 order With TESPECL £ . .ueiiiriieiieiiieitte ettt ettt ettt et e st e sbe e bt e b e sbeesbeesbeesbeenbeebeebean 263
P ) {4 (5 41 1TSS USSR 263
P 015 1111 1011 -SSP SO U USRS 264
22.4.6 UNIQUE LOGEINEE .. eueeruieieieiiieeiie ettt sttt e sa e sb e bt e bt e bt e s bt e b e sbe e beebeebean 264
22.4.7 VEIDOSE TAINIE ...uvvvvieeeeeeireieeeeeeeeeeteeeeeeeeeeeateeeeeeeesssssaaeeesessesssaaeeseesssassarsssesesssssaeseeeesssnnrens 264
22.4.8 verbose NAmME PIULAL......cooiiiiiiiiiiiiiei ettt ettt b e ae s 265
22.5 MANAGEIS . e ueeeueeeuteeiteeuteeiteettestteetteeuteeutesatesheeshteshteeueeabeeabeeabeesheesbeeehe e bt e bt e bt e beeabeeabe e bt ebeebeenbean 265
22.5.1 MANAET INAINIGS .- evverueeruteeuieeiieetiesttesttesttesttesttesttesseesbeesbeesbeesbeesbeesbeenbeesbeesbeeabeenbeenbeanbeenbean 265
22.5.2 CUStOM MANAZETS . ..eeueeruteeuteeiteauiesitestteettesttesttesatesstesbeesbeesbeesbeesbeesbeenbeesbeesbeeabeenbeenseanseensean 265
B\ (0T (S LY (=31 4 T Y6 KSR 267
Y8 - s GOSN 268
22.6.2 get abSOIULE TIL....eiiiiiiiiiieii ettt ettt et b bbb s 268
22.6.3 Executing Custom SOQL........coiiiiiiiiiieiie ettt ettt st b e ae s 269
22.6.4 Overriding Default Model Methods .......ccoueiieiiiiieiieiieniesiieeee ettt 270
22.7 AQDN ODEOMS ¢ uteuteuteeitertieeite et te ettt e st e st testtestteeutesutesbte st eesbeesbeeabeesbeesbeenbeenbeesbeesbeenbeenbeabeensean 270
22.7.1 date hIETATCIY. . ueeeuiiiiieiiie ettt ettt b e bbb b b bean 270
N =3 L« LSRR 271
J 0 I T ST RURRUR 272
22. 7.4 TISE QISPIAN .. e ueeeueeeeieitte ettt sttt sttt e st e s b e s bt e sbeesbeeeb e e s bt e bt e bt e beesbeeebe e bt e bt ebeebean 272
22.7.5 1ist diSPIAY TIIKS ....eeeueerieiieeiieeiee ettt ettt et e bt sb e bt e b e b e bt e be e be e beebeebean 273
N A 1 LT3 oSO 274
22. 7.7 LIS DO DAGE..eeueeueeruieriieeuieeiteattesttesttesttesutesutesstaaseesbeesbeesbeesbeesbee bt enbeesbeesbeeabeeabeenbeebeenbean 274
22.7.8 1iSt SEIECE TEIALE. .. .ceeeoureeeieieeieeeeeeee ettt e et e e e e e e e e e e eetaaeeeeeeesesasaareeeeesennenes 274
22.7.9 OFAETIIE. .. e ueeeuteeeeeeite ettt ettt ettt h e sht e eh e e e bt e s bt e s bt e sbeesbtesbeesbe e bt e bt e sbeesbeenbeenbe e beenbeenbean 274
22.7. 10 SAVE @S..eeeeeeieieeeeeieeeeeeeiieeeeeeeeeeeaeeeeeeeeeeiaaeeeeeeeeeaaaareeeeesaana—reeeeeseanataareeeesanraaareeeesaannraes 275
22.7.11 SAVE OM O ..uiueeuteriieeiteeiteeite et te et e st e st eshteettesate e bt e sb e e sbeesbeesbeesbe e bt e bt esbeesbeeabeenbe e bt ebeenbean 275
22.7.12 SEATCH FIEIAS .cuvvvvvieeiiieiieeeeee ettt e e e e e e e et e e e e e e eaaaeeeeeeesenaraareeeeesannraes 275
endix C: Database API Reference 277
23.1 Creating ODJECES. . veeuveeuteeutertteriteette ettt e et e st e st e s ttesutesttesbtesbeesbeesbeesbeesbee bt esbeenbeesbeesbeenbeenbeanbeensean 277
23.1.1 What Happens When YOou Save?........ccoceiieiiiiiiiieiieniee sttt 278
23.1.2 Autoincrementing Primary KEVS......occovieiiiiieiiiiieiieseesitestes ettt 278
23.2 Saving Changes 10 ODBJECLS. ...couueruieriiiiiieiieeite ettt ettt ettt et e st e bt e bt e bt e sbeesbeesbeesbeenbeenbeeneean 279
23.3 RetriEVING OBJEOLS. .. eeeueeiuieriieriieeiie ettt ettt et e et et e st tesb e e s bt e sbeesbeesbee bt e bt enbeesbeesbeenbeenbeabeeneean 279
23.4 Caching and QUETYSELS ... ccouueruieruieeiieeiieeite et rite ettt et et te st tesbeesbeesbeesbeesbeenbeesbeesbeesbeenbeebeebeeneean 280
23.5 Fltering ODJEOES. ..veeueeeuteeuteriteriteeite ettt te st e st e st e e ttestte st tesbeesbeesbeesbeesbee bt e bt esbeesbeesbeenbeebeabeensean 281
23.5.1 Chaining FIIEBES .. ccuveruteriieeieeiie ettt sb e sh e sbe e bt e bt e bt e s beesbeesbeesbe e beebeebean 281
23.5.2 Limiting QUETYSEES. . ..ceruteruieeuieiuieritestteettestteetteette st tesbeesbeeshtesbtesbeesbeesbeesbeesbeesbeenbeenbeenbeebean 282
23.5.3 Query Methods That Return New QUEIVSEtS. .....ccoverveerierienienienieniesieesieesiee e 283
23.5.4 QuerySet Methods That Do Not Return QUETYSEets.......ccovveeeveeerurenieenieenieenieeeieeenieeenne 286



The Django Book

Table of Contents

23 Appendix C: Database API Reference

23.6 FIeld LOOKUDS. ... uveeuteiieeiteette ettt ettt e st at e bt e sb e e s bt e s bt e sbeesbe e bt e bt e bt e bt e sbeesbeenbeenbeebeeneean 289
R Y8 =€ I SRR 289
23.0.2 TEXACT. c.uvvveeeeeeeeeeeeeeee e e e eeeee e e e e e e e et et e e e e e ee e eeeeeeeea————eeeeeeaa———eteeeeeana—aateeeesanraaareeeesannnraes 289
23.0.3 COMEATNS . .vvvvieeeeeeeieieeeeeeeeiee e e e e e eeeeeeeeeeeeeeabeeeeeeeesessaaaeeeeessassaaeeseesssansarseseeesssssasseesesssnnnrens 289
23.0.4 TCOMEAINIS +.veeeeeeeeereeeeeeeeeeeieeeeeeeeeeeee et e e e e e eeabeeeeeeeeesasaaaeeeeessassaaeeseesseansaesseeeessssrseseeeesssnnrens 290
23.6.5 gt Gte. It AN T8 ....eiiuieiiieeieeiie ettt st b et be b an 290
23 0.0 MMh. it e e e e e — et e e e e e e ———— e e e e eaaa————teeeeeaaa——ateeeeeaaaarreeeesannraes 290
23.0.7 SEATESWITN....eeeeieeereieieee et e e ettt e e e e e ettt e e e e e eeaaaaeeeeeeseessaaeeeeesseesaeseeeeessesnsanseeeessannnrnes 290
23.0.8 TSEATESWILN. ..eeeeeeeeieiiieeeeeeiee e ettt e e e e et e e e e e eeaaaae e e e e e eeensaaeeseesseenarseeeeessesssaereeeeesannnrens 291
23.6.9 endswith and TENASWITN........cceiiieeueieiiei it e e e e e e ear e e e e e e eeaaaaeeeeessennnes 291
23.0. 10 TANMGE. .o ueeeueeeeteeite ettt ettt et et e sh e s bt e shtesh e e e bt e e bt e sb e e sb e e eh e e eh e e bt e bt e bt e bt e ebe e bt e bt e bt ebeebean 291
23.6.11 vear. month. and day........ccoeoieeiiiiiiieie et 291
R ST BTy 1110 )| RO ROTRRRRRRRN 291
23.0.13 SEATCH c.vvvviiieeectiiiie ettt e e e e et e e e e e et e e e e e e e —— e e e e e e e e a——rreeeesanraarreeeeeannnraes 292
23.6.14 The pk LoOKUP SHOTECUL....cueiiuiiiiiiriieiie ittt ettt st be e b b e b ebeas 292

23.7 Complex L.ookups With Q OBJECLS....ccuuiiuiiriieriieiieiieeiiertte ettt ettt sttt e st e b e b e sbeenbeeeeas 292

23.8 RelAted ODJEOLS. o uveueeuieiiientieitieeite ettt st et estte s ttestt e st e e sbtesb e e sbeesbeesbeesbee bt esbeenbeesbeeabeenbeenbeabeeneean 293
23.8.1 Lookups That Span RelationShips . .....cceeeiierierienienierieestesitesece et 293
23.8.2 Foreign Key RelationShiPs.......coueriiiiiiiiiieiies ettt st 294
23.8.3 “Reverse” Foreign Key Relationships.......ccceverieriiriinieiienieniieste et 294
23.8.4 Many-to-Many RelationShiPs . .....ccuevterieiienienier ettt 296
23.8.5 Queries Over Related ODBJECLS. . ..uuvutiiierieiieeiierieeitesiee sttt ettt stee et e st et e b e sbeenbeenbeas 297

23.9 DEletiNg ODJECES. ..veuveeuterutertieriieeiieeiie et e st te st e stte s et e sutesttesbtesbeesbeesbeesbeesbeesbeesbeenbeesbeeabeenbeenbeanbeensean 297

23.10 Extra InStance MEtNOAS. .....uuuuueerieieeiieiiiiiieieieeeeeeeeeeee ettt et et et e e e e e e e e e e abasssabasssaraeaeeeeenees 297
23.10.1 get FOO diSPlaAV(d...eeeueerueeeieeiieeiteniieeiteette ettt te st e st e st e sat e bt e s bt e bt e beesbeesbeesbeenbeebeebean 297
23.10.2 get next by FOO(**kwargs) and get previous by FOO(**kwargs)........cceveevveerueenen. 298
23.10.3 get FOO flename()......eeoueeueeeueerterieniiesiesiiesiesttesitesteesttesttesueesbtesbeesbeesbeesbeesbeenbeeseenseas 298
23.10.4 get FOO UIT() ueeeueeruieenieeiieeie ettt ettt ettt sb e sb e sb e sbtesbe e s bt e s bt e s beesbeesbeenbeenbeebeebean 298
23.10.5 g€t FOQO SIZE(). e ueerueeruteeuieeieaieetestteette st e et e st te st esbtesbeesbtesbeesbeesbeesbeesbeesbeesbeenbeenbeebeebean 298
23.10.6 save FOO file(filename. raWw CONLENLS)......cceevvevuvrrrreeeeiiirieeereeeeeeiireereeeesesneereeeeessnnnnnns 298
23.10.7 get FOO height() and get FOO Width()....ceoeeiuieriinieiieiienieeeteeeeeeeeeee e 299

2311 SIOTECULS. ...cvvvveeeeeee ettt e e e e eette e e e e e etee e e e e e s seeaaaaeeeeessessaaeeeeesseassaseseeeessssssaaseesesssssseseeeeesannnnes 299
23.11.1 get ObJECE OF AOA(). . iiueeeueeeuieeieeite ettt ettt ettt e bt e sbtesbe e s bt e bt e bt e sbe e beenbe e beebeebean 299
23.11.2 gt 1iSt OF 040D .eeiueeeuieeieeie ettt ettt e bt e sbe e sb e sbt e s bt e s bt e bt e s bt e sbe e b e e nbe e beebeebean 299

23.12 Falling Back t0 RaW SOL....c.iiiiiiiiiiiiee ettt ettt be bbb as 299

24 Appendix D: Generic View Reference 300

24.1 Common Arguments t0 GENEric VIBWS . .....ccevoterierierieniientienitesitesitesitesieesieesteesteesbeesbeesbeenbeeneeas 300

PSRN 1111 0] (S € 15) 1151 1oV (oA 174 SO SV 300
24.2.1 Rendering a TeMPIALE. .....coveriiiieiiieiiieei ettt sttt ettt ettt e st e e bt e be e b e b ebeenaeas 300
24.2.2 Redirecting to Another URL........ccciiiiiiiiiiiieee ettt 301

24.3 List/Detail GENETIC VIBWS.....oeeeuveeeiieiiieiiieeeeeeeeeetteeeeeeeeeesareeeeeeseessaaeeeeeesssssaeseesesssssraseeeessennnnnes 302
24.3.1 LiStS OF OBJECLS . cuueeueeruieriieitieeiie ettt sttt et et e st et e s bt e sbeesbeesbeesbe e s bt e bt e sbeesbeesbeenbeenbeenbeenbean 302
24.3.2 DELATL VIBWS .ocuvvvveieeeeeeiieeeeee e eeeeteee e e e e e e eetae et e e e s eenaaaeeeeesssssaaeeseesseassaaseeeeesssssarneesessannrens 303

24.4 Date-Based GENETIC VIEWS.....ccouvereeeiiiiieeeeeeeeeeiiieeeeeeeeeesareeeeeseessaaeeeeeessessseseesessssssareeeesssnssnnes 305
B N (e TR 116 (=, OO 305
24.4.2 Y AT ATCHIVES .uvvvvviiiiiieeeeeeee ettt eeee e e e e e ettt e e e e eeaaeeeeessessaaeeeeeesssssaaseeeessannnrees 306
R I\Y] (0] 111 1 W e N () A= SRRSO 307
24.4.4 WEEK ATCHIVES....vvvieiiiieieeeeee ettt e e ettt e e e e et e e e s e e eaaaeeeeeesssssaaseeeesssnnneaes 309
24.4.5 DAY ATCHIVES ...eoueeiieitie ittt ettt e s bt e sbe e sbt e s bt e sbe e s bt e bt e sbeesbeesbe e bt e beebeebean 310
24.4.6 Archive fOr TOAY. .. ...ueiteiiiiieiieete ettt ettt ettt sbe e be b e enbeenbeas 311



The Django Book

Table of Contents

24 Appendix D: Generic View Reference

24.4.7 Date-Based Detail PAgeS......cccueriiiiiiieiieiieiieeiiei ettt ettt 311
24.5 Create/Update/Delete GENEIiC VIBWS ....c.uerueerierierieniieniieritenitesieesueesseesseesseesseesseesseesseesseesseensens 313
24.5.1 Create ODIECE VIBW.....eiiiiiiieiiieiieeite ettt ettt ettt e st e sbeesbtesbtesbeesbtesbeesbeesbeesbeesbeenbeebeenbean 313
24.5.2 Update ODJECE VIBW....ceiuiiiuiieiiieiieiiteeite sttt ettt te sttt et e st e sae e s bt e bt e sbeesbeesbeesbeenbeebeebeas 314
24.5.3 Delete ODIECE VIBW.....eiiuiiiiieiieeiieeiiesite ettt ettt et e st e bt e sbtesbe e s bt e s bt e sbeesbeesbeesbeenbeebeenbeas 315
25 Appendix F: Built-in Template Tags and Filters 317
25.1 Built-in Tag REfEIEICE. ... eiueeruieeiieeiieeiieei ettt sttt ettt ettt e sbe e b e bt e b e nbeeeeas 317
T I I o) (o o) TSSOSO SUTRR TSR 317
T B A e10) 11111 1=) 0L AR RRRSRRRRRRN 317
25 1.3 YOI ettt bbbt e bt bt e bt e bt e bt e bt e bt e bt e bt ebeebean 317
T 4 ] 010 TSP 317
T D=, =) 1 16 YRR 318
T LG XS 1 LT T TSSOSO PRTRRO TSR 318
T A A 1 5] (o) SO OROTRRRRRRRRN 318
T I35 o) TSSOSO S OSSR SRR 318
T R SRR 319
25. 1. 10 TFCRANGEM. .. ettt sttt ettt b e bt e bbbt e b ebean 320
P 0 I I <70 1L OSSOSO 320
25.1.12 HNOLEQUAL......eeeieeieieie ettt b e s b e sb e bt e s bt e bt b e bt e bt e bt e bt e beebeebean 321
T U I I 1 1 o) LG L= USSR 321
T I 0 1o Vo R TSSOSO PRTRR TSR 321
2 1 1S MOW.uueeiieeee e ettt e ettt e e e et e e e e e e b e e e e e e e eeaaaa et e e e e e eaa—rereeeee e ataareeeesenraaareeeesannnraes 321
25. 1. 16 TOGIOUD. ..ttt ettt ettt ettt et e st e e s bt e shtesh e e s hteeb e e sbeesbeesbeeebeesbe e bt e bt esbeesbeeabeenbeebeenbeenbean 323
25 1. 17 SPACRIESS. . .veueeeuteeite et eite ettt et sh e s h e sht e e ht e e bt e e bt e s bt e sb e e eh e e eh e e bt e bt e bt e bt e sbeeebe e bt e bt e beebean 323
25 118 S8 uuiiiiiieiiee ettt ettt e et e e e e — e e e et et e e ittt e e e —— e e e et e e e e atteesataeeeeraes 324
25.1.19 LOMPIALEIAZ. ... eeueeeeeeiie et ettt ettt et e st e bt e s bt e sbeesbe e s bt e sbe e bt e bt e bt e sbe e bt e bt e bt ebeebean 324
25 120 UEL ettt e ettt e et e e et e e e et e e e e et e e s eaaeeeeraes 325
T R A T 1141 215 (o YRR 325
25.2 Built-in FIlter REFEIEINCE .. .ccovieeeeeiieei ettt e e e et e e e e e s esnaaeeeeeseeennnes 325
252 T QA ..eeieiieeiee ettt e et r e e et e e e et e e e saaes 325
25.2.2 AAdSIASIIES ..ot e e e e e e e e — et e e e e e naaareeeesannrans 325
25.2.3 CAPTIISE ettt b e bt bt e bt e bt e bt e bt e bt e sbe e be e bt e bt ebeebean 326
I o= 1 L1~) ORI 326
25,25 QUL et e et e e e et e e e e e e ———— e e e e e aan————teeeeeana——rteeeesaaaaareeeesannraes 326
25,20 AL, e e e et e e e e ee it et e e e e ean———reeeesearaaareeeesannnraes 326
25 2. T AEIAUIL....veveeeeeeeeieeeieee ettt e e e e e e e e e e e e e e e e e e —areeeesenraaareeeesannnraes 326
RSTPAR e =) 2101 LD § G 116 1 L= USRI 326
IR I« 1Te3 110 « RO 327
25.2.10 diCtSOILIEVEISEA. ... eeeeeeureeeieeeeeeeeeeeeeeeeeeetee et e e e e eet e e e e s eeeaaaeeeeesseessaaereeeessessasseesessannnrens 327
25.2. 11 diVISTDIEDY. veuvitieiieieetieie ettt ettt ettt at ettt ent et e teene et eseeneenneneas 327
25.2. 12 ©SCADE c.-veeueeeuteeuteeitesiteette et e et e etteeuteshte s bt e sht e e bt e e bt e eb e e nb e e eh e e eheeeh e e eh e e bt e bt e bt e sbe e bt e bt e bt ebeebean 327
25.2.13 fIleSIZELOIMNIAL .. .vvveeeeeeeieieeeeee ettt e e et e e e e et e e e e e e eeeaaaaeeeeeesensaaareeeeesennraes 327
252 LA FIESE ettt ettt e e ettt e et a e e e e aa e e e et e e e e et e e s eareeeenaes 327
25.2.15 fiX AIMPEISANAS . .cvveruteruteeiieeiieetie ettt te et te st e et e et te st tesbtesbeesbtesbeesbeesbeenbeesbeesbeesbeesbeebeebeebean 328
ST KX 4 (0 15 o) w1 0 V. L SRRSO 328
DI WA 1< A« T | TSRS 328
T I T 1 TSRS 328
25.2. 19 TONGHNL ...ttt ettt b e b e e bt e bt e be e beebean 329
25.2.20 1ENGIN TS . ..eiiuieeiieeiie ettt h et b et bt e bt e bt e bt e bt e beebean 329
25.2. 21 TINEDTEAKS.....covveeeieeeeeeeeeeeeeee ettt e e eetee et e e e e e et e e e e e seeaaaeeeeesseasaaeeeeeessennraareeeeesannnrnes 329



The Django Book

Table of Contents

25 Appendix F: Built-in Template Tags and Filters

25.2.22 TINEDIEAKSDI. .. evvvvvieeeeeeieeeeeee ettt ettt e e e e e et e e e e e s eeaaae e e e e s e e e aareeeeeeesennnaarreeeesannraes 329
25.2.23 TINENUITIDETS. c. vvvvvveeeeeeeieeeeeeeeeeeeteeeeeeeeeeeabeeeeeeeesesssaaeeesessesssaaeesessssassnrsseeeessssssssseeeesssnnrens 329
25.2. 24 TJUSE ettt ettt ettt ettt ettt h e b e h e e bt e s bt e sh e e sh e e eh e e bt e bt e bt e bt e ebeeebe e bt e bt ebeebean 329
I AT (64~ SRRSO 329
25.2. 260 NAKE TISE....eeeeueueeeieieeeeeieeeeee e eeeeee et e e e e et e e e e e eeaaaae e e e e s seeaaaeeeeesseasaaseeeeessssraaseeeessannnrnes 330
25.2.27 DPRONE2IUINIETIC: .o vtevteruteruteeutenttesttesttesttesutesttesstesseesbeesbeesbeesaeesbeesbeenbeesbeesbeenbeenbeenseaseensean 330
25.2.28 PIUTALIZE ..ottt ettt ettt et e b e b e s bt e sbeesbe e s bt e sbe e s bt e bt e beenbe e beeebe e bt ebeebean 330
25.2.29 DDIIIE. e nteeuteeuteeite ettt te et et e et e et b e sttesbtesbteshtesh e e s b teebeesbeesbeeeheeeh e e eh e e bt e bt e bt e ebe e bt e bt e bt ebeebean 330
25.2.30 TANAOIL...eeeeeieeuereieieeeeeeeieee e e e e eeeee et eeeeeeeaaeeeeeeeesesaaaeeeeessassaaeeseesseansassseeeessssseaseeeesssnnnrnns 331
25.2.31 TOIMOVEEIAZS. .. veeueeuteruteruteeuieeuteattesttesttesutesueesutessteaseesbeesbeesbeeabeesbe e beenbeesbeesbeenbeenbeenbeenbeenbean 331
P P I 4 11 ) S USSR 331
25,233 SIICE . cuuuveeieeeeeeitee e e eeee e e et e e e e e e e e e ee e ———r e e e e s aa————reee e e e ——rreeeeeanraarreeeesaannraes 331
25.2.34 STUGIEV ..ttt ettt h e bt s bt e bt e s bt e bt e bt e bt e s bt e bt e bt e bt ebeebean 331
25.2.35 STNGLOTINAL ...c.ueeieieitieeiie ettt ettt et e bt e sbe e sb e e sb e e sbe e s bt e bt e s beesbeesbeenbee bt enbeenbean 331
25.2.30 SEIDEAGS. ..ttt st e e st e e sht e e bt e s bt e s bt e sb e e sbeesbteeh e e bt e bt e bt e bt e sbe e bt e bt e bt ebeebean 332
2.2, 37 INIE e eevveeeeee e ettt e e e e ettt e e e e e et e e e e e et e e e e e e ee i ——— et e e e eaa———eteeeeeana—arreeeesanraaareeeesannrraes 332
25.2.38 tIIIESIIICE ...ceeeuvvveeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeesabeeeeeeeessassaaeeeeessasssaaeeseesssassarsseeeesssnssaseeeesssnnrees 332
25.2.39 tIMEUNEL. ...coeieiieieieeeeeeeeeee et e e ee et e e e e e eeat e e e e e s seeaaaeeseesseasasseeeeesssnssanreeseesannnrens 332
252,40 L ... eeeeeeee ettt ettt e et e e e e e e e e e e e —— et e e e eaa i ——eteeeaeana——rreeeesaaraaareeeesannnraes 332
25.2. 41 tIUNCALEWOTIAS. . vvvveeeeeieieeieieeeeeeeetieeeeeeeeeeteeeeeeeeeessaaaeeeeesseesaaeeseesseessaasseeeessssrreseesesssnnnrens 333
25.2.42 truncateWords NEMIL.........veeiiiiiieieiiieee it e et e e e eeeae e e e e e e eeaaar e e e e e e e esnnaareeeeesennraes 333
25.2.43 UNOTAETEA TSE..uuvviiiiiieiieiieeee ettt ettt e e e et e e e e e eeaaae e e e e e seeaaaeeeeeessesssaareeseesannnenns 333
I 110) o) NS USSR 333
25.2. 45 UTLENCOUE. ...t e ettt e e e e e ettt e e e e s ee e aeeeeesseesaaseeeeessssssaaseeeessannnrees 334
25 .2 A0 UTLIZE, ...vvvveeeeeeeeeeee ettt e e ettt e e e e se et e e e e s ee ettt eeeeeeaaaaeaeeeeesanraaareeeesannnraes 334
25. 247 UTHZEIIUNIC ...ccuvvveeeeeeeeeeeeeeeee e eeeeeee e e e e e eeatae e e e e e e eesaaaeeeeessessaaeeseessesnsaseseeeessssrassnesesssnnnrens 334
25.2.48 WOILACOUNL......uvvveeieeeeeeieieieeeeeeeeee et e e e e e eette e e e e e e eeaaaaeeeeeseeesaaeeeeessesssasseeeeesssssaaseesesssnnnrens 334
25.2.49 WOILAWIAN ... teeueeeiteiite ettt ettt e st e bt e s bt e sbeesbeesbeesbe e bt e bt e sbeesbeesbeenbe e beebeenbean 334
25.2.50) WESIIQ 1 uteeuteeuteeuteetteeiteette et e eateetteeutesbte s bt e shteeh e e e bt e bt e ab e e sh e e eh e e eh e e eh e e bt e bt e bt e ebe e bt e bt e bt ebeebean 334
26 Appendix G: The django-admin Utility. 336
20.1 TUSAGE. . .eeueeeuieeute ettt ettt ettt ettt e et e a e e e b e e bt e s bt e s bt e e h e e ehe e bt e eb e e e bt e eh e e eh e e e bt e bt e bt e bt e ebe e bt e bt e bt ebeenbean 336
260.2 AVAILADIE ACHOIS. ....coouvvveeeeeeeeeiieeeee e e e eeette et e e e e eeeaae e e e e e e eetaaeeeeeeseessaaeeeeeessssssaaseeeessassssareeeeessnnnnnes 336
26.2.1 adminindex [appname apPNamIE ...l . .coooeerierierierieriieriiesite st esitesite et e sbeesbeesbeesbeenbeenaeas 337
26.2.2 createcachetable [tablENAME]......ccuvvveeiiiiiiiieiieeeeeeeeeeeee e eeee e e e e e eeare e e e e e e eeaaaeeeeeeseenenes 337
A I 101 1 1= | SRR 337
20.2.4 QITSEIMES .. e euveeueeeeeeriie ettt sttt sttt e st e st e e s bt e sbeesbt e sheesbe e bt e bt e sbeesbeesbee bt e beenbeenbean 337
26.2.5 dumpdata [appName aPPNAME ... ] eeoeerierierienieniierieesteesitesttesieesieesbeesbeesbeesbeesbeenbeenbeenseas 337
20.2.60 TTUSIL ... e et e e e et e e e e e e e e e e e e e a——aeeeeeeearaaareeeesannnrans 337
26.2.7 INSPECEAN. ...ttt bttt h et b e bt e bt e bt e beebeebean 338
26.2.8 loaddata [fIXtUIe fIXEUTE ... ] ..ccoveeeeeeieeeiiiiiieeiee et e e e et e e e e e s eeanaaeeeeeeseenrnes 338
26.2.9 reset [appName apPNAMIE ...l ...ooeerterienieiieeiier et te st et et e st et ettt e bt e b e b e beenbeebean 339
26.2.10 1UNTCET [OPUOMS . vveveeruteruieeiieeiie ettt ettt ettt et sb e sb e e saeesbe e s bt e s bt e s bt e sbeesbeesbe e beenbeenbean 339
26.2.11 runserver [optional port number. or ipaddripPOrt]......cccoeereerienienienieneeneeseeseeeeeeeeen 339
A ) 1 1= | O RRE R UORORRRRRRRRN 340
26.2.13 sql [apPNAME APPNAIMIE ..o uveruieriieriieniieniieetieeite st te st te st e st e sbeesbtesbeesbeesbeesbeesbeesbeenbeenbeeseas 340
26.2.14 sqlall [appName aPPNAMIE ... ] o.eeeeeereieriieriieniieniier et te st et e st e st e sbeesbeesbeesbeesbeesbeenbeebeebeas 341
26.2.15 sqlclear [appName appname ...l .ceeeerierienienienieriesee sttt ettt e st b e eeas 341
26.2.16 sqlcustom [appname apPNAIIE ... fooo.eeeierierierienieriterieestte st e st e siee e eesbeesbee b esbeenbeeneeas 341
26.2.17 sglindexes [appname apPNAMmIE ...l .coeeereerierienieriienieesttesite st esieesieesbeesbeesbeesbeenbeenbeeneeas 341
26.2.18 sqlreset [appname apPNAIMIE ... fooo.eeveerierierieiierierite sttt ettt et ee et e bt e be e b e sbeebeenaeas 341



The Django Book

Table of Contents

26 Appendix G: The django-admin Utilit

26.2.19 sqglsequencereset [apPNAME APPNAME ... ] eeoveeruieruieriieriieniieniienienieenee st et e esbee e enaeas 341
26.2.20 Startapp [APPNAIMIE .. ceeuverueeeuieeieriteette et te ettt ettt e st te st e steesbeesbeesbeesbeesbeesbeesbeesbeenbeebeebean 341
26.2.21 startproject [ProjeCtnamI].......ccuereerieruieiieiieiiert ettt ettt sttt e b bbb aeas 341
26.2.22 SYNCAD. ..ottt b e bbbt bbbt e bt e s bt e b e e bt e bt e beebean 342
20.2.23 10 eeeeeeeeeeeeeeeetee e et e et e e e e e e e e e e e e ee i ——eeeeeaaa————teeeeeaaa————teeeaeana———teeeesaaaaareeeesannraes 342
20.2.24 VAIIAALE. .....cooeeeeeeeeieee ettt e ettt e e e e e e aaaae e e e e e seesaaeeeeeesessateeeeeeesenraaneeeeesannnraes 342
PR ITAN 211 F:10] (S @ 018 (o) 1SS S U S UPUSRURRR 342
P T T B <] 11 1 oYU TSSOSO 342

P T I 1141 10111 011 WSO SO UR USSR 342
Y TR T (0 4 04 T2 AT 343

P T I e 115 | o SO S U UU USSR 343
e T T 1 11 =) | SRRSO 343

P T I 11011110101 SO TSSO UR USSR 343
20.3.7 —NOTEIOAA.......ccueveeeieeeeeeieee et eee e e e e e et e e e e e e e et ae e e e e e e e e aaaaeeeeeeseeraaareeeesannnraes 343
20.3.8 —VETSIOM ceeeeeeeeuereeeeeeeeeeeieeeeeeeeeeeeaeeeeeeeeeeesabeeeeesessssssaaeeeeessaasasseseesseansasssseeessssrasseeeesssnnrens 343
260.3.9 —VOTDOSIEY: e uteueeiteeite et eite ettt e st e st e st esht e e bt e s bt e bt e s bt e sbe e eh e e e bt e bt e bt e bt e bt e sbe e bt e bt e bt ebeebean 343
26.3.10 —adMUNINEAIA: cvvvveeeeeieiieieeeee et e e eeeee e e e e eetaee e e e e e eeetaaeeeeeeeeesaaereeeesssssaareeeeesannnrees 343

27 Appendix H: Request and Response Objects. 345
271 HEEPREGUESE. ..ottt ettt st h e a e sb e s bt e s bt e s bt e sbeesheeebe e bt e bt e bt e sbeesbeenbeebeanbeeneean 345
27.1.1 QUETYDICE ODJEOLS .eeuteruteuieeiieetieeite st te et te st e et e et te st e st eesbeesbeesbtesbeesbeesbeesbeesbeesbeenbeenseenbeenseas 347
27.1.2 A Complete EXAMPIE......ceiiiiiiiiiiiiiiieeite ettt ettt ettt e sbe e be e b s 348
27.2 HIPRESPOMSE: ... veeuveeennteeruieeaiiteeite ettt ettt e sttt e sateesuteeeabee ettt e sttt esateessbeesabeesabeeenbeeenbeeebaeensteesabeesabeean 349
27.2.1 Construction HUPRESPOMSES. ......eerueereieriieriieeiieeiieeiierite sttt et et e sitesiee st e sbeesbeesbeesbeenaeenaeas 349
27.2.2 Setting HEadIS. .. cc.viiuieiuieiieeiee ettt sttt ettt be s 349
27.2.3 HttpRESPONSE SUDCIASSES. . eeuviuieriiiriieniieiiie ettt ettt ettt ettt sb e bt e bee b e b enbeebeas 349
27.2.4 REtUINING BITOTS . c.uteittiiiteiiieeiie ettt ettt ettt sbe e bt e sht e bt e s bt e bt e sbeesbeesbeesbeenbeebeenbean 350
27.2.5 Customizing the 404 (Not FOund) VIEW........cceeoieiiiiiinieiieiieniiestece e 351
27.2.6 Customizing the 500 (Server Error) VIBW.......ccccerierierienienieniiesitenicesiee st 351

28 License & Copyright 353
28.1 1.ayout and dESIGIL....ceeueeiuieriiiiiieeiie ettt ettt ettt e sb e bt e bt e bt bt e bt e bt e bt e be e bt e bt e bt e beeeean 353
I ©0) 11 7=) 1| RSOSSN 353
28.3 GNU Free Documentation LICEINSE. ......c.uuvvveeieiiiiriieeieeeeeeieieeeeeeeeesiieeeeeeeeessaeeeeeeessssssaeeeeessssnnnes 353
28.4 How to use this License for your dOCUMENTS. .......coueeiuiirierienieiieniesieesitenice st 358

Xiii



1 Introduction to Django

This book is about Django, a Web development framework that saves you time and makes Web development
a joy. Using Django, you can build and maintain high-quality Web applications with minimal fuss.

At its best, Web development is an exciting, creative act; at its worst, it can be a repetitive, frustrating
nuisance. Django lets you focus on the fun stuff — the crux of your Web application — while easing the pain
of the repetitive bits. In doing so, it provides high-level abstractions of common Web development patterns,
shortcuts for frequent programming tasks, and clear conventions for how to solve problems. At the same time,
Django tries to stay out of your way, letting you work outside the scope of the framework as needed.

The goal of this book is to make you a Django expert. The focus is twofold. First, we explain, in depth, what
Django does and how to build Web applications with it. Second, we discuss higher-level concepts where
appropriate, answering the question “How can I apply these tools effectively in my own projects?”” By reading
this book, you’ll learn the skills needed to develop powerful Web sites quickly, with code that is clean and
easy to maintain.

In this chapter, we provide a high-level overview of Django.

1.1 What Is a Web Framework?

Django is a prominent member of a new generation of Web frameworks. So what exactly does that term
mean?

To answer that question, let’s consider the design of a Web application written using the Common Gateway
Interface (CGI) standard, a popular way to write Web applications circa 1998. In those days, when you wrote
a CGI application, you did everything yourself — the equivalent of baking a cake from scratch. For example,
here’s a simple CGI script, written in Python, that displays the ten most recently published books from a
database:

#!/usr/bin/python
import MySQLdb

print "Content-Type: text/html"

print

print "<html><head><title>Books</title></head>"
print "<body>"

print "<hl>Books</hl>"

print "<ul>"

connection = MySQLdb.connect (user="me', passwd='letmein', db="'my_db"')
cursor = connection.cursor ()
cursor.execute ("SELECT name FROM books ORDER BY pub_date DESC LIMIT 10")
for row in cursor.fetchall():

print "<1i>%s</1i>" % row[0]

print "</ul>"
print "</body></html>"

connection.close ()

This code is straightforward. First, it prints a “Content-Type” line, followed by a blank line, as required by
CGL. It prints some introductory HTML, connects to a database and executes a query that retrieves the latest
ten books. Looping over those books, it generates an HTML unordered list. Finally, it prints the closing
HTML and closes the database connection.

1 Introduction to Django 1



The Django Book

With a one-off dynamic page such as this one, the write-it-from-scratch approach isn’t necessarily bad. For
one thing, this code is simple to comprehend — even a novice developer can read these 16 lines of Python and
understand all it does, from start to finish. There’s nothing else to learn; no other code to read. It’s also simple
to deploy: just save this code in a file called latestbooks. cgi, upload that file to a Web server, and visit
that page with a browser.

But as a Web application grows beyond the trivial, this approach breaks down, and you face a number of
problems:

® What happens when multiple pages need to connect to the database? Surely that database-connecting
code shouldn’t be duplicated in each individual CGI script, so the pragmatic thing to do would be to
refactor it into a shared function.

¢ Should a developer really have to worry about printing the “Content-Type” line and remembering to
close the database connection? This sort of boilerplate reduces programmer productivity and
introduces opportunities for mistakes. These setup- and teardown-related tasks would best be handled
by some common infrastructure.

e What happens when this code is reused in multiple environments, each with a separate database and
password? At this point, some environment-specific configuration becomes essential.

® What happens when a Web designer who has no experience coding Python wishes to redesign the
page? Ideally, the logic of the page — the retrieval of books from the database — would be separate
from the HTML display of the page, so that a designer could edit the latter without affecting the
former.

These problems are precisely what a Web framework intends to solve. A Web framework provides a
programming infrastructure for your applications, so that you can focus on writing clean, maintainable code
without having to reinvent the wheel. In a nutshell, that’s what Django does.

1.2 The MVC Design Pattern

Let’s dive in with a quick example that demonstrates the difference between the previous approach and that
undertaken using a Web framework. Here’s how you might write the previous CGI code using Django:

# models.py (the database tables)

from django.db import models

class Book (models.Model) :
name = models.CharField (maxlength=50)
pub_date = models.DateField()

# views.py (the business logic)

from django.shortcuts import render_to_response
from models import Book

def latest_books (request) :
book_list = Book.objects.order_by('-pub_date') [:10]
return render_to_response ('latest_books.html', {'book_ list': book_list})

# urls.py (the URL configuration)

from django.conf.urls.defaults import *
import views

urlpatterns = patterns('',

(r'latest/$', views.latest_books),

)

1.1 What Is a Web Framework? 2



The Django Book

# latest_books.html (the template)

<html><head><title>Books</title></head>
<body>

<hl1>Books</h1l>

<ul>

% for book in book_list %}

<1i>{{ book.name }}</1li>

o)

% endfor %}
</ul>
</body></html>

Don’t worry about the particulars of how this works just yet — we just want you to get a feel for the overall
design. The main thing to note here is the separation of concerns:

® The models.py file contains a description of the database table, as a Python class. This is called a
model. Using this class, you can create, retrieve, update, and delete records in your database using
simple Python code rather than writing repetitive SQL statements.

e The views . py file contains the business logic for the page, in the latest_books () function.
This function is called a view.

e The urls.py file specifies which view is called for a given URL pattern. In this case, the URL
/latest/ will be handled by the 1atest_books () function.

® The latest_books.html is an HTML template that describes the design of the page.

Taken together, these pieces loosely follow the Model-View-Controller (MVC) design pattern. Simply put,
MVC defines a way of developing software so that the code for defining and accessing data (the model) is
separate from request routing logic (the controller), which in turn is separate from the user interface (the
view).

A key advantage of such an approach is that components are loosely coupled. That is, each distinct piece of a
Django-powered Web application has a single key purpose and can be changed independently without
affecting the other pieces. For example, a developer can change the URL for a given part of the application
without affecting the underlying implementation. A designer can change a page’s HTML without having to
touch the Python code that renders it. A database administrator can rename a database table and specify the
change in a single place, rather than having to search and replace through a dozen files.

In this book, each component of this stack gets its own chapter. For example, Chapter 3 covers views, Chapter
4 covers templates, and Chapter 5 covers models. Chapter 5 also discusses Django’s MVC philosophies in
depth.

1.3 Django’s History

Before we dive into more code, we should take a moment to explain Django’s history. It’s helpful to
understand why the framework was created, because a knowledge of the history will put into context why
Django works the way it does.

If you’ve been building Web applications for a while, you’re probably familiar with the problems in the CGI
example we presented earlier. The classic Web developer’s path goes something like this:

1. Write a Web application from scratch.

2. Write another Web application from scratch.

3. Realize the application from step 1 shares much in common with the application from step 2.
4. Refactor the code so that application 1 shares code with application 2.

5. Repeat steps 2-4 several times.

1.2 The MVC Design Pattern 3


Hector Beltran



The Django Book

6. Realize you’ve invented a framework.
This is precisely how Django itself was created!

Django grew organically from real-world applications written by a Web development team in Lawrence,
Kansas. It was born in the fall of 2003, when the Web programmers at the Lawrence Journal-World
newspaper, Adrian Holovaty and Simon Willison, began using Python to build applications. The World
Online team, responsible for the production and maintenance of several local news sites, thrived in a
development environment dictated by journalism deadlines. For the sites — including LJWorld.com,
Lawrence.com, and KUsports.com — journalists (and management) demanded that features be added and
entire applications be built on an intensely fast schedule, often with only days’ or hours’ notice. Thus, Adrian
and Simon developed a time-saving Web development framework out of necessity — it was the only way
they could build maintainable applications under the extreme deadlines.

In summer 2005, after having developed this framework to a point where it was efficiently powering most of
World Online’s sites, the World Online team, which now included Jacob Kaplan-Moss, decided to release the
framework as open source software. They released it in July 2005 and named it Django, after the jazz guitarist
Django Reinhardt.

Although Django is now an open source project with contributors across the planet, the original World Online
developers still provide central guidance for the framework’s growth, and World Online contributes other
important aspects such as employee time, marketing materials, and hosting/bandwidth for the framework’s

Web site (http://www.djangoproject.com/).

This history is relevant because it helps explain two key matters. The first is Django’s “sweet spot.” Because
Django was born in a news environment, it offers several features (particularly its admin interface, covered in
Chapter 6) that are particularly well suited for “content” sites — sites like eBay, craigslist.org, and
washingtonpost.com that offer dynamic, database-driven information. (Don’t let that turn you off, though —
although Django is particularly good for developing those sorts of sites, that doesn’t preclude it from being an
effective tool for building any sort of dynamic Web site. There’s a difference between being particularly
effective at something and being ineffective at other things.)

The second matter to note is how Django’s origins have shaped the culture of its open source community.
Because Django was extracted from real-world code, rather than being an academic exercise or commercial
product, it is acutely focused on solving Web development problems that Django’s developers themselves
have faced — and continue to face. As a result, Django itself is actively improved on an almost daily basis.
The framework’s developers have a keen interest in making sure Django saves developers time, produces
applications that are easy to maintain, and performs well under load. If nothing else, the developers are
motivated by their own selfish desires to save themselves time and enjoy their jobs. (To put it bluntly, they eat
their own dog food.)

1.4 How to Read This Book

In writing this book, we tried to strike a balance between readability and reference, with a bias toward
readability. Our goal with this book, as stated earlier, is to make you a Django expert, and we believe the best
way to teach is through prose and plenty of examples, rather than a providing an exhaustive but bland catalog
of Django features. (As someone once said, you can’t expect to teach somebody how to speak merely by
teaching them the alphabet.)

With that in mind, we recommend that you read Chapters 1 through 7 in order. They form the foundation of

how to use Django; once you’ve read them, you’ll be able to build Django-powered Web sites. The remaining
chapters, which focus on specific Django features, can be read in any order.

1.3 Django’s History 4


http://www.djangoproject.com/

The Django Book

The appendixes are for reference. They, along with the free documentation at http://www.djangoproject.com/,
are probably what you’ll flip back to occasionally to recall syntax or find quick synopses of what certain parts
of Django do.

1.4.1 Required Programming Knowledge

Readers of this book should understand the basics of procedural and object-oriented programming: control
structures (1 £, while, and for), data structures (lists, hashes/dictionaries), variables, classes, and objects.

Experience in Web development is, as you may expect, very helpful, but it’s not required to read this book.
Throughout the book, we try to promote best practices in Web development for readers who lack this type of
experience.

1.4.2 Required Python Knowledge

At its core, Django is simply a collection of libraries written in the Python programming language. To develop
a site using Django, you write Python code that uses these libraries. Learning Django, then, is a matter of
learning how to program in Python and understanding how the Django libraries work.

If you have experience programming in Python, you should have no trouble diving in. By and large, the
Django code doesn’t perform “black magic” (i.e., programming trickery whose implementation is difficult to
explain or understand). For you, learning Django will be a matter of learning Django’s conventions and APIs.

If you don’t have experience programming in Python, you’re in for a treat. It’s easy to learn and a joy to use!
Although this book doesn’t include a full Python tutorial, it highlights Python features and functionality where
appropriate, particularly when code doesn’t immediately make sense. Still, we recommend you read the
official Python tutorial, available online at http://docs.python.org/tut/. We also recommend Mark Pilgrim’s
free book Dive Into Python, available at http://www.diveintopython.org/ and published in print by Apress.

1.4.3 New Django Features

As we noted earlier, Django is frequently improved, and it will likely have a number of useful — even
essential — new features by the time this book is published. Thus, our goal as authors of this book is twofold:

e Make sure this book is as “future-proof” as possible, so that whatever you read here will still be
relevant in future Django versions

e Actively update this book on its Web site, http://www.djangobook.com/, so you can access the latest
and greatest documentation as soon as we write it

If you want to implement something with Django that isn’t explained in this book, check the latest version of
this book on the aforementioned Web site, and also check the official Django documentation.

1.4.4 Getting Help

One of the greatest benefits of Django is its kind and helpful user community. For help with any aspect of
Django — from installation, to application design, to database design, to deployment — feel free to ask
questions online.

® The django-users mailing list is where thousands of Django users hang out to ask and answer

questions. Sign up for free at http://www.djangoproject.com/r/django-users.
® The Django IRC channel is where Django users hang out to chat and help each other in real time. Join

the fun by logging on to #django on the Freenode IRC network.

1.4 How to Read This Book 5


http://www.djangoproject.com/
Hector Beltran


Hector Beltran


http://docs.python.org/tut/
http://www.diveintopython.org/
http://www.djangobook.com/
http://www.djangoproject.com/r/django-users

The Django Book
1.4.5 What’s Next

In the next chapter, we’ll get started with Django, covering installation and initial setup.

1.4.5 What’'s Next



2 Getting Started

We think it’s best to get a running start. The details and extent of the Django framework will be fleshed out in
the later chapters, but for now, trust us, this chapter will be fun.

Installing Django is easy. Because Django runs anywhere Python does, Django can be configured in many
ways. We cover the common scenarios for Django installations in this chapter. Chapter 20 covers deploying
Django to production.

2.1 Installing Python

Django is written in 100% pure Python code, so you’ll need to install Python on your system. Django requires
Python 2.3 or higher.

If you’re on Linux or Mac OS X, you probably already have Python installed. Type python at a command
prompt (or in Terminal, in OS X). If you see something like this, then Python is installed:

Python 2.4.1 (#2, Mar 31 2005, 00:05:10)

[GCC 3.3 20030304 (Apple Computer, Inc. build 1666)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Otherwise, if you see an error such as "command not found", you’ll have to download and install
Python. See http://www.python.org/download/ to get started. The installation is fast and easy.

2.2 Installing Django

In this section, we cover two installation options: installing an official release and installing from Subversion.

2.2.1 Installing an Official Release

Most people will want to install the latest official release from http://www.djangoproject.com/download/.
Django uses the standard Python distutils installation method, which in Linux land looks like this:

1. Download the tarball, which will be named something like Django-0.96.tar.gz.
2.tar xzvf Django-*.tar.gz.

3. cd Django-—*.

4. sudo python setup.py install.

On Windows, we recommend using 7-Zip to handle all manner of compressed files, including .tar.gz. You
can download 7-Zip from http://www.djangoproject.com/t/7zip/.

Change into some other directory and start python. If everything worked, you should be able to import the
module django:

>>> import django
>>> django.VERSION
(0, 96, None)

Note

The Python interactive interpreter is a command-line program that lets you write a Python program
interactively. To start it, just run the command python at the command line. Throughout this book, we
feature example Python code that’s printed as if it’s being entered in the interactive interpreter. The triple

2 Getting Started 7


http://www.python.org/download/
http://www.djangoproject.com/download/
http://www.djangoproject.com/r/7zip/

The Django Book

greater-than signs (>>>) signify a Python prompt.
2.2.2 Installing Django from Subversion

If you want to work on the bleeding edge, or if you want to contribute code to Django itself, you should install
Django from its Subversion repository.

Subversion is a free, open source revision-control system similar to CVS, and the Django team uses it to
manage changes to the Django codebase. You can use a Subversion client to grab the very latest Django
source code and, at any given time, you can update your local version of the Django code, known as your
local checkout, to get the latest changes and improvements made by Django developers.

The latest and greatest Django development code is referred to as the trunk. The Django team runs production
sites on trunk and strives to keep it stable.

To grab the latest Django trunk, follow these steps:

1. Make sure you have a Subversion client installed. You can get the software free from
http://subversion.tigris.org/, and you can find excellent documentation at
http://svnbook.red-bean.com/.

2. Check out the trunk using the command svn co
http://code.djangoproject.com/svn/django/trunk djtrunk.

3. Create site-packages/django.pth and add the d jt runk directory to it, or update your
PYTHONPATH to point to djt runk.

4. Place djtrunk/django/bin on your system PATH. This directory includes management utilities
such as d jango—-admin.py.

Tip:

If . pth files are new to you, you can learn more about them at
http://www.djangoproject.com/r/python/site-module/.

After downloading from Subversion and following the preceding steps, there’s no need to python
setup.py install—you’ve just done the work by hand!

Because the Django trunk changes often with bug fixes and feature additions, you’ll probably want to update
it every once in a while — or hourly, if you’re really obsessed. To update the code, just run the command svn
update from within the djt runk directory. When you run that command, Subversion will contact
http://code.djangoproject.com, determine if any code has changed, and update your local version of the code
with any changes that have been made since you last updated. It’s quite slick.

2.3 Setting Up a Database

Django’s only prerequisite is a working installation of Python. However, this book focuses on one of
Django’s sweet spots, which is developing database-backed Web sites, so you’ll need to install a database
server of some sort, for storing your data.

If you just want to get started playing with Django, skip ahead to the “Starting a Project” section—but trust
us, you’ll want to install a database eventually. All of the examples in the book assume you have a database
set up.

As of the time of this writing, Django supports three database engines:

® PostgreSQL (http://www.postgresql.org/)

2.2.1 Installing an Official Release 8


http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://www.djangoproject.com/r/python/site-module/
http://code.djangoproject.com
http://www.postgresql.org/

The Django Book

e SQLite 3 (http://www.sqlite.org/)
e MySQL (http://www.mysqgl.com/)

Work is in progress to support Microsoft SQL Server and Oracle. The Django Web site will always have the
latest information about supported databases.

We’re quite fond of PostgreSQL ourselves, for reasons outside the scope of this book, so we mention it first.
However, all the engines listed here will work equally well with Django.

SQLite deserves special notice as a development tool. It’s an extremely simple in-process database engine that
doesn’t require any sort of server setup or configuration. It’s by far the easiest to set up if you just want to
play around with Django, and it’s even included in the standard library of Python 2.5.

On Windows, obtaining database driver binaries is sometimes an involved process. Since you’re just getting
started with Django, we recommend using Python 2.5 and its built-in support for SQLite. Compiling driver
binaries is a downer.

2.3.1 Using Django with PostgreSQL

If you’re using PostgreSQL, you’ll need the psycopg package available from
http://www.djangoproject.com/r/python-pgsqgl/. Take note of whether you’re using version 1 or 2; you’ll need
this information later.

If you’re using PostgreSQL on Windows, you can find precompiled binaries of psycopg at
http://www.djangoproject.com/r/python-pgsql/windows/.

2.3.2 Using Django with SQLite 3

If you’re using a Python version over 2.5, you already have SQLite. If you’re working with Python 2.4 or
older, you’ll need SQLite 3— not version 2—from http://www.djangoproject.com/r/sqlite/ and the

pysqglite package from http://www.djangoproject.com/r/python-sqlite/. Make sure you have pysglite
version 2.0.3 or higher.

On Windows, you can skip installing the separate SQLite binaries, since they’re statically linked into the
pysqglite binaries.

2.3.3 Using Django with MySQL

Django requires MySQL 4.0 or above; the 3.x versions don’t support nested subqueries and some other fairly
standard SQL statements. You’ll also need the My SQLdb package from

http://www.djangoproject.com/r/python-mysqgl/.
2.3.4 Using Django Without a Database

As mentioned earlier, Django doesn’t actually require a database. If you just want to use it to serve dynamic
pages that don’t hit a database, that’s perfectly fine.

With that said, bear in mind that some of the extra tools bundled with Django do require a database, so if you

choose not to use a database, you’ll miss out on those features. (We highlight these features throughout this
book.)

2.3 Setting Up a Database 9


http://www.sqlite.org/
http://www.mysql.com/
http://www.djangoproject.com/r/python-pgsql/
http://www.djangoproject.com/r/python-pgsql/windows/
http://www.djangoproject.com/r/sqlite/
http://www.djangoproject.com/r/python-sqlite/
http://www.djangoproject.com/r/python-mysql/

The Django Book
2.4 Starting a Project

A project is a collection of settings for an instance of Django, including database configuration,
Django-specific options, and application-specific settings.

If this is your first time using Django, you’ll have to take care of some initial setup. Create a new directory to
start working in, perhaps something like /home /username/djcode/, and change into that directory.

Note

django—admin. py should be on your system path if you installed Django via its setup . py utility. If you
checked out from Subversion, you can find it in djt runk/django/bin. Since you’ll be using
django—admin. py often, consider adding it to your path. On Unix, you can do so by symlinking from
/usr/local/bin, using a command such as sudo 1n -s
/path/to/django/bin/django-admin.py /usr/local/bin/django-admin.py.On
Windows, you’ll need to update your PATH environment variable.

Run the command django—-admin.py startproject mysite to create amysite directory in your
current directory.

Let’s look at what startproject created:

mysite/
__init_ .py
manage.py
settings.py
urls.py

These files are as follows:

e _init__ .py: A file required for Python treat the directory as a package (i.e., a group of modules)

® manage.py: A command-line utility that lets you interact with this Django project in various ways

® settings.py: Settings/configuration for this Django project

e urls.py: The URL declarations for this Django project; a “table of contents” of your
Django-powered site

Where Should This Directory Live?

If your background is in PHP, you’re probably used to putting code under the Web server’s document root (in
a place such as /var/www). With Django, you don’t do that. It’s not a good idea to put any of this Python
code within your Web server’s document root, because in doing so you risk the possibility that people will be
able to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root.

2.4.1 The Development Server

Django includes a built-in, lightweight Web server you can use while developing your site. We’ve included
this server so you can develop your site rapidly, without having to deal with configuring your production Web
server (e.g., Apache) until you’re ready for production. This development server watches your code for
changes and automatically reloads, helping you make many rapid changes to your project without needing to
restart anything.

Change into the mysite directory, if you haven’t already, and run the command python manage.py
runserver. You'll see something like this:

2.4 Starting a Project 10


Hector Beltran



The Django Book

Validating models...
0 errors found.

Django version 1.0, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Although the development server is extremely nice for, well, development, resist the temptation to use this
server in anything resembling a production environment. The development server can handle only a single
request at a time reliably, and it has not gone through a security audit of any sort. When the time comes to
launch your site, see Chapter 20 for information on how to deploy Django.

Changing the Host or the Port

By default, the runserver command starts the development server on port 8000, listening only for local
connections. If you want to change the server’s port, pass it as a command-line argument:

python manage.py runserver 8080

You can also change the IP address that the server listens on. This is especially helpful if you’d like to share a
development site with other developers. The following:

python manage.py runserver 0.0.0.0:8080

will make Django listen on any network interface, thus allowing other computers to connect to the
development server.

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Welcome to
Django” page shaded a pleasant pastel blue. It worked!

2.5 What’s Next?

Now that you have everything installed and the development server running, in the next chapter you’ll write
some basic code that demonstrates how to serve Web pages using Django.

2.4.1 The Development Server 11


http://127.0.0.1:8000/

3 The Basics of Dynamic Web Pages

In the previous chapter, we explained how to set up a Django project and run the Django development server.
Of course, that site doesn’t actually do anything useful yet—all it does is display the “It worked!” message.
Let’s change that. This chapter introduces how to create dynamic Web pages with Django.

3.1 Your First View: Dynamic Content

As our first goal, let’s create a Web page that displays the current date and time. This is a good example of a
dynamic Web page, because the contents of the page are not static—rather, the contents change according to
the result of a computation (in this case, a calculation of the current time). This simple example doesn’t
involve a database or any sort of user input—just the output of your server’s internal clock.

To create this page, we’ll write a view function. A view function, or view for short, is simply a Python
function that takes a Web request and returns a Web response. This response can be the HTML contents of a
Web page, or a redirect, or a 404 error, or an XML document, or an image ... or anything, really. The view
itself contains whatever arbitrary logic is necessary to return that response. This code can live anywhere you
want, as long as it’s on your Python path. There’s no other requirement—no “magic,” so to speak. For the
sake of putting the code somewhere, let’s create a file called views . py in the mysite directory, which you
created in the previous chapter.

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse (html)

Let’s step through this code one line at a time:

e First, we import the class Ht t pResponse, which lives in the d jango . ht tp module. See
Appendix H for further details on the Ht t pRequest and Ht t pResponse objects.

® Then we import the datet ime module from Python’s standard library, the set of useful modules that
comes with Python. The datet ime module contains several functions and classes for dealing with
dates and times, including a function that returns the current time.

e Next, we define a function called current_datetime. This is the view function. Each view
function takes an Ht t pRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way
in order for Django to recognize it. We’re calling it current_datet ime here, because that name
clearly indicates what it does, but it could just as well be named
super_duper_awesome_current_time, or something equally revolting. Django doesn’t care.
The next section explains how Django finds this function.

e The first line of code within the function calculates the current date/time, as a
datetime.datetime object, and stores that as the local variable now.

® The second line of code within the function constructs an HTML response using Python’s
format-string capability. The % s within the string is a placeholder, and the percent sign after the string
means “Replace the % s with the value of the variable now.” (Yes, the HTML is invalid, but we’re
trying to keep the example simple and short.)

¢ Finally, the view returns an Ht t pResponse object that contains the generated response. Each view
function is responsible for returning an Ht t pResponse object. (There are exceptions, but we’ll get

3 The Basics of Dynamic Web Pages 12



The Django Book

to those later.)
Django’s Time Zone

Django includes a TIME_ZONE setting that defaults to America/Chicago. This probably isn’t where you
live, so you might want to change it in your settings.py. See Appendix E for details.

3.2 Mapping URLs to Views

So, to recap, this view function returns an HTML page that includes the current date and time. But how do we
tell Django to use this code? That’s where URLconfs come in.

A URLconfis like a table of contents for your Django-powered Web site. Basically, it’s a mapping between
URL patterns and the view functions that should be called for those URL patterns. It’s how you tell Django,
“For this URL, call this code, and for that URL, call that code.” Remember that the view functions need to be
on the Python path.

Your Python Path

Your Python path is the list of directories on your system where Python looks when you use the Python
import statement.

For example, let’s say your Python pathissetto ['', '/usr/lib/python2.4/site-packages’,
' /home/username/djcode/"'].If you execute the Python code from foo import bar, Python
will first check for a module called foo . py in the current directory. (The first entry in the Python path, an
empty string, means “the current directory.”) If that file doesn’t exist, Python will look for the file
/usr/lib/python2.4/site-packages/foo.py. If that file doesn’t exist, it will try
/home/username/djcode/ foo.py. Finally, if that file doesn’t exist, it will raise ImportError.

If you’re interested in seeing the value of your Python path, start the Python interactive interpreter and type
import sys, followed by print sys.path.

Generally you don’t have to worry about setting your Python path—Python and Django will take care of
things for you automatically behind the scenes. (If you’re curious, setting the Python path is one of the things
that the manage . py file does.)

When you executed d jango—admin.py startproject in the previous chapter, the script created a
URLconf for you automatically: the file urls.py. Let’s edit that file. By default, it looks something like
this:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
# Example:
# (r'“mysite/', include('mysite.apps.foo.urls.foo')),

# Uncomment this for admin:
# (r'~admin/"', include('django.contrib.admin.urls')),

)
Let’s step through this code one line at a time:

® The first line imports all objects from the django.conf.urls.defaults module, including a
function called patterns.

¢ The second line calls the function patterns () and saves the result into a variable called
urlpatterns. The patterns () function gets passed only a single argument—the empty string.

3.1 Your First View: Dynamic Content 13



The Django Book

The rest of the lines are commented out. (The string can be used to supply a common prefix for view
functions, but we’ll skip this advanced usage for now.)

The main thing to note here is the variable urlpatterns, which Django expects to find in your
ROOT_URLCONF module. This variable defines the mapping between URLs and the code that handles those
URLs.

By default, everything in the URLconf is commented out—your Django application is a blank slate. (As a side
note, that’s how Django knew to show you the “It worked!” page in the last chapter. If your URLconf is
empty, Django assumes you just started a new project and, hence, displays that message.)

Let’s edit this file to expose our current_datetime view:

from django.conf.urls.defaults import *
from mysite.views import current_datetime

urlpatterns = patterns('',
(r'~time/S$', current_datetime),

)

We made two changes here. First, we imported the current_datet ime view from its module
(mysite/views.py, which translates into mysite.views in Python import syntax). Next, we added the
line (r'~time/$', current_datetime),. This line is referred to as a URLpattern—it’s a Python
tuple in which the first element is a simple regular expression and the second element is the view function to
use for that pattern.

In a nutshell, we just told Django that any request to the URL /time/ should be handled by the
current_datetime view function.

A few things are worth pointing out:

¢ Note that, in this example, we passed the current_datet ime view function as an object without
calling the function. This is a key feature of Python (and other dynamic languages): functions are
first-class objects, which means you can pass them around just like any other variables. Cool stuff,
eh?

eThe rinr'~time/$"' means that ' “time/$ is a Python raw string. This allows regular
expressions to be written without overly verbose escaping.

® You should exclude the expected slash at the beginning of the ' “time/$ "' expression in order to
match /time/. Django automatically puts a slash before every expression. At first glance, this may
seem odd, but URLconfs can be included in other URLconfs, and leaving off the leading slash
simplifies matters. This is further covered in Chapter 8.

® The caret character (*) and dollar sign character ($) are important. The caret means “require that the
pattern matches the start of the string,” and the dollar sign means “require that the pattern matches the
end of the string.”

This concept is best explained by example. If we had instead used the pattern ' ~“time/ "' (without a
dollar sign at the end), then any URL that starts with t ime/ would match, such as /time/foo and
/time/bar, not just /time/. Similarly, if we had left off the initial caret character (' time/S$"'),
Django would match any URL that ends with time/, such as /foo/bar/time/. Thus, we use
both the caret and dollar sign to ensure that only the URL /t ime/ matches. Nothing more, nothing
less.

You may be wondering what happens if someone requests /t ime. This is handled as you’d hope (via

a redirect) as long as the APPEND_SLASH setting is True. (See Appendix E for some good bedtime
reading on this topic.)

3.2 Mapping URLs to Views 14



The Django Book

To test our changes to the URLconf, start the Django development server, as you did in Chapter 2, by running
the command python manage.py runserver. (If you left it running, that’s fine, too. The development
server automatically detects changes to your Python code and reloads as necessary, so you don’t have to
restart the server between changes.) The server is running at the address http://127.0.0.1:8000/, so
open up a Web browser and go to http://127.0.0.1:8000/time/. You should see the output of your
Django view.

Hooray! You’ve made your first Django-powered Web page.
Regular Expressions
Regular expressions (or regexes) are a compact way of specifying patterns in text. While Django URLconfs

allow arbitrary regexes for powerful URL-matching capability, you’ll probably use only a few regex patterns
in practice. Here’s a small selection of common patterns:

Symbol Matches
. (dot) Any character
\d Any digit
[A-7Z] Any character, A-Z (uppercase)
[a—z] Any character, a-z (lowercase)
[A-Za—z] Any character, a-z (case insensitive)
N One or more of the previous expression (e.g., \d+ matches one or more
digit)
[(~/1+ All characters except forward slash
5 Zero or more of the previous expression (e.g., \d* matches zero or more
) digits)
{1,3} Between one and three (inclusive) of the previous expression

For more on regular expressions, see http://www.djangoproject.com/r/python/re-module/.

3.3 How Django Processes a Request

We should point out several things about what just happened. Here’s the nitty-gritty of what goes on when
you run the Django development server and make requests to Web pages:

¢ The command python manage.py runserver imports a file called settings.py from the
same directory. This file contains all sorts of optional configuration for this particular Django
instance, but one of the most important settings is ROOT_URLCONF. The ROOT_URLCONF setting
tells Django which Python module should be used as the URLconf for this Web site.

Remember when d jango—admin.py startproject created the files settings.py and
urls.py? Well, the autogenerated settings.py has a ROOT_URLCONF that points to the
autogenerated urls.py. Convenient.

® When a request comes in—say, a request to the URL /t ime /—Django loads the URLconf pointed
to by the ROOT_URLCONF setting. Then it checks each of the URLpatterns in that URLconf in order,
comparing the requested URL with the patterns one at a time, until it finds one that matches. When it
finds one that matches, it calls the view function associated with that pattern, passing an
HttpRequest object as the first parameter to the function. (More on Ht t pRequest later.)

¢ The view function is responsible for returning an Ht t pResponse object.

You now know the basics of how to make Django-powered pages. It’s quite simple, really—just write view

functions and map them to URLs via URLconfs. You might think it would be slow to map URLSs to functions
using a series of regular expressions, but you’d be surprised.

3.3 How Django Processes a Request 15


http://www.djangoproject.com/r/python/re-module/

The Django Book

3.3.1 How Django Processes a Request: Complete Details

In addition to the straightforward URL-to-view mapping just described, Django provides quite a bit of
flexibility in processing requests.

The typical flow—URLconf resolution to a view function which returns an Ht t pResponse—can be
short-circuited or augmented via middleware. The deep secrets of middleware will be fully covered in Chapter
15, but a quick sketch (see Figure 3-1) should aid you in conceptually fitting the pieces together.

HTTP

ModPythonHandler

HttpRequest

Response
Middleware

404/500
Response

A

Response?

— e e e - Beguest Exception Handler =
¥

Response
Response? '\
Exception
-— = == == == - \fjgw Exception Handler = == == o= - -

Figure 3-1: The complete flow of a Django request and response.

3.3.1 How Django Processes a Request: Complete Details 16



The Django Book

When an HTTP request comes in from the browser, a server-specific handler constructs the Ht t pRequest
passed to later components and handles the flow of the response processing.

The handler then calls any available Request or View middleware. These types of middleware are useful for
augmenting incoming Ht tpRequest objects as well as providing special handling for specific types of
requests. If either returns an Ht tpResponse, processing bypasses the view.

Bugs slip by even the best programmers, but exception middleware can help squash them. If a view function
raises an exception, control passes to the Exception middleware. If this middleware does not return an
HttpResponse, the exception is re-raised.

Even then, all is not lost. Django includes default views that create a friendly 404 and 500 response.

Finally, response middleware is good for post-processing an Ht t pResponse just before it’s sent to the
browser or doing cleanup of request-specific resources.

3.4 URLconfs and Loose Coupling

Now’s a good time to highlight a key philosophy behind URLconfs and behind Django in general: the
principle of loose coupling. Simply put, loose coupling is a software-development approach that values the
importance of making pieces interchangeable. If two pieces of code are loosely coupled, then changes made to
one of the pieces will have little or no effect on the other.

Django’s URLconfs are a good example of this principle in practice. In a Django Web application, the URL
definitions and the view functions they call are loosely coupled; that is, the decision of what the URL should
be for a given function, and the implementation of the function itself, reside in two separate places. This lets a
developer switch out one piece without affecting the other.

In contrast, other Web development platforms couple the URL to the program. In typical PHP
(http://www.php.net/) applications, for example, the URL of your application is designated by where you
place the code on your filesystem. In early versions of the CherryPy Python Web framework
(http://www.cherrypy.org/), the URL of your application corresponded to the name of the method in which
your code lived. This may seem like a convenient shortcut in the short term, but it can get unmanageable in
the long run.

For example, consider the view function we wrote earlier, which displays the current date and time. If we
wanted to change the URL for the application— say, move it from /time/ to /currenttime/—we could
make a quick change to the URLconf, without having to worry about the underlying implementation of the
function. Similarly, if we wanted to change the view function—altering its logic somehow—we could do that
without affecting the URL to which the function is bound. Furthermore, if we wanted to expose the
current-date functionality at several URLs, we could easily take care of that by editing the URLconf, without
having to touch the view code.

That’s loose coupling in action. We’ll continue to point out examples of this important philosophy throughout
this book.

3.5 404 Errors

In our URLconf thus far, we’ve defined only a single URLpattern: the one that handles requests to the URL
/time/. What happens when a different URL is requested?

To find out, try running the Django development server and hitting a page such as
http://127.0.0.1:8000/hello/ orhttp://127.0.0.1:8000/does—not-exist/, oreven

3.4 URLconfs and Loose Coupling 17


http://www.php.net/
http://www.cherrypy.org/

The Django Book

http://127.0.0.1:8000/ (the site “root”). You should see a “Page not found” message (see Figure
3-2). (Pretty, isn’t it? We Django people sure do like our pastel colors.) Django displays this message because
you requested a URL that’s not defined in your URLconf.

s &ls) Page not found at /

¢ || + | @ hupy/r127.0.0.1:8000/ ~(Qr Google
=

Page not found (404)

Request Method: GET
Request URL: http:/127.0.0.1:8000/

Using the URLconf defined in mysite.urls, Django tried these URL patterns, in this order:
1. “now/%
The current URL, 7, didn't match any of these.

You're seeing this error because you have pesue = True in your Django settings file. Change that to False, and Django will display a
standard 404 page.

Figure 3-2. Django’s 404 page

The utility of this page goes beyond the basic 404 error message; it also tells you precisely which URLconf
Django used and every pattern in that URLconf. From that information, you should be able to tell why the
requested URL threw a 404.

Naturally, this is sensitive information intended only for you, the Web developer. If this were a production site
deployed live on the Internet, we wouldn’t want to expose that information to the public. For that reason, this
“Page not found” page is only displayed if your Django project is in debug mode. We’ll explain how to
deactivate debug mode later. For now, just know that every Django project is in debug mode when you first
create it, and if the project is not in debug mode, a different response is given.

3.6 Your Second View: Dynamic URLs

In our first view example, the contents of the page—the current date/time— were dynamic, but the URL
(/time/) was static. In most dynamic Web applications, though, a URL contains parameters that influence
the output of the page.

Let’s create a second view that displays the current date and time offset by a certain number of hours. The
goal is to craft a site in such a way that the page /t ime/plus/1/ displays the date/time one hour into the
future, the page /time/plus/2/ displays the date/time two hours into the future, the page
/time/plus/3/ displays the date/time three hours into the future, and so on.

3.5 404 Errors 18



The Django Book

A novice might think to code a separate view function for each hour offset, which might result in a URLconf
like this:

urlpatterns = patterns('',

(r'~time/S$', current_datetime),
(r'“time/plus/1/$', one_hour_ahead),
(r'“time/plus/2/$', two_hours_ahead),
(r'"time/plus/3/$', three_hours_ahead),
(r'"time/plus/4//$"', four_hours_ahead),

Clearly, this line of thought is flawed. Not only would this result in redundant view functions, but also the
application is fundamentally limited to supporting only the predefined hour ranges—one, two, three, or four
hours. If, all of a sudden, we wanted to create a page that displayed the time five hours into the future, we’d
have to create a separate view and URLconf line for that, furthering the duplication and insanity. We need to
do some abstraction here.

3.6.1 A Word About Pretty URLs

If you’re experienced in another Web development platform, such as PHP or Java, you may be thinking,
“Hey, let’s use a query string parameter!”, something like /t ime/plus?hours=3, in which the hours
would be designated by the hours parameter in the URL’s query string (the part after the ?).

You can do that with Django (and we’ll tell you how later, if you really must know), but one of Django’s core
philosophies is that URLs should be beautiful. The URL /time/plus/3/ is far cleaner, simpler, more
readable, easier to recite to somebody aloud and ... just plain prettier than its query string counterpart. Pretty
URLSs are a sign of a quality Web application.

Django’s URLconf system encourages pretty URLs by making it easier to use pretty URLs than not to.

3.6.2 Wildcard URLpatterns

Continuing with our hours_ahead example, let’s put a wildcard in the URLpattern. As we mentioned
previously, a URLpattern is a regular expression; hence, we can use the regular expression pattern \ d+ to
match one or more digits:

from django.conf.urls.defaults import *
from mysite.views import current_datetime, hours_ahead

urlpatterns = patterns('',
(r'~time/S$', current_datetime),
(r'~*time/plus/\d+/$', hours_ahead),

This URLpattern will match any URL such as /time/plus/2/, /time/plus/25/, or even
/time/plus/100000000000/. Come to think of it, let’s limit it so that the maximum allowed offset is
99 hours. That means we want to allow either one- or two-digit numbers—in regular expression syntax, that
translates into \d {1, 2}:

(r'“time/plus/\d{1,2}/$', hours_ahead),
Note

When building Web applications, it’s always important to consider the most outlandish data input possible,
and decide whether or not the application should support that input. We’ve curtailed the outlandishness here
by limiting the offset to 99 hours. And, by the way, The Outlandishness Curtailers would be a fantastic, if
verbose, band name.

3.6 Your Second View: Dynamic URLs 19



The Django Book

Now that we’ve designated a wildcard for the URL, we need a way of passing that data to the view function,
so that we can use a single view function for any arbitrary hour offset. We do this by placing parentheses
around the data in the URLpattern that we want to save. In the case of our example, we want to save whatever
number was entered in the URL, so let’s put parentheses around the \d {1, 2}:

(r'~time/plus/ (\d{1,2})/$', hours_ahead),

If you’re familiar with regular expressions, you’ll be right at home here; we’re using parentheses to capture
data from the matched text.

The final URLconf, including our previous current_datet ime view, looks like this:

from django.conf.urls.defaults import *
from mysite.views import current_datetime, hours_ahead

urlpatterns = patterns('',
(r'~time/S$', current_datetime),
(r'~time/plus/ (\d{1,2})/$', hours_ahead),

With that taken care of, let’s write the hours_ahead view.
Coding Order

In this example, we wrote the URLpattern first and the view second, but in the previous example, we wrote
the view first, then the URLpattern. Which technique is better? Well, every developer is different.

If you’re a big-picture type of person, it may make the most sense to you to write all of the URLpatterns for
your application at the same time, at the start of your project, and then code up the views. This has the
advantage of giving you a clear to-do list, and it essentially defines the parameter requirements for the view
functions you’ll need to write.

If you’re more of a bottom-up developer, you might prefer to write the views first, and then anchor them to
URLSs afterward. That’s OK, too.

In the end, it comes down to which technique fits your brain the best. Both approaches are valid.

hours_ahead is very similar to the current_datet ime view we wrote earlier, with a key difference: it
takes an extra argument, the number of hours of offset. Add this to views. py:

def hours_ahead(request, offset):
offset = int (offset)
dt = datetime.datetime.now() + datetime.timedelta (hours=offset)
html = "<html><body>In %s hour(s), it will be $%s.</body></html>" % (offset, dt)
return HttpResponse (html)

Let’s step through this code one line at a time:

e Just as we did for our current_datet ime view, we import the class
django.http.HttpResponse and the datet ime module.
® The view function, hours_ahead, takes two parameters: request and offset.

¢ request is an HttpRequest object, just as in current_datetime. We'll say it again:
each view always takes an Ht tpRequest object as its first parameter.

¢ of fset is the string captured by the parentheses in the URLpattern. For example, if the
requested URL were /time/plus/3/, then offset would be the string ' 3'. If the
requested URL were /time/plus/21/, then of £set would be the string '21"'. Note

3.6.2 Wildcard URLpatterns 20



The Django Book

that captured strings will always be strings, not integers, even if the string is composed of
only digits, such as '21".

We decided to call the variable of fset, but you can call it whatever you’d like, as long as
it’s a valid Python identifier. The variable name doesn’t matter; all that matters is that it’s the
second argument to the function (after request). It’s also possible to use keyword, rather
than positional, arguments in an URLconf. We cover that in Chapter 8.
e The first thing we do within the function is call int () on of fset. This converts the string value to
an integer.

Note that Python will raise a ValueError exception if you call int () on a value that cannot be
converted to an integer, such as the string ' foo'. However, in this example we don’t have to worry
about catching that exception, because we can be certain of f set will be a string containing only
digits. We know that because the regular-expression pattern in our URLconf—
(\d{1,2})—captures only digits. This illustrates another nicety of URLconfs: they provide a fair
level of input validation.

® The next line of the function shows why we called int () on of fset. On this line, we calculate the
current time plus a time offset of of fset hours, storing the result in dt. The
datetime.timedelta function requires the hours parameter to be an integer.

¢ Next, we construct the HTML output of this view function, just as we did in current_datetime.
A small difference in this line from the previous line is that it uses Python’s format-string capability
with two values, not just one. Hence, there are two % s symbols in the string and a tuple of values to
insert: (offset, dt).

¢ Finally, we return an Ht tpResponse of the HTML—again, just as we did in
current_datetime.

With that view function and URLconf written, start the Django development server (if it’s not already
running), and visit http://127.0.0.1:8000/time/plus/3/ to verify it works. Then try
http://127.0.0.1:8000/time/plus/5/. Then
http://127.0.0.1:8000/time/plus/24/. Finally, visit
http://127.0.0.1:8000/time/plus/100/ to verify that the pattern in your URLconf only accepts
one- or two-digit numbers; Django should display a “Page not found” error in this case, just as we saw in the
“404 Errors” section earlier. The URL http://127.0.0.1:8000/time/plus/ (with no hour
designation) should also throw a 404.

If you’re following along while coding at the same time, you’ll notice that the views . py file now contains
two views. (We omitted the current_datet ime view from the last set of examples for clarity.) Put
together, views . py should look like this:

from django.http import HttpResponse
import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse (html)

def hours_ahead(request, offset):
offset = int (offset)
dt = datetime.datetime.now() + datetime.timedelta (hours=offset)
html = "<html><body>In %s hour(s), it will be $%s.</body></html>" % (offset, dt)
return HttpResponse (html)

3.7 Django’s Pretty Error Pages

3.7 Django’s Pretty Error Pages 21



The Django Book

Take a moment to admire the fine Web application we’ve made so far ... now let’s break it! We’ll
deliberately introduce a Python error into our views . py file by commenting out the offset =
int (offset) line in the hours_ahead view:

def hours_ahead(request, offset):
#offset = int (offset)
dt = datetime.datetime.now () + datetime.timedelta (hours=offset)
html = "<html><body>In %s hour(s), it will be $%s.</body></html>" % (offset, dt)
return HttpResponse (html)

Load up the development server and navigate to /time/plus/3/. You’ll see an error page with a
significant amount of information, including a TypeError message displayed at the very top:
"unsupported type for timedelta hours component: str".

What happened? Well, the datetime.timedelta function expects the hours parameter to be an integer,
and we commented out the bit of code that converted of fset to an integer. That caused
datetime.timedelta toraise the TypeError. It’s the typical kind of small bug that every programmer
runs into at some point.

The point of this example was to demonstrate Django’s error pages. Take some time to explore the error page
and get to know the various bits of information it gives you.

Here are some things to notice:

¢ At the top of the page, you get the key information about the exception: the type of exception, any
parameters to the exception (the "unsupported type" message in this case), the file in which
the exception was raised, and the offending line number.

¢ Under the key exception information, the page displays the full Python traceback for this exception.
This is similar to the standard traceback you get in Python’s command-line interpreter, except it’s
more interactive. For each frame in the stack, Django displays the name of the file, the
function/method name, the line number, and the source code of that line.

Click the line of source code (in dark gray), and you’ll see several lines from before and after the
erroneous line, to give you context.

Click “Local vars” under any frame in the stack to view a table of all local variables and their values,
in that frame, at the exact point in the code at which the exception was raised. This debugging
information is invaluable.

¢ Note the “Switch to copy-and-paste view” text under the ‘“Traceback” header. Click those words, and
the traceback will switch to a alternate version that can be easily copied and pasted. Use this when
you want to share your exception traceback with others to get technical support— such as the kind
folks in the Django IRC chat room or on the Django users mailing list.

e Next, the “Request information” section includes a wealth of information about the incoming Web
request that spawned the error: GET and POST information, cookie values, and meta information,
such as CGI headers. Appendix H has a complete reference of all the information a request object
contains.

Below the “Request information” section, the “Settings” section lists all of the settings for this
particular Django installation. All the available settings are covered in detail in Appendix E. For now,
take a look at the settings to get an idea of the information available.

The Django error page is capable of displaying more information in certain special cases, such as the case of

template syntax errors. We’ll get to those later, when we discuss the Django template system. For now,
uncomment the of fset = int (offset) line to get the view function working properly again.

3.7 Django’s Pretty Error Pages 22



The Django Book

Are you the type of programmer who likes to debug with the help of carefully placed print statements? You
can use the Django error page to do so—just without the print statements. At any point in your view,
temporarily insert an assert False to trigger the error page. Then, you can view the local variables and
state of the program. (There’s a more advanced way to debug Django views, which we’ll explain later, but
this is the quickest and easiest.)

Finally, it’s obvious that much of this information is sensitive—it exposes the innards of your Python code
and Django configuration—and it would be foolish to show this information on the public Internet. A
malicious person could use it to attempt to reverse-engineer your Web application and do nasty things. For
that reason, the Django error page is only displayed when your Django project is in debug mode. We’ll
explain how to deactivate debug mode later. For now, just know that every Django project is in debug mode
automatically when you start it. (Sound familiar? The “Page not found” errors, described in the “404 Errors”
section, work the same way.)

3.8 What’s next?

We’ve so far been producing views by hard-coding HTML into the Python code. Unfortunately, this is nearly
always a bad idea. Luckily, Django ships with a simple yet powerful template engine that allows you to
separate the design of the page from the underlying code. We’ll dive into Django’s template engine in the next
chapter.

3.8 What's next? 23



4 The Django Template System

In the previous chapter, you may have noticed something peculiar in how we returned the text in our example
views. Namely, the HTML was hard-coded directly in our Python code.

This arrangement leads to several problems:

® Any change to the design of the page requires a change to the Python code. The design of a site tends
to change far more frequently than the underlying Python code, so it would be convenient if the the
design could change without needing to modify the Python code.

® Writing Python code and designing HTML are two different disciplines, and most professional Web
development environments split these responsibilities between separate people (or even separate
departments). Designers and HTML/CSS coders shouldn’t have to edit Python code to get their job
done; they should deal with HTML.

e Similarly, it’s most efficient if programmers can work on Python code and designers can work on
templates at the same time, rather than one person waiting for the other to finish editing a single file
that contains both Python and HTML.

For these reasons, it’s much cleaner and more maintainable to separate the design of the page from the Python
code itself. We can do this with Django’s femplate system, which we discuss in this chapter.

4.1 Template System Basics

A Django template is a string of text that is intended to separate the presentation of a document from its data.
A template defines placeholders and various bits of basic logic (i.e., template tags) that regulate how the
document should be displayed. Usually, templates are used for producing HTML, but Django templates are
equally capable of generating any text-based format.

Let’s dive in with a simple example template. This template describes an HTML page that thanks a person for
placing an order with a company. Think of it as a form letter:

<html>
<head><title>Ordering notice</title></head>

<body>
<p>Dear {{ person_name }},</p>

<p>Thanks for placing an order from {{ company }}. It's scheduled to
ship on {{ ship_date|date:"F j, Y" }}.</p>

<p>Here are the items you've ordered:</p>

<ul>

{% for item in item_list %}
<li>{{ item }}</1i>

{% endfor %}

</ul>

{%$ if ordered_warranty %}
<p>Your warranty information will be included in the packaging.</p>
{% endif %}

<p>Sincerely,<br />{{ company }}</p>

</body>
</html>

4 The Django Template System 24



The Django Book

This template is basic HTML with some variables and template tags thrown in. Let’s step through it:

¢ Any text surrounded by a pair of braces (e.g., { { person_name }})is avariable. This means
“insert the value of the variable with the given name.” How do we specify the values of the variables?
We’ll get to that in a moment.

¢ Any text that’s surrounded by curly braces and percent signs (e.g., {$ 1f ordered_warranty
%}) is a template tag. The definition of a tag is quite broad: a tag just tells the template system to “do
something.”

This example template contains two tags: the {$ for item in item_list %} tag(a for tag)
andthe {$ if ordered_warranty %} tag(an if tag).

A for tag acts as a simple loop construct, letting you loop over each item in a sequence. An if tag,
as you may expect, acts as a logical “if”” statement. In this particular case, the tag checks whether the
value of the ordered_warranty variable evaluates to True. If it does, the template system will
display everything between the {$ 1if ordered_warranty %} and {$ endif %}.If not, the
template system won’t display it. The template system also supports {$ else %} and other various
logic statements.

Finally, the second paragraph of this template has an example of a filter, with which you can alter the
display of a variable. In this example, { { ship_date|date:"F Jj, Y" }}, we're passing the
ship_date variable to the date filter, giving the date filter the argument "F j, Y".The date
filter formats dates in a given format, as specified by that argument. Filters are attached using a pipe
character (| ), as a reference to Unix pipes.

Each Django template has access to several built-in tags and filters, many of which are discussed in the
sections that follow. Appendix F contains the full list of tags and filters, and it’s a good idea to familiarize
yourself with that list so you know what’s possible. It’s also possible to create your own filters and tags,
which we cover in Chapter 10.

4.2 Using the Template System

To use the template system in Python code, just follow these two steps:

1. Create a Template object by providing the raw template code as a string. Django also offers a way
to create Template objects by designating the path to a template file on the filesystem; we’ll
examine that in a bit.

2. Call the render () method of the Template object with a given set of variables (i.e., the context).
This returns a fully rendered template as a string, with all of the variables and block tags evaluated
according to the context.

The following sections describe each step in more detail.

4.2.1 Creating Template Objects

The easiest way to create a Template object is to instantiate it directly. The Template class lives in the
django.template module, and the constructor takes one argument, the raw template code. Let’s dip into
the Python interactive interpreter to see how this works in code.

Interactive Interpreter Examples

Throughout this book, we feature example Python interactive interpreter sessions. You can recognize these

examples by the triple greater-than signs (>>>), which designate the interpreter’s prompt. If you’re copying
examples from this book, don’t copy those greater-than signs.

4.1 Template System Basics 25



The Django Book

Multiline statements in the interactive interpreter are padded with three dots (. . .), for example:

>>> print """This is a
string that spans
. three lines."""
This is a
string that spans
three lines.
>>> def my_function (value) :
print value
>>> my_function('hello"')
hello

Those three dots at the start of the additional lines are inserted by the Python shell—they’re not part of our
input. We include them here to be faithful to the actual output of the interpreter. If you copy our examples to
follow along, don’t copy those dots.

From within the project directory created by django—-admin.py startproject (as covered in Chapter
2), type python manage.py shell to start the interactive interpreter. Here’s a basic walk-through:

>>> from django.template import Template
>>> t = Template("My name is {{ name }}.")
>>> print t

If you’re following along interactively, you’ll see something like this:
<django.template.Template object at 0xb7d5f24c>

That 0xb7d5£24c will be different every time, and it doesn’t really matter; it’s simply the Python “identity”
of the Template object.

Django Settings

When using Django, you need to tell Django which settings to use. Interactively, this is typically done using
python manage.py shell, but you've got a few other options described in Appendix E.

When you create a Template object, the template system compiles the raw template code into an internal,
optimized form, ready for rendering. But if your template code includes any syntax errors, the call to
Template () will cause a TemplateSyntaxError exception:

>>> from django.template import Template

>>> t = Template('{% notatag %} ')
Traceback (most recent call last):
File "<stdin>", line 1, in ?

django.template.TemplateSyntaxError: Invalid block tag: 'notatag'
The system raises a TemplateSyntaxError exception for any of the following cases:

e Invalid block tags

e Invalid arguments to valid block tags

¢ Invalid filters

¢ Invalid arguments to valid filters

¢ Invalid template syntax

¢ Unclosed block tags (for block tags that require closing tags)

4.2.1 Creating Template Objects 26



The Django Book
4.2.2 Rendering a Template

Once you have a Template object, you can pass it data by giving it a context. A context is simply a set of
variables and their associated values. A template uses this to populate its variable tags and evaluate its block
tags.

A context is represented in Django by the Context class, which lives in the d jango . template module.
Its constructor takes one optional argument: a dictionary mapping variable names to variable values. Call the
Template object’s render () method with the context to “fill” the template:

>>> from django.template import Context, Template
>>> t = Template ("My name is {{ name }}.")

>>> c = Context ({"name": "Stephane"})

>>> t.render (c)

'My name is Stephane.'

Dictionaries and Contexts

A Python dictionary is a mapping between known keys and variable values. A Context is similar to a
dictionary, but a Context provides additional functionality, as covered in Chapter 10.

Variable names must begin with a letter (A-Z or a-z) and may contain digits, underscores, and dots. (Dots are
a special case we’ll get to in a moment.) Variable names are case sensitive.

Here’s an example of template compilation and rendering, using the sample template from the beginning of
this chapter:

>>> from django.template import Template, Context
>>> raw_template = """<p>Dear {{ person_name }},</p>

<p>Thanks for ordering {{ product }} from {{ company }}. It's scheduled
to ship on {{ ship_date|date:"F j, Y" }}.</p>

{%$ 1if ordered_warranty %}
<p>Your warranty information will be included in the packaging.</p>
{% endif %}

... <p>Sincerely,<br />{{ company }}</p>"""
>>> t = Template (raw_template)

>>> import datetime

>>> ¢ = Context ({'person_name': 'John Smith',
'product': 'Super Lawn Mower',
'company': 'Outdoor Equipment',

'ship_date': datetime.date (2009, 4, 2),
... 'ordered_warranty': True})
>>> t.render (c)
"<p>Dear John Smith, </p>\n\n<p>Thanks for ordering Super Lawn Mower from
Outdoor Equipment. It's scheduled \nto ship on April 2, 2009.</p>\n\n\n
<p>Your warranty information will be included in the packaging.</p>\n\n\n
<p>Sincerely, <br />Outdoor Equipment</p>"

Let’s step through this code one statement at a time:

e First, we import the classes Template and Context, which both live in the module
django.template.

® We save the raw text of our template into the variable raw_template. Note that we use triple quote
marks to designate the string, because it wraps over multiple lines; in Python codde, strings
designated with single quote marks cannot be wrapped over multiple lines.

4.2.2 Rendering a Template 27



The Django Book

® Next, we create a template object, t, by passing raw_template to the Template class
constructor.

® We import the datet ime module from Python’s standard library, because we’ll need it in the
following statement.

¢ Then, we create a Context object, c. The Context constructor takes a Python dictionary, which
maps variable names to values. Here, for example, we specify that the person_name is ' John
Smith', productis 'Super Lawn Mower', and so forth.

¢ Finally, we call the render () method on our template object, passing it the context. This returns the
rendered template—that is, it replaces template variables with the actual values of the variables, and it
executes any block tags.

Note that the warranty paragraph was displayed because the ordered_warranty variable
evaluated to True. Also note the date, April 2, 2009, which is displayed according to the
format string 'F j, Y'.(We explain format strings for the date filter shortly.)

If you’re new to Python, you may wonder why this output includes newline characters (' \n ") rather
than displaying the line breaks. That’s happening because of a subtlety in the Python interactive
interpreter: the call to t . render (c) returns a string, and by default the interactive interpreter
displays the representation of the string, rather than the printed value of the string. If you want to see
the string with line breaks displayed as true line breaks rather than ' \n' characters, use the print
statement: print t.render (c).

Those are the fundamentals of using the Django template system: just write a template, create a Template
object, create a Context, and call the render () method.

4.2.3 Multiple Contexts, Same Template

Once you have a Template object, you can render multiple contexts through it, for example:

>>> from django.template import Template, Context

>>> t = Template('Hello, {{ name }}")

>>> print t.render (Context ({'name': 'John'}))
Hello, John

>>> print t.render (Context ({'name': 'Julie'}))
Hello, Julie

>>> print t.render (Context ({'name': 'Pat'}))

Hello, Pat

Whenever you’re using the same template source to render multiple contexts like this, it’s more efficient to
create the Template object once, and then call render () on it multiple times:

# Bad
for name in ('John', 'Julie', 'Pat'):
t = Template('Hello, {{ name }}")
print t.render (Context ({'name': name}))
# Good
t = Template('Hello, {{ name }}")
for name in ('John', 'Julie', 'Pat'):
print t.render (Context ({'name': name}))

Django’s template parsing is quite fast. Behind the scenes, most of the parsing happens via a single call to a
short regular expression. This is in stark contrast to XML-based template engines, which incur the overhead of
an XML parser and tend to be orders of magnitude slower than Django’s template rendering engine.

4.2.3 Multiple Contexts, Same Template 28



The Django Book
4.2.4 Context Variable Lookup

In the examples so far, we’ve passed simple values in the contexts—mostly strings, plus a datetime.date
example. However, the template system elegantly handles more complex data structures, such as lists,
dictionaries, and custom objects.

The key to traversing complex data structures in Django templates is the dot character (. ). Use a dot to access
dictionary keys, attributes, indices, or methods of an object.

This is best illustrated with a few examples. For instance, suppose you’re passing a Python dictionary to a
template. To access the values of that dictionary by dictionary key, use a dot:

>>> from django.template import Template, Context

>>> person = {'name': 'Sally', 'age': '43'}

>>> t = Template('{{ person.name }} is {{ person.age }} years old.")
>>> c = Context ({'person': person})

>>> t.render (c)

'Sally is 43 years old.'

Similarly, dots also allow access of object attributes. For example, a Python datet ime . date object has
year, month, and day attributes, and you can use a dot to access those attributes in a Django template:

>>> from django.template import Template, Context
>>> import datetime

>>> d = datetime.date (1993, 5, 2)

>>> d.year

1993

>>> d.month

5

>>> d.day

2

>>> t = Template ('The month is {{ date.month }} and the year is {{ date.year }}.")
>>> C Context ({'date': d})

>>> t.render (c)

'The month is 5 and the year is 1993.'"

This example uses a custom class:

>>> from django.template import Template, Context
>>> class Person (object) :

def _ _init_ (self, first_name, last_name) :
e self.first_name, self.last_name = first_name, last_name
>>> t = Template('Hello, {{ person.first_name }} {{ person.last_name }}.")
>>> c = Context ({'person': Person('John', 'Smith')})

>>> t.render (c)
'Hello, John Smith.'

Dots are also used to call methods on objects. For example, each Python string has the methods upper ()
and isdigit (), and you can call those in Django templates using the same dot syntax:

>>> from django.template import Template, Context

>>> t = Template('{{ var }} —-— {{ var.upper }} —— {{ var.isdigit }}")
>>> t.render (Context ({'var': 'hello'}))

'hello —— HELLO -- False'

>>> t.render (Context ({'var': '123'}))

'123 —— 123 —-- True'

Note that you don’t include parentheses in the method calls. Also, it’s not possible to pass arguments to the
methods; you can only call methods that have no required arguments. (We explain this philosophy later in this
chapter.)

4.2.4 Context Variable Lookup 29



The Django Book

Finally, dots are also used to access list indices, for example:

>>>
>>>
>>>
>>>

from django.template import Template, Context

t
c

t.

= Template('Item 2 is {{ items.2 }}.")

render (c)

'ITtem 2 is carrots.'

= Context ({'items': ['apples', 'bananas', 'carrots']})

Negative list indices are not allowed. For example, the template variable { { items.-1 }} would cause a
TemplateSyntaxError.

Python Lists

Python lists have 0-based indices so that the first item is at index 0, the second is at index 1, and so on.

The dot lookups can be summarized like this: when the template system encounters a dot in a variable name, it
tries the following lookups, in this order:

¢ Dictionary lookup (e.e., foo["bar"])
e Attribute lookup (e.g., foo.bar)

® Method call (e.g., foo.bar ())

e List-index lookup (e.g., foo [bar])

The system uses the first lookup type that works. It’s short-circuit logic.

Dot lookups can be nested multiple levels deep. For instance, the following example uses { {
person.name.upper }}, which translates into a dictionary lookup (person[ 'name']) and then a
method call (upper () ):

>>>
>>>
>>>
>>>
>>>

from django.template import Template, Context

person = {'name': 'Sally', 'age': '43'}

t = Template('{{ person.name.upper }} is {{ person.age }} years old.')
c = Context ({'person': person})

t.render (c)

'SALLY is 43 years old.'

4.2.4.1 Method Call Behavior

Method calls are slightly more complex than the other lookup types. Here are some things to keep in mind:

e If, during the method lookup, a method raises an exception, the exception will be propagated, unless

the exception has an attribute silent_variable_failure whose value is True. If the
exception does have a silent_variable_failure attribute, the variable will render as an

empty string, for example:

>>> t = Template ("My name is {{ person.first_name }}.")

>>> class PersonClass3:

def first_name (self):
e raise AssertionError, "foo"
>>> p = PersonClass3()
>>> t.render (Context ({"person": p}))
Traceback (most recent call last):

AssertionError: foo

>>> class SilentAssertionError (AssertionError) :

.. silent_variable_failure = True
>>> class PersonClassé:
def first_name (self):

4.2.4 Context Variable Lookup

30



The Django Book

... raise SilentAssertionError
>>> p = PersonClass4()

>>> t.render (Context ({"person": p}))
"My name is ."

A method call will only work if the method has no required arguments. Otherwise, the system will
move to the next lookup type (list-index lookup).

¢ Obviously, some methods have side effects, and it would be foolish at best, and possibly even a
security hole, to allow the template system to access them.

Say, for instance, you have a BankAccount object that has a delete () method. A template
shouldn’t be allowed to include something like { { account.delete }}.

To prevent this, set the function attribute alters_data on the method:

def delete (self):
# Delete the account
delete.alters_data = True

The template system won’t execute any method marked in this way. In other words, if a template
includes { { account.delete }}, thattag will not execute the delete () method. It will fail
silently.

4.2.4.2 How Invalid Variables Are Handled

By default, if a variable doesn’t exist, the template system renders it as an empty string, failing silently, for
example:

>>> from django.template import Template, Context
>>> t = Template ('Your name is {{ name }}.")

>>> t.render (Context ())

'Your name is .'

>>> t.render (Context ({'var': 'hello'}))
'Your name is .'
>>> t.render (Context ({'NAME': 'hello'}))
'Your name is .'
>>> t.render (Context ({'Name': 'hello'}))

'Your name is .'

The system fails silently rather than raising an exception because it’s intended to be resilient to human error.
In this case, all of the lookups failed because variable names have the wrong case or name. In the real world,
it’s unacceptable for a Web site to become inaccessible due to a small template syntax error.

Note that it’s possible to change Django’s default behavior in this regard, by tweaking a setting in your
Django configuration. We discuss this further in Chapter 10.

4.2.5 Playing with Context Objects

Most of the time, you’ll instantiate Context objects by passing in a fully populated dictionary to
Context (). But you can add and delete items from a Context object once it’s been instantiated, too,
using standard Python dictionary syntax:

>>> from django.template import Context

>>> ¢ = Context ({"foo": "bar"})
>>> c['foo']
'bar'

>>> del c['foo']

>>> c['foo']
T

>>> c['newvariable'] = 'hello'

4.2.4 Context Variable Lookup 31



The Django Book

>>> c['newvariable']
'hello!

4.3 Basic Template Tags and Filters

As we’ve mentioned already, the template system ships with built-in tags and filters. The sections that follow
provide a rundown of the most common tags and filters.

4.3.1 Tags

4.3.1.1 if/else

The {$ 1f %} tagevaluates a variable, and if that variable is “true” (i.e., it exists, is not empty, and is not a

false Boolean value), the system will display everything between {$ if %} and {$ endif %}, for

example:

(%

{%

if today_is_weekend %}
<p>Welcome to the weekend!</p>
endif %}

An {$ else %} tagis optional:

(%

{%

{%

if today_is_weekend %}
<p>Welcome to the weekend!</p>
else %}

<p>Get back to work.</p>

endif %}

Python “Truthiness”

In Python, the empty list ([ ]), tuple ( () ), dictionary ({ }), string (' '), zero (0), and the special object None
are False in a Boolean context. Everything else is True.

The {$ 1f %} tagaccepts and, or, or not for testing multiple variables, or to negate a given variable. For
example:

—
oe

—
oe

—
oe

—
oe

—
oe

—
oe

—
oe

—
oe

—
oe

—
oe

if athlete_list and coach_list %}

Both athletes and coaches are available.

endif %}
if not athlete_list %}
There are no athletes.

endif %}

if athlete_list or coach_list %}

There are some athletes or some coaches.

endif %}

if not athlete_list or coach_list %}
There are no athletes or there are some
writing English translations of Boolean
stupid; it's not our fault.)

endif %}

if athlete_list and not coach_list %}

coaches. (OK,
logic sounds

There are some athletes and absolutely no coaches.

endif %}

4.2.5 Playing with Context Objects

SO

32



The Django Book

{%$ if %} tagsdon’tallow and and or clauses within the same tag, because the order of logic would be
ambiguous. For example, this is invalid:

{% if athlete_list and coach_list or cheerleader_list %}

The use of parentheses for controlling order of operations is not supported. If you find yourself needing
parentheses, consider performing logic in the view code in order to simplify the templates. Even so, if you
need to combine and and or to do advanced logic, just use nested {$ if %} tags, for example:

{%$ 1if athlete_list %}
{% if coach_list or cheerleader_list %}
We have athletes, and either coaches or cheerleaders!
{% endif %}
{% endif %}

Multiple uses of the same logical operator are fine, but you can’t combine different operators. For example,
this is valid:

{%$ 1if athlete_list or coach_list or parent_list or teacher_list %}

Thereisno {$ elif %} tag. Usenested {$ 1f %} tags to accomplish the same thing:

{% 1if athlete_list %}

<p>Here are the athletes: {{ athlete_list }}.</p>
{% else %}

<p>No athletes are available.</p>

{% 1if coach_list %}

<p>Here are the coaches: {{ coach_list }}.</p>

{% endif %}

{% endif %}

Make sure to close each {$ if %} withan {$ endif %}. Otherwise, Django will throw a
TemplateSyntaxError.

4.3.1.2 for

The {$ for %} tagallows you to loop over each item in a sequence. As in Python’s for statement, the
syntax is for X in Y, where Y is the sequence to loop over and X is the name of the variable to use for a

particular cycle of the loop. Each time through the loop, the template system will render everything between

{%$ for %} and {$ endfor %}.
For example, you could use the following to display a list of athletes given a variable athlete_list:

<ul>

{% for athlete in athlete_list %}
<1li>{{ athlete.name }}</1i>

{% endfor %}

</ul>

Add reversed to the tag to loop over the list in reverse:

{% for athlete in athlete_list reversed %}

{% endfor %}
It’s possible to nest {$ for %} tags:

{$ for country in countries %}
<hl>{{ country.name }}</hl>

4.3.1 Tags

33



The Django Book

<ul>
% for city in country.city_list %}
<li>{{ city }}</1i>
{% endfor %}
</ul>
% endfor %}

There is no support for “breaking out” of a loop before the loop is finished. If you want to accomplish this,
change the variable you’re looping over so that it includes only the values you want to loop over. Similarly,
there is no support for a “continue” statement that would instruct the loop processor to return immediately to
the front of the loop. (See the section “Philosophies and Limitations” later in this chapter for the reasoning
behind this design decision.)

The {$ for %} tagsets a magic forloop template variable within the loop. This variable has a few
attributes that give you information about the progress of the loop:

e forloop.counter is always set to an integer representing the number of times the loop has been
entered. This is one-indexed, so the first time through the loop, forloop.counter will be setto 1.
Here’s an example:

% for item in todo_list %}
<p>{{ forloop.counter }}: {{ item }}</p>
% endfor %}

e forloop.counter0 islike forloop.counter, except it’s zero-indexed. Its value will be set to
0 the first time through the loop.

e forloop.revcounter is always set to an integer representing the number of remaining items in
the loop. The first time through the loop, forloop.revcounter will be set to the total number of
items in the sequence you’re traversing. The last time through the loop, forloop.revcounter
will be set to 1.

e forloop.revcounter0 islike forloop.revcounter, except it’s zero-indexed. The first
time through the loop, forloop.revcounter0 will be set to the number of elements in the
sequence minus 1. The last time through the loop, it will be set to 0.

e forloop.first is a Boolean value set to True if this is the first time through the loop. This is
convenient for special casing:

% for object in objects %}
% 1f forloop.first %}<li class="first">{% else $%}<1i>{%$ endif %}
{{ object }}
</1li>
% endfor %}
e forloop.last is a Boolean value set to True if this is the last time through the loop. A common
use for this is to put pipe characters between a list of links:

% for link in links %}{{ link }}{% if not forloop.last %} | % endif %$}{% endfor %}
The above template code might output something like this::

Linkl | Link2 | Link3 | Link4
e forloop.parentloop is areference to the forloop object for the parent loop, in case of nested
loops. Here’s an example:

{$ for country in countries %}

<table>

% for city in country.city_list %}
<tr>
<td>Country #{{ forloop.parentloop.counter }}</td>
<td>City #{{ forloop.counter }}</td>
<td>{{ city }}</td>
</tr>

% endfor %}

4.3.1 Tags 34



The Django Book

</table>
% endfor %}

The magic forloop variable is only available within loops. After the template parser has reached {%
endfor %}, forloop disappears.

Context and the forloop Variable

Inside the {$ for %} block, the existing variables are moved out of the way to avoid overwriting the magic
forloop variable. Django exposes this moved context in forloop.parentloop. You generally don’t
need to worry about this, but if you supply a template variable named forloop (though we advise against
it), it will be named forloop.parentloop while inside the {$ for %} block.

4.3.1.3 ifequal/ifnotequal

The Django template system deliberately is not a full-fledged programming language and thus does not allow
you to execute arbitrary Python statements. (More on this idea in the section ‘“Philosophies and Limitations.”)
However, it’s quite a common template requirement to compare two values and display something if they’re
equal—and Django provides an {$ ifequal %} tag for that purpose.

The {$ ifequal %} tagcompares two values and displays everything between {$ ifequal %} and {%
endifequal %} if the values are equal.

This example compares the template variables user and currentuser:

{% ifequal user currentuser %}
<hl>Welcome!</hl>
% endifequal %}

The arguments can be hard-coded strings, with either single or double quotes, so the following is valid:

—
oe

ifequal section 'sitenews' %}
<hl>Site News</hl>
endifequal %}

—
oe

—
oe

ifequal section "community" %
<hl>Community</hl>
endifequal %}

—
oe

Justlike {$ if %},the {$ ifequal $} tag supports an optional {$ else %}:

% ifequal section 'sitenews' %}
<hl>Site News</hl>

% else %}
<h1>No News Here</hl>

% endifequal %}

Only template variables, strings, integers, and decimal numbers are allowed as arguments to {$ ifequal
%}. These are valid examples:

oe

ifequal variable 1 %}

ifequal variable 1.23 %}
ifequal variable 'foo' %}
ifequal variable "foo" %}

oo o

oe

N

Any other types of variables, such as Python dictionaries, lists, or Booleans, can’t be hard-coded in { %
ifequal %}.These are invalid examples:

% ifequal variable True %}

4.3.1 Tags 35



The Django Book

o)

% ifequal variable [1, 2, 3] %}

o)

% ifequal variable {'key': 'value'} %}
If you need to test whether something is true or false, use the {$ 1if %} tagsinstead of {$ ifequal %}.
4.3.1.4 Comments

Just as in HTML or in a programming language such as Python, the Django template language allows for
comments. To designate a comment, use {# #}:

{# This is a comment #}
The comment will not be output when the template is rendered.

A comment cannot span multiple lines. This limitation improves template parsing performance. In the
following template, the rendered output will look exactly the same as the template (i.e., the comment tag will
not be parsed as a comment):

This is a {# this is not
a comment #}
test.

4.3.2 Filters

As explained earlier in this chapter, template filters are simple ways of altering the value of variables before
they’re displayed. Filters look like this:

{{ name|lower }}

This displays the value of the { { name }} variable after being filtered through the 1ower filter, which
converts text to lowercase. Use a pipe (| ) to apply a filter.

Filters can be chained—that is, the output of one filter is applied to the next. Here’s a common idiom for
escaping text contents, and then converting line breaks to <p> tags:

{{ my_text|escape|linebreaks }}

Some filters take arguments. A filter argument looks like this:

{{ bio|truncatewords:"30" }}

This displays the first 30 words of the bio variable. Filter arguments are always in double quotes.
The following are a few of the most important filters; Appendix F covers the rest.

® addslashes: Adds a backslash before any backslash, single quote, or double quote. This is useful if
the produced text is included in a JavaScript string.

® date: Formats a date or datet ime object according to a format string given in the parameter, for
example:

{{ pub_date|date:"F j, Y" }}

Format strings are defined in Appendix F.

® escape: Escapes ampersands, quotes, and angle brackets in the given string. This is useful for
sanitizing user-submitted data and for ensuring data is valid XML or XHTML. Specifically, escape
makes these conversions:

4.3.1 Tags 36



The Django Book

+ Converts & to &amp;
¢ Converts < to &1t;
¢ Converts > to &gt ;
¢ Converts " (double quote) to squot ;
¢ Converts ' (single quote) to &#39;
® 1ength: Returns the length of the value. You can use this on a list or a string, or any Python object
that knows how to determine its length (i.e., any object thathasa___len__ () method).

4.4 Philosophies and Limitations

Now that you’ve gotten a feel for the Django template language, we should point out some of its intentional
limitations, along with some philosophies behind why it works the way it works.

More than any other component of Web applications, programmer opinions on template systems vary wildly.
The fact that Python alone has dozens, if not hundreds, of open source template-language implementations
supports this point. Each was likely created because its developer deemed all existing template languages
inadequate. (In fact, it is said to be a rite of passage for a Python developer to write his or her own template
language! If you haven’t done this yet, consider it. It’s a fun exercise.)

With that in mind, you might be interested to know that Django doesn’t require that you use its template
language. Because Django is intended to be a full-stack Web framework that provides all the pieces necessary
for Web developers to be productive, many times it’s more convenient to use Django’s template system than
other Python template libraries, but it’s not a strict requirement in any sense. As you’ll see in the upcoming
section “Using Templates in Views”, it’s very easy to use another template language with Django.

Still, it’s clear we have a strong preference for the way Django’s template language works. The template
system has roots in how Web development is done at World Online and the combined experience of Django’s
creators. Here are a few of those philosophies:

® Business logic should be separated from presentation logic. We see a template system as a tool that
controls presentation and presentation-related logic—and that’s it. The template system shouldn’t
support functionality that goes beyond this basic goal.

For that reason, it’s impossible to call Python code directly within Django templates. All
“programming” is fundamentally limited to the scope of what template tags can do. It is possible to
write custom template tags that do arbitrary things, but the out-of-the-box Django template tags
intentionally do not allow for arbitrary Python code execution.

o Syntax should be decoupled from HTML/XML. Although Django’s template system is used primarily
to produce HTML, it’s intended to be just as usable for non-HTML formats, such as plain text. Some
other template languages are XML based, placing all template logic within XML tags or attributes,
but Django deliberately avoids this limitation. Requiring valid XML to write templates introduces a
world of human mistakes and hard-to-understand error messages, and using an XML engine to parse
templates incurs an unacceptable level of overhead in template processing.

® Designers are assumed to be comfortable with HTML code. The template system isn’t designed so
that templates necessarily are displayed nicely in WYSIWYG editors such as Dreamweaver. That is
too severe a limitation and wouldn’t allow the syntax to be as nice as it is. Django expects template
authors to be comfortable editing HTML directly.

® Designers are assumed not to be Python programmers. The template system authors recognize that
Web page templates are most often written by designers, not programmers, and therefore should not
assume Python knowledge.

However, the system also intends to accommodate small teams in which the templates are created by

Python programmers. It offers a way to extend the system’s syntax by writing raw Python code.
(More on this in Chapter 10.)

4.3.2 Filters 37



The Django Book

® The goal is not to invent a programming language. The goal is to offer just enough
programming-esque functionality, such as branching and looping, that is essential for making
presentation-related decisions.

As a result of these design philosophies, the Django template language has the following limitations:

® A template cannot set a variable or change the value of a variable. 1t’s possible to write custom
template tags that accomplish these goals (see Chapter 10), but the stock Django template tags do not
allow it.

® A template cannot call raw Python code. There’s no way to “drop into Python mode” or use raw
Python constructs. Again, it’s possible to write custom template tags to do this, but the stock Django
template tags don’t allow it.

4.5 Using Templates in Views

You’ve learned the basics of using the template system; now let’s use this knowledge to create a view. Recall
the current_datetime view inmysite.views, which we started in the previous chapter. Here’s what
it looks like:

from django.http import HttpResponse
import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse (html)

Let’s change this view to use Django’s template system. At first, you might think to do something like this:

from django.template import Template, Context
from django.http import HttpResponse
import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
t = Template ("<html><body>It is now {{ current_date }}.</body></html>")
html = t.render (Context ({'current_date': now}))
return HttpResponse (html)

Sure, that uses the template system, but it doesn’t solve the problems we pointed out in the introduction of this
chapter. Namely, the template is still embedded in the Python code. Let’s fix that by putting the template in a
separate file, which this view will load.

You might first consider saving your template somewhere on your filesystem and using Python’s built-in
file-opening functionality to read the contents of the template. Here’s what that might look like, assuming the
template was saved as the file /home/djangouser/templates/mytemplate.html:

from django.template import Template, Context
from django.http import HttpResponse
import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
# Simple way of using templates from the filesystem.
# This doesn't account for missing files!
fp = open('/home/djangouser/templates/mytemplate.html')
t = Template (fp.read())
fp.close ()
html = t.render (Context ({'current_date': now}))

4.4 Philosophies and Limitations 38



The Django Book

return HttpResponse (html)
This approach, however, is inelegant for these reasons:

e [t doesn’t handle the case of a missing file. If the file mytemplate.html doesn’t exist or isn’t
readable, the open () call will raise an IOError exception.

e It hard-codes your template location. If you were to use this technique for every view function, you’d
be duplicating the template locations. Not to mention it involves a lot of typing!

¢ It includes a lot of boring boilerplate code. You’ve got better things to do than to write calls to
open(), fp.read(),and fp.close () each time you load a template.

To solve these issues, we’ll use template loading and template directories, both of which are described in the
sections that follow.

4.6 Template Loading

Django provides a convenient and powerful API for loading templates from disk, with the goal of removing
redundancy both in your template-loading calls and in your templates themselves.

In order to use this template-loading API, first you’ll need to tell the framework where you store your
templates. The place to do this is in your settings file.

A Django settings file is the place to put configuration for your Django instance (aka your Django project).
It’s a simple Python module with module-level variables, one for each setting.

When you ran d jango—-admin.py startproject mysite in Chapter 2, the script created a default
settings file for you, aptly named settings.py. Have a look at the file’s contents. It contains variables that
look like this (though not necessarily in this order):

DEBUG = True

TIME_ZONE = 'America/Chicago'
USE_I18N = True
ROOT_URLCONF = 'mysite.urls'

This is pretty self-explanatory; the settings and their respective values are simple Python variables. And
because the settings file is just a plain Python module, you can do dynamic things such as checking the value
of one variable before setting another. (This also means that you should avoid Python syntax errors in your
settings file.)

We’ll cover settings files in depth in Appendix E, but for now, have a look at the TEMPLATE_DIRS setting.
This setting tells Django’s template-loading mechanism where to look for templates. By default, it’s an empty
tuple. Pick a directory where you’d like to store your templates and add it to TEMPLATE_DIRS, like so:

TEMPLATE_DIRS = (
' /home/django/mysite/templates’',
)

There are a few things to note:

® You can specify any directory you want, as long as the directory and templates within that directory
are readable by the user account under which your Web server runs. If you can’t think of an
appropriate place to put your templates, we recommend creating a templates directory within your
Django project (i.e., within the mysite directory you created in Chapter 2, if you’ve been following
along with this book’s examples).

® Don’t forget the comma at the end of the template directory string! Python requires commas within

4.5 Using Templates in Views 39



The Django Book

single-element tuples to disambiguate the tuple from a parenthetical expression. This is a common
newbie gotcha.

If you want to avoid this error, you can make TEMPLATE_DIRS a list instead of a tuple, because
single-element lists don’t require a trailing comma:

TEMPLATE_DIRS = |
'/home/django/mysite/templates’
]

A tuple is slightly more semantically correct than a list (tuples cannot be changed after being created,
and nothing should be changing settings once they’ve been read), so we recommend using a tuple for
your TEMPLATE_DIRS setting.

¢ If you’re on Windows, include your drive letter and use Unix-style forward slashes rather than
backslashes, as follows:

TEMPLATE_DIRS = (

'C:/www/django/templates’,
)
It’s simplest to use absolute paths (i.e., directory paths that start at the root of the filesystem). If you
want to be a bit more flexible and decoupled, though, you can take advantage of the fact that Django
settings files are just Python code by constructing the contents of TEMPLATE_DIRS dynamically, for
example:

import os.path

TEMPLATE DIRS = (
os.path.join (os.path.dirname(__ _file_ ), 'templates').replace('\\','/"),

)

This example uses the “magic” Python variable ___file_ , which is automatically set to the file
name of the Python module in which the code lives.

With TEMPLATE_DIRS set, the next step is to change the view code to use Django’s template-loading
functionality rather than hard-coding the template paths. Returning to our current_datetime view, let’s
change it like so:

from django.template.loader import get_template
from django.template import Context

from django.http import HttpResponse

import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
t = get_template('current_datetime.html")
html = t.render (Context ({'current_date': now}))
return HttpResponse (html)

In this example, we’re using the function d jango.template.loader.get_template () rather than

loading the template from the filesystem manually. The get_template () function takes a template name
as its argument, figures out where the template lives on the filesystem, opens that file, and returns a compiled
Template object.

If get_template () cannot find the template with the given name, it raises a TemplateDoesNotExist
exception. To see what that looks like, fire up the Django development server again, as in Chapter 3, by
running python manage.py runserver within your Django project’s directory. Then, point your
browser at the page that activates the current_datet ime view (e.g.,
http://127.0.0.1:8000/time/). Assuming your DEBUG setting is set to True and you haven’t yet

4.6 Template Loading 40



The Django Book

created a current_datetime.html template, you should see a Django error page highlighting the
TemplateDoesNotExist error.

ae6e TemplateDoesMotExist at ftime/

=
TemplateDoesNotExist at fime/ 0
current_datetime.html

Request Method: GET
Request URL: http://localhost:BODO/ time/
Exception Type: TemplateDoesMotExist
Exception Value: current_datetime.html
Exception Location: /Users/jacob/Projects/Book/django/template/loader.py in find_template_source, line 72

Template-loader postmortem

Dijango tried loading these templates, in this order:
+ Using loader django . template. loaders. filesystem. load_template_source:
« /Users/jaccb/Projects/Book/chb/templates/current_datetime.html (File does not exist)
+ Using loader django. template. loaders.app_directories.load_template_source:
« /Users/jaccb/Projects/Book/djange/contrib/admin/templates/current_datetime.html (File does not exist)
« /Users/jacob/Projects/Book/chb/templates/current_datetime.html (File does not exist)

L

Done L

Figure 4-1: The error page shown when a template cannot be found.

This error page is similar to the one we explained in Chapter 3, with one additional piece of debugging
information: a “Template-loader postmortem” section. This section tells you which templates Django tried to
load, along with the reason each attempt failed (e.g., “File does not exist”). This information is invaluable
when you’re trying to debug template-loading errors.

As you can probably tell from the error messages found in the Figure 4-1, Django attempted to find the
template by combining the directory in the TEMPLATE_DIRS setting with the template name passed to
get_template (). Soif your TEMPLATE_DIRS contains ' /home/django/templates’', Django
looks for the file ' /home/django/templates/current_datetime.html'.If TEMPLATE_DIRS
contains more than one directory, each is checked until the template is found or they’ve all been checked.

Moving along, create the current_datetime.html file within your template directory using the
following template code:

<html><body>It is now {{ current_date }}.</body></html>

Refresh the page in your Web browser, and you should see the fully rendered page.

4.6.1 render_to_response()

Because it’s such a common idiom to load a template, fill a Context, and return an Ht t pResponse object
with the result of the rendered template, Django provides a shortcut that lets you do those things in one line of
code. This shortcut is a function called render_to_response (), which lives in the module
django.shortcuts. Most of the time, you’ll be using render_to_response () rather than loading
templates and creating Context and Ht t pResponse objects manually.

Here’s the ongoing current_datetime example rewritten to use render_to_response ():

from django.shortcuts import render_to_response
import datetime

def current_datetime (request) :

4.6.1 render_to_response() 41



The Django Book

now = datetime.datetime.now ()
return render_to_response ('current_datetime.html', {'current_date': now})

What a difference! Let’s step through the code changes:

® We no longer have to import get_template, Template, Context, or HttpResponse.
Instead, we import django.shortcuts.render_to_response. The import datetime
remains.

e Within the current_datet ime function, we still calculate now, but the template loading, context
creation, template rendering, and Ht t pResponse creation is all taken care of by the
render_to_response () call. Because render_to_response () returns an
HttpResponse object, we can simply return that value in the view.

The first argument to render_to_response () should be the name of the template to use. The second
argument, if given, should be a dictionary to use in creating a Context for that template. If you don’t
provide a second argument, render_to_response () will use an empty dictionary.

4.6.2 The locals() Trick

Consider our latest incarnation of current_datetime:

def current_datetime (request) :
now = datetime.datetime.now ()
return render_to_response ('current_datetime.html', {'current_date': now})

Many times, as in this example, you’ll find yourself calculating some values, storing them in variables (e.g.,
now in the preceding code), and sending those variables to the template. Particularly lazy programmers should
note that it’s slightly redundant to have to give names for temporary variables and give names for the template
variables. Not only is it redundant, but also it’s extra typing.

So if you’re one of those lazy programmers and you like keeping code particularly concise, you can take
advantage of a built-in Python function called 1ocals (). It returns a dictionary mapping all local variable
names to their values. Thus, the preceding view could be rewritten like so:

def current_datetime (request) :
current_date = datetime.datetime.now ()
return render_to_response ('current_datetime.html', locals())

Here, instead of manually specifying the context dictionary as before, we pass the value of 1ocals (), which
will include all variables defined at that point in the function’s execution. As a consequence, we’ve renamed
the now variable to current_date, because that’s the variable name that the template expects. In this
example, locals () doesn’t offer a huge improvement, but this technique can save you some typing if you
have several template variables to define—or if you're lazy.

One thing to watch out for when using 1ocals () is that it includes every local variable, which may
comprise more variables than you actually want your template to have access to. In the previous example,
locals () will also include request. Whether this matters to you depends on your application.

A final thing to consider is that 1ocals () incurs a small bit of overhead, because when you call it, Python

has to create the dictionary dynamically. If you specify the context dictionary manually, you avoid this
overhead.

4.6.3 Subdirectories in get_template()

It can get unwieldy to store all of your templates in a single directory. You might like to store templates in

4.6.2 The locals() Trick 42



The Django Book

subdirectories of your template directory, and that’s fine. In fact, we recommend doing so; some more
advanced Django features (such as the generic views system, which we cover in Chapter 9) expect this
template layout as a default convention.

Storing templates in subdirectories of your template directory is easy. In your calls to get_template (),
just include the subdirectory name and a slash before the template name, like so:

t = get_template ('dateapp/current_datetime.html"')

Because render_to_response () is a small wrapper around get_template (), you can do the same
thing with the first argument to render_to_response ().

There’s no limit to the depth of your subdirectory tree. Feel free to use as many as you like.
Note

Windows users, be sure to use forward slashes rather than backslashes. get_template () assumes a
Unix-style file name designation.

4.6.4 The include Template Tag

Now that we’ve covered the template-loading mechanism, we can introduce a built-in template tag that takes
advantage of it: {$ include %}. This tag allows you to include the contents of another template. The
argument to the tag should be the name of the template to include, and the template name can be either a
variable or a hard-coded (quoted) string, in either single or double quotes. Anytime you have the same code in
multiple templates, consider using an {$ include %} toremove the duplication.

These two examples include the contents of the template nav.html. The examples are equivalent and
illustrate that either single or double quotes are allowed:

% include 'nav.html' %}
% include "nav.html" %}

This example includes the contents of the template includes/nav.html:
% include 'includes/nav.html' %}

This example includes the contents of the template whose name is contained in the variable
template_name:

% include template_name %}

Asin get_template (), the file name of the template is determined by adding the template directory from
TEMPLATE_DIRS to the requested template name.

Included templates are evaluated with the context of the template that’s including them.
If a template with the given name isn’t found, Django will do one of two things:
¢ [f DEBUG is set to True, you'll see the TemplateDoesNotEx1ist exception on a Django error

page.
¢ [f DEBUG is set to False, the tag will fail silently, displaying nothing in the place of the tag.

4.6.3 Subdirectories in get_template() 43



The Django Book
4.7 Template Inheritance

Our template examples so far have been tiny HTML snippets, but in the real world, you’ll be using Django’s
template system to create entire HTML pages. This leads to a common Web development problem: across a
Web site, how does one reduce the duplication and redundancy of common page areas, such as sitewide
navigation?

A classic way of solving this problem is to use server-side includes, directives you can embed within your
HTML pages to “include” one Web page inside another. Indeed, Django supports that approach, with the {%
include %} template tag just described. But the preferred way of solving this problem with Django is to
use a more elegant strategy called template inheritance.

In essence, template inheritance lets you build a base “skeleton” template that contains all the common parts
of your site and defines “blocks” that child templates can override.

Let’s see an example of this by creating a more complete template for our current_datet ime view, by
editing the current_datetime.html file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTIML 4.01//EN">
<html lang="en">
<head>
<title>The current time</title>
</head>
<body>
<h1>My helpful timestamp site</hl>
<p>It is now {{ current_date }}.</p>

<hr>

<p>Thanks for visiting my site.</p>
</body>
</html>

That looks just fine, but what happens when we want to create a template for another view—say, the
hours_ahead view from Chapter 3? If we want again to make a nice, valid, full HTML template, we’d
create something like:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 4.01//EN">
<html lang="en">
<head>
<title>Future time</title>
</head>
<body>
<h1>My helpful timestamp site</hl>
<p>In {{ hour_offset }} hour(s), it will be {{ next_time }}.</p>

<hr>

<p>Thanks for visiting my site.</p>
</body>
</html>

Clearly, we’ve just duplicated a lot of HTML. Imagine if we had a more typical site, including a navigation
bar, a few style sheets, perhaps some JavaScript—we’d end up putting all sorts of redundant HTML into each
template.

The server-side include solution to this problem is to factor out the common bits in both templates and save
them in separate template snippets, which are then included in each template. Perhaps you’d store the top bit

of the template in a file called header.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

4.7 Template Inheritance 44



The Django Book

<html lang="en">
<head>

And perhaps you’d store the bottom bit in a file called footer.html:

<hr>

<p>Thanks for visiting my site.</p>
</body>
</html>

With an include-based strategy, headers and footers are easy. It’s the middle ground that’s messy. In this
example, both pages feature a title— <h1>My helpful timestamp site</hl>—but that title can’t
fit into header .html because the <t it 1e> on both pages is different. If we included the <h1> in the
header, we’d have to include the <t it 1e>, which wouldn’t allow us to customize it per page. See where this
is going?

Django’s template inheritance system solves these problems. You can think of it as an “inside-out” version of
server-side includes. Instead of defining the snippets that are common, you define the snippets that are
different.

The first step is to define a base template—a skeleton of your page that child templates will later fill in.
Here’s a base template for our ongoing example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 4.01//EN">
<html lang="en">
<head>

<title>{% block title %}{% endblock %$}</title>
</head>
<body>

<h1>My helpful timestamp site</hl>

{% block content %} {% endblock %}

{% block footer %}

<hr>

<p>Thanks for visiting my site.</p>

% endblock %}
</body>
</html>

This template, which we’ll call base . html, defines a simple HTML skeleton document that we’ll use for all
the pages on the site. It’s the job of child templates to override, or add to, or leave alone the contents of the
blocks. (If you’re following along at home, save this file to your template directory.)

We’re using a template tag here that you haven’t seen before: the {$ block %} tag. Allthe {$ block
%} tags do is tell the template engine that a child template may override those portions of the template.

Now that we have this base template, we can modify our existing current_datetime.html template to
use it:

% extends "base.html" %}
{% block title %}The current time{% endblock %}
{% block content %}

<p>It is now {{ current_date }}.</p>
% endblock %}

While we’re at it, let’s create a template for the hours_ahead view from Chapter 3. (If you’re following

along with code, we’ll leave it up to you to change hours_ahead to use the template system.) Here’s what
that would look like:

4.7 Template Inheritance 45



The Django Book
% extends "base.html" %}
{% block title %}Future time{% endblock %}
{% block content %}

<p>In {{ hour_offset }} hour(s), it will be {{ next_time }}.</p>
{% endblock %}

Isn’t this beautiful? Each template contains only the code that’s unigue to that template. No redundancy

needed. If you need to make a site-wide design change, just make the change to base . html, and all of the

other templates will immediately reflect the change.

Here’s how it works. When you load the template current_datetime.html, the template engine sees
the {$ extends %} tag, noting that this template is a child template. The engine immediately loads the

parent template—in this case, base.html.

At that point, the template engine notices the three {$ block %} tagsinbase.html and replaces those

blocks with the contents of the child template. So, the title we’ve defined in {$ block title %} will be

used, as will the {$ block content %}.

Note that since the child template doesn’t define the footer block, the template system uses the value from

the parent template instead. Content within a {$ block %} tagin a parent template is always used as a
fallback.

Inheritance doesn’t affect the way the context works, and you can use as many levels of inheritance as needed.

One common way of using inheritance is the following three-level approach:

1. Create a base . html template that holds the main look and feel of your site. This is the stuff that

rarely, if ever, changes.

2. Create a base_SECTION. html template for each “section” of your site (e.g.,
base_photos.html and base_forum.html). These templates extend base .html and
include section-specific styles/design.

3. Create individual templates for each type of page, such as a forum page or a photo gallery. These
templates extend the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared areas, such as section-wide
navigation.

Here are some tips for working with template inheritance:
e [fyouuse {$ extends %} inatemplate, it must be the first template tag in that template.

Otherwise, template inheritance won’t work.
¢ Generally, the more {$ block %} tagsin your base templates, the better. Remember, child

templates don’t have to define all parent blocks, so you can fill in reasonable defaults in a number of
blocks, and then define only the ones you need in the child templates. It’s better to have more hooks
than fewer hooks.

e If you find yourself duplicating code in a number of templates, it probably means you should move
that codetoa {$ block %} in a parent template.

¢ If you need to get the content of the block from the parent template, the { { block.super }}
variable will do the trick. This is useful if you want to add to the contents of a parent block instead of
completely overriding it.

® You may not define multiple {$ block %} tags with the same name in the same template. This
limitation exists because a block tag works in “both” directions. That is, a block tag doesn’t just
provide a hole to fill, it also defines the content that fills the hole in the parent. If there were two
similarly named {% block %} tagsin a template, that template’s parent wouldn’t know which one
of the blocks’ content to use.

4.7 Template Inheritance 46



The Django Book

¢ The template name you pass to {$ extends %} is loaded using the same method that
get_template () uses. That is, the template name is appended to your TEMPLATE_DIRS setting.

¢ In most cases, the argument to {$ extends %} will be a string, but it can also be a variable, if you
don’t know the name of the parent template until runtime. This lets you do some cool, dynamic stuff.

4.8 What’s next?

Most modern Web sites are database-driven: the content of the Web site is stored in a relational database.
This allows a clean separate of data and logic (in the same way views and templates allow the separation of
logic and display.)

The next chapter covers the tools Django gives you to interact with a database.

4.8 What’s next? 47



5 Interacting with a Database: Models

In Chapter 3, we covered the fundamentals of building dynamic Web sites with Django: setting up views and
URLconfs. As we explained, a view is responsible for doing some arbitrary logic, and then returning a
response. In the example, our arbitrary logic was to calculate the current date and time.

In modern Web applications, the arbitrary logic often involves interacting with a database. Behind the scenes,
a database-driven Web site connects to a database server, retrieves some data out of it, and displays that data,
nicely formatted, on a Web page. Or, similarly, the site could provide functionality that lets site visitors
populate the database on their own.

Many complex Web sites provide some combination of the two. Amazon.com, for instance, is a great example
of a database-driven site. Each product page is essentially a query into Amazon’s product database formatted
as HTML, and when you post a customer review, it gets inserted into the database of reviews.

Django is well suited for making database-driven Web sites, as it comes with easy yet powerful ways of
performing database queries using Python. This chapter explains that functionality: Django’s database layer.

(Note: While it’s not strictly necessary to know basic database theory and SQL in order to use Django’s
database layer, it’s highly recommended. An introduction to those concepts is beyond the scope of this book,
but keep reading even if you’re a database newbie. You’ll probably be able to follow along and grasp
concepts based on the context.)

5.1 The “Dumb” Way to Do Database Queries in Views

Just as Chapter 3 detailed a “dumb” way to produce output within a view (by hard-coding the text directly
within the view), there’s a “dumb” way to retrieve data from a database in a view. It’s simple: just use any
existing Python library to execute an SQL query and do something with the results.

In this example view, we use the My SQLdb library (available at
http://www.djangoproject.com/r/python-mysgl/) to connect to a MySQL database, retrieve some records, and
feed them to a template for display as a Web page:

from django.shortcuts import render_to_response
import MySQLdb

def book_list (request) :
db = MySQLdb.connect (user="'me', db='mydb', passwd='secret', host='localhost')

cursor = db.cursor()

cursor.execute ('SELECT name FROM books ORDER BY name')

names = [row[0] for row in cursor.fetchall ()]

db.close ()

return render_to_response ('book_list.html', {'names': names})

This approach works, but some problems should jump out at you immediately:

® We’re hard-coding the database connection parameters. Ideally, these parameters would be stored in
the Django configuration.

® We’re having to write a fair bit of boilerplate code: creating a connection, creating a cursor, executing
a statement, and closing the connection. Ideally, all we’d have to do is specify which results we
wanted.

e It ties us to MySQL. If, down the road, we switch from MySQL to PostgreSQL, we’ll have to use a
different database adapter (e.g., psycopg rather than My SQLdDb), alter the connection parameters,
and — depending on the nature of the SQL statement — possibly rewrite the SQL. Ideally, the
database server we’re using would be abstracted, so that a database server change could be made in a

5 Interacting with a Database: Models 48


http://www.djangoproject.com/r/python-mysql/

The Django Book

single place.

As you might expect, Django’s database layer aims to solve these problems. Here’s a sneak preview of how
the previous view can be rewritten using Django’s database API:

from django.shortcuts import render_to_response
from mysite.books.models import Book

def book_list (request) :
books = Book.objects.order_by ('name')
return render_to_response ('book_list.html', {'books': books})

We’ll explain this code a little later in the chapter. For now, just get a feel for how it looks.

5.2 The MTV Development Pattern

Before we delve into any more code, let’s take a moment to consider the overall design of a database-driven
Django Web application.

As we mentioned in previous chapters, Django is designed to encourage loose coupling and strict separation
between pieces of an application. If you follow this philosophy, it’s easy to make changes to one particular
piece of the application without affecting the other pieces. In view functions, for instance, we discussed the
importance of separating the business logic from the presentation logic by using a template system. With the
database layer, we’re applying that same philosophy to data access logic.

Those three pieces together — data access logic, business logic, and presentation logic — comprise a concept
that’s sometimes called the Model-View-Controller (MVC) pattern of software architecture. In this pattern,
“Model” refers to the data access layer, “View” refers to the part of the system that selects what to display and
how to display it, and “Controller” refers to the part of the system that decides which view to use, depending
on user input, accessing the model as needed.

Why the Acronym?

The goal of explicitly defining patterns such as MVC is mostly to streamline communication among
developers. Instead of having to tell your coworkers, “Let’s make an abstraction of the data access, then let’s
have a separate layer that handles data display, and let’s put a layer in the middle that regulates this,” you can
take advantage of a shared vocabulary and say, “Let’s use the MVC pattern here.”

Django follows this MVC pattern closely enough that it can be called an MVC framework. Here’s roughly
how the M, V, and C break down in Django:

® M, the data-access portion, is handled by Django’s database layer, which is described in this chapter.

e V, the portion that selects which data to display and how to display it, is handled by views and
templates.

e C, the portion that delegates to a view depending on user input, is handled by the framework itself by
following your URLconf and calling the appropriate Python function for the given URL.

Because the “C” is handled by the framework itself and most of the excitement in Django happens in models,
templates, and views, Django has been referred to as an MTV framework. In the MTV development pattern,

® M stands for “Model,” the data access layer. This layer contains anything and everything about the
data: how to access it, how to validate it, which behaviors it has, and the relationships between the
data.

e T stands for “Template,” the presentation layer. This layer contains presentation-related decisions:
how something should be displayed on a Web page or other type of document.

5.1 The “Dumb” Way to Do Database Queries in Views 49



The Django Book

¢ V stands for “View,” the business logic layer. This layer contains the logic that access the model and
defers to the appropriate template(s). You can think of it as the bridge between models and templates.

If you’re familiar with other MVC Web-development frameworks, such as Ruby on Rails, you may consider
Django views to be the “controllers” and Django templates to be the “views.” This is an unfortunate confusion
brought about by differing interpretations of MVC. In Django’s interpretation of MVC, the “view” describes
the data that gets presented to the user; it’s not necessarily just ~ow the data looks, but which data is
presented. In contrast, Ruby on Rails and similar frameworks suggest that the controller’s job includes
deciding which data gets presented to the user, whereas the view is strictly how the data looks, not which data
is presented.

Neither interpretation is more “correct” than the other. The important thing is to understand the underlying
concepts.

5.3 Configuring the Database

With all of that philosophy in mind, let’s start exploring Django’s database layer. First, we need to take care
of some initial configuration: we need to tell Django which database server to use and how to connect to it.

We’ll assume you’ve set up a database server, activated it, and created a database within it (e.g., using a
CREATE DATABASE statement). SQLite is a special case; in that case, there’s no database to create, because
SQLite uses standalone files on the filesystem to store its data.

As with TEMPLATE_DIRS in the previous chapter, database configuration lives in the Django settings file,
called settings.py by default. Edit that file and look for the database settings:

DATABASE_ENGINE = "'
DATABASE_NAME = '
DATABASE_USER = '
DATABASE_PASSWORD = ''
DATABASE_HOST = "'
DATABASE_PORT = "'

v
v

Here’s a rundown of each setting.

e DATABASE_ENGINE tells Django which database engine to use. If you’re using a database with
Django, DATABASE_ENGINE must be set to one of the strings shown in Table 5-1.

Table 5-1. Database Engine Settings

Setting Database Required Adapter
psycopg version 1.x,
http://www.djangoproject.com/r/python-pgsql/1/.
psycopg version 2.X,
http://www.djangoproject.com/r/python-pgsql/.
My SQLdb,
http://www.djangoproject.com/r/python-mysql/.
No adapter needed if using Python 2.5+. Otherwise,
sglite3 SQLite pysqlite,
http://www.djangoproject.com/r/python-sqlite/.
Microsoft adodbapi version 2.0.1+,
SQL Server http://www.djangoproject.com/r/python-ado/.
cx_Oracle,
http://www.djangoproject.com/r/python-oracle/.

postgresql PostgreSQL
postgresqgl_psycopg2 PostgreSQL

mysqgl MySQL

ado_mssql

oracle Oracle

5.2 The MTV Development Pattern 50


http://www.djangoproject.com/r/python-pgsql/1/
http://www.djangoproject.com/r/python-pgsql/
http://www.djangoproject.com/r/python-mysql/
http://www.djangoproject.com/r/python-sqlite/
http://www.djangoproject.com/r/python-ado/
http://www.djangoproject.com/r/python-oracle/

The Django Book

Note that for whichever database back-end you use, you’ll need to download and install the
appropriate database adapter. Each one is available for free on the Web; just follow the links in the
“Required Adapter” column in Table 5-1.

e DATABASE_NAME tells Django the name of your database. If you’re using SQLite, specify the full
filesystem path to the database file on your filesystem (e.g., ' /home/django/mydata.db").

e DATABASE_USER tells Django which username to use when connecting to your database. If you’re
using SQLite, leave this blank.

e DATABASE_PASSWORD tells Django which password to use when connecting to your database. If
you’re using SQLite or have an empty password, leave this blank.

¢ DATABASE_HOST tells Django which host to use when connecting to your database. If your database
is on the same computer as your Django installation (i.e., localhost), leave this blank. If you’re using
SQLite, leave this blank.

MySQL is a special case here. If this value starts with a forward slash (' /') and you’re using
MySQL, MySQL will connect via a Unix socket to the specified socket, for example:

DATABASE_HOST = '/var/run/mysqgl'

If you’re using MySQL and this value doesn’t start with a forward slash, then this value is assumed to
be the host.

e DATABASE_PORT tells Django which port to use when connecting to your database. If you’re using
SQLite, leave this blank. Otherwise, if you leave this blank, the underlying database adapter will use
whichever port is default for your given database server. In most cases, the default port is fine, so you
can leave this blank.

Once you’ve entered those settings, test your configuration. First, from within the my site project directory
you created in Chapter 2, run the command python manage.py shell.

You’ll notice this starts a Python interactive interpreter. Looks can be deceiving, though! There’s an important
difference between running the command python manage.py shell within your Django project
directory and the more generic python. The latter is the basic Python shell, but the former tells Django
which settings file to use before it starts the shell. This is a key requirement for doing database queries:
Django needs to know which settings file to use in order to get your database connection information.

Behind the scenes, python manage.py shell simply assumes that your settings file is in the same
directory as manage . py. There are other ways to tell Django which settings module to use, but these
subtleties will be covered later. For now, use python manage.py shell whenever you need to drop
into the Python interpreter to do Django-specific tinkering.

Once you’ve entered the shell, type these commands to test your database configuration:

>>> from django.db import connection
>>> cursor = connection.cursor ()

If nothing happens, then your database is configured properly. Otherwise, check the error message for clues
about what’s wrong. Table 5-2 shows some common errors.

Table 5-2. Database Configuration Error Messages

Error Message Solution
Set the DATABASE_ENGINE setting to something
other than an empty string.

Environment variable DJANGO_SETTINGS_MODULE Run the command python manage.py
is undefined. shell rather than python.

You haven’t set the DATABASE_ENGINE setting yet.

5.3 Configuring the Database 51



The Django Book

You haven’t installed the appropriate

Error loading module: No module named . database-specific adapter (e.g., psycopg or
My SQLdDb).
Set your DATABASE_ENGINE setting to one of
isn’t an available database backend. the valid engine settings described previously.

Perhaps you made a typo?

Change the DATABASE_NAME setting to point to a
database that exists, or execute the appropriate
CREATE DATABASE statement in order to create
it.

Change the DATABASE_USER setting to point to a
user that exists, or create the user in your database.
Make sure DATABASE_HOST and

could not connect to server DATABASE_PORT are set correctly, and make
sure the server is running.

database does not exist

role does not exist

5.4 Your First App

Now that you’ve verified the connection is working, it’s time to create a Django app — a bundle of Django
code, including models and views, that lives together in a single Python package and represents a full Django
application.

It’s worth explaining the terminology here, because this tends to trip up beginners. We’d already created a
project, in Chapter 2, so what’s the difference between a project and an app? The difference is that of
configuration vs. code:

¢ A project is an instance of a certain set of Django apps, plus the configuration for those apps.

Technically, the only requirement of a project is that it supplies a settings file, which defines the
database connection information, the list of installed apps, the TEMPLATE_DIRS, and so forth.

¢ An app is a portable set of Django functionality, usually including models and views, that lives
together in a single Python package.

For example, Django comes with a number of apps, such as a commenting system and an automatic
admin interface. A key thing to note about these apps is that they’re portable and reusable across
multiple projects.

There are very few hard-and-fast rules about how you fit your Django code into this scheme; it’s flexible. If
you’re building a simple Web site, you may use only a single app. If you’re building a complex Web site with
several unrelated pieces such as an e-commerce system and a message board, you’ll probably want to split
those into separate apps so that you’ll be able to reuse them individually in the future.

Indeed, you don’t necessarily need to create apps at all, as evidenced by the example view functions we’ve
created so far in this book. In those cases, we simply created a file called views . py, filled it with view
functions, and pointed our URLconf at those functions. No “apps” were needed.

However, there’s one requirement regarding the app convention: if you’re using Django’s database layer
(models), you must create a Django app. Models must live within apps. Thus, in order to start writing our

models, we’ll need to create a new app.

Within the my site project directory you created in Chapter 2, type this command to create a new app named
books:

python manage.py startapp books

5.4 Your First App 52



The Django Book

This command does not produce any output, but it does create a books directory within the mysite
directory. Let’s look at the contents of that directory:

books/
__init_ .py
models.py
views.py

These files will contain the models and views for this app.

Have a look at models.py and views . py in your favorite text editor. Both files are empty, except for an
import in models.py. This is the blank slate for your Django app.

5.5 Defining Models in Python

As we discussed earlier in this chapter, the “M” in “MTV” stands for “Model.” A Django model is a
description of the data in your database, represented as Python code. It’s your data layout — the equivalent of
your SQL CREATE TABLE statements — except it’s in Python instead of SQL, and it includes more than just
database column definitions. Django uses a model to execute SQL code behind the scenes and return
convenient Python data structures representing the rows in your database tables. Django also uses models to
represent higher-level concepts that SQL can’t necessarily handle.

If you’re familiar with databases, your immediate thought might be, “Isn’t it redundant to define data models
in Python and in SQL?” Django works the way it does for several reasons:

e Introspection requires overhead and is imperfect. In order to provide convenient data-access APIs,
Django needs to know the database layout somehow, and there are two ways of accomplishing this.
The first way would be to explicitly describe the data in Python, and the second way would be to
introspect the database at runtime to determine the data models.

This second way seems cleaner, because the metadata about your tables lives in only one place, but it
introduces a few problems. First, introspecting a database at runtime obviously requires overhead. If
the framework had to introspect the database each time it processed a request, or even when the Web
server was initialized, this would incur an unacceptable level of overhead. (While some believe that
level of overhead is acceptable, Django’s developers aim to trim as much framework overhead as
possible, and this approach has succeeded in making Django faster than its high-level framework
competitors in benchmarks.) Second, some databases, notably older versions of MySQL, do not store
sufficient metadata for accurate and complete introspection.

® Writing Python is fun, and keeping everything in Python limits the number of times your brain has to
do a “context switch.” It helps productivity if you keep yourself in a single programming
environment/mentality for as long as possible. Having to write SQL, then Python, and then SQL again
is disruptive.

¢ Having data models stored as code rather than in your database makes it easier to keep your models

under version control. This way, you can easily keep track of changes to your data layouts.

SQL allows for only a certain level of metadata about a data layout. Most database systems, for

example, do not provide a specialized data type for representing email addresses or URLs. Django

models do. The advantage of higher-level data types is higher productivity and more reusable code.

SQL is inconsistent across database platforms. If you’re distributing a Web application, for example,

it’s much more pragmatic to distribute a Python module that describes your data layout than separate

sets of CREATE TABLE statements for MySQL, PostgreSQL, and SQLite.

A drawback of this approach, however, is that it’s possible for the Python code to get out of sync with what’s
actually in the database. If you make changes to a Django model, you’ll need to make the same changes inside
your database to keep your database consistent with the model. We’ll detail some strategies for handling this
problem later in this chapter.

5.5 Defining Models in Python 53



The Django Book

Finally, we should note that Django includes a utility that can generate models by introspecting an existing
database. This is useful for quickly getting up and running with legacy data.

5.6 Your First Model

As an ongoing example in this chapter and the next chapter, we’ll focus on a basic book/author/publisher data
layout. We use this as our example because the conceptual relationships between books, authors, and
publishers are well known, and this is a common data layout used in introductory SQL textbooks. You’re also
reading a book that was written by authors and produced by a publisher!

We’ll suppose the following concepts, fields, and relationships:

¢ An author has a salutation (e.g., Mr. or Mrs.), a first name, a last name, an email address, and a
headshot photo.

¢ A publisher has a name, a street address, a city, a state/province, a country, and a Web site.

® A book has a title and a publication date. It also has one or more authors (a many-to-many
relationship with authors) and a single publisher (a one-to-many relationship — aka foreign key — to
publishers).

The first step in using this database layout with Django is to express it as Python code. In the models.py
file that was created by the st artapp command, enter the following:

from django.db import models

class Publisher (models.Model) :
name = models.CharField (maxlength=30)
address = models.CharField (maxlength=50)
city = models.CharField (maxlength=60)
state_province = models.CharField(maxlength=30)
country = models.CharField (maxlength=50)
website = models.URLField()

class Author (models.Model) :
salutation = models.CharField (maxlength=10)
first_name = models.CharField (maxlength=30)
last_name = models.CharField(maxlength=40)
email = models.EmailField()
headshot = models.ImageField (upload_to='/tmp"')

class Book (models.Model) :
title = models.CharField(maxlength=100)
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey (Publisher)
publication_date = models.DateField()

Let’s quickly examine this code to cover the basics. The first thing to notice is that each model is represented
by a Python class that is a subclass of django .db.models.Model. The parent class, Model, contains all
the machinery necessary to make these objects capable of interacting with a database — and that leaves our
models responsible solely for defining their fields, in a nice and compact syntax. Believe it or not, this is all
the code we need to write to have basic data access with Django.

Each model generally corresponds to a single database table, and each attribute on a model generally
corresponds to a column in that database table. The attribute name corresponds to the column’s name, and the
type of field (e.g., CharField) corresponds to the database column type (e.g., varchar). For example, the
Publisher model is equivalent to the following table (assuming PostgreSQL CREATE TABLE syntax):

CREATE TABLE "books_publisher" (
"id" serial NOT NULL PRIMARY KEY,
"name" varchar (30) NOT NULL,

5.6 Your First Model 54



The Django Book

"address" varchar (50) NOT NULL,
"city" wvarchar (60) NOT NULL,
"state_province" varchar (30) NOT NULL,
"country" varchar (50) NOT NULL,
"website" varchar (200) NOT NULL

)

Indeed, Django can generate that CREATE TABLE statement automatically, as we’ll show in a moment.

The exception to the one-class-per-database-table rule is the case of many-to-many relationships. In our
example models, Book has a ManyToManyField called authors. This designates that a book has one or
many authors, but the Book database table doesn’t get an authors column. Rather, Django creates an
additional table — a many-to-many “join table” — that handles the mapping of books to authors.

For a full list of field types and model syntax options, see Appendix B.

Finally, note we haven’t explicitly defined a primary key in any of these models. Unless you instruct it
otherwise, Django automatically gives every model an integer primary key field called id. Each Django
model is required to have a single-column primary key.

5.7 Installing the Model

We’ve written the code; now let’s create the tables in our database. In order to do that, the first step is to
activate these models in our Django project. We do that by adding the book s app to the list of installed apps
in the settings file.

Edit the settings.py file again, and look for the INSTALLED_APPS setting. INSTALLED_APPS tells
Django which apps are activated for a given project. By default, it looks something like this:

INSTALLED_APPS = (
'django.contrib.auth’',
'django.contrib.contenttypes',
'django.contrib.sessions’',
'django.contrib.sites’,

Temporarily comment out all four of those strings by putting a hash character (#) in front of them. (They’re
included by default as a common-case convenience, but we’ll activate and discuss them later.) While you’re at
it, modify the default MIDDLEWARE_CLASSES and TEMPLATE_CONTEXT_PROCESSORS settings. These
depend on some of the apps we just commented out. Then, add 'mysite.books’ to the
INSTALLED_APPS list, so the setting ends up looking like this:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware"',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.middleware.doc.XViewMiddleware',

— = o W

TEMPLATE_CONTEXT_PROCESSORS = ()
#...

INSTALLED_APPS = (
#'django.contrib.auth',
#'django.contrib.contenttypes’,
#'django.contrib.sessions',
#'django.contrib.sites’',
'mysite.books',

5.7 Installing the Model 55



The Django Book

(As we’re dealing with a single-element tuple here, don’t forget the trailing comma. By the way, this book’s
authors prefer to put a comma after every element of a tuple, regardless of whether the tuple has only a single
element. This avoids the issue of forgetting commas, and there’s no penalty for using that extra comma.)

'mysite.books"' refers to the books app we’re working on. Each app in INSTALLED_APPS is
represented by its full Python path — that is, the path of packages, separated by dots, leading to the app
package.

Now that the Django app has been activated in the settings file, we can create the database tables in our
database. First, let’s validate the models by running this command:

python manage.py validate

The validate command checks whether your models’ syntax and logic are correct. If all is well, you’ll see
the message 0 errors found. If you don’t, make sure you typed in the model code correctly. The error
output should give you helpful information about what was wrong with the code.

Any time you think you have problems with your models, run python manage.py validate. Ittends
to catch all the common model problems.

If your models are valid, run the following command for Django to generate CREATE TABLE statements for
your models in the books app (with colorful syntax highlighting available if you’re using Unix):

python manage.py sglall books

In this command, books is the name of the app. It’s what you specified when you ran the command
manage.py startapp. When you run the command, you should see something like this:

BEGIN;

CREATE TABLE "books_publisher" (
"id" serial NOT NULL PRIMARY KEY,
"name" varchar (30) NOT NULL,
"address" varchar (50) NOT NULL,
"city" wvarchar (60) NOT NULL,
"state_province" varchar (30) NOT NULL,
"country" varchar (50) NOT NULL,
"website" varchar (200) NOT NULL

)

CREATE TABLE "books_book" (
"id" serial NOT NULL PRIMARY KEY,
"title" wvarchar (100) NOT NULL,
"publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
"publication_date" date NOT NULL

)

CREATE TABLE "books_author" (
"id" serial NOT NULL PRIMARY KEY,
"salutation" wvarchar (10) NOT NULL,
"first_name" varchar (30) NOT NULL,
"last_name" wvarchar (40) NOT NULL,
"email" wvarchar (75) NOT NULL,
"headshot" wvarchar (100) NOT NULL

)

CREATE TABLE "books_book_authors" (
"id" serial NOT NULL PRIMARY KEY,

"book_id" integer NOT NULL REFERENCES "books_book" ("id"),
"author_id" integer NOT NULL REFERENCES "books_author" ("id"),
UNIQUE ("book_id", "author_id")

)

CREATE INDEX books_book_publisher_id ON "books_book" ("publisher_id");

COMMIT;

5.7 Installing the Model 56



The Django Book

Note the following:

¢ Table names are automatically generated by combining the name of the app (books) and the
lowercase name of the model (publisher, book, and author). You can override this behavior, as
detailed in Appendix B.

® As we mentioned earlier, Django adds a primary key for each table automatically — the id fields.
You can override this, too.

® By convention, Django appends "_id" to the foreign key field name. As you might have guessed,
you can override this behavior, too.

¢ The foreign key relationship is made explicit by a REFERENCES statement.

e These CREATE TABLE statements are tailored to the database you’re using, so database-specific
field types such as auto_increment (MySQL), serial (PostgreSQL), or integer primary
key (SQLite) are handled for you automatically. The same goes for quoting of column names (e.g.,
using double quotes or single quotes). This example output is in PostgreSQL syntax.

The sglall command doesn’t actually create the tables or otherwise touch your database — it just prints
output to the screen so you can see what SQL Django would execute if you asked it. If you wanted to, you
could copy and paste this SQL into your database client, or use Unix pipes to pass it directly. However,
Django provides an easier way of committing the SQL to the database. Run the syncdb command, like so:

python manage.py syncdb
You’ll see something like this:

Creating table books_publisher
Creating table books_book

Creating table books_author
Installing index for books.Book model

The syncdb command is a simple “sync” of your models to your database. It looks at all of the models in
each app in your INSTALLED_APPS setting, checks the database to see whether the appropriate tables exist
yet, and creates the tables if they don’t yet exist. Note that syncdb does not sync changes in models or
deletions of models; if you make a change to a model or delete a model, and you want to update the database,
syncdb will not handle that. (More on this later.)

If yourun python manage.py syncdb again, nothing happens, because you haven’t added any models
to the books app or added any apps to INSTALLED_APPS. Ergo, it’s always safe to run python
manage.py syncdb — it won’t clobber things.

If you’re interested, take a moment to dive into your database server’s command-line client and see the
database tables Django created. You can manually run the command-line client (e.g., psqgl for PostgreSQL)
or you can run the command python manage.py dbshell, which will figure out which command-line
client to run, depending on your DATABASE_ SERVER setting. The latter is almost always more convenient.

5.8 Basic Data Access

Once you’ve created a model, Django automatically provides a high-level Python API for working with those
models. Try it out by running python manage.py shell and typing the following:

>>> from books.models import Publisher

>>> pl = Publisher (name='Addison-Wesley', address='75 Arlington Street',
city='Boston', state_province='MA', country='U.S.A.',

. website="'http://www.apress.com/")

>>> pl.save ()

>>> p2 = Publisher (name="O'Reilly", address='1l0 Fawcett St.',
city="'Cambridge', state_province='MA', country='U.S.A.',

5.8 Basic Data Access 57



The Django Book

. website="http://www.oreilly.com/")

>>> p2.save ()

>>> publisher_list = Publisher.objects.all()

>>> publisher_list

[<Publisher: Publisher object>, <Publisher: Publisher object>]

These few lines of code accomplish quite a bit. Here are the highlights:

¢ To create an object, just import the appropriate model class and instantiate it by passing in values for
each field.

¢ To save the object to the database, call the save () method on the object. Behind the scenes, Django
executes an SQL INSERT statement here.

¢ To retrieve objects from the database, use the attribute Publisher.objects. Fetch a list of all
Publisher objects in the database with the statement Publisher.objects.all (). Behind
the scenes, Django executes an SQL SELECT statement here.

Naturally, you can do quite a lot with the Django database API — but first, let’s take care of a small
annoyance.

5.9 Adding Model String Representations

When we printed out the list of publishers, all we got was this unhelpful display that makes it difficult to tell
the Publisher objects apart:

[<Publisher: Publisher object>, <Publisher: Publisher object>]

We can fix this easily by adding a method called __str__ () toour Publisher object. A__str__ ()
method tells Python how to display the “string” representation of an object. You can see this in action by
addinga___str__ () method to the three models:

from django.db import models

class Publisher (models.Model) :
name = models.CharField (maxlength=30)
address = models.CharField (maxlength=50)
city = models.CharField (maxlength=60)
state_province = models.CharField(maxlength=30)
country = models.CharField (maxlength=50)
website = models.URLField()

def _ str (self):
return self.name

class Author (models.Model) :
salutation = models.CharField (maxlength=10)
first_name = models.CharField (maxlength=30)
last_name = models.CharField(maxlength=40)
email = models.EmailField()
headshot = models.ImageField (upload_to='/tmp"')

def _ str (self):
return '%s %s' % (self.first_name, self.last_name)

class Book (models.Model) :
title = models.CharField(maxlength=100)
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey (Publisher)
publication_date = models.DateField()

def _ str (self):
return self.title

5.9 Adding Model String Representations 58



The Django Book

Asyoucansee,a__str__ () method can do whatever it needs to do in order to return a string
representation. Here, the __str__ () methods for Publisher and Book simply return the object’s name
and title, respectively, butthe __str__ () for Author is slightly more complex — it pieces together the
first_name and last_name fields. The only requirement for __str__ () is that it return a string. If
__str__ () doesn’treturn a string — if it returns, say, an integer — then Python will raise a TypeError
with a message like "__str__ returned non-string".

For the changes to take effect, exit out of the Python shell and enter it again with python manage.py
shell. (This is the simplest way to make code changes take effect.) Now the list of Publisher objects is
much easier to understand:

>>> from books.models import Publisher

>>> publisher_list = Publisher.objects.all()

>>> publisher_list

[<Publisher: Addison-Wesley>, <Publisher: O'Reilly>]

Make sure any model you define hasa ___str__ () method — not only for your own convenience when
using the interactive interpreter, but also because Django uses the output of __str__ () in several places
when it needs to display objects.

Finally, note that __str__ () is a good example of adding behavior to models. A Django model describes
more than the database table layout for an object; it also describes any functionality that object knows how to
do. __str__ () is one example of such functionality — a model knows how to display itself.

5.10 Inserting and Updating Data

You’ve already seen this done: to insert a row into your database, first create an instance of your model using
keyword arguments, like so:

>>> p = Publisher (name="'Apress',
address="'2855 Telegraph Ave.',
city='Berkeley',
state_province='CA',
country='U.S.A.",
website="'http://www.apress.com/")

This act of instantiating a model class does not touch the database.

To save the record into the database (i.e., to perform the SQL INSERT statement), call the object’s save ()
method:

>>> p.save ()

In SQL, this can roughly be translated into the following:

INSERT INTO book_publisher
(name, address, city, state_province, country, website)
VALUES
("Apress', '2855 Telegraph Ave.', 'Berkeley', 'CA',
'U.S.A.', 'http://www.apress.com/"');

Because the Publisher model uses an autoincrementing primary key id, the initial call to save () does
one more thing: it calculates the primary key value for the record and sets it to the id attribute on the
instance:

>>> p.id
52 # this will differ based on your own data

5.10 Inserting and Updating Data 59



The Django Book

Subsequent calls to save () will save the record in place, without creating a new record (i.e., performing an
SQL UPDATE statement instead of an INSERT):

>>> p.name = 'Apress Publishing'
>>> p.save ()

The preceding save () statement will result in roughly the following SQL:

UPDATE book_publisher SET
name = 'Apress Publishing',
address = '2855 Telegraph Ave.',
city = 'Berkeley',
state_province = 'CA',
country = 'U.S.A.',
website = 'http://www.apress.com'
WHERE id = 52;

5.11 Selecting Objects

Creating and updating data sure is fun, but it is also useless without a way to sift through that data. We’ve
already seen a way to look up all the data for a certain model:

>>> Publisher.objects.all()
[<Publisher: Addison-Wesley>, <Publisher: O'Reilly>, <Publisher: Apress Publishing>]

This roughly translates to this SQL:

SELECT
id, name, address, city, state_province, country, website
FROM book_publisher;

Note

Notice that Django doesn’t use SELECT * when looking up data and instead lists all fields explicitly. This is
by design: in certain circumstances SELECT * can be slower, and (more important) listing fields more
closely follows one tenet of the Zen of Python: “Explicit is better than implicit.”

For more on the Zen of Python, try typing import this ata Python prompt.
Let’s take a close look at each part of this Publisher.objects.all () line:

e First, we have the model we defined, Publisher. No surprise here: when you want to look up data,
you use the model for that data.

e Next, we have this objects business. Technically, this is a manager. Managers are discussed in
detail in Appendix B. For now, all you need to know is that managers take care of all “table-level”
operations on data including, most important, data lookup.

All models automatically get a ob jects manager; you’ll use it any time you want to look up model
instances.

¢ Finally, we have a1l (). This is a method on the ob ject s manager that returns all the rows in the
database. Though this object looks like a list, it’s actually a QuerySet — an object that represents
some set of rows from the database. Appendix C deals with QuerySets in detail. For the rest of this
chapter, we’ll just treat them like the lists they emulate.

Any database lookup is going to follow this general pattern — we’ll call methods on the manager attached to
the model we want to query against.

5.11 Selecting Objects 60



The Django Book
5.11.1 Filtering Data

While fetching all objects certainly has its uses, most of the time we’re going to want to deal with a subset of
the data. We’ll do this with the £ilter () method:

>>> Publisher.objects.filter (name="Apress Publishing")
[<Publisher: Apress Publishing>]

filter () takes keyword arguments that get translated into the appropriate SQL WHERE clauses. The
preceding example would get translated into something like this:

SELECT

id, name, address, city, state_province, country, website
FROM book_publisher
WHERE name = 'Apress Publishing';

You can pass multiple arguments into filter () to narrow down things further:

>>> Publisher.objects.filter (country="U.S.A.", state_province="CA")
[<Publisher: Apress Publishing>]

Those multiple arguments get translated into SQL AND clauses. Thus, the example in the code snippet
translates into the following:

SELECT

id, name, address, city, state_province, country, website
FROM book_publisher
WHERE country = 'U.S.A.' AND state_province = 'CA';

Notice that by default the lookups use the SQL = operator to do exact match lookups. Other lookup types are
available:

>>> Publisher.objects.filter (name__contains="press")
[<Publisher: Apress Publishing>]

That’s a double underscore there between name and contains. Like Python itself, Django uses the double
underscore to signal that something “magic” is happening — here, the ___contains part gets translated by
Django into a SQL LIKE statement:

SELECT

id, name, address, city, state_province, country, website
FROM book_publisher
WHERE name LIKE 'S$press$';

Many other types of lookups are available, including i contains (case-insensitive LIKE), startswith

and endswith, and range (SQL BETWEEN queries). Appendix C describes all of these lookup types in
detail.

5.11.2 Retrieving Single Objects

Sometimes you want to fetch only a single object. That’s what the get () method is for:

>>> Publisher.objects.get (name="Apress Publishing")
<Publisher: Apress Publishing>

Instead of a list (rather, QuerySet), only a single object is returned. Because of that, a query resulting in
multiple objects will cause an exception:

5.11.1 Filtering Data 61



The Django Book

>>> Publisher.objects.get (country="U.S.A.")
Traceback (most recent call last):

AssertionError: get () returned more than one Publisher -- it returned 2!

A query that returns no objects also causes an exception:

>>> Publisher.objects.get (name="Penguin")
Traceback (most recent call last):

DoesNotExist: Publisher matching query does not exist.

5.11.3 Ordering Data

As you play around with the previous examples, you might discover that the objects are being returned in a
seemingly random order. You aren’t imagining things; so far we haven’t told the database how to order its
results, so we’re simply getting back data in some arbitrary order chosen by the database.

That’s obviously a bit silly; we wouldn’t want a Web page listing publishers to be ordered randomly. So, in
practice, we’ll probably want to use order_by () to reorder our data into a useful list:

>>> Publisher.objects.order_by ("name")
[<Publisher: Apress Publishing>, <Publisher: Addison-Wesley>, <Publisher: O'Reilly>]

This doesn’t look much different from the earlier a11 () example, but the SQL now includes a specific
ordering:

SELECT

id, name, address, city, state_province, country, website
FROM book_publisher
ORDER BY name;

We can order by any field we like:

>>> Publisher.objects.order_by ("address")
[<Publisher: O'Reilly>, <Publisher: Apress Publishing>, <Publisher: Addison-Wesley>]

>>> Publisher.objects.order_by("state_province")
[<Publisher: Apress Publishing>, <Publisher: Addison-Wesley>, <Publisher: O'Reilly>]

and by multiple fields:

>>> Publisher.objects.order_by("state_provice", "address")
[<Publisher: Apress Publishing>, <Publisher: O'Reilly>, <Publisher: Addison-Wesley>]

We can also specify reverse ordering by prefixing the field name with a — (that’s a minus character):

>>> Publisher.objects.order_by ("-name")
[<Publisher: O'Reilly>, <Publisher: Apress Publishing>, <Publisher: Addison-Wesley>]

While this flexibility is useful, using order_by () all the time can be quite repetitive. Most of the time
you’ll have a particular field you usually want to order by. In these cases, Django lets you attach a default
ordering to the model:

class Publisher (models.Model) :
name = models.CharField (maxlength=30)
address = models.CharField (maxlength=50)
city = models.CharField (maxlength=60)
state_province = models.CharField(maxlength=30)
country = models.CharField (maxlength=50)

5.11.2 Retrieving Single Objects



The Django Book

website = models.URLField()

def _ str_ (self):
return self.name

class Meta:
ordering = ["name"]

This ordering = ["name"] bit tells Django that unless an ordering is given explicitly with
order_by (), all publishers should be ordered by name.

What’s This Meta Thing?

Django uses this internal class Meta as a place to specify additional metadata about a model. It’s
completely optional, but it can do some very useful things. See Appendix B for the options you can put under
Meta.

5.11.4 Chaining Lookups

You’ve seen how you can filter data, and you’ve seen how you can order it. At times, of course, you’re going
to want to do both. In these cases, you simply “chain” the lookups together:

>>> Publisher.objects.filter (country="U.S.A.") .order_by ("-name")
[<Publisher: O'Reilly>, <Publisher: Apress Publishing>, <Publisher: Addison-Wesley>]

As you might expect, this translates to a SQL query with both a WHERE and an ORDER BY:

SELECT
id, name, address, city, state_province, country, website
FROM book_publisher
WHERE country = 'U.S.A'
ORDER BY name DESC;

You can keep chaining queries as long as you like. There’s no limit.

5.11.5 Slicing Data

Another common need is to look up only a fixed number of rows. Imagine you have thousands of publishers
in your database, but you want to display only the first one. You can do this using Python’s standard list
slicing syntax:

>>> Publisher.objects.all() [0]
<Publisher: Addison-Wesley>

This translates roughly to:

SELECT
id, name, address, city, state_province, country, website
FROM book_publisher
ORDER BY name
LIMIT 1;

And More...
We’ve only just scratched the surface of dealing with models, but you should now know enough to understand

all the examples in the rest of the book. When you’re ready to learn the complete details behind object
lookups, turn to Appendix C.

5.11.3 Ordering Data 63



The Django Book
5.12 Deleting Objects

To delete objects, simply call the delete () method on your object:

>>> p = Publisher.objects.get (name="Addison-Wesley")
>>> p.delete()

>>> Publisher.objects.all()

[<Publisher: Apress Publishing>, <Publisher: O'Reilly>]

You can also delete objects in bulk by calling delete () on the result of some lookup:

>>> publishers = Publisher.objects.all()
>>> publishers.delete()

>>> Publisher.objects.all()

[1

Note

Deletions are permanent, so be careful! In fact, it’s usually a good idea to avoid deleting objects unless you
absolutely have to — relational databases don’t do “undo” so well, and restoring from backups is painful.

It’s often a good idea to add “active” flags to your data models. You can look up only “active” objects, and
simply set the active field to False instead of deleting the object. Then, if you realize you’ve made a
mistake, you can simply flip the flag back.

5.13 Making Changes to a Database Schema

When we introduced the syncdb command earlier in this chapter, we noted that syncdb merely creates
tables that don’t yet exist in your database — it does not sync changes in models or perform deletions of
models. If you add or change a model’s field, or if you delete a model, you’ll need to make the change in your
database manually. This section explains how to do that.

When dealing with schema changes, it’s important to keep a few things in mind about how Django’s database
layer works:

® Django will complain loudly if a model contains a field that has not yet been created in the database
table. This will cause an error the first time you use the Django database API to query the given table
(i.e., it will happen at code execution time, not at compilation time).

® Django does not care if a database table contains columns that are not defined in the model.

® Django does not care if a database contains a table that is not represented by a model.

Making schema changes is a matter of changing the various pieces — the Python code and the database itself
— in the right order.

5.13.1 Adding Fields

When adding a field to a table/model in a production setting, the trick is to take advantage of the fact that
Django doesn’t care if a table contains columns that aren’t defined in the model. The strategy is to add the
column in the database, and then update the Django model to include the new field.

However, there’s a bit of a chicken-and-egg problem here, because in order to know how the new database
column should be expressed in SQL, you need to look at the output of Django’s manage .py sglall
command, which requires that the field exist in the model. (Note that you’re not required to create your
column with exactly the same SQL that Django would, but it’s a good idea to do so, just to be sure
everything’s in sync.)

5.12 Deleting Objects 64



The Django Book

The solution to the chicken-and-egg problem is to use a development environment instead of making the
changes on a production server. (You are using a testing/development environment, right?) Here are the
detailed steps to take.

First, take these steps in the development environment (i.e., not on the production server):

1. Add the field to your model.

2. Runmanage.py sglall [yourapp] to seethe new CREATE TABLE statement for the model.
Note the column definition for the new field.

3. Start your database’s interactive shell (e.g., psgl or mysqgl, or you can use manage . py
dbshell). Execute an ALTER TABLE statement that adds your new column.

4. (Optional.) Launch the Python interactive shell with manage.py shell and verify that the new
field was added properly by importing the model and selecting from the table (e.g.,
MyModel .objects.all() [:5]).

Then on the production server perform these steps:

1. Start your database’s interactive shell.

2. Execute the ALTER TABLE statement you used in step 3 of the development environment steps.

3. Add the field to your model. If you’re using source-code revision control and you checked in your
change in development environment step 1, now is the time to update the code (e.g., svn update,
with Subversion) on the production server.

4. Restart the Web server for the code changes to take effect.

For example, let’s walk through what we’d do if we added a num_pages field to the Book model described
earlier in this chapter. First, we’d alter the model in our development environment to look like this:

class Book (models.Model) :
title = models.CharField(maxlength=100)
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey (Publisher)
publication_date = models.DateField()
num_pages = models.IntegerField(blank=True, null=True)

def _ str_ (self):
return self.title

(Note: Read the “Adding NOT NULL Columns” sidebar for important details on why we included
blank=True and null=True.)

Then we’d run the command manage .py sglall books to see the CREATE TABLE statement. It
would look something like this:

CREATE TABLE "books_book" (
"id" serial NOT NULL PRIMARY KEY,
"title" wvarchar (100) NOT NULL,
"publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
"publication_date" date NOT NULL,
"num_pages" integer NULL
)

The new column is represented like this:
"num_pages" integer NULL
Next, we’d start the database’s interactive shell for our development database by typing psgl (for

PostgreSQL), and we’d execute the following statements:

5.13.1 Adding Fields 65



The Django Book

ALTER TABLE books_book ADD COLUMN num_pages integer;
Adding NOT NULL Columns

There’s a subtlety here that deserves mention. When we added the num_pages field to our model, we
included the blank=True and null=True options. We did this because a database column will contain
NULL values when you first create it.

However, it’s also possible to add columns that cannot contain NULL values. To do this, you have to create
the column as NULL, then populate the column’s values using some default(s), and then alter the column to
set the NOT NULL modifier. For example:

BEGIN;

ALTER TABLE books_book ADD COLUMN num_pages integer;

UPDATE books_book SET num_pages=0;

ALTER TABLE books_book ALTER COLUMN num_pages SET NOT NULL;
COMMIT;

If you go down this path, remember that you should leave off blank=True and null=True in your model.

After the ALTER TABLE statement, we’d verify that the change worked properly by starting the Python shell
and running this code:

>>> from mysite.books.models import Book
>>> Book.objects.all()[:5]

If that code didn’t cause errors, we’d switch to our production server and execute the ALTER TABLE

statement on the production database. Then, we’d update the model in the production environment and restart
the Web server.

5.13.2 Removing Fields
Removing a field from a model is a lot easier than adding one. To remove a field, just follow these steps:

1. Remove the field from your model and restart the Web server.
2. Remove the column from your database, using a command like this:

ALTER TABLE books_book DROP COLUMN num_pages;
5.13.3 Removing Many-to-Many Fields
Because many-to-many fields are different than normal fields, the removal process is different:

1. Remove the ManyToManyField from your model and restart the Web server.
2. Remove the many-to-many table from your database, using a command like this:

DROP TABLE books_books_publishers;
5.13.4 Removing Models
Removing a model entirely is as easy as removing a field. To remove a model, just follow these steps:

1. Remove the model from your models . py file and restart the Web server.
2. Remove the table from your database, using a command like this:

DROP TABLE books_book;

5.13.2 Removing Fields 66



The Django Book
5.14 What’s Next?

Once you’ve defined your models, the next step is to populate your database with data. You might have
legacy data, in which case Chapter 16 will give you advice about integrating with legacy databases. You
might rely on site users to supply your data, in which case Chapter 7 will teach you how to process
user-submitted form data.

But in some cases, you or your team might need to enter data manually, in which case it would be helpful to

have a Web-based interface for entering and managing data. The next chapter covers Django’s admin
interface, which exists precisely for that reason.

5.14 What’s Next?

67



6 The Django Administration Site

For a certain class of Web sites, an admin interface is an essential part of the infrastructure. This is a
Web-based interface, limited to trusted site administrators, that enables the adding, editing and deletion of site
content. The interface you use to post to your blog, the backend site managers use to moderate
reader-generated comments, the tool your clients use to update the press releases on the Web site you built for
them — these are all examples of admin interfaces.

There’s a problem with admin interfaces, though: it’s boring to build them. Web development is fun when
you’re developing public-facing functionality, but building admin interfaces is always the same. You have to
authenticate users, display and handle forms, validate input, and so on. It’s boring, and it’s repetitive.

So what’s Django’s approach to these boring, repetitive tasks? It does it all for you—in just a couple of lines
of code, no less. With Django, building an admin interface is a solved problem.

This chapter is about Django’s automatic admin interface. This feature works by reading metadata in your
model to provide a powerful and production-ready interface that site administrators can start using
immediately. Here, we discuss how to activate, use, and customize this feature.

6.1 Activating the Admin Interface

We think the admin interface is the coolest part of Django—and most Djangonauts agree—but since not
everyone actually needs it, it’s an optional piece. That means there are three steps you’ll need to follow to
activate it:

1. Add admin metadata to your models.

Not all models can (or should) be editable by admin users, so you need to “mark™ models that should
have an admin interface. You do that by adding an inner Admin class to your model (alongside the
Meta class, if you have one). So, to add an admin interface to our Book model from the previous
chapter, we use this:

class Book (models.Model) :
title = models.CharField(maxlength=100)
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey (Publisher)
publication_date = models.DateField()
num_pages = models.IntegerField(blank=True, null=True)

def _ str_ (self):
return self.title

class Admin:
pass

The Admin declaration flags the class as having an admin interface. There are a number of options
that you can put beneath Admin, but for now we’re sticking with all the defaults, so we put pass in
there to signify to Python that the Admin class is empty.

If you’re following this example with your own code, it’s probably a good idea to add Admin
declarations to the Publisher and Author classes at this point.

2. Install the admin application. Do this by adding "django.contrib.admin" to your
INSTALLED_APPS setting.

3. If you’ve been following along, make sure that "django.contrib.sessions",
"django.contrib.auth",and "django.contrib.contenttypes" are uncommented,

6 The Django Administration Site 68



The Django Book

since the admin application depends on them. Also uncomment all the lines in the
MIDDLEWARE_CLASSES setting tuple and delete the TEMPLATE_CONTEXT_PROCESSOR setting
to allow it to take the default values again.

4. Run python manage.py syncdb. This step will install the extra database tables the admin
interface uses.

Note

When you first run syncdb with "django.contrib.auth" in INSTALLED_APPS, you’ll be
asked about creating a superuser. If you didn’t do so at that time, you’ll need to run
django/contrib/auth/bin/create_superuser.py to create an admin user. Otherwise,
you won'’t be able to log in to the admin interface.

5. Add the URL pattern to your urls. py. If you're still using the one created by startproject, the
admin URL pattern should be already there, but commented out. Either way, your URL patterns
should look like the following:

from django.conf.urls.defaults import *
urlpatterns = patterns('',

(r'~admin/', include('django.contrib.admin.urls')),
)

That’s it. Now run python manage.py runserver to start the development server. You'll see
something like this:

Validating models...
0 errors found.

Django version 0.96, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now you can visit the URL given to you by Django (http://127.0.0.1:8000/admin/ in the
preceding example), log in, and play around.

6.2 Using the Admin Interface

The admin interface is designed to be used by nontechnical users, and as such it should be pretty
self-explanatory. Nevertheless, a few notes about the features of the admin interface are in order.

The first thing you’ll see is a login screen, as shown in Figure 6-1.

6.1 Activating the Admin Interface 69



The Django Book

= —— Log in | Django site admin =
|| + | @htp://127.0.0.1:8000/admin/ a(Q- Google

Django administration

Username: |

Password:

(Login )

Figure 6-1. Django’s login screen

You’ll use the username and password you set up when you added your superuser. Once you’re logged in,
you’ll see that you can manage users, groups, and permissions (more on that shortly).

Each object given an Admin declaration shows up on the main index page, as shown in Figure 6-2.

6.2 Using the Admin Interface 70



The Django Book

~ Site administration | Django site admin

@ http://127.0.0.1:8000/admin/

Dj dNgo a dministration Welcome, jacob. Documentation / Change password [ Log out

Site administration

Recent Actions
Groups dhadd ¢ Change My Actions
Users dAdd  # Change None available

e e e e e e e e e e e e e e e e e e e
Sites deAdd & Change

Authors deAdd ¢ Change
Books deadd  # Change
Publishers dpAdd ¢ Change

Figure 6-2. The main Django admin index

Links to add and change objects lead to two pages we refer to as object change lists and edit forms. Change

lists are essentially index pages of objects in the system, as shown in Figure 6-3.

6.2 Using the Admin Interface

71



The Django Book

& _ —— Select book to change | Django site admin
m_aé € http://localhost:8000/admin/ch6/book/ (] - ‘Qr Google

Django administration Welcome, jacob. Documentation / Change password / Log out

Home : Books

Select book to change
Book
The Django Book

Pro CS5 Technigques
The Little Schemer
Applied Cryptography

Design Patterns

5 books

Figure 6-3. A typical change list view

A number of options control which fields appear on these lists and the appearance of extra features like date
drill-downs, search fields, and filter interfaces. We discuss these features in more detail shortly.

Edit forms are used to modify existing objects and create new ones (see Figure 6-4). Each field defined in

your model appears here, and you’ll notice that fields of different types get different widgets (e.g., date/time
fields have calendar controls, foreign keys use a select box, etc.).

6.2 Using the Admin Interface 72




The Django Book

Change book | Django site admin —
Q "l'b.* Google

DJ dnNgo a dministration Welcome, jacob. Documentation / Change password [ Log out

Home : Books : The Django Book

Change book —
Title: The Djange Book
Publisher: [ Apress B 5]
Publication [2007-04-01 | Today |
date:
Authors: Daniel Friedman o

Matthias Felleisen
Erich Gamma
Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Mass

Hold down "Control”, ar "Command” on a Mac. to select more than one.

I:_Sa\ne and add another) (Save and continue edit‘ing) [ Save |

# Delete

Figure 6-4. A typical edit form

You’ll notice that the admin interface also handles input validation for you. Try leaving a required field blank
or putting an invalid time into a time field, and you’ll see those errors when you try to save, as shown in

Figure 6-5.

6.2 Using the Admin Interface 73



The Django Book

Change book | Django site admin

 http://127.0.0.1:8000

Django administration

fadmin,/ch&/book/ 4/

@ 2(Qr Google

Home » Books » The Django Book

Change book

| @ Please correct the errors below.

A& This field is required.

Title:

Publisher: | Apress

Publication friday
date:
Authors: Daniel Friedman
Matthias Felleisen
Erich Gamma
Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Moss
Hold down “Contral”, or
# Delete

L]

4 Enter a valid date in YYYY-MM-DD format.

Today | [

Figure 6-5. An edit form displaying errors

I:Save and add another) (Save and continue ediring)

When you edit an existing object, you’ll notice a History button in the upper-right corner of the window.
Every change made through the admin interface is logged, and you can examine this log by clicking the

History button (see Figure 6-6).

6.2 Using the Admin Interface

74



The Django Book

Change history: The Django Book | Django site admin

DJ dnNgo a dministration Welcome, jacob. Documentation / Change password [ Log out

Home : Books : The Django Book » History

Change history: The Django Book

Date/time User Action

Nov. 12, 2006, 11:21 am. jacob

Nov. 12, 2006, 11:22 a.m. jacob Changed publication date.
Nov. 12, 2006, 11:22 am. jacob Changed publication date.
Nov. 12, 2006, 11:22 a.m. jacob Changed publisher.

Nov. 12, 2006, 11:23 a.m. jacob Changed title and publisher.
Nov. 12, 2006, 11:23 a.m. jacob Changed title.

Figure 6-6. Django’s object history page
When you delete an existing object, the admin interface asks you to confirm the delete action to avoid costly

mistakes. Deletions also cascade; the deletion confirmation page shows you all the related objects that will be
deleted as well (see Figure 6-7).

6.2 Using the Admin Interface 75



The Django Book

g a8 Are you sure? | Django site admin

(< > [E]  http:/,/127.0.0.1:8000/admin/ch6/ publisher; 1/delete/ @ 2(Qr Google

- | |.'J

D‘jan go administration Welcome, jacob. Documentation [ Change password [ Log out

Home : Publishers : Apress » Delete
Are you sure?
Are you sure you want to delete the publisher "Apress"? All of the following related items will be deleted:

= Publisher: Apress
= Book: The Django Book

| Yes, I'm sure )

Figure 6-7. Django’s delete confirmation page

6.2.1 Users, Groups, and Permissions

Since you're logged in as a superuser, you have access to create, edit, and delete any object. However, the
admin interface has a user permissions system that you can use to give other users access only to the portions
of the interface that they need.

You edit these users and permissions through the admin interface just like any other object. The link to the
User and Group models is there on the admin index along with all the objects you’ve defined yourself.

User objects have the standard username, password, e-mail, and real name fields you might expect, along with
a set of fields that define what the user is allowed to do in the admin interface. First, there’s a set of three
flags:

¢ The “is active” flag controls whether the user is active at all. If this flag is off, the user has no access
to any URLSs that require login.

e The “is staff” flag controls whether the user is allowed to log in to the admin interface (i.e., whether
that user is considered a “staff member” in your organization). Since this same user system can be
used to control access to public (i.e., non-admin) sites (see Chapter 12), this flag differentiates
between public users and administrators.

¢ The “is superuser” flag gives the user full, unfettered access to every item in the admin interface;
regular permissions are ignored.

“Normal” admin users—that is, active, non-superuser staff members—are granted access that depends on a set
of assigned permissions. Each object editable through the admin interface has three permissions: a create

6.2.1 Users, Groups, and Permissions 76



The Django Book

permission, an edit permission, and a delete permission. Assigning permissions to a user grants the user access
to do what is described by those permissions.

Note

Access to edit users and permissions is also controlled by this permission system. If you give someone
permission to edit users, she will be able to edit her own permissions, which might not be what you want!

You can also assign users to groups. A group is simply a set of permissions to apply to all members of that
group. Groups are useful for granting identical permissions to large number of users.

6.3 Customizing the Admin Interface

You can customize the way the admin interface looks and behaves in a number of ways. We cover just a few
of them in this section as they relate to our Book model; Chapter 17 covers customizing the admin interface
in detail.

As it stands now, the change list for our books shows only the string representation of the model we added to
its___str__. This works fine for just a few books, but if we had hundreds or thousands of books, it would be
very hard to locate a single needle in the haystack. However, we can easily add some display, searching, and
filtering functions to this interface. Change the Admin declaration as follows:

class Book (models.Model) :
title = models.CharField(maxlength=100)
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey (Publisher)
publication_date = models.DateField()

class Admin:
list_display = ('title', 'publisher', 'publication_date')
list_filter = ('publisher', 'publication_date')
ordering = ('—-publication_date',)
search_fields = ('title',)

These four lines of code dramatically change our list interface, as shown in Figure 6-8.

6.3 Customizing the Admin Interface 77



The Django Book

Select book to change | Django site admin

v

E [E] . € http://localhost: 8000 /admin/ch6 /book/ (] ~Qr Google

Django administration

Welcome, jacob. Documentation / Change password / Log out
Home : Books

Select book to change
Q, | Go
Title Publisher Publication date = By publisher
All
The Django Book Apress April 1, 2007 Frlon
Pro CS5 Technigques Apress Jan. 3, 2007 O'Reilly
B Addison-Wesley
The Little Schemer MIT Press Dec. 21, 1995 The Pragmatic
Applied Cryptography  Wiley Oct. 18, 1995 Programmers
MIT Press
Design Patterns Addison-Wesley Jan. 15, 1995 Wiley
5 hooks By publication date
Any date
Today
Past 7 days
This month
This year

Figure 6-8. Modified change list page
Each of those lines instructed the admin interface to construct a different piece of this interface:

® The 1ist_display option controls which columns appear in the change list table. By default, the
change list displays only a single column that contains the object’s string representation. Here, we’ve
changed that to show the title, publisher, and publication date.

e The 1ist_filter option creates the filtering bar on the right side of the list. We’ve allowed

filtering by date (which allows you to see only books published in the last week, month, etc.) and by
publisher.

You can instruct the admin interface to filter by any field, but foreign keys, dates, Booleans, and
fields with a choices attribute work best. The filters show up as long as there are at least 2 values to
choose from.

® The ordering option controls the order in which the objects are presented in the admin interface.
It’s simply a list of fields by which to order the results; prefixing a field with a minus sign reverses the
given order. In this example, we’re ordering by publication date, with the most recent first.

¢ Finally, the search_fields option creates a field that allows text searches. It allows searches by
the title field (so you could type Django to show all books with “Django” in the title).

Using these options (and the others described in Chapter 12) you can, with only a few lines of code, make a
very powerful, production-ready interface for data editing.

6.3 Customizing the Admin Interface 78



The Django Book
6.4 Customizing the Admin Interface’s Look and Feel

Clearly, having the phrase “Django administration” at the top of each admin page is ridiculous. It’s just
placeholder text.

It’s easy to change, though, using Django’s template system. The Django admin site is powered by Django
itself, and its interfaces use Django’s own template system. (Django’s template system was covered in
Chapter 4.)

As we explained in Chapter 4, the TEMPLATE_DIRS setting specifies a list of directories to check when
loading Django templates. To customize Django’s admin templates, simply copy the relevant stock admin
template from the Django distribution into your one of the directories pointed-to by TEMPLATE_DIRS.

The admin site finds the “Django administration” header by looking for the template
admin/base_site.html. By default, this template lives in the Django admin template directory,
django/contrib/admin/templates, which you can find by looking in your Python
site-packages directory, or wherever Django was installed. To customize this base_site.html
template, copy that template into an admin subdirectory of whichever directory you’re using in
TEMPLATE_DIRS. For example, if your TEMPLATE_DIRS includes " /home/mytemplates™", then copy
django/contrib/admin/templates/admin/base_site.html to
/home/mytemplates/admin/base_site.html. Don’t forget that admin subdirectory.

Then, just edit the new admin/base_site.html file to replace the generic Django text with your own
site’s name as you see fit.

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same
thing you did with base_site.html: copy it from the default directory into your custom directory and
make changes to the copy.

You might wonder how, if TEMPLATE_DIRS was empty by default, Django found the default admin
templates. The answer is that, by default, Django automatically looks for templates within a templates/
subdirectory in each application package as a fallback. See the “Writing Custom Template Loaders” in
Chapter 10 for more information about how this works.

6.5 Customizing the Admin Index Page

On a similar note, you might want to customize the look and feel of the Django admin index page. By default,
it displays all available applications, according to your INSTALLED_APPS setting, sorted by the name of the
application. You might, however, want to change this order to make it easier to find the applications you’re
looking for. After all, the index is probably the most important page of the admin interface, so it should be
easy to use.

The template to customize is admin/index.html. (Remember to copy admin/index.html to your
custom template directory as in the previous example.) Edit the file, and you’ll see it uses a template tag
called {$ get_admin_app_list as app_list $%}. This tag retrieves every installed Django
application. Instead of using the tag, you can hard-code links to object-specific admin pages in whatever way
you think is best. If hard-coding links doesn’t appeal to you, see Chapter 10 for details on implementing your
own template tags.

Django offers another shortcut in this department. Run the command python manage.py adminindex
<app> to get a chunk of template code for inclusion in the admin index template. It’s a useful starting point.

For full details on customizing the look and feel of the Django admin site in general, see Chapter 17.

6.4 Customizing the Admin Interface’s Look and Feel 79



The Django Book
6.6 When and Why to Use the Admin Interface

We think Django’s admin interface is pretty spectacular. In fact, we’d call it one of Django’s “killer features.”
However, we often get asked about “use cases” for the admin interface—when do we use it, and why? Over
the years, we’ve discovered a number of patterns for using the admin interface that we think might be helpful.

Obviously, the admin interface is extremely useful for editing data (fancy that). If you have any sort of data
entry tasks, the admin interface simply can’t be beat. We suspect that the vast majority of readers of this book
will have a whole host of data entry tasks.

Django’s admin interface especially shines when nontechnical users need to be able to enter data; that’s the
purpose behind the feature, after all. At the newspaper where Django was first developed, development of a
typical online feature—a special report on water quality in the municipal supply, say—goes something like
this:

¢ The reporter responsible for the story meets with one of the developers and goes over the available
data.

® The developer designs a model around this data and then opens up the admin interface to the reporter.

® While the reporter enters data into Django, the programmer can focus on developing the publicly
accessible interface (the fun part!).

In other words, the raison d’Atre of Django’s admin interface is facilitating the simultaneous work of content
producers and programmers.

However, beyond the obvious data entry tasks, we find the admin interface useful in a few other cases:

e Inspecting data models: The first thing we do when we’ve defined a new model is to call it up in the
admin interface and enter some dummy data. This is usually when we find any data modeling
mistakes; having a graphical interface to a model quickly reveals problems.

® Managing acquired data: There’s little actual data entry associated with a site like
http://chicagocrime. org, since most of the data comes from an automated source. However,
when problems with the automatically acquired data crop up, it’s useful to be able to go in and edit
that data easily.

6.7 What’s Next?

So far we’ve created a few models and configured a top-notch interface for editing data. In the next chapter,
we’ll move on to the real “meat and potatoes” of Web development: form creation and processing.

6.6 When and Why to Use the Admin Interface 80



7 Form Processing

Guest author: Simon Willison

After following along with the last chapter, you should now have a fully functioning if somewhat simple site.
In this chapter, we’ll deal with the next piece of the puzzle: building views that take input from readers.

We’ll start by making a simple search form “by hand” and looking at how to handle data submitted from the
browser. From there, we’ll move on to using Django’s forms framework.

7.1 Search

The Web is all about search. Two of the Net’s biggest success stories, Google and Yahoo, built their
multi-billion-dollar businesses around search. Nearly every site sees a large percentage of traffic coming to
and from its search pages. Often the difference between the success or failure of a site is the quality of its
search. So it looks like we’d better add some searching to our fledgling books site, no?

We’ll start by adding the search view to our URLconf (mysite.urls). Recall that this means adding
something like (r'~search/$', 'mysite.books.views.search') tothe set of URL patterns.

Next, we’ll write this search view into our view module (mysite.books.views):

from django.db.models import Q
from django.shortcuts import render_to_response
from models import Book

def search (request):
query = request.GET.get ('gq', '")
if query:
gset = (
Q(title__icontains=query) |
Q(authors___first_name___icontains=query) |
Q (authors__last_name__icontains=query)

)
results = Book.objects.filter (gset) .distinct ()

else:
results = []

return render_to_response ("books/search.html", {
"results": results,

"query": query

})
There are a couple of things going on here that you haven’t yet seen. First, there’s request . GET. This is
how you access GET data from Django; POST data is accessed through a similar request . POST object.
These objects behave exactly like standard Python dictionaries with some extra features covered in Appendix
H.
What’s GET and POST Data?

GET and POST are the two methods that browsers use to send data to a server. Most of the time, you’ll see
them in HTML form tags:

<form action="/books/search/" method="get">

This instructs the browser to submit the form data to the URL /books/search/ using the GET method.

7 Form Processing 81



The Django Book

There are important differences between the semantics of GET and POST that we won’t get into right now,
but see http://www.w3.0rg/2001/tag/doc/whenToUseGet.html if you want to learn more.

So the line:
query = request.GET.get ('q', ''")
looks for a GET parameter named g and returns an empty string if that parameter wasn’t submitted.

Note that we’re using the get () method on request . GET, which is potentially confusing. The get ()
method here is the one that every Python dictionary has. We’re using it here to be careful: it is not safe to
assume that request . GET contains a 'q"' key, soweuse get ('g', '') to provide a default fallback
value of ' ' (the empty string). If we merely accessed the variable using request .GET [ 'q' ], that code
would raise a KeyError if g wasn’t available in the GET data.

Second, what about this Q business? Q objects are used to build up complex queries — in this case, we’re
searching for any books where either the title or the name of one of the authors matches the search query.
Technically, these Q objects comprise a QuerySet, and you can read more about them in Appendix C.

In these queries, 1contains is a case-insensitive search that uses the SQL LIKE operator in the underlying
database.

Since we’re searching against a many-to-many field, it’s possible for the same book to be returned more than
once by the query (e.g., a book with two authors who both match the search query). Adding .distinct ()
to the filter lookup eliminates any duplicate results.

There’s still no template for this search view, however. This should do the trick:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 4.01//EN">
<html lang="en">
<head>
<title>Search{% if query %} Results{% endif $%}</title>
</head>
<body>
<hl>Search</h1l>
<form action="." method="GET">
<label for="g">Search: </label>
<input type="text" name="qg" value="{{ querylescape }}">
<input type="submit" value="Search">
</form>
% 1f query %}
<h2>Results for "{{ query|escape }}":</h2>
% 1f results %}
<ul>
% for book in results %}
<1li>{{ book|escape }}</11>
% endfor %}
</ul>
% else %}
<p>No books found</p>
% endif %}
% endif %}
</body>
</html>

Hopefully by now what this does is fairly obvious. However, there are a few subtleties worth pointing out:

7.1 Search 82


http://www.w3.org/2001/tag/doc/whenToUseGet.html

The Django Book

® The form’s action is ., which means “the current URL.” This is a standard best practice: don’t use
separate views for the form page and the results page; use a single one that serves the form and search
results.

® We reinsert the value of the query back into the <input>. This lets readers easily refine their
searches without having to retype what they searched for.

® Everywhere query and book is used, we pass it through the escape filter to make sure that any
potentially malicious search text is filtered out before being inserted into the page.

It’s vital that you do this with any user-submitted content! Otherwise you open your site up to
cross-site scripting (XSS) attacks. Chapter 19 discusses XSS and security in more detail.

® However, we don’t need to worry about harmful content in your database lookups — we can simply
pass the query into the lookup as is. This is because Django’s database layer handles this aspect of
security for you.

Now we have a working search. A further improvement would be putting a search form on every page (i.e., in
the base template); we’ll let you handle that one yourself.

Next, we’ll look at a more complex example. But before we do, let’s discuss a more abstract topic: the
“perfect form.”

7.2 The “Perfect Form”

Forms can often be a major cause of frustration for the users of your site. Let’s consider the behavior of a
hypothetical perfect form:

e |t should ask the user for some information, obviously. Accessibility and usability matter here, so
smart use of the HTML <1label> element and useful contextual help are important.

¢ The submitted data should be subjected to extensive validation. The golden rule of Web application
security is “never trust incoming data,” so validation is essential.

e If the user has made any mistakes, the form should be redisplayed with detailed, informative error
messages. The original data should be prefilled, to save the user from having to reenter everything.

® The form should continue to redisplay until all of the fields have been correctly filled.

Constructing the perfect form seems like a lot of work! Thankfully, Django’s forms framework is designed to
do most of the work for you. You provide a description of the form’s fields, validation rules, and a simple
template, and Django does the rest. The result is a “perfect form” with very little effort.

7.3 Creating a Feedback Form

The best way to build a site that people love is to listen to their feedback. Many sites appear to have forgotten
this; they hide their contact details behind layers of FAQs, and they seem to make it as difficult as possible to
get in touch with an actual human being.

When your site has millions of users, this may be a reasonable strategy. When you’re trying to build up an
audience, though, you should actively encourage feedback at every opportunity. Let’s build a simple feedback
form and use it to illustrate Django’s forms framework in action.

We’ll start by adding adding (r'“contact/$', 'mysite.books.views.contact') to the
URLconf, then defining our form. Forms in Django are created in a similar way to models: declaratively,
using a Python class. Here’s the class for our simple form. By convention, we’ll insert it into a new
forms.py file within our application directory:

from django import newforms as forms

7.2 The “Perfect Form” 83



The Django Book

TOPIC_CHOICES = (
('general', 'General enquiry'),
('"bug', 'Bug report'),
('suggestion', 'Suggestion'),

)

class ContactForm(forms.Form) :
topic = forms.ChoiceField(choices=TOPIC_CHOICES)
message = forms.CharField()
sender = forms.EmailField(required=False)

“New” Forms? What?

When Django was first released to the public, it had a complicated, confusing forms system. It made
producing forms far too difficult, so it was completely rewritten and is now called “newforms.” However,
there’s still a fair amount of code that depends on the “old” form system, so for the time being Django ships
with two form packages.

As we write this book, Django’s old form system is still available as d jango . forms and the new form
package as django.newforms. At some point that will change and django . forms will point to the new
form package. However, to make sure the examples in this book work as widely as possible, all the examples
will refer to django.newforms.

A Django form is a subclass of django .newforms.Form, just as a Django model is a subclass of
django.db.models .Model. The django.newforms module also contains a number of Field
classes; a full list is available in Django’s documentation at

http://www.djangoproject.com/documentation/0.96/newforms/.

Our ContactForm consists of three fields: a topic, which is a choice among three options; a message, which
is a character field; and a sender, which is an email field and is optional (because even anonymous feedback
can be useful). There are a number of other field types available, and you can write your own if they don’t
cover your needs.

The form object itself knows how to do a number of useful things. It can validate a collection of data, it can
generate its own HTML “widgets,” it can construct a set of useful error messages and, if we’re feeling lazy, it
can even draw the entire form for us. Let’s hook it into a view and see it in action. In views.py:

from django.db.models import Q

from django.shortcuts import render_to_response
from models import Book

from forms import ContactForm

def search (request) :
query = request.GET.get ('gq', '")
if query:
gset = (
Q(title__icontains=query) |
Q(authors__first_name___icontains=query) |
Q (authors__last_name__icontains=query)
)
results = Book.objects.filter (gset) .distinct ()

else:
results = []

return render_to_response ("books/search.html", {
"results": results,

"query": query

})
def contact (request):

form = ContactForm()
return render_to_response('contact.html', {'form': form})

7.3 Creating a Feedback Form 84


http://www.djangoproject.com/documentation/0.96/newforms/

The Django Book

and in contact.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">

<head>
<title>Contact us</title>
</head>
<body>
<hl>Contact us</hl>
<form action="." method="POST">
<table>
{{ form.as_table }}
</table>
<p><input type="submit" value="Submit"></p>
</form>
</body>
</html>

The most interesting line here is { { form.as_table }}. form is our ContactForm instance, as passed to
render_to_response. as_table is a method on that object that renders the form as a sequence of table
rows (as_ul and as_p can also be used). The generated HTML looks like this:

<tr>
<th><label for="id_topic">Topic:</label></th>
<td>
<select name="topic" id="id_topic">
<option value="general">General enquiry</option>
<option value="bug">Bug report</option>
<option value="suggestion">Suggestion</option>
</select>
</td>
</tr>
<tr>

<th><label for="id_message">Message:</label></th>

<td><input type="text" name="message" id="id_message" /></td>
</tr>
<tr>

<th><label for="id_sender">Sender:</label></th>

<td><input type="text" name="sender" id="id_sender" /></td>
</tr>

Note that the <table> and <form> tags are not included; you need to define those yourself in the template,
which gives you control over how the form behaves when it is submitted. Label elements are included,
making forms accessible out of the box.

Our form is currently using a <input type="text"> widget for the message field. We don’t want to
restrict our users to a single line of text, so we’ll swap in a <textarea> widget instead:

class ContactForm(forms.Form) :
topic = forms.ChoiceField(choices=TOPIC_CHOICES)
message = forms.CharField (widget=forms.Textarea())
sender = forms.EmailField(required=False)

The forms framework separates out the presentation logic for each field into a set of widgets. Each field type
has a default widget, but you can easily override the default, or provide a custom widget of your own.

At the moment, submitting the form doesn’t actually do anything. Let’s hook in our validation rules:

def contact (request) :
if request.method == 'POST':
form = ContactForm(request.POST)
else:

7.3 Creating a Feedback Form 85



The Django Book

form = ContactForm()
return render_to_response ('contact.html', {'form': form})

A form instance can be in one of two states: bound or unbound. A bound instance is constructed with a
dictionary (or dictionary-like object) and knows how to validate and redisplay the data from it. An unbound
form has no data associated with it and simply knows how to display itself.

Try clicking Submit on the blank form. The page should redisplay, showing a validation error that informs us
that our message field is required.

Try entering an invalid email address as well. The EmailField knows how to validate email addresses, at
least to a reasonable level of doubt.

Setting Initial Data

Passing data directly to the form constructor binds that data and indicates that validation should be performed.
Often, though, we need to display an initial form with some of the fields prefilled — for example, an “edit”
form. We can do this with the initial keyword argument:

form = CommentForm(initial={'sender': 'user@example.com'})
If our form will always use the same default values, we can configure them in the form definition itself:

message = forms.CharField (widget=forms.Textarea(),
initial="Replace with your feedback")

7.4 Processing the Submission

Once the user has filled the form to the point that it passes our validation rules, we need to do something
useful with the data. In this case, we want to construct and send an email containing the user’s feedback.
We’ll use Django’s email package to do this.

First, though, we need to tell if the data is indeed valid, and if it is, we need access to the validated data. The
forms framework does more than just validate the data, it also converts it into Python types. Our contact form
only deals with strings, but if we were to use an IntegerField or DateTimeField, the forms
framework would ensure that we got back a Python integer or datet ime object, respectively.

To tell whether a form is bound to valid data, call the is_valid () method:

form = ContactForm(request.POST)
if form.is_valid():
# Process form data

Now we need access to the data. We could pull it straight out of request .POST, but if we did, we’d miss
out on the type conversions performed by the forms framework. Instead, we use form.clean_data:

if form.is_valid():

topic = form.clean_datal['topic']

message = form.clean_data['message']

sender = form.clean_data.get ('sender', 'noreply@example.com')
# ...

Note that since sender is not required, we provide a default when it’s missing. Finally, we need to record
the user’s feedback. The easiest way to do this is to email it to a site administrator. We can do that using the
send_mail function:

from django.core.mail import send_mail

7.4 Processing the Submission 86



The Django Book

send_mail (
'Feedback from your site, topic: %s' % topic,
message, sender,
['administrator@example.com']

The send_mail function has four required arguments: the email subject, the email body, the “from”
address, and a list of recipient addresses. send_mail is a convenient wrapper around Django’s
EmailMessage class, which provides advanced features such as attachments, multipart emails, and full
control over email headers.

Having sent the feedback email, we’ll redirect our user to a static confirmation page. The finished view
function looks like this:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from django.core.mail import send mail

from forms import ContactForm

def contact (request) :
if request.method == 'POST':
form = ContactForm(request.POST)
if form.is_valid():

topic = form.clean_datal['topic']
message = form.clean_data['message']
sender = form.clean_data.get ('sender', 'noreply@example.com')

send_mail (
'Feedback from your site, topic: %s' % topic,
message, sender,
['administrator@example.com']
)
return HttpResponseRedirect ('/contact/thanks/")
else:
form = ContactForm()
return render_to_response ('contact.html', {'form': form})

Redirect After POST

If a user selects Refresh on a page that was displayed by a POST request, that request will be repeated. This
can often lead to undesired behavior, such as a duplicate record being added to the database. Redirect after
POST is a useful pattern that can help avoid this scenario: after a successful POST has been processed,
redirect the user to another page rather than returning HTML directly.

7.5 Custom Validation Rules

Imagine we’ve launched our feedback form, and the emails have started tumbling in. There’s just one
problem: some of the emails are just one or two words, hardly enough for a detailed missive. We decide to
adopt a new validation policy: four words or more, please.

There are a number of ways to hook custom validation into a Django form. If our rule is something we will
reuse again and again, we can create a custom field type. Most custom validations are one-off affairs, though,
and can be tied directly to the form class.

We want additional validation on the message field, so we need to add a clean_message method to our
form:

class ContactForm(forms.Form) :

7.5 Custom Validation Rules 87



The Django Book

topic = forms.ChoiceField(choices=TOPIC_CHOICES)
message = forms.CharField (widget=forms.Textarea())
sender = forms.EmailField(required=False)

def clean_message (self):
message = self.clean_data.get ('message', ''")
num_words = len (message.split())
if num_words < 4:
raise forms.ValidationError ("Not enough words!")
return message

This new method will be called after the default field validator (in this case, the validator for a required
CharField). Because the field data has already been partially processed, we need to pull it out of the form’s
clean_data dictionary.

We naively use a combination of 1en () and split () to count the number of words. If the user has entered
too few words, we raise a ValidationError. The string attached to this exception will be displayed to the
user as an item in the error list.

It is important that we explicitly return the value for the field at the end of the method. This allows us to
modify the value (or convert it to a different Python type) within our custom validation method. If we forget
the return statement, then None will be returned, and the original value will be lost.

7.6 A Custom Look and Feel

The quickest way to customize the form’s presentation is with CSS. The list of errors in particular could do
with some visual enhancement, and the <ul> has a class attribute of error1list for that exact purpose. The
following CSS really makes our errors stand out:

<style type="text/css">
ul.errorlist {
margin: 0;
padding: O;

}

.errorlist 1i {
background-color: red;
color: white;
display: block;
font-size: 10px;
margin: 0 0 3px;
padding: 4px 5px;

}

</style>

While it’s convenient to have our form’s HTML generated for us, in many cases the default rendering won’t
be right for our application. { { form.as_table }} and friends are useful shortcuts while we develop
our application, but everything about the way a form is displayed can be overridden, mostly within the
template itself.

Each field widget (<input type="text">, <select>, <textarea>, or similar) can be rendered
individually by accessing { { form.fieldname }}. Any errors associated with a field are available as { {
form.fieldname.errors }}. We can use these form variables to construct a custom template for our
contact form:

<form action="." method="POST">
<div class="fieldWrapper">
{{ form.topic.errors }}
<label for="id_topic">Kind of feedback:</label>
{{ form.topic }}
</div>

7.6 A Custom Look and Feel 88



The Django Book

<div class="fieldWrapper">
{{ form.message.errors }}
<label for="id_message">Your message:</label>
{{ form.message }}

</div>

<div class="fieldWrapper">
{{ form.sender.errors }}
<label for="id_sender">Your email (optional):</label>
{{ form.sender }}

</div>

<p><input type="submit" value="Submit"></p>

</form>

{{ form.message.errors }} willdisplay asa <ul class="errorlist"> if errors are present
and a blank string if the field is valid (or the form is unbound). We can also treat form.message.errors
as a Boolean or even iterate over it as a list, for example:

<div class="fieldWrapper{% if form.message.errors %} errors{% endif $}">
{%$ if form.message.errors %}
<ol>
{%$ for error in form.message.errors %}
<li><strong>{{ error|escape }}</strong></1li>
{% endfor %}
</ol>
{% endif %}
{{ form.message }}
</div>

In the case of validation errors, this will add an “errors” class to the containing <div> and display the list of
errors in an ordered list.

7.7 Creating Forms from Models

Let’s build something a little more interesting: a form that submits a new publisher to our book application
from Chapter 5.

An important rule of thumb in software development that Django tries to adhere to is Don’t Repeat Yourself
(DRY). Andy Hunt and Dave Thomas in The Pragmatic Programmer define this as follows:

Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.

Our Publisher model class says that a publisher has a name, address, city, state_province, country, and
website. Duplicating this information in a form definition would break the DRY rule. Instead, we can use a
useful shortcut: form_for model ():

from models import Publisher
from django.newforms import form_for_model

PublisherForm = form_for_model (Publisher)

PublisherFormis a Form subclass, just like the ContactForm class we created manually earlier on.
We can use it in much the same way:

from forms import PublisherForm

def add_publisher (request) :
if request.method == 'POST':
form = PublisherForm(request.POST)
if form.is_valid():

7.7 Creating Forms from Models 89



The Django Book

form.save ()
return HttpResponseRedirect ('/add_publisher/thanks/"')
else:
form = PublisherForm()
return render_to_response ('books/add_publisher.html', {'form': form})

The add_publisher.html file is almost identical to our original contact .html template, so it has
been omitted. Also remember to add a new pattern to the URLconf: (r'~add_publisher/$"',
'mysite.books.views.add_publisher').

There’s one more shortcut being demonstrated here. Since forms derived from models are often used to save
new instances of the model to the database, the form class created by form_for_model includes a
convenient save () method. This deals with the common case; you’re welcome to ignore it if you want to do
something a bit more involved with the submitted data.

form_for_instance () is arelated method that can create a preinitialized form from an instance of a
model class. This is useful for creating “edit” forms.

7.8 What’s Next?

This chapter concludes the introductory material in this book. The next 13 chapters deal with various
advanced topics, including generating content other than HTML (Chapter 11), security (Chapter 19), and
deployment (Chapter 20).

After these first seven chapters, you should know enough to start writing your own Django projects. The rest
of the material in this book will help fill in the missing pieces as you need them.

We’ll start in Chapter 8 by doubling back and taking a closer look at views and URLconfs (introduced first in
Chapter 3).

7.8 What’s Next? 90



8 Advanced Views and URLconfs

In Chapter 3, we explained the basics of Django view functions and URLconfs. This chapter goes into more
detail about advanced functionality in those two pieces of the framework.

8.1 URLconf Tricks

There’s nothing “special” about URLconfs — like anything else in Django, they’re just Python code. You can
take advantage of this in several ways, as described in the sections that follow.

8.1.1 Streamlining Function Imports

Consider this URLconf, which builds on the example in Chapter 3:

from django.conf.urls.defaults import *
from mysite.views import current_datetime, hours_ahead, hours_behind, now_in_chicago, now_in_lond

urlpatterns = patterns('',

(r'”now/$', current_datetime),
r'*now/plus (\d{1,2})hours/$"', hours_ahead),
r'*now/minus (\d{1,2})hours/$', hours_behind),
r'”now/in_chicago/$"', now_in_chicago),
r'*now/in_london/$', now_in_london),

(

(

(

(
As explained in Chapter 3, each entry in the URLconf includes its associated view function, passed directly as
a function object. This means it’s necessary to import the view functions at the top of the module.

But as a Django application grows in complexity, its URLconf grows, too, and keeping those imports can be
tedious to manage. (For each new view function, you have to remember to import it, and the import statement
tends to get overly long if you use this approach.) It’s possible to avoid that tedium by importing the views
module itself. This example URLconf is equivalent to the previous one:

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',

(r'”now/$', views.current_datetime),
r'*now/plus (\d{1,2})hours/$', views.hours_ahead),
r'*now/minus (\d{1,2})hours/$', views.hours_behind),
r'”now/in_chicago/$"', views.now_in_chicago),
r'*now/in_london/$', views.now_in_london),

(
(
(
(
Django offers another way of specifying the view function for a particular pattern in the URLconf: you can

pass a string containing the module name and function name rather than the function object itself. Continuing
the ongoing example:

from django.conf.urls.defaults import *

urlpatterns = patterns('',

(r'*now/$', 'mysite.views.current_datetime'),
r'*now/plus (\d{1,2})hours/$', 'mysite.views.hours_ahead'),
r'”now/minus (\d{1,2})hours/$', 'mysite.views.hours_behind'),
r'?now/in_chicago/$', 'mysite.views.now_in_chicago'),
r'?now/in_london/$', 'mysite.views.now_in_london'),

8 Advanced Views and URLconfs 91



The Django Book

(Note the quotes around the view names. We're using 'mysite.views.current_datetime' — with
quotes — instead of mysite.views.current_datetime.)

Using this technique, it’s no longer necessary to import the view functions; Django automatically imports the
appropriate view function the first time it’s needed, according to the string describing the name and path of
the view function.

A further shortcut you can take when using the string technique is to factor out a common “view prefix.” In
our URLconf example, each of the view strings starts with 'mysite.views', which is redundant to type.
We can factor out that common prefix and pass it as the first argument to patterns (), like this:

from django.conf.urls.defaults import *

urlpatterns = patterns('mysite.views',

(r'”*now/$', 'current_datetime'),

(r'*now/plus (\d{1,2})hours/S$', 'hours_ahead'),
(r'*now/minus (\d{1,2})hours/$"', 'hours_behind'),
(r'*now/in_chicago/$', 'now_in_chicago'),
(r'”now/in_london/$', 'now_in_london'),

Note that you don’t put a trailing dot (" . ") in the prefix, nor do you put a leading dot in the view strings.
Django puts those in automatically.

With these two approaches in mind, which is better? It really depends on your personal coding style and
needs.

Advantages of the string approach are as follows:
e [t’s more compact, because it doesn’t require you to import the view functions.
e |t results in more readable and manageable URLconfs if your view functions are spread across several
different Python modules.
Advantages of the function object approach are as follows:
e It allows for easy “wrapping” of view functions. See the section “Wrapping View Functions” later in
this chapter.
e [t’s more “Pythonic” — that is, it’s more in line with Python traditions, such as passing functions as

objects.

Both approaches are valid, and you can even mix them within the same URLconf. The choice is yours.

8.1.2 Using Multiple View Prefixes

In practice, if you use the string technique, you’ll probably end up mixing views to the point where the views
in your URLconf won’t have a common prefix. However, you can still take advantage of the view prefix
shortcut to remove duplication. Just add multiple patterns () objects together, like this:

Old:

from django.conf.urls.defaults import *

urlpatterns = patterns('',

(r'~/?$', 'mysite.views.archive_index'),
(r'~(\d{4})/([a-z]{3})/S$', 'mysite.views.archive_month'),
(r'~tag/ (\w+)/$', 'weblog.views.tag'),

8.1.1 Streamlining Function Imports 92



The Django Book

New:

from django.conf.urls.defaults import *

urlpatterns = patterns('mysite.views',
(r'~/?$8'", 'archive_index"'),
(r'~(\d{4})/([a-2z]1{3})/S$', 'archive_month'),
)

urlpatterns += patterns('weblog.views',
(r'~tag/ (\w+)/$', 'tag'),
)

All the framework cares about is that there’s a module-level variable called ur lpatterns. This variable
can be constructed dynamically, as we do in this example.

8.1.3 Special-Casing URLs in Debug Mode

Speaking of constructing urlpatterns dynamically, you might want to take advantage of this technique to
alter your URLconf’s behavior while in Django’s debug mode. To do this, just check the value of the DEBUG
setting at runtime, like so:

from django.conf.urls.defaults import*
from django.conf import settings

urlpatterns = patterns('',
(r'~$', 'mysite.views.homepage'),
(r'~(\d{4})/([a-z]1{3})/$', 'mysite.views.archive_month'),
)

if settings.DEBUG:
urlpatterns += patterns('"',
(r'~debuginfo$', 'mysite.views.debug'),

)

In this example, the URL /debuginfo/ will only be available if your DEBUG setting is set to True.

8.1.4 Using Named Groups

In all of our URLconf examples so far, we’ve used simple, non-named regular expression groups — that is,
we put parentheses around parts of the URL we wanted to capture, and Django passes that captured text to the
view function as a positional argument. In more advanced usage, it’s possible to use named regular expression
groups to capture URL bits and pass them as keyword arguments to a view.

Keyword Arguments vs. Positional Arguments

A Python function can be called using keyword arguments or positional arguments — and, in some cases,
both at the same time. In a keyword argument call, you specify the names of the arguments along with the
values you’re passing. In a positional argument call, you simply pass the arguments without explicitly

specifying which argument matches which value; the association is implicit in the arguments’ order.

For example, consider this simple function:

def sell(item, price, quantity):
print "Selling %s unit(s) of %s at %$s" % (quantity, item, price)

To call it with positional arguments, you specify the arguments in the order in which they’re listed in the
function definition:

8.1.2 Using Multiple View Prefixes 93



The Django Book

sell('Socks', '$2.50', 6)

To call it with keyword arguments, you specify the names of the arguments along with the values. The
following statements are equivalent:

sell (item="'Socks', price='$2.50"', quantity=6)
sell (item="'Socks', quantity=6, price='$2.50")
sell (price='$2.50"', item='Socks', quantity=6)
sell (price='$2.50"', quantity=6, item='Socks"')
sell (quantity=6, item='Socks', price='$2.50")
sell (quantity=6, price='$2.50"', item='Socks')

Finally, you can mix keyword and positional arguments, as long as all positional arguments are listed before
keyword arguments. The following statements are equivalent to the previous examples:

sell('Socks', '$2.50', quantity=6)
sell ('Socks', price='$2.50"', quantity=6)
sell ('Socks', quantity=6, price='$2.50")

In Python regular expressions, the syntax for named regular expression groups is (?P<name>pattern),
where name is the name of the group and pattern is some pattern to match.

Here’s an example URLconf that uses non-named groups:

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',

(r'~articles/ (\d{4})/$', views.year_archive),
(r'~articles/ (\d{4})/(\d{2})/$"', views.month_archive),

Here’s the same URLconf, rewritten to use named groups:

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',

(r'~articles/ (?P<year>\d{4})/$', views.year_archive),
(r'~articles/ (?P<year>\d{4})/ (?P<month>\d{2})/$', views.month_archive),

This accomplishes exactly the same thing as the previous example, with one subtle difference: the captured
values are passed to view functions as keyword arguments rather than positional arguments.

For example, with non-named groups, a request to /articles/2006/03/ would result in a function call
equivalent to this:

month_archive (request, '2006', '03'")
With named groups, though, the same request would result in this function call:
month_archive (request, year='2006', month='03")

In practice, using named groups makes your URLconfs slightly more explicit and less prone to
argument-order bugs — and you can reorder the arguments in your views’ function definitions. Following the
preceding example, if we wanted to change the URLSs to include the month before the year, and we were using
non-named groups, we’d have to remember to change the order of arguments in the month_archive view.
If we were using named groups, changing the order of the captured parameters in the URL would have no

8.1.4 Using Named Groups 94



The Django Book

effect on the view.

Of course, the benefits of named groups come at the cost of brevity; some developers find the named-group
syntax ugly and too verbose. Still, another advantage of named groups is readability, especially by those who
aren’t intimately familiar with regular expressions or your particular Django application. It’s easier to see
what’s happening, at a glance, in a URLconf that uses named groups.

8.1.5 Understanding the Matching/Grouping Algorithm

A caveat with using named groups in a URLconf is that a single URLconf pattern cannot contain both named
and non-named groups. If you do this, Django won’t throw any errors, but you’ll probably find that your
URLs aren’t matching as you expect. Specifically, here’s the algorithm the URLconf parser follows, with
respect to named groups vs. non-named groups in a regular expression:

o If there are any named arguments, it will use those, ignoring non-named arguments.

e Otherwise, it will pass all non-named arguments as positional arguments.

¢ In both cases, it will pass any extra options as keyword arguments. See the next section for more
information.

8.1.6 Passing Extra Options to View Functions

Sometimes you’ll find yourself writing view functions that are quite similar, with only a few small
differences. For example, say you have two views whose contents are identical except for the template they
use:

# urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
(r'~foo/$', views.foo_view),
(r'~bar/$', views.bar_view),

)
# views.py

from django.shortcuts import render_to_response
from mysite.models import MyModel

def foo_view (request) :
m_list = MyModel.objects.filter (is_new=True)
return render_to_response('templatel.html', {'m_list': m_list})

def bar_view (request) :
m_list = MyModel.objects.filter (is_new=True)
return render_to_response ('template2.html', {'m_list': m_list})

We’re repeating ourselves in this code, and that’s inelegant. At first, you may think to remove the redundancy
by using the same view for both URLSs, putting parentheses around the URL to capture it, and checking the
URL within the view to determine the template, like so:

# urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
(r 0)/$', views.foobar_view),
(r bar)/$ , views.foobar_view),

8.1.5 Understanding the Matching/Grouping Algorithm 95



The Django Book
)
# views.py

from django.shortcuts import render_to_response
from mysite.models import MyModel

def foobar_view(request, url):
m_list = MyModel.objects.filter (is_new=True)

if url == 'foo':

template_name = 'templatel.html'
elif url == 'bar':

template_name = 'template2.html'

return render_to_response (template_name, {'m_list': m_list})

The problem with that solution, though, is that it couples your URLs to your code. If you decide to rename
/foo/ to /fooey/, you’ll have to remember to change the view code.

The elegant solution involves an optional URLconf parameter. Each pattern in a URLconf may include a third
item: a dictionary of keyword arguments to pass to the view function.

With this in mind, we can rewrite our ongoing example like this:

# urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
(r'~foo/$', views.foobar_view, {'template_name': 'templatel.html'}),
(r'"bar/$', views.foobar_view, {'template_name': 'template2.html'}),

)
# views.py

from django.shortcuts import render_to_response
from mysite.models import MyModel

def foobar_view(request, template_name) :
m_list = MyModel.objects.filter (is_new=True)
return render_to_response (template_name, {'m_list': m_list})

As you can see, the URLconf in this example specifies template_name in the URLconf. The view
function treats it as just another parameter.

This extra URLconf options technique is a nice way of sending additional information to your view functions
with minimal fuss. As such, it’s used by a couple of Django’s bundled applications, most notably its generic
views system, which we cover in Chapter 9.

The following sections contain a couple of ideas on how you can use the extra URLconf options technique in
your own projects.

8.1.6.1 Faking Captured URLconf Values
Say you have a set of views that match a pattern, along with another URL that doesn’t fit the pattern but
whose view logic is the same. In this case, you can “fake” the capturing of URL values by using extra

URLconf options to handle that extra URL with the same view.

For example, you might have an application that displays some data for a particular day, with URLSs such as
these:

8.1.6 Passing Extra Options to View Functions 96



The Django Book

/mydata/jan/01/
/mydata/jan/02/
/mydata/jan/03/
# ...

/mydata/dec/30/
/mydata/dec/31/

This is simple enough to deal with — you can capture those in a URLconf like this (using named group
syntax):

urlpatterns = patterns('',
(r'“mydata/ (?P<month>\w{3})/ (?P<day>\d\d) /$', views.my_view),
)

And the view function signature would look like this:

def my_view(request, month, day):
# ...,

This approach is straightforward — it’s nothing you haven’t seen before. The trick comes in when you want
to add another URL that uses my_ view but whose URL doesn’t include a month and/or day.

For example, you might want to add another URL, /mydata/birthday/, which would be equivalent to
/mydata/jan/06/. You can take advantage of extra URLconf options like so:

urlpatterns = patterns('',
(r'*mydata/birthday/$', views.my_view, {'month': 'jan', 'day': '06'}),
(r'*mydata/ (?P<month>\w{3})/ (?P<day>\d\d) /$', views.my_view),

The cool thing here is that you don’t have to change your view function at all. The view function only cares
that it gets month and day parameters — it doesn’t matter whether they come from the URL capturing itself
or extra parameters.

8.1.6.2 Making a View Generic

It’s good programming practice to “factor out” commonalities in code. For example, with these two Python
functions:

def say_hello(person_name) :

)

print 'Hello, %s' % person_name

def say_goodbye (person_name) :

)

print 'Goodbye, %s' % person_name
we can factor out the greeting to make it a parameter:

def greet (person_name, greeting):
print '

o)

%s, %;' % (greeting, person_name)

You can apply this same philosophy to your Django views by using extra URLconf parameters.

With this in mind, you can start making higher-level abstractions of your views. Instead of thinking to
yourself, “This view displays a list of Event objects,” and “That view displays a list of BLogEntry
objects,” realize they’re both specific cases of “A view that displays a list of objects, where the type of object

is variable.”

Take this code, for example:

8.1.6 Passing Extra Options to View Functions 97



The Django Book
# urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
(r'~events/$', views.event_list),
(r'"blog/entries/$"', views.entry_list),

)
# views.py

from django.shortcuts import render_to_response
from mysite.models import Event, BlogEntry

def event_list (request):
obj_list = Event.objects.all()
return render_to_response ('mysite/event_list.html', {'event_list': obj_list})

def entry_list (request):
obj_list = BlogEntry.objects.all()
return render_to_response ('mysite/blogentry_list.html', {'entry_list': obj_list})

The two views do essentially the same thing: they display a list of objects. So let’s factor out the type of
object they’re displaying:

# urls.py

from django.conf.urls.defaults import *
from mysite import models, views

urlpatterns = patterns('',
(r'~events/$', views.object_list, {'model': models.Event}),
(r'"blog/entries/$"', views.object_list, {'model': models.BlogEntry}),
)

# views.py
from django.shortcuts import render_to_response

def object_list (request, model) :
obj_list = model.objects.all()
template_name = 'mysite/%s_list.html' % model._ name_ .lower ()
return render_to_response (template_name, {'object_list': obj_list})

With those small changes, we suddenly have a reusable, model-agnostic view! From now on, anytime we
need a view that lists a set of objects, we can simply reuse this object_1ist view rather than writing view
code. Here are a couple of notes about what we did:

® We’re passing the model classes directly, as the mode1 parameter. The dictionary of extra URLconf
options can pass any type of Python object — not just strings.

® The model.objects.all () lineis an example of duck typing: “If it walks like a duck and talks
like a duck, we can treat it like a duck.” Note the code doesn’t know what type of object model is;
the only requirement is that mode 1 have an objects attribute, which in turn has an a1l () method.

e We're using model._ _name__.lower () in determining the template name. Every Python class
hasa___name___ attribute that returns the class name. This feature is useful at times like this, when
we don’t know the type of class until runtime. For example, the BlogEntry class’s __name___is
the string 'BlogEntry"'.

¢ In a slight difference between this example and the previous example, we’re passing the generic
variable name object_11st to the template. We could easily change this variable name to be
blogentry_list or event_1list, but we’ve left that as an exercise for the reader.

8.1.6 Passing Extra Options to View Functions 98



The Django Book

Because database-driven Web sites have several common patterns, Django comes with a set of “generic
views” that use this exact technique to save you time. We cover Django’s built-in generic views in the next
chapter.

8.1.6.3 Giving a View Configuration Options

If you’re distributing a Django application, chances are that your users will want some degree of
configuration. In this case, it’s a good idea to add hooks to your views for any configuration options you think
people may want to change. You can use extra URLconf parameters for this purpose.

A common bit of an application to make configurable is the template name:

def my_view(request, template_name) :
var = do_something()
return render_to_response (template_name, {'var': var})

8.1.6.4 Understanding Precedence of Captured Values vs. Extra Options

When there’s a conflict, extra URLconf parameters get precedence over captured parameters. In other words,
if your URLconf captures a named-group variable and an extra URLconf parameter includes a variable with
the same name, the extra URLconf parameter value will be used.

For example, consider this URLconf:

from django.conf.urls.defaults import *
urlpatterns = patterns('',

(r'*mydata/ (?P<id>\d+) /$', views.my_view, {'id': 3}),
)

Here, both the regular expression and the extra dictionary include an id. The hard-coded id gets precedence.
That means any request (e.g., /mydata/2/ or /mydata/432432/) will be treated as if id is set to 3,
regardless of the value captured in the URL.

Astute readers will note that in this case, it’s a waste of time and typing to capture the 1d in the regular
expression, because its value will always be overridden by the dictionary’s value. That’s correct; we bring this
up only to help you avoid making the mistake.

8.1.7 Using Default View Arguments

Another convenient trick is to specify default parameters for a view’s arguments. This tells the view which
value to use for a parameter by default if none is specified.

Here’s an example:

# urls.py
from django.conf.urls.defaults import *
urlpatterns = patterns('',

(r'"blog/$"', views.page),

(r'“blog/page (?P<num>\d+) /$', views.page),
)
# views.py
def page(request, num="1"):

# Output the appropriate page of blog entries, according to num.

8.1.6 Passing Extra Options to View Functions 99



The Django Book

Here, both URL patterns point to the same view — views . page — but the first pattern doesn’t capture
anything from the URL. If the first pattern matches, the page () function will use its default argument for
num, "1". If the second pattern matches, page () will use whatever num value was captured by the regular
expression.

It’s common to use this technique in conjunction with configuration options, as explained earlier. This
example makes a slight improvement to the example in the “Giving a View Configuration Options” section by
providing a default value for template_name:

def my_view (request, template_name='mysite/my_view.html'):
var = do_something ()
return render_to_response (template_name, {'var': var})

8.1.8 Special-Casing Views

Sometimes you’ll have a pattern in your URLconf that handles a large set of URLs, but you’ll need to
special-case one of them. In this case, take advantage of the linear way a URLconf is processed and put the
special case first.

For example, the “add an object” pages in Django’s admin site are represented by this URLconf line:

urlpatterns = patterns('',
¥ oL,
(" ([~/1+)/([~/1+)/add/$', 'django.contrib.admin.views.main.add_stage'),
¥ oL,

This matches URLs such as /myblog/entries/add/ and /auth/groups/add/. However, the “add”
page for a user object (/auth/user/add/) is a special case — it doesn’t display all of the form fields, it
displays two password fields, and so forth. We could solve this problem by special-casing in the view, like so:

def add_stage (request, app_label, model_name) :
if app_label == 'auth' and model_name == 'user':
# do special-case code
else:
# do normal code

but that’s inelegant for a reason we’ve touched on multiple times in this chapter: it puts URL logic in the
view. As a more elegant solution, we can take advantage of the fact that URLconfs are processed in order
from top to bottom:

urlpatterns = patterns('',
# ...
('~auth/user/add/$', 'django.contrib.admin.views.auth.user_add_stage'),
(" ([~/1+)/([~/1+)/add/$', 'django.contrib.admin.views.main.add_stage'),

# ...

With this in place, a request to /auth/user/add/ will be handled by the user_add_stage view.
Although that URL matches the second pattern, it matches the top one first. (This is short-circuit logic.)

8.1.9 Capturing Text in URLs

Each captured argument is sent to the view as a plain Python string, regardless of what sort of match the
regular expression makes. For example, in this URLconf line:

8.1.7 Using Default View Arguments 100



The Django Book

(r'~articles/ (?P<year>\d{4})/$', views.year_archive),

the year argument to views.year_archive () will be a string, not an integer, even though \d {4} will
only match integer strings.

This is important to keep in mind when you’re writing view code. Many built-in Python functions are fussy
(and rightfully so) about accepting only objects of a certain type. A common error is to attempt to create a
datetime.date object with string values instead of integer values:

>>> import datetime

>>> datetime.date('1993', '7', '9")
Traceback (most recent call last):
TypeError: an integer is required
>>> datetime.date (1993, 7, 9)
datetime.date (1993, 7, 9)

Translated to a URLconf and view, the error looks like this:

# urls.py
from django.conf.urls.defaults import *
urlpatterns = patterns('',
(r'~articles/ (\d{4})/(\d{2})/(\d{2})/$"'", views.day_archive),
)
# views.py
import datetime
def day_archive (request, year, month, day)

# The following statement raises a TypeError!
date = datetime.date(year, month, day)

Instead, day_archive () can be written correctly like this:

def day_archive (request, year, month, day)
date = datetime.date (int (year), int (month), int (day))

Note that int () itself raises a ValueError when you pass it a string that is not composed solely of digits,
but we’re avoiding that error in this case because the regular expression in our URLconf has ensured that only
strings containing digits are passed to the view function.

8.1.10 Determining What the URLconf Searches Against

When a request comes in, Django tries to match the URLconf patterns against the requested URL, as a normal
Python string (not as a Unicode string). This does not include GET or POST parameters, or the domain name.
It also does not include the leading slash, because every URL has a leading slash.

For example, in a request to http://www.example.com/myapp/, Django will try to match myapp/.
Inarequestto http://www.example.com/myapp/?page=3, Django will try to match myapp/.

The request method (e.g., POST, GET, HEAD) is not taken into account when traversing the URLconf. In other

words, all request methods will be routed to the same function for the same URL. It’s the responsibility of a
view function to perform branching based on request method.

8.1.9 Capturing Text in URLs 101



The Django Book
8.2 Including Other URLconfs

If you intend your code to be used on multiple Django-based sites, you should consider arranging your
URLconfs in such a way that allows for “including.”

At any point, your URLconf can “include” other URLconf modules. This essentially “roots” a set of URLs
below other ones. For example, this URLconf includes other URLconfs:

from django.conf.urls.defaults import *

urlpatterns = patterns('',

(r'"weblog/', include('mysite.blog.urls')),
(r'*photos/', include('mysite.photos.urls')),
(r'~about/$', 'mysite.views.about'),

There’s an important gotcha here: the regular expressions in this example that point to an include () do not
have a $ (end-of-string match character) but do include a trailing slash. Whenever Django encounters
include (), it chops off whatever part of the URL matched up to that point and sends the remaining string
to the included URLconf for further processing.

Continuing this example, here’s the URLconf mysite.blog.urls:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
(r'~(\d\d\d\d) /$', 'mysite.blog.views.year_detail'),
(r'~(\d\d\d\d) / (\d\d) /$', 'mysite.blog.views.month_detail'),

With these two URLconfs, here’s how a few sample requests would be handled:

® /weblog/2007/: In the first URLconf, the pattern r ' “weblog/ ' matches. Because it is an
include (), Django strips all the matching text, which is 'weblog/ "' in this case. The remaining
part of the URL is 2007/, which matches the first line in the mysite.blog.urls URLconf.

e /weblog//2007/: In the first URLconf, the pattern r ' “weblog/ ' matches. Because it is an
include (), Django strips all the matching text, which is 'weblog/ ' in this case. The remaining
part of the URL is /2007 / (with a leading slash), which does not match any of the lines in the
mysite.blog.urls URLconf.

e /about /: This matches the view mysite.views.about in the first URLconf, demonstrating
that you can mix include () patterns with non-include () patterns.

8.2.1 How Captured Parameters Work with include()

An included URLconf receives any captured parameters from parent URLconfs, for example:

# root urls.py
from django.conf.urls.defaults import *
urlpatterns = patterns('',
(r'” (?P<username>\w+) /blog/', include('foo.urls.blog')),
)
# foo/urls/blog.py
from django.conf.urls.defaults import *

urlpatterns = patterns('',

8.2 Including Other URLconfs 102



The Django Book

(r'~$', '"foo.views.blog_index'),
(r'~archive/$', 'foo.views.blog_archive'),

In this example, the captured username variable is passed to the included URLconf and, hence, to every
view function within that URLconf.

Note that the captured parameters will always be passed to every line in the included URLconf, regardless of
whether the line’s view actually accepts those parameters as valid. For this reason, this technique is useful
only if you’re certain that every view in the included URLconf accepts the parameters you’re passing.

8.2.2 How Extra URLconf Options Work with include()

Similarly, you can pass extra URLconf options to include (), just as you can pass extra URLconf options
to a normal view — as a dictionary. When you do this, each line in the included URLconf will be passed the
extra options.

For example, the following two URLconf sets are functionally identical.

Set one:

# urls.py
from django.conf.urls.defaults import *
urlpatterns = patterns('',

(r'"blog/', include('inner'), {'blogid': 3}),
)
# inner.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',

(r'~archive/$', 'mysite.views.archive'),
(r'~about/$', 'mysite.views.about'),
(r'"rss/$', 'mysite.views.rss'),

)

Set two:

# urls.py

from django.conf.urls.defaults import *
urlpatterns = patterns('',
(r'"blog/', include('inner')),
)
# inner.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',

(r'~archive/$', 'mysite.views.archive', {'blogid': 3}),
(r'~about/$', 'mysite.views.about', {'blogid': 3}),
(r'"rss/$', 'mysite.views.rss', {'blogid': 3}),

As is the case with captured parameters (explained in the previous section), extra options will always be
passed to every line in the included URLconf, regardless of whether the line’s view actually accepts those

8.2.1 How Captured Parameters Work with include() 103



The Django Book

options as valid. For this reason, this technique is useful only if you’re certain that every view in the included
URLconf accepts the extra options you’re passing.

8.3 What’s Next?

One of Django’s main goals is to reduce the amount of code developers need to write, and in this chapter we
suggested how to cut down the code of your views and URLconfs.

The next logical step in code elimination is removing the need to write views entirely. That’s the topic of the
next chapter.

8.2.2 How Extra URLconf Options Work with include() 104



9 Generic Views

Here again is a recurring theme of this book: at its worst, Web development is boring and monotonous. So far,
we’ve covered how Django tries to take away some of that monotony at the model and template layers, but
Web developers also experience this boredom at the view level.

Django’s generic views were developed to ease that pain. They take certain common idioms and patterns
found in view development and abstract them so that you can quickly write common views of data without
having to write too much code. In fact, nearly every view example in the preceding chapters could be
rewritten with the help of generic views.

Chapter 8 touched briefly on how you’d go about making a view “generic.” To review, we can recognize
certain common tasks, like displaying a list of objects, and write code that displays a list of any object. Then
the model in question can be passed as an extra argument to the URLconf.

Django ships with generic views to do the following:

® Perform common “simple” tasks: redirect to a different page and render a given template.

e Display list and detail pages for a single object. The event_1list and entry_list views from
Chapter 8 are examples of list views. A single event page is an example of what we call a “detail”
view.

¢ Present date-based objects in year/month/day archive pages, associated detail, and “latest” pages. The
Django Weblog’s (http://www.djangoproject.com/weblog/) year, month, and day archives are built
with these, as would be a typical newspaper’s archives.

¢ Allow users to create, update, and delete objects — with or without authorization.

Taken together, these views provide easy interfaces to perform the most common tasks developers encounter.

9.1 Using Generic Views

All of these views are used by creating configuration dictionaries in your URLconf files and passing those
dictionaries as the third member of the URLconf tuple for a given pattern.

For example, here’s a simple URLconf you could use to present a static “about” page:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template

urlpatterns = patterns('',
('~about/$"', direct_to_template, {
'template': 'about.html'
})

Though this might seem a bit “magical” at first glance — look, a view with no code! —, it’s actually exactly
the same as the examples in Chapter 8: the direct_to_template view simply grabs information from
the extra-parameters dictionary and uses that information when rendering the view.

Because this generic view — and all the others — is a regular view functions like any other, we can reuse it
inside our own views. As an example, let’s extend our “about” example to map URLs of the form

/about /<whatever>/ to statically rendered about /<whatever>.html. We’ll do this by first
modifying the URLconf to point to a view function:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template

9 Generic Views 105


http://www.djangoproject.com/weblog/

The Django Book

from mysite.books.views import about_pages

urlpatterns = patterns('',
('~about/$"', direct_to_template, {
'template': 'about.html'

P
('~about/ (w+) /$', about_pages),

Next, we’ll write the about_pages view:

from django.http import Http404
from django.template import TemplateDoesNotExist
from django.views.generic.simple import direct_to_template

def about_pages (request, page):
try:
return direct_to_template (request, template="about/%$s.html" % page)
except TemplateDoesNotExist:
raise Http404 ()

Here we’re treating direct_to_template like any other function. Since it returns an Ht tpResponse,
we can simply return it as-is. The only slightly tricky business here is dealing with missing templates. We
don’t want a nonexistent template to cause a server error, so we catch TemplateDoesNotExist
exceptions and return 404 errors instead.

Is There a Security Vulnerability Here?

Sharp-eyed readers may have noticed a possible security hole: we’re constructing the template name using
interpolated content from the browser (template="about/%$s.html" % page). At first glance, this
looks like a classic directory traversal vulnerability (discussed in detail in Chapter 19). But is it really?

Not exactly. Yes, a maliciously crafted value of page could cause directory traversal, but although page is
taken from the request URL, not every value will be accepted. They key is in the URLconf: we’re using the

regular expression \w+ to match the page part of the URL, and \w only accepts letters and numbers. Thus,
any malicious characters (dots and slashes, here) will be rejected by the URL resolver before they reach the

view itself.

9.2 Generic Views of Objects

The direct_to_template certainly is useful, but Django’s generic views really shine when it comes to
presenting views on your database content. Because it’s such a common task, Django comes with a handful of
built-in generic views that make generating list and detail views of objects incredibly easy.

Let’s take a look at one of these generic views: the “object list” view. We’ll be using this Publisher object
from Chapter 5:

class Publisher (models.Model) :
name = models.CharField (maxlength=30)
address = models.CharField (maxlength=50)
city = models.CharField (maxlength=60)
state_province = models.CharField(maxlength=30)
country = models.CharField (maxlength=50)
website = models.URLField()

def _ str_ (self):
return self.name

class Meta:
ordering = ["-name"]

9.1 Using Generic Views 106



The Django Book

class Admin:
pass

To build a list page of all books, we’d use a URLconf along these lines:

from django.conf.urls.defaults import *
from django.views.generic import list_detail
from mysite.books.models import Publisher

publisher_info = {
"queryset" : Publisher.objects.all(),
}

urlpatterns = patterns('',
(r'"publishers/$', list_detail.object_list, publisher_info)
)

That’s all the Python code we need to write. We still need to write a template, however. We could explicitly
tell the object_11ist view which template to use by including a template_name key in the extra
arguments dictionary, but in the absence of an explicit template Django will infer one from the object’s name.
In this case, the inferred template will be "books/publisher_list.html" — the “books” part comes
from the name of the app that defines the model, while the “publisher” bit is just the lowercased version of the
model’s name.

This template will be rendered against a context containing a variable called object_11st that contains all
the book objects. A very simple template might look like the following:

{% extends "base.html" %}

{% block content %}
<h2>Publishers</h2>
<ul>
{% for publisher in object_list %}
<1li>{{ publisher.name }}</1i>
{% endfor %}
</ul>
{% endblock %}

That’s really all there is to it. All the cool features of generic views come from changing the “info” dictionary
passed to the generic view. Appendix D documents all the generic views and all their options in detail; the rest
of this chapter will consider some of the common ways you might customize and extend generic views.

9.3 Extending Generic Views

There’s no question that using generic views can speed up development substantially. In most projects,
however, there comes a moment when the generic views no longer suffice. Indeed, the most common question
asked by new Django developers is how to make generic views handle a wider array of situations.

Luckily, in nearly every one of these cases, there are ways to simply extend generic views to handle a larger
array of use cases. These situations usually fall into a handful of patterns dealt with in the sections that follow.

9.3.1 Making “Friendly” Template Contexts

You might have noticed that sample publisher list template stores all the books in a variable named
object_1list. While this works just fine, it isn’t all that “friendly” to template authors: they have to “just
know” that they’re dealing with books here. A better name for that variable would be publisher_1list;
that variable’s content is pretty obvious.

9.2 Generic Views of Objects 107



The Django Book

We can change the name of that variable easily with the template_object_name argument:

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",
}

urlpatterns = patterns('',
(r'"publishers/$', list_detail.object_list, publisher_info)
)

Providing a useful template_object_name is always a good idea. Your coworkers who design
templates will thank you.

9.3.2 Adding Extra Context

Often you simply need to present some extra information beyond that provided by the generic view. For
example, think of showing a list of all the other publishers on each publisher detail page. The
object_detail generic view provides the publisher to the context, but it seems there’s no way to get a list
of all publishers in that template.

But there is: all generic views take an extra optional parameter, ext ra_context. This is a dictionary of
extra objects that will be added to the template’s context. So, to provide the list of all publishers on the detail
detail view, we’d use an info dict like this:

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",
"extra_context" : {"book_ list" : Book.objects.all()}

This would populate a { { book_1ist }} variable in the template context. This pattern can be used to pass
any information down into the template for the generic view. It’s very handy.

However, there’s actually a subtle bug here — can you spot it?

The problem has to do with when the queries in ext ra_context are evaluated. Because this example puts
Publisher.objects.all () in the URLconf, it will be evaluated only once (when the URLconf is first
loaded). Once you add or remove publishers, you’ll notice that the generic view doesn’t reflect those changes
until you reload the Web server (see “Caching and QuerySets” in Appendix C for more information about
when QuerySets are cached and evaluated).

Note

This problem doesn’t apply to the queryset generic view argument. Since Django knows that particular
QuerySet should never be cached, the generic view takes care of clearing the cache when each view is
rendered.

The solution is to use a callback in ext ra_context instead of a value. Any callable (i.e., a function) that’s
passed to extra_context will be evaluated when the view is rendered (instead of only once). You could
do this with an explicitly defined function:

def get_books () :
return Book.objects.all()

publisher_info = {

"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",

9.3.1 Making “Friendly” Template Contexts 108



The Django Book

"extra_context" : {"book_ list" : get_books}

or you could use a less obvious but shorter version that relies on the fact that Publisher.objects.all
is itself a callable:

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",
"extra_context" : {"book_ list" : Book.objects.all}

Notice the lack of parentheses after Book . objects.all; this references the function without actually
calling it (which the generic view will do later).

9.3.3 Viewing Subsets of Objects

Now let’s take a closer look at this queryset key we’ve been using all along. Most generic views take one
of these queryset arguments — it’s how the view knows which set of objects to display (see “Selecting
Objects” in Chapter 5 for an introduction to QuerySets, and see Appendix C for the complete details).

To pick a simple example, we might want to order a list of books by publication date, with the most recent
first:

book_info = {
"queryset" : Book.objects.all().order_by("-publication_date"),
}

urlpatterns = patterns('',
(r'"publishers/S$', list_detail.object_list, publisher_info),
(r'~books/$', list_detail.object_list, book_info),

That’s a pretty simple example, but it illustrates the idea nicely. Of course, you’ll usually want to do more
than just reorder objects. If you want to present a list of books by a particular publisher, you can use the same
technique:

apress_books = {
"queryset": Book.objects.filter (publisher_name="Apress Publishing"),
"template_name" : "books/apress_list.html"

}

urlpatterns = patterns('',
(r'"publishers/S$', list_detail.object_list, publisher_info),
(r'*books/apress/$', list_detail.object_list, apress_books),

Notice that along with a filtered queryset, we’re also using a custom template name. If we didn’t, the
generic view would use the same template as the “vanilla” object list, which might not be what we want.

Also notice that this isn’t a very elegant way of doing publisher-specific books. If we want to add another
publisher page, we’d need another handful of lines in the URLconf, and more than a few publishers would get
unreasonable. We’ll deal with this problem in the next section.

Note
If you get a 404 when requesting /books/apress/, check to ensure you actually have a Publisher with the
name ‘Apress Publishing’. Generic views have an allow_empty parameter for this case. See Appendix D

for more details.

9.3.2 Adding Extra Context 109



The Django Book
9.3.4 Complex Filtering with Wrapper Functions

Another common need is to filter down the objects given in a list page by some key in the URL. Earlier we
hard-coded the publisher’s name in the URLconf, but what if we wanted to write a view that displayed all the
books by some arbitrary publisher? We can “wrap” the object_11ist generic view to avoid writing a lot of
code by hand. As usual, we’ll start by writing a URLconf:

urlpatterns = patterns('',
(r'"publishers/$', list_detail.object_list, publisher_info),
(r'*books/ (w+)/$', books_by publisher),

Next, we’ll write the books_by_publisher view itself:

from django.http import Http404
from django.views.generic import list_detail
from mysite.books.models import Book, Publisher

def books_by_publisher (request, name):

# Look up the publisher (and raise a 404 if it can't be found).
try:

publisher = Publisher.objects.get (name__iexact=name)
except Publisher.DoesNotExist:

raise Http404

# Use the object_list view for the heavy lifting.

return list_detail.object_list(
request,
queryset = Book.objects.filter (publisher=publisher),
template_name = "books/books_by_ publisher.html",
template_object_name = "books",
extra_context = {"publisher" : publisher}

This works because there’s really nothing special about generic views — they’re just Python functions. Like
any view function, generic views expect a certain set of arguments and return Ht t pResponse objects. Thus,
it’s incredibly easy to wrap a small function around a generic view that does additional work before (or after;
see the next section) handing things off to the generic view.

Note
Notice that in the preceding example we passed the current publisher being displayed in the

extra_context. This is usually a good idea in wrappers of this nature; it lets the template know which
“parent” object is currently being browsed.

9.3.5 Performing Extra Work

The last common pattern we’ll look at involves doing some extra work before or after calling the generic
view.

Imagine we had a 1ast_accessed field on our Author object that we were using to keep track of the last
time anybody looked at that author. The generic object_detail view, of course, wouldn’t know anything

about this field, but once again we could easily write a custom view to keep that field updated.

First, we’d need to add an author detail bit in the URLconf to point to a custom view:

from mysite.books.views import author_detail

9.3.4 Complex Filtering with Wrapper Functions 110



The Django Book

urlpatterns = patterns('',
#...
(r'*authors/ (?P<author_id>d+)/$', author_detail),

Then we’d write our wrapper function:

import datetime

from mysite.books.models import Author

from django.views.generic import list_detail
from django.shortcuts import get_object_or_404

def author_detail (request, author_id):
# Look up the Author (and raise a 404 if she's not found)
author = get_object_or_404 (Author, pk=author_id)

# Record the last accessed date
author.last_accessed = datetime.datetime.now ()
author.save ()

# Show the detail page

return list_detail.object_detail(
request,
queryset = Author.objects.all(),
object_id = author_id,

Note

This code won’t actually work unless you add a 1ast_accessed field to your Author model and create a
books/author_detail.html template.

We can use a similar idiom to alter the response returned by the generic view. If we wanted to provide a
downloadable plain-text version of the list of authors, we could use a view like this:

def author_list_plaintext (request):
response = list_detail.object_list (
request,
queryset = Author.objects.all(),
mimetype = "text/plain",
template_name = "books/author_list.txt"

)
response["Content-Disposition"] = "attachment; filename=authors.txt"
return response

This works because the generic views return simple Ht t pResponse objects that can be treated like
dictionaries to set HTTP headers. This Content-Disposition business, by the way, instructs the
browser to download and save the page instead of displaying it in the browser.

9.4 What’s Next?

In this chapter we looked at only a couple of the generic views Django ships with, but the general ideas
presented here should apply pretty closely to any generic view. Appendix D covers all the available views in
detail, and it’s recommended reading if you want to get the most out of this powerful feature.

In the next chapter we delve deep into the inner workings of Django’s templates, showing all the cool ways

they can be extended. Until now, we’ve treated the template engine as a mostly static tool you can use to
render your content.

9.3.5 Performing Extra Work 111



10 Extending the Template Engine

Although most of your interactions with Django’s template language will be in the role of template author,
you may want to customize and extend the template engine — either to make it do something it doesn’t
already do, or to make your job easier in some other way.

This chapter delves deep into the guts of Django’s template system. It covers what you need to know if you
plan to extend the system or if you’re just curious about how it works.

If you’re looking to use the Django template system as part of another application (i.e., without the rest of the
framework), make sure to read the “Configuring the Template System in Standalone Mode” section later in
the chapter.

10.1 Template Language Review

First, let’s quickly review a number of terms introduced in Chapter 4:

o A template is a text document, or a normal Python string, that is marked up using the Django template
language. A template can contain block tags and variables.

® A block tag is a symbol within a template that does something. This definition is deliberately vague.
For example, a block tag can produce content, serve as a control structure (an if statement or for
loop), grab content from a database, or enable access to other template tags.

Block tags are surrounded by {% and %}:

% 1f is_logged_in %}
Thanks for logging in!
% else %}
Please log in.
{% endif %}

® A variable is a symbol within a template that outputs a value.

Variable tags are surrounded by { { and } }:

My first name is {{ first_name }}. My last name is {{ last_name }}.
® A context is a name -> value mapping (similar to a Python dictionary) that is passed to a template.
¢ A template renders a context by replacing the variable “holes” with values from the context and
executing all block tags.

For more details about the basics of these terms, refer back to Chapter 4.

The rest of this chapter discusses ways of extending the template engine. First, though, let’s take a quick look
at a few internals left out of Chapter 4 for simplicity.

10.2 RequestContext and Context Processors

When rendering a template, you need a context. Usually this is an instance of
django.template.Context, but Django also comes with a special subclass,
django.template.RequestContext, that acts slightly differently. RequestContext adds a bunch
of variables to your template context by default — things like the Ht t pRequest object or information about
the currently logged-in user.

Use RequestContext when you don’t want to have to specify the same set of variables in a series of
templates. For example, consider these four views:

10 Extending the Template Engine 112



The Django Book
from django.template import loader, Context

def view_1 (request):

# ...

t = loader.get_template('templatel.html")

c = Context ({
'app': 'My app',
'user': request.user,
'ip_address': request.META['REMOTE_ADDR'],
'message': 'I am view 1.'

})

return t.render (c)

def view_2 (request):
# ...
t = loader.get_template('template2.html")
c = Context ({
'app': 'My app',

'user': request.user,
'ip_address': request.META['REMOTE_ADDR'],
'message': 'I am the second view.'

})

return t.render (c)
def view_3 (request):
t = loader.get_template('template3.html")

c = Context ({
'app': 'My app',

'user': request.user,
'ip_address': request.META['REMOTE_ADDR'],
'message': 'I am the third view.'

})

return t.render (c)

def view_4 (request) :
# ...
t = loader.get_template('templated4.html')
c = Context ({
'app': 'My app',

'user': request.user,
'ip_address': request.META['REMOTE_ADDR'],
'message': 'I am the fourth view.'

})

return t.render (c)

(Note that we’re deliberately not using the render_to_response () shortcut in these examples — we’re
manually loading the templates, constructing the context objects and rendering the templates. We’re “spelling
out” all of the steps for the purpose of clarity.)

Each view passes the same three variables — app, user and ip_address — to its template. Wouldn’t it
be nice if we could remove that redundancy?

RequestContext and context processors were created to solve this problem. Context processors let you
specify a number of variables that get set in each context automatically — without you having to specify the
variables in each render_to_response () call. The catch is that you have to use RequestContext

instead of Context when you render a template.

The most low-level way of using context processors is to create some processors and pass them to
RequestContext. Here’s how the above example could be written with context processors:

from django.template import loader, RequestContext

10.2 RequestContext and Context Processors 113



The Django Book

def custom_proc(request) :
"A context processor that provides 'app', 'user' and 'ip_address'."
return {
'app': 'My app',
'user': request.user,
'ip_address': request.META['REMOTE_ADDR']

def view_1 (request):
# ...
t = loader.get_template('templatel.html')
c RequestContext (request, {'message': 'I am view 1.'},
processors=[custom_proc])
return t.render (c)

def view_2 (request):
# ...
t = loader.get_template('template2.html")
c RequestContext (request, {'message': 'I am the second view.'},
processors=[custom_proc])
return t.render (c)

def view_3 (request):
# ...
t = loader.get_template('template3.html")
c RequestContext (request, {'message': 'I am the third view.'},
processors=[custom_proc])
return t.render (c)

def view_4 (request) :
# ...
t = loader.get_template('templated4.html')
c RequestContext (request, {'message': 'I am the fourth view.'},
processors=[custom_proc])
return t.render (c)

Let’s step through this code:

e First, we define a function custom_proc. This is a context processor — it takes an Ht t pRequest
object and returns a dictionary of variables to use in the template context. That’s all it does.

e We’ve changed the four view functions to use RequestContext instead of Context. There are
two differences in how the context is constructed. One, RequestContext requires the first
argument to be an Ht tpRequest object — the one that was passed into the view function in the
first place (request). Two, RequestContext takes an optional processors argument, which
is a list or tuple of context processor functions to use. Here, we pass in custom_proc, the custom
processor we defined above.

® Each view no longer has to include app, user or ip_address in its context construction, because
those are provided by custom_proc.

e Each view still has the flexibility to introduce any custom template variables it might need. In this
example, the me ssage template variable is set differently in each view.

In Chapter 4, we introduced the render_to_response () shortcut, which saves you from having to call
loader.get_template (), then create a Context, then call the render () method on the template. In
order to demonstrate the lower-level workings of context processors, the above examples didn’t use
render_to_response (), . Butit’s possible — and preferable — to use context processors with
render_to_response (). Do this with the context_instance argument, like so:

from django.shortcuts import render_to_response
from django.template import RequestContext

def custom_proc (request) :
"A context processor that provides 'app', 'user' and 'ip_address'."

10.2 RequestContext and Context Processors 114



The Django Book

return {

'app': 'My app',

'user': request.user,

'ip_address': request.META['REMOTE_ADDR']
}

def view_1 (request):
#
return render_to_response ('templatel.html’',
{'message': 'I am view 1.'},
context_instance=RequestContext (request, processors=[custom_proc]))

def view_2 (request):
#
return render_to_response ('template2.html’',
{'message': 'I am the second view.'},
context_instance=RequestContext (request, processors=[custom_proc]))

def view_3 (request):
#
return render_to_response ('template3.html’',
{'message': 'I am the third view.'},
context_instance=RequestContext (request, processors=[custom_proc]))

def view_4 (request) :
#
return render_to_response ('templated.html’',
{'message': 'I am the fourth view.'},
context_instance=RequestContext (request, processors=[custom_proc]))

Here, we’ve trimmed down each view’s template rendering code to a single (wrapped) line.

This is an improvement, but, evaluating the conciseness of this code, we have to admit we’re now almost
overdosing on the other end of the spectrum. We’ve removed redundancy in data (our template variables) at
the cost of adding redundancy in code (in the processors call). Using context processors doesn’t save you
much typing if you have to type processors all the time.

For that reason, Django provides support for global context processors. The
TEMPLATE_CONTEXT_PROCESSORS setting designates which context processors should always be applied
to RequestContext. This removes the need to specify processors each time you use
RequestContext.

By default, TEMPLATE_CONTEXT_PROCESSORS is set to the following:

TEMPLATE_CONTEXT_PROCESSORS = (
'django.core.context_processors.auth',
'django.core.context_processors.debug',
'django.core.context_processors.il8n',
'django.core.context_processors.media',

This setting is a tuple of callables that use the same interface as our custom_proc function above —
functions that take a request object as their argument and return a dictionary of items to be merged into the
context. Note that the values in TEMPLATE_CONTEXT_PROCESSORS are specified as strings, which means
the processors are required to be somewhere on your Python path (so you can refer to them from the setting).

Each processor is applied in order. That is, if one processor adds a variable to the context and a second
processor adds a variable with the same name, the second will override the first.

Django provides a number of simple context processors, including the ones that are enabled by default:

10.2 RequestContext and Context Processors 115



The Django Book

10.2.1 django.core.context_processors.auth

If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every RequestContext will contain
these variables:

e user: Adjango.contrib.auth.models.User instance representing the current logged-in
user (or an AnonymousUser instance, if the client isn’t logged in).

® messages: A list of messages (as strings) for the current logged-in user. Behind the scenes, this
variable calls request .user.get_and_delete_messages () for every request. That method
collects the user’s messages and deletes them from the database.

¢ perms: An instance of django.core.context_processors.PermWrapper, which
represents the permissions the current logged-in user has.

See Chapter 12 for more information on users, permissions, and messages.

10.2.2 django.core.context_processors.debug
This processor pushes debugging information down to the template layer. If
TEMPLATE_CONTEXT_PROCESSORS contains this processor, every RequestContext will contain these
variables:
® debug: The value of your DEBUG setting (either True or False). You can use this variable in
templates to test whether you’re in debug mode.
® sgl_queries:Alistof {'sgl': ..., 'time': ...} dictionaries representing every SQL
query that has happened so far during the request and how long it took. The list is in the order in

which the queries were issued.

Because debugging information is sensitive, this context processor will only add variables to the context if
both of the following conditions are true:

¢ The DEBUG setting is True.
® The request came from an IP address in the INTERNAL_IPS setting.

10.2.3 django.core.context_processors.i18n
If this processor is enabled, every Request Context will contain these variables:
® LANGUAGES: The value of the LANGUAGES setting.
¢ LANGUAGE_CODE: request . LANGUAGE_CODE if it exists; otherwise, the value of the

LANGUAGE_CODE setting.

Appendix E provides more information about these two settings.

10.2.4 django.core.context_processors.request

If this processor is enabled, every Request Context will contain a variable request, which is the current
HttpRequest object. Note that this processor is not enabled by default; you have to activate it.

10.2.5 Guidelines for Writing Your Own Context Processors

Here are a few tips for rolling your own:

10.2.1 django.core.context_processors.auth 116



The Django Book

® Make each context processor responsible for the smallest subset of functionality possible. It’s easy to
use multiple processors, so you might as well split functionality into logical pieces for future reuse.

¢ Keep in mind that any context processor in TEMPLATE_CONTEXT_PROCESSORS will be available
in every template powered by that settings file, so try to pick variable names that are unlikely to
conflict with variable names your templates might be using independently. As variable names are
case-sensitive, it’s not a bad idea to use all caps for variables a processor provides.

e It doesn’t matter where on the filesystem they live, as long as they’re on your Python path so you can
point to them from the TEMPLATE_CONTEXT_PROCESSORS setting. With that said, the convention
is to save them in a file called context_processors.py within your app or project.

10.3 Inside Template Loading

Generally, you’ll store templates in files on your filesystem, but you can use custom template loaders to load
templates from other sources.

Django has two ways to load templates:

¢ django.template.loader.get_template (template_name): get_template returns
the compiled template (a Template object) for the template with the given name. If the template
doesn’t exist, a TemplateDoesNotExist exception will be raised.

® django.template.loader.select_template (template_name_list):
select_template isjustlike get_template, except it takes a list of template names. Of the
list, it returns the first template that exists. If none of the templates exist, a
TemplateDoesNotExist exception will be raised.

As covered in Chapter 4, each of these functions by default uses your TEMPLATE_DIRS setting to load
templates. Internally, however, these functions actually delegate to a template loader for the heavy lifting.

Some of loaders are disabled by default, but you can activate them by editing the TEMPLATE_LOADERS
setting. TEMPLATE_LOADERS should be a tuple of strings, where each string represents a template loader.
These template loaders ship with Django:

¢ django.template.loaders.filesystem.load_template_source: This loader loads
templates from the filesystem, according to TEMPLATE_DIRS. It is enabled by default.

¢ django.template.loaders.app_directories.load_template_source: This
loader loads templates from Django applications on the filesystem. For each application in
INSTALLED_APPS, the loader looks for a templates subdirectory. If the directory exists, Django
looks for templates there.

This means you can store templates with your individual applications, making it easy to distribute
Django applications with default templates. For example, if INSTALLED_APPS contains
('myproject.polls', 'myproject.music'),thenget_template('foo.html')
will look for templates in this order:

¢ /path/to/myproject/polls/templates/foo.html

¢ /path/to/myproject/music/templates/foo.html
Note that the loader performs an optimization when it is first imported: it caches a list of which
INSTALLED_APPS packages have a templates subdirectory.

This loader is enabled by default.

® django.template.loaders.eggs.load_template_source: This loader is just like
app_directories, except it loads templates from Python eggs rather than from the filesystem.
This loader is disabled by default; you’ll need to enable it if you’re using eggs to distribute your
application.

10.2.5 Guidelines for Writing Your Own Context Processors 117



The Django Book

Django uses the template loaders in order according to the TEMPLATE_LOADERS setting. It uses each loader
until a loader finds a match.

10.4 Extending the Template System

Now that you understand a bit more about the internals of the template system, let’s look at how to extend the
system with custom code.

Most template customization comes in the form of custom template tags and/or filters. Although the Django
template language comes with many built-in tags and filters, you’ll probably assemble your own libraries of
tags and filters that fit your own needs. Fortunately, it’s quite easy to define your own functionality.

10.4.1 Creating a Template Library

Whether you’re writing custom tags or filters, the first thing to do is to create a template library — a small
bit of infrastructure Django can hook into.

Creating a template library is a two-step process:

e First, decide which Django application should house the template library. If you’ve created an app via
manage.py startapp, you can put it in there, or you can create another app solely for the
template library.

Whichever route you take, make sure to add the app to your INSTALLED_APPS setting. We’ll
explain this shortly.

¢ Second, create a templatetags directory in the appropriate Django application’s package. It
should be on the same level as models.py, views.py, and so forth. For example:

books/
__init__ .py
models.py
templatetags/
views.py

Create two empty files in the templatetags directory: an __init__ . py file (to indicate to
Python that this is a package containing Python code) and a file that will contain your custom
tag/filter definitions. The name of the latter file is what you’ll use to load the tags later. For example,
if your custom tags/filters are in a file called pol1_extras.py, you'd write the following in a
template:

% load poll_extras %}

The {$ load %} taglooks at your INSTALLED_APPS setting and only allows the loading of
template libraries within installed Django applications. This is a security feature; it allows you to host
Python code for many template libraries on a single computer without enabling access to all of them
for every Django installation.

If you write a template library that isn’t tied to any particular models/views, it’s valid and quite normal to
have a Django application package that contains only a templatetags package. There’s no limit on how
many modules you put in the templatetags package. Just keep in mind thata {$ load %} statement
will load tags/filters for the given Python module name, not the name of the application.

Once you’ve created that Python module, you’ll just have to write a bit of Python code, depending on whether
you’re writing filters or tags.

10.3 Inside Template Loading 118



The Django Book

To be a valid tag library, the module must contain a module-level variable named register thatis a
template.Library instance. This template.Library instance is the data structure in which all the
tags and filters are registered. So, near the top of your module, insert the following:

from django import template

register = template.Library ()
Note

For a good number of examples, read the source code for Django’s default filters and tags. They’re in
django/template/defaultfilters.py and django/template/defaulttags.py,
respectively. Some applications in django . contrib also contain template libraries.

Once you’ve created this register variable, you’ll use it to create template filters and tags.

10.4.2 Writing Custom Template Filters
Custom filters are just Python functions that take one or two arguments:

® The value of the variable (input)
® The value of the argument, which can have a default value or be left out altogether

For example, in the filter { { var|foo:"bar" }}, the filter foo would be passed the contents of the
variable var and the argument "bar".

Filter functions should always return something. They shouldn’t raise exceptions, and they should fail silently.
If there’s an error, they should return either the original input or an empty string, whichever makes more
sense.

Here’s an example filter definition:

def cut (value, arg):
"Removes all values of arg from the given string"
return value.replace(arg, '')

And here’s an example of how that filter would be used:
{{ somevariable]|cut:"0" }}
Most filters don’t take arguments. In this case, just leave the argument out of your function:

def lower (value): # Only one argument.
"Converts a string into all lowercase"
return value.lower ()

When you’ve written your filter definition, you need to register it with your Library instance, to make it
available to Django’s template language:

register.filter ('cut', cut)
register.filter ('lower', lower)

The Library.filter () method takes two arguments:

® The name of the filter (a string)
¢ The filter function itself

10.4.1 Creating a Template Library 119



The Django Book

If you’re using Python 2.4 or above, you can use register.filter () as a decorator instead:

@register.filter (name="'cut')
def cut (value, arg):

return value.replace(arg, '')
@register.filter

def lower (value) :
return value.lower ()

If you leave off the name argument, as in the second example, Django will use the function’s name as the
filter name.

Here, then, is a complete template library example, supplying the cut filter:

from django import template
register = template.Library()
@register.filter (name="'cut')

def cut (value, arg):
return value.replace(arg, '')

10.4.3 Writing Custom Template Tags
Tags are more complex than filters, because tags can do nearly anything.

Chapter 4 describes how the template system works in a two-step process: compiling and rendering. To define
a custom template tag, you need to tell Django how to manage both steps when it gets to your tag.

When Django compiles a template, it splits the raw template text into nodes. Each node is an instance of
django.template.Node and has a render () method. Thus, a compiled template is simply a list of
Node objects.

When you call render () on a compiled template, the template calls render () on each Node in its node
list, with the given context. The results are all concatenated together to form the output of the template. Thus,
to define a custom template tag, you specify how the raw template tag is converted into a Node (the
compilation function) and what the node’s render () method does.

In the sections that follow, we cover all the steps in writing a custom tag.

10.4.3.1 Writing the Compilation Function

For each template tag it encounters, the template parser calls a Python function with the tag contents and the
parser object itself. This function is responsible for returning a Node instance based on the contents of the
tag.

For example, let’s write a template tag, {$ current_time %}, that displays the current date/time,
formatted according to a parameter given in the tag, in st rft ime syntax (see
http://www.dJjangoproject.com/r/python/strftime/). It’s a good idea to decide the tag
syntax before anything else. In our case, let’s say the tag should be used like this:

<p>The time is {% current_time "%$Y-%m-%d %I:%M %p" %}.</p>

Note

10.4.2 Writing Custom Template Filters 120



The Django Book

Yes, this template tag is redundant—Django’s default {$ now %} tag does the same task with simpler
syntax. This template tag is presented here just for example purposes.

The parser for this function should grab the parameter and create a Node object:

from django import template

def do_current_time (parser, token):

try:
# split_contents () knows not to split quoted strings.
tag_name, format_string = token.split_contents()

except ValueError:
msg = '$r tag requires a single argument' % token.contents[0]
raise template.TemplateSyntaxError (msg)

return CurrentTimeNode (format_string[l:-1])

There’s actually a lot going here:

® parser is the template parser object. We don’t need it in this example.

® token.contents is a string of the raw contents of the tag. In our example, it’s 'current_time
"$Y-%m-%d $I:%M Sp"'.

® The token.split_contents () method separates the arguments on spaces while keeping
quoted strings together. Avoid using token.contents.split () (which just uses Python’s
standard string-splitting semantics). It’s not as robust, as it naively splits on all spaces, including those
within quoted strings.

¢ This function is responsible for raising d jango.template.TemplateSyntaxError, with
helpful messages, for any syntax error.

® Don’t hard-code the tag’s name in your error messages, because that couples the tag’s name to your
function. token.split_contents () [0] will always be the name of your tag—even when the
tag has no arguments.

® The function returns a Current TimeNode (which we’ll create shortly) containing everything the
node needs to know about this tag. In this case, it just passes the argument "$Y-%$m-%d %I:%M
%$p". The leading and trailing quotes from the template tag are removed with
format_string[l:-17.

¢ Template tag compilation functions must return a Node subclass; any other return value is an error.

10.4.3.2 Writing the Template Node

The second step in writing custom tags is to define a Node subclass that has a render () method.
Continuing the preceding example, we need to define Current TimeNode:

import datetime
class CurrentTimeNode (template.Node) :

def __init__ (self, format_string):
self.format_string = format_string

def render (self, context):
now = datetime.datetime.now ()
return now.strftime (self.format_string)

These two functions (__init___ and render) map directly to the two steps in template processing
(compilation and rendering). Thus, the initialization function only needs to store the format string for later

use, and the render () function does the real work.

Like template filters, these rendering functions should fail silently instead of raising errors. The only time that
template tags are allowed to raise errors is at compilation time.

10.4.3 Writing Custom Template Tags 121



The Django Book
10.4.3.3 Registering the Tag

Finally, you need to register the tag with your module’s Library instance. Registering custom tags is very
similar to registering custom filters (as explained above). Just instantiate a template.Library instance
and call its tag () method. For example:

register.tag('current_time', do_current_time)
The tag () method takes two arguments:

® The name of the template tag (string). If this is left out, the
name of the compilation function will be used.

® The compilation function.

As with filter registration, it is also possible to use register.tag as a decorator in Python 2.4 and above:

@register.tag(name="current_time")
def do_current_time (parser, token):
# ...

@register.tag
def shout (parser, token):
# ...

If you leave off the name argument, as in the second example, Django will use the function’s name as the tag
name.

10.4.3.4 Setting a Variable in the Context

The previous section’s example simply returned a value. Often it’s useful to set template variables instead of
returning values. That way, template authors can just use the variables that your template tags set.

To set a variable in the context, use dictionary assignment on the context object in the render () method.
Here’s an updated version of Current TimeNode that sets a template variable, current_time, instead
of returning it:

class CurrentTimeNode2 (template.Node) :

def __init__ (self, format_string):
self.format_string = format_string

def render (self, context):
now = datetime.datetime.now ()
context['current_time'] = now.strftime(self.format_string)
return ''

Note that render () returns an empty string. render () should always return a string, so if all the template
tag does is set a variable, render () should return an empty string.

Here’s how you’d use this new version of the tag:

% current_time2 "$Y-%M-%d %I:%M %Sp" %}
<p>The time is {{ current_time }}.</p>

But there’s a problem with Current TimeNode?2: the variable name current_t ime is hard-coded. This

means you’ll need to make sure your template doesn’tuse { { current_time }} anywhere else, because
{%$ current_time2 %} will blindly overwrite that variable’s value.

10.4.3 Writing Custom Template Tags 122



The Django Book

A cleaner solution is to make the template tag specify the name of the variable to be set, like so:

{% get_current_time "%Y-%M-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>

To do so, you’ll need to refactor both the compilation function and the Node class, as follows:

import re

class CurrentTimeNode3 (template.Node) :

def __init__ (self, format_string, var_name) :
self.format_string = format_string
self.var_name = var_name

def render (self, context):

now = datetime.datetime.now ()
context [self.var_name] = now.strftime (self.format_string)
return ''

def do_current_time (parser, token):
# This version uses a regular expression to parse tag contents.
try:
# Splitting by None == splitting by spaces.
tag_name, arg = token.contents.split (None, 1)
except ValueError:
msg = '$r tag requires arguments' % token.contents[0]
raise template.TemplateSyntaxError (msg)

m = re.search(r'(.*?) as (\w+)', arg)
if m:
fmt, var_name = m.groups ()
else:
msg = '$r tag had invalid arguments' % tag_name

raise template.TemplateSyntaxError (msg)
if not (fmt([0] == fmt[-1] and fmt[0] in ('"', "'"")):
msg = "%r tag's argument should be in quotes" % tag_name

raise template.TemplateSyntaxError (msg)

return CurrentTimeNode3 (fmt[1l:-1], var_name)

Now do_current_time () passes the format string and the variable name to Current TimeNode3.

10.4.3.5 Parsing Until Another Block Tag

Template tags can work as blocks containing other tags (think {$ if %}, {$ for %},etc.). Tocreate a

template tag like this, use parser.parse () in your compilation function.

Here’s how the standard {% comment %} tagis implemented:

def do_comment (parser, token):
nodelist = parser.parse(('endcomment',))
parser.delete_first_token|()
return CommentNode ()

class CommentNode (template.Node) :
def render (self, context):
return ''

parser.parse () takes a tuple of names of block tags to parse until. It returns an instance of

django.template.NodeList, which is a list of all Node objects that the parser encountered before it

encountered any of the tags named in the tuple.

10.4.3 Writing Custom Template Tags

123



The Django Book

So in the preceding example, nodelist is alist of all nodes between {$ comment %} and {%
endcomment %}, notcounting {$ comment %} and {$ endcomment %} themselves.

After parser.parse () is called, the parser hasn’t yet “consumed” the {$ endcomment %} tag, so the
code needs to explicitly call parser.delete_first_token () to prevent that tag from being processed
twice.

Then CommentNode . render () simply returns an empty string. Anything between {$ comment %}
and {$ endcomment %} isignored.

10.4.3.6 Parsing Until Another Block Tag and Saving Contents

In the previous example, do_comment () discarded everything between {% comment %} and {%
endcomment %}.It’s also possible to do something with the code between block tags instead.

For example, here’s a custom template tag, {$ upper %}, that capitalizes everything between itself and {%
endupper %}:

% upper %}
This will appear in uppercase, {{ your_name }}.
% endupper %}

As in the previous example, we’ll use parser.parse (). This time, we pass the resulting nodelist to
Node:

@register.tag

def do_upper (parser, token):
nodelist = parser.parse(('endupper',))
parser.delete_first_token|()
return UpperNode (nodelist)

class UpperNode (template.Node) :

def _ init_ (self, nodelist):
self.nodelist = nodelist

def render (self, context):
output = self.nodelist.render (context)
return output.upper ()

The only new concept here is self.nodelist.render (context) in UpperNode.render (). This
simply calls render () on each Node in the node list.

For more examples of complex rendering, see the source code for {$ if %}, {$ for %}, {% ifequal
%},and {$ ifchanged %}.Theylivein django/template/defaulttags.py.

10.4.4 Shortcut for Simple Tags

Many template tags take a single argument—a string or a template variable reference—and return a string
after doing some processing based solely on the input argument and some external information. For example,
the current_time tag we wrote earlier is of this variety. We give it a format string, and it returns the time
as a string.

To ease the creation of these types of tags, Django provides a helper function, simple_tag. This function,
which is a method of django.template.Library, takes a function that accepts one argument, wraps it
in a render function and the other necessary bits mentioned previously, and registers it with the template
system.

10.4.3 Writing Custom Template Tags 124



The Django Book

Our earlier current_t ime function could thus be written like this:

def current_time (format_string):
return datetime.datetime.now() .strftime (format_string)

register.simple_tag(current_time)

In Python 2.4, the decorator syntax also works:

@Qregister.simple_tag
def current_time (token):

A couple of things to notice about the simple_tag helper function are as follows:

¢ Only the (single) argument is passed into our function.

® Checking for the required number of arguments has already been done by the time our function is
called, so we don’t need to do that.

¢ The quotes around the argument (if any) have already been stripped away, so we receive a plain
string.

10.4.5 Inclusion Tags

Another common template tag is the type that displays some data by rendering another template. For
example, Django’s admin interface uses custom template tags to display the buttons along the bottom of the
“add/change” form pages. Those buttons always look the same, but the link targets change depending on the
object being edited. They’re a perfect case for using a small template that is filled with details from the current
object.

These sorts of tags are called inclusion tags. Writing inclusion tags is probably best demonstrated by example.
Let’s write a tag that produces a list of choices for a simple multiple-choice Po11 object. We’ll use the tag
like this:

% show_results poll %}

The result will be something like this:

<ul>
<li>First choice</li>
<li>Second choice</1i>
<1i>Third choice</1li>
</ul>

First, we define the function that takes the argument and produces a dictionary of data for the result. Notice
that we need to return only a dictionary, not anything more complex. This will be used as the context for the
template fragment:

def show_books_for_author (author) :
books = author.book_set.all()
return {'books': books}

Next, we create the template used to render the tag’s output. Following our example, the template is very
simple:

<ul>
% for book in books %}
<1i> {{ book }} </1i>
% endfor %}

10.4.4 Shortcut for Simple Tags 125



The Django Book

</ul>

Finally, we create and register the inclusion tag by calling the inclusion_tag () methodona Library
object.

Following our example, if the preceding template is in a file called polls/result_snippet.html, we
register the tag like this:

register.inclusion_tag('books/books_for_author.html') (show_books_for_author)
As always, Python 2.4 decorator syntax works as well, so we could have instead written this:
@register.inclusion_tag('books/books_for_author.html')

def show_books_for_author (show_books_for_author):

Sometimes, your inclusion tags need access to values from the parent template’s context. To solve this,
Django provides a takes_context option for inclusion tags. If you specify takes_context in creating
a template tag, the tag will have no required arguments, and the underlying Python function will have one
argument: the template context as of when the tag was called.

For example, say you’re writing an inclusion tag that will always be used in a context that contains
home_1link and home_title variables that point back to the main page. Here’s what the Python function
would look like:

@register.inclusion_tag('link.html', takes_context=True)
def jump_link (context) :
return {
'link': context['home_1link'],
'title': context['home_title'],

Note

The first parameter to the function must be called context.

The template 1ink .html might contain the following:

Jump directly to <a href="{{ link }}">{{ title }}</a>.

Then, anytime you want to use that custom tag, load its library and call it without any arguments, like so:

o)

% Jjump_link %}

10.5 Writing Custom Template Loaders

Django’s built-in template loaders (described in the “Inside Template Loading” section above) will usually
cover all your template-loading needs, but it’s pretty easy to write your own if you need special loading logic.
For example, you could load templates from a database, or directly from a Subversion repository using
Subversion’s Python bindings, or (as shown shortly) from a ZIP archive.

A template loader—that is, each entry in the TEMPLATE_TLOADERS setting —is expected to be a callable
with this interface:

load_template_source (template_name, template_dirs=None)

10.4.5 Inclusion Tags 126



The Django Book

The template_name argument is the name of the template to load (as passed to
loader.get_template () or loader.select_template()),and template_dirsisan
optional list of directories to search instead of TEMPLATE_DIRS.

If a loader is able to successfully load a template, it should return a tuple: (template_source,
template_path). Here, template_source is the template string that will be compiled by the template
engine, and template_path is the path the template was loaded from. That path might be shown to the
user for debugging purposes, so it should quickly identify where the template was loaded from.

If the loader is unable to load a template, it should raise
django.template.TemplateDoesNotExist.

Each loader function should also have an 1 s_usable function attribute. This is a Boolean that informs the
template engine whether this loader is available in the current Python installation. For example, the eggs
loader (which is capable of loading templates from Python eggs) sets 1s_usable to False if the
pkg_resources module isn’t installed, because pkg_resources is necessary to read data from eggs.

An example should help clarify all of this. Here’s a template loader function that can load templates from a
ZIP file. It uses a custom setting, TEMPLATE_ZIP_FILES, as a search path instead of TEMPLATE_DIRS,
and it expects each item on that path to be a ZIP file containing templates:

import zipfile
from django.conf import settings
from django.template import TemplateDoesNotExist

def load_template_source (template_name, template_dirs=None) :
"""Template loader that loads templates from a ZIP file."""

template_zipfiles = getattr(settings, "TEMPLATE_ZIP_FILES", [])

# Try each ZIP file in TEMPLATE_ZIP_FILES.
for fname in template_zipfiles:
try:
z = zipfile.ZipFile (fname)
source = z.read(template_name)
except (IOError, KeyError):
continue
z.close ()
# We found a template, so return the source.
template_path = "%s:%s" % (fname, template_name)
return (source, template_path)

# If we reach here, the template couldn't be loaded
raise TemplateDoesNotExist (template_name)

# This loader is always usable (since zipfile is included with Python)
load_template_source.is_usable = True

The only step left if we want to use this loader is to add it to the TEMPLATE_LOADERS setting. If we put this
code in a package called mysite.zip_loader, then we add
mysite.zip_loader.load_template_source to TEMPLATE_LOADERS.

10.6 Using the Built-in Template Reference

Django’s admin interface includes a complete reference of all template tags and filters available for a given
site. It’s designed to be a tool that Django programmers give to template developers. To see it, go to the admin
interface and click the Documentation link at the upper right of the page.

10.5 Writing Custom Template Loaders 127



The Django Book

The reference is divided into four sections: tags, filters, models, and views. The fags and filters sections
describe all the built-in tags (in fact, the tag and filter references in Chapter 4 come directly from those pages)
as well as any custom tag or filter libraries available.

The views page is the most valuable. Each URL in your site has a separate entry here. If the related view
includes a docstring, clicking the URL will show you the following:

® The name of the view function that generates that view

¢ A short description of what the view does

® The context, or a list of variables available in the view’s template
® The name of the template or templates that are used for that view

For a detailed example of view documentation, read the source code for Django’s generic object_list
view, which is in django/views/generic/list_detail.py.

Because Django-powered sites usually use database objects, the models pages describe each type of object in
the system along with all the fields available on that object.

Taken together, the documentation pages should tell you every tag, filter, variable, and object available to you
in a given template.

10.7 Configuring the Template System in Standalone Mode
Note

This section is only of interest to people trying to use the template system as an output component in another
application. If you are using the template system as part of a Django application, the information presented
here doesn’t apply to you.

Normally, Django will load all the configuration information it needs from its own default configuration file,
combined with the settings in the module given in the DJANGO_SETTINGS_MODULE environment variable.
But if you’re using the template system independently of the rest of Django, the environment variable
approach isn’t very convenient, because you probably want to configure the template system in line with the
rest of your application rather than dealing with settings files and pointing to them via environment variables.

To solve this problem, you need to use the manual configuration option described fully Appendix E. In a
nutshell, you need to import the appropriate pieces of the template system and then, before you call any of the
template functions, call django.conf.settings.configure () with any settings you wish to specify.

You might want to consider setting at least TEMPLATE_DIRS (if you are going to use template loaders),
DEFAULT_CHARSET (although the default of ut £-8 is probably fine), and TEMPLATE_DEBUG. All

available settings are described in Appendix E, and any setting starting with TEMPLATE_ is of obvious
interest.

10.8 What’s Next

So far this book has assumed that the content you’re displaying is HTML. This isn’t a bad assumption for a
book about Web development, but at times you’ll want to use Django to output other data formats.

The next chapter describes how you can use Django to produce images, PDFs, and any other data format you
can imagine.

10.6 Using the Built-in Template Reference 128



11 Generating Non-HTML Content

Usually when we talk about developing Web sites, we’re talking about producing HTML. Of course, there’s a
lot more to the Web than HTML; we use the Web to distribute data in all sorts of formats: RSS, PDFs,
images, and so forth.

So far we’ve focused on the common case of HTML production, but in this chapter we’ll take a detour and
look at using Django to produce other types of content.

Django has convenient built-in tools that you can use to produce some common non-HTML content:

® RSS/Atom syndication feeds
e Sitemaps (an XML format originally developed by Google that gives hints to search engines)

We’ll examine each of those tools a little later on, but first we’ll cover the basic principles.

11.1 The basics: views and MIME-types

Remember this from Chapter 3?

A view function, or view for short, is simply a Python function that takes a Web request and
returns a Web response. This response can be the HTML contents of a Web page, or a
redirect, or a 404 error, or an XML document, or an image...or anything, really.

More formally, a Django view function must

® Accept an Ht t pRequest instance as its first argument
¢ Return an Ht t pResponse instance

The key to returning non-HTML content from a view lies in the Ht t pResponse class, specifically the
mimetype constructor argument. By tweaking the MIME type, we can indicate to the browser that we’ve
returned a response of a different format.

For example, let’s look at a view that returns a PNG image. To keep things simple, we’ll just read the file off
the disk:

from django.http import HttpResponse
def my_image (request) :

image_data = open ("/path/to/my/image.png", "rb").read()
return HttpResponse (image_data, mimetype="image/png")

That’s it! If you replace the image path in the open () call with a path to a real image, you can use this very
simple view to serve an image, and the browser will display it correctly.

The other important thing to keep in mind is that Ht t pResponse objects implement Python’s standard file
API. This means that you can use an Ht t pResponse instance in any place Python (or a third-party library)

expects a file.

For an example of how that works, let’s take a look at producing CSV with Django.

11 Generating Non-HTML Content 129



The Django Book
11.2 Producing CSV

CSV is a simple data format usually used by spreadsheet software. It’s basically a series of table rows, with
each cell in the row separated by a comma (CSV stands for comma-separated values). For example, here’s
some data on “unruly” airline passengers in CSV format:

Year,Unruly Airline Passengers
1995,146
1996,184
1997,235
1998, 200
1999,226
2000, 251
2001,299
2002,273
2003,281
2004, 304
2005,203

Note

The preceding listing contains real numbers; they come courtesy of the US Federal Aviation Administration.
See http://www.faa.gov/data statistics/passengers cargo/unruly passengers/.

Though CSV looks simple, it’s not a format that’s ever been formally defined. Different pieces of software
produce and consume different variants of CSV, making it a bit tricky to use. Luckily, Python comes with a
standard CSV library, csv, that is pretty much bulletproof.

Because the csv module operates on file-like objects, it’s a snap to use an Ht t pResponse instead:

import csv
from django.http import HttpResponse

# Number of unruly passengers each year 1995 - 2005. In a real application
# this would likely come from a database or some other back-end data store.
UNRULY_PASSENGERS = [146,184,235,200,226,251,299,273,281,304,203]

def unruly_passengers_csv(request) :
# Create the HttpResponse object with the appropriate CSV header.
response = HttpResponse (mimetype='text/csv')
response['Content-Disposition'] = 'attachment; filename=unruly.csv'

# Create the CSV writer using the HttpResponse as the "file"

writer = csv.writer (response)

writer.writerow(['Year', 'Unruly Airline Passengers'])

for (year, num) in zip(range (1995, 2006), UNRULY_PASSENGERS) :
writer.writerow([year, num])

return response
The code and comments should be pretty clear, but a few things deserve special mention:

® The response is given the text /csv MIME type (instead of the default text /html). This tells
browsers that the document is a CSV file.

® The response gets an additional Content-Disposition header, which contains the name of the
CSV file. This header (well, the “attachment” part) will instruct the browser to prompt for a location
to save the file (instead of just displaying it). This file name is arbitrary; call it whatever you want. It
will be used by browsers in the Save As dialog.

¢ Hooking into the CSV-generation API is easy: just pass response as the first argument to
csv.writer. The csv.writer function expects a filelike object, and Ht t pResponse objects

11.2 Producing CSV 130


http://www.faa.gov/data_statistics/passengers_cargo/unruly_passengers/

The Django Book

fit the bill.

® For each row in your CSV file, call writer.writerow, passing it an iterable object such as a list
or tuple.

® The CSV module takes care of quoting for you, so you don’t have to worry about escaping strings
with quotes or commas in them. Just pass information to writerow (), and it will do the right thing.

This is the general pattern you’ll use any time you need to return non-HTML content: create an
HttpResponse response object (with a special MIME type), pass it to something expecting a file, and then

return the response.

Let’s look at a few more examples.

11.3 Generating PDFs

Portable Document Format (PDF) is a format developed by Adobe that’s used to represent printable
documents, complete with pixel-perfect formatting, embedded fonts, and 2D vector graphics. You can think of
a PDF document as the digital equivalent of a printed document; indeed, PDFs are usually used when you
need to give a document to someone else to print.

You can easily generate PDFs with Python and Django thanks to the excellent open source ReportLab library
(http://www.reportlab.org/rl toolkit.html). The advantage of generating PDF files dynamically is that you can
create customized PDFs for different purposes — say, for different users or different pieces of content.

For example, we used Django and ReportLab at KUSports.com to generate customized, printer-ready NCAA
tournament brackets.

11.3.1 Installing ReportLab

Before you do any PDF generation, however, you’ll need to install ReportLab. It’s usually pretty simple: just
download and install the library from http://www.reportlab.org/downloads.html.

The user guide (naturally available only as a PDF file) at http://www.reportlab.org/rsrc/userguide.pdf has
additional installation instructions.

Note

If you’re using a modern Linux distribution, you might want to check your package management utility before
installing ReportLab. Most package repositories have added ReportLab.

For example, if you’re using the (excellent) Ubuntu distribution, a simple apt—get install
python-reportlab will do the trick nicely.

Test your installation by importing it in the Python interactive interpreter:
>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

11.3.2 Writing Your View

Like CSV, generating PDFs dynamically with Django is easy because the ReportLab API acts on filelike
objects.

Here’s a “Hello World” example:

11.3 Generating PDFs 131


http://www.reportlab.org/rl_toolkit.html
http://www.reportlab.org/downloads.html
http://www.reportlab.org/rsrc/userguide.pdf

The Django Book

from reportlab.pdfgen import canvas
from django.http import HttpResponse

def hello_pdf (request) :
# Create the HttpResponse object with the appropriate PDF headers.
response = HttpResponse (mimetype='application/pdf')
response['Content-Disposition'] = 'attachment; filename=hello.pdf'

# Create the PDF object, using the response object as its "file."
p = canvas.Canvas (response)

# Draw things on the PDF. Here's where the PDF generation happens.
See the ReportLab documentation for the full list of functionality.
p.drawString (100, 100, "Hello world.")

S

# Close the PDF object cleanly, and we're done.
p.showPage ()

p.save ()

return response

A few notes are in order:

® Here we use the application/pdf MIME type. This tells browsers that the document is a PDF
file, rather than an HTML file. If you leave off this information, browsers will probably interpret the
response as HTML, which will result in scary gobbledygook in the browser window.

¢ Hooking into the ReportLab API is easy: just pass response as the first argument to
canvas.Canvas. The Canvas class expects a filelike object, and Ht t pResponse objects fit the

bill.

¢ All subsequent PDF-generation methods are called on the PDF object (in this case, p), not on
response.

¢ Finally, it’s important to call showPage () and save () on the PDF file (or else you’ll end up with
a corrupted PDF file).

11.3.3 Complex PDFs

If you’re creating a complex PDF document (or any large data blob), consider using the cSt ringIO library
as a temporary holding place for your PDF file. The cSt ringIO library provides a file-like object interface
that is written in C for maximum efficiency.

Here’s the previous “Hello World” example rewritten to use cStringIO:

from cStringIO import StringIO
from reportlab.pdfgen import canvas
from django.http import HttpResponse

def hello_pdf (request) :
# Create the HttpResponse object with the appropriate PDF headers.
response = HttpResponse (mimetype='application/pdf')
response [ 'Content-Disposition'] = 'attachment; filename=hello.pdf'

temp = StringIO()

# Create the PDF object, using the StringIO object as its "file."
p = canvas.Canvas (temp)

S

Draw things on the PDF. Here's where the PDF generation happens.
See the ReportLab documentation for the full list of functionality.
p.drawString (100, 100, "Hello world.")

S

# Close the PDF object cleanly.
.showPage ()
p.save ()

e}

11.3.2 Writing Your View 132



The Django Book

# Get the value of the StringIO buffer and write it to the response.
response.write (temp.getvalue())
return response

11.4 Other Possibilities

There’s a whole host of other types of content you can generate in Python. Here are a few more ideas and
some pointers to libraries you could use to implement them:

® ZIP files: Python’s standard library ships with the zipfile module, which can both read and write
compressed ZIP files. You could use it to provide on-demand archives of a bunch of files, or perhaps
compress large documents when requested. You could similarly produce TAR files using the standard
library tarfile module.

® Dynamic images: The Python Imaging Library (PIL; http://www.pythonware.com/products/pil/) is a
fantastic toolkit for producing images (PNG, JPEG, GIF, and a whole lot more). You could use it to
automatically scale down images into thumbnails, composite multiple images into a single frame, or
even do Web-based image processing.

® Plots and charts: There are a number of incredibly powerful Python plotting and charting libraries
you could use to produce on-demand maps, charts, plots, and graphs. We can’t possibly list them all,
so here are a couple of the highlights:

¢ matplotlib (http://matplotlib.sourceforge.net/) can be used to produce the type of
high-quality plots usually generated with MatLab or Mathematica.

¢ pygraphviz (https:/networkx.lanl.gov/wiki/pygraphviz), an interface to the Graphviz
graph layout toolkit (http://graphviz.org/), can be used for generating structured diagrams of

graphs and networks.

In general, any Python library capable of writing to a file can be hooked into Django. The possibilities really
are endless.

Now that we’ve looked at the basics of generating non-HTML content, let’s step up a level of abstraction.
Django ships with some pretty nifty built-in tools for generating some common types of non-HTML content.

11.5 The Syndication Feed Framework

Django comes with a high-level syndication-feed-generating framework that makes creating RSS and Atom
feeds easy.

What’s RSS? What’s Atom?

RSS and Atom are both XML-based formats you can use to provide automatically updating “feeds” of your
site’s content. Read more about RSS at http://www.whatisrss.com/, and get information on Atom at

http://www.atomenabled.org/.

To create any syndication feed, all you have to do is write a short Python class. You can create as many feeds
as you want.

The high-level feed-generating framework is a view that’s hooked to / feeds/ by convention. Django uses
the remainder of the URL (everything after / feeds/) to determine which feed to return.

To create a feed, you’ll write a Feed class and point to it in your URLconf (see Chapters 3 and 8 for more
about URLconfs).

11.3.3 Complex PDFs 133


http://www.pythonware.com/products/pil/
http://matplotlib.sourceforge.net/
https://networkx.lanl.gov/wiki/pygraphviz
http://graphviz.org/
http://www.whatisrss.com/
http://www.atomenabled.org/

The Django Book

11.5.1 Initialization

To activate syndication feeds on your Django site, add this URLconf:

(r'~feeds/ (?P<url>.*)/S"',
'django.contrib.syndication.views.feed"',
{'feed_dict': feeds}

)

This line tells Django to use the RSS framework to handle all URLSs starting with "feeds/". (You can
change that "feeds/" prefix to fit your own needs.)

This URLconf line has an extra argument: { ' feed_dict': feeds}. Use this extra argument to pass the
syndication framework the feeds that should be published under that URL.

Specifically, feed_dict should be a dictionary that maps a feed’s slug (short URL label) to its Feed class.
You can define the feed_dict in the URLconf itself. Here’s a full example URLconf:

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntries, LatestEntriesByCategory

feeds = {
'latest': LatestEntries,
'categories': LatestEntriesByCategory,

}

urlpatterns = patterns('',
# ...
(r'~feeds/ (?P<url>.*)/$', 'django.contrib.syndication.views.feed',
{'feed_dict': feeds}),
# ...

The preceding example registers two feeds:

® The feed represented by LatestEntries will live at feeds/latest/.
® The feed represented by LatestEntriesByCategory will live at feeds/categories/.

Once that’s set up, you’ll need to define the Feed classes themselves.
A Feed class is a simple Python class that represents a syndication feed. A feed can be simple (e.g., a “site
news” feed, or a basic feed displaying the latest entries of a blog) or more complex (e.g., a feed displaying all

the blog entries in a particular category, where the category is variable).

Feed classes must subclass django.contrib.syndication. feeds.Feed. They can live anywhere
in your code tree.

11.5.2 A Simple Feed

This simple example, taken from chicagocrime.org, describes a feed of the latest five news items:

from django.contrib.syndication.feeds import Feed
from chicagocrime.models import NewsItem

class LatestEntries (Feed) :

title = "Chicagocrime.org site news"
link = "/sitenews/"
description = "Updates on changes and additions to chicagocrime.org."

11.5.1 Initialization 134



The Django Book

def items(self):
return NewsItem.objects.order_by ('-pub_date') [:5]

The important things to notice here are as follows:

¢ The class subclasses django.contrib.syndication.feeds.Feed.

etitle, 1ink, and description correspond to the standard RSS <title>, <link>, and
<description> elements, respectively.

e items () is simply a method that returns a list of objects that should be included in the feed as
<item> elements. Although this example returns News Item objects using Django’s database API,
items () doesn’t have to return model instances.

You do get a few bits of functionality “for free” by using Django models, but items () can return
any type of object you want.

There’s just one more step. In an RSS feed, each <item> hasa <title>, <link>, and
<description>. We need to tell the framework what data to put into those elements.

¢ To specify the contents of <title> and <description>, create Django templates (see Chapter
4) called feeds/latest_title.html and feeds/latest_description.html, where
latest is the slug specified in the URLconf for the given feed. Note that the . htm1 extension is
required.

The RSS system renders that template for each item, passing it two template context variables:

¢ ob7j: The current object (one of whichever objects you returned in items () ).
¢ site: Adjango.models.core.sites.Site object representing the current site. This
isuseful for { { site.domain }}or {{ site.name }}.
If you don’t create a template for either the title or description, the framework will use the template
"{{ obj }}" by default — that is, the normal string representation of the object.

You can also change the names of these two templates by specifying title_template and
description_template as attributes of your Feed class.

¢ To specify the contents of <1ink>, you have two options. For each item in items (), Django first
tries executing a get_absolute_url () method on that object. If that method doesn’t exist, it
tries calling a method item_1link () in the Feed class, passing it a single parameter, item, which
is the object itself.

Both get_absolute_url () and item_1link () should return the item’s URL as a normal
Python string.

e For the previous LatestEntries example, we could have very simple feed templates.
latest_title.html contains:
{{ obj.title }}
and latest_description.html contains:

{{ obj.description }}

It’s almost foo easy ...

11.5.3 A More Complex Feed

The framework also supports more complex feeds, via parameters.

11.5.2 A Simple Feed 135



The Django Book

For example, chicagocrime.org offers an RSS feed of recent crimes for every police beat in Chicago. It would
be silly to create a separate Feed class for each police beat; that would violate the Don’t Repeat Yourself
(DRY) principle and would couple data to programming logic.

Instead, the syndication framework lets you make generic feeds that return items based on information in the
feed’s URL.

On chicagocrime.org, the police-beat feeds are accessible via URLSs like this:

®http://www.chicagocrime.org/rss/beats/0613/: Returns recent crimes for beat 0613
®http://www.chicagocrime.org/rss/beats/1424/: Returns recent crimes for beat 1424

The slug here is "beats". The syndication framework sees the extra URL bits after the slug — 0613 and
1424 — and gives you a hook to tell it what those URL bits mean and how they should influence which
items get published in the feed.

An example makes this clear. Here’s the code for these beat-specific feeds:

from django.core.exceptions import ObjectDoesNotExist

class BeatFeed (Feed) :
def get_object (self, bits):
# In case of "/rss/beats/0613/foo/bar/baz/", or other such
# clutter, check that bits has only one member.
if len(bits) != 1:
raise ObjectDoesNotExist
return Beat.objects.get (beat__exact=bits[0])

def title(self, obj):
return "Chicagocrime.org: Crimes for beat %s" % obj.beat

def link(self, obj):
return obj.get_absolute_url()

def description(self, obj):
return "Crimes recently reported in police beat %$s" % obj.beat

def items(self, obj):
crimes = Crime.objects.filter(beat__id__exact=o0obj.id)
return crimes.order_by ('-crime_date') [:30]

Here’s the basic algorithm the RSS framework, given this class and a request to the URL
/rss/beats/0613/:

1. The framework gets the URL /rss/beats/0613/ and notices there’s an extra bit of URL after
the slug. It splits that remaining string by the slash character (" /") and calls the Feed class’s
get_object () method, passing it the bits.

In this case, bitsis ['0613 "' ]. For arequestto /rss/beats/0613/foo/bar/, bits would be
['0613"', 'foo', 'bar'l].
2. get_object () is responsible for retrieving the given beat, from the given bits.

In this case, it uses the Django database API to retrieve the beat. Note that get_object () should
raise django.core.exceptions.ObjectDoesNotExist if given invalid parameters.
There’s no try/except around the Beat . objects.get () call, because it’s not necessary. That
function raises Beat .DoesNotExist on failure, and Beat .DoesNotExist is a subclass of
ObjectDoesNotExist. Raising ObjectDoesNotExist in get_object () tells Django to
produce a 404 error for that request.

11.5.3 A More Complex Feed 136



The Django Book

3. To generate the feed’s <title>, <1ink>, and <description>, Django uses the title (),
link (), and description () methods. In the previous example, they were simple string class
attributes, but this example illustrates that they can be either strings or methods. For each of tit1le,
link, and description, Django follows this algorithm:

1. It tries to call a method, passing the ob j argument, where ob j is the object returned by
get_object ().
2. Failing that, it tries to call a method with no arguments.
3. Failing that, it uses the class attribute.
4. Finally, note that items () in this example also takes the ob j argument. The algorithm for items
is the same as described in the previous step — first, it tries 1tems (obj), then items (), and then
finally an items class attribute (which should be a list).

Full documentation of all the methods and attributes of the Feed classes is always available from the official
Django documentation (http://www.djangoproject.com/documentation/0.96/syndication feeds/).

11.5.4 Specifying the Type of Feed

By default, the syndication framework produces RSS 2.0. To change that, add a feed_type attribute to your
Feed class:

from django.utils.feedgenerator import AtomlFeed

class MyFeed (Feed) :
feed_type = AtomlFeed

Note that you set feed_type to a class object, not an instance. Currently available feed types are shown in
Table 11-1.

Table 11-1. Feed Types

Feed Class Format
django.utils.feedgenerator.Rss20lrev2Feed RSS 2.01 (default)
django.utils.feedgenerator.RssUserland091Feed RSS 091
django.utils.feedgenerator.AtomlFeed Atom 1.0

11.5.5 Enclosures

To specify enclosures (i.e., media resources associated with a feed item such as MP3 podcast feeds), use the
item_enclosure_url, item_enclosure_length,and item_enclosure_mime_type hooks,
for example:

from myproject.models import Song
class MyFeedWithEnclosures (Feed) :
title = "Example feed with enclosures"

link = "/feeds/example-with-enclosures/"

def items (self):
return Song.objects.all() [:30]

def item_enclosure_url (self, item):
return item.song_url

def item_enclosure_length(self, item):
return item.song_length

item_enclosure_mime_type = "audio/mpeg"

11.5.4 Specifying the Type of Feed 137


http://www.djangoproject.com/documentation/0.96/syndication_feeds/

The Django Book

This assumes, of course, that you’ve created a Song object with song_url and song_length (i.e., the
size in bytes) fields.

11.5.6 Language

Feeds created by the syndication framework automatically include the appropriate <language> tag (RSS
2.0) or xm1 : lang attribute (Atom). This comes directly from your LANGUAGE_CODE setting.

11.5.7 URLs

The 11ink method/attribute can return either an absolute URL (e.g., "/blog/") or a URL with the fully
qualified domain and protocol (e.g., "http://www.example.com/blog/"). If 1ink doesn’t return the
domain, the syndication framework will insert the domain of the current site, according to your SITE_ID
setting.

Atom feeds require a <1ink rel="self"> that defines the feed’s current location. The syndication
framework populates this automatically, using the domain of the current site according to the SITE_ID
setting.

11.5.8 Publishing Atom and RSS Feeds in Tandem

Some developers like to make available both Atom and RSS versions of their feeds. That’s easy to do with
Django: just create a subclass of your feed class and set the feed_type to something different. Then
update your URLconf to add the extra versions. Here’s a full example:

from django.contrib.syndication.feeds import Feed
from chicagocrime.models import NewsItem
from django.utils.feedgenerator import AtomlFeed

class RssSiteNewsFeed (Feed) :

title = "Chicagocrime.org site news"
link = "/sitenews/"
description = "Updates on changes and additions to chicagocrime.org."

def items(self):
return NewsItem.objects.order_by ('-pub_date') [:5]

class AtomSiteNewsFeed (RssSiteNewsFeed) :
feed_type = AtomlFeed

And here’s the accompanying URLconf:

from django.conf.urls.defaults import *
from myproject.feeds import RssSiteNewsFeed, AtomSiteNewsFeed

feeds = {
'rss': RssSiteNewsFeed,
'atom': AtomSiteNewsFeed,

}

urlpatterns = patterns('',
# ...
(r'~feeds/ (?P<url>.*)/$', 'django.contrib.syndication.views.feed',
{'feed_dict': feeds}),
# ...

11.5.5 Enclosures 138



The Django Book
11.6 The Sitemap Framework

A sitemap is an XML file on your Web site that tells search engine indexers how frequently your pages
change and how “important” certain pages are in relation to other pages on your site. This information helps
search engines index your site.

For example, here’s a piece of the sitemap for Django’s Web site
(http://www.djangoproject.com/sitemap.xml):

<?xml version="1.0" encoding="UTF-8"7?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>http://www.djangoproject.com/documentation/</loc>
<changefreg>weekly</changefreg>
<priority>0.5</priority>
</url>
<url>
<loc>http://www.djangoproject.com/documentation/0_90/</loc>
<changefreg>never</changefreqg>
<priority>0.l1</priority>
</url>

</urlset>
For more on sitemaps, see http://www.sitemaps.org/.
The Django sitemap framework automates the creation of this XML file by letting you express this

information in Python code. To create a sitemap, you just need to write a Sitemap class and point to it in
your URLconf.

11.6.1 Installation

To install the sitemap application, follow these steps:
1. Add 'django.contrib.sitemaps' to your INSTALLED_APPS setting.
2. Make sure
'django.template.loaders.app_directories.load_template_source' isin
your TEMPLATE_LOADERS setting. It’s in there by default, so you’ll need to change this only if
you’ve changed that setting.
3. Make sure you’ve installed the sites framework (see Chapter 14).

Note

The sitemap application doesn’t install any database tables. The only reason it needs to go into
INSTALLED_APPS is sothe load_template_source template loader can find the default templates.

11.6.2 Initialization

To activate sitemap generation on your Django site, add this line to your URLconf:
(r'*sitemap.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps})
This line tells Django to build a sitemap when a client accesses /sitemap.xml.

The name of the sitemap file is not important, but the location is. Search engines will only index links in your
sitemap for the current URL level and below. For instance, if sitemap.xml lives in your root directory, it

11.6 The Sitemap Framework 139


http://www.djangoproject.com/sitemap.xml
http://www.sitemaps.org/

The Django Book

may reference any URL in your site. However, if your sitemap lives at /content /sitemap.xml, it may
only reference URLs that begin with /content/.

The sitemap view takes an extra, required argument: { 'sitemaps': sitemaps}. sitemaps should be
a dictionary that maps a short section label (e.g., blog or news) to its Sitemap class (e.g., BlogSitemap
or NewsSitemap). It may also map to an instance of a Sitemap class (e.g.,

BlogSitemap (some_var)).

11.6.3 Sitemap Classes

A Sitemap class is a simple Python class that represents a “section” of entries in your sitemap. For example,
one Sitemap class could represent all the entries of your Weblog, while another could represent all of the
events in your events calendar.

In the simplest case, all these sections get lumped together into one sitemap .xml, butit’s also possible to
use the framework to generate a sitemap index that references individual sitemap files, one per section (as
described shortly).

Sitemap classes must subclass d jango.contrib.sitemaps.Sitemap. They can live anywhere in
your code tree.

For example, let’s assume you have a blog system, with an Ent ry model, and you want your sitemap to
include all the links to your individual blog entries. Here’s how your Sitemap class might look:

from django.contrib.sitemaps import Sitemap
from mysite.blog.models import Entry

class BlogSitemap (Sitemap) :
changefreq = "never"
priority = 0.5

def items(self):
return Entry.objects.filter (is_draft=False)

def lastmod(self, obj):
return obj.pub_date

Declaring a Sitemap should look very similar to declaring a Feed; that’s by design.

Like Feed classes, Sitemap members can be either methods or attributes. See the steps in the earlier “A
Complex Example” section for more about how this works.

A Sitemap class can define the following methods/attributes:

¢ i tems (required): Provides list of objects. The framework doesn’t care what fype of objects they
are; all that matters is that these objects get passed to the location (), lastmod (),
changefreqg (), and priority () methods.

® location (optional): Gives the absolute URL for a given object. Here, “absolute URL” means a
URL that doesn’t include the protocol or domain. Here are some examples:

¢ Good: ' /foo/bar/"'
¢ Bad: 'example.com/foo/bar/’
¢ Bad: "'http://example.com/foo/bar/"
If location isn’t provided, the framework will call the get_absolute_url () method on each
object as returned by items ().
® 1astmod (optional): The object’s “last modification” date, as a Python datet ime object.

11.6.2 Initialization 140



The Django Book

e changefreq (optional): How often the object changes. Possible values (as given by the Sitemaps
specification) are as follows:

'always'
'hourly'
'daily'
'weekly'
'monthly’
'yearly'
¢ 'never'
® priority (optional): A suggested indexing priority between 0.0 and 1. 0. The default priority of a
page is 0. 5; see the http://sitemaps.org documentation for more about how priority works.

* & & & o o

11.6.4 Shortcuts

The sitemap framework provides a couple convenience classes for common cases. These are described in the
sections that follow.

11.6.4.1 FlatPageSitemap

The django.contrib.sitemaps.FlatPageSitemap class looks at all flat pages defined for the
current site and creates an entry in the sitemap. These entries include only the 1ocat ion attribute — not
lastmod, changefreq,orpriority.

See Chapter 14 for more about flat pages.
11.6.4.2 GenericSitemap
The GenericSitemap class works with any generic views (see Chapter 9) you already have.

To use it, create an instance, passing in the same info_dict you pass to the generic views. The only
requirement is that the dictionary have a queryset entry. It may also have a date_field entry that
specifies a date field for objects retrieved from the queryset. This will be used for the 1astmod attribute
in the generated sitemap. You may also pass priority and changefreq keyword arguments to the
GenericSitemap constructor to specify these attributes for all URLSs.

Here’s an example of a URLconf using both FlatPageSitemap and GenericSiteMap (with the
hypothetical Ent ry object from earlier):

from django.conf.urls.defaults import *
from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap
from mysite.blog.models import Entry

info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',

}

sitemaps = {
'flatpages': FlatPageSitemap,
'blog': GenericSitemap (info_dict, priority=0.6),

}

urlpatterns = patterns('',
# some generic view using info_dict

# ...

# the sitemap

11.6.3 Sitemap Classes 141


http://sitemaps.org

The Django Book

(r'*sitemap.xml$"',
'django.contrib.sitemaps.views.sitemap',
{'sitemaps': sitemaps})

11.6.5 Creating a Sitemap Index

The sitemap framework also has the ability to create a sitemap index that references individual sitemap files,
one per each section defined in your sitemaps dictionary. The only differences in usage are as follows:

® You use two views in your URLconf: django.contrib.sitemaps.views.index and
django.contrib.sitemaps.views.sitemap.

® The django.contrib.sitemaps.views.sitemap view should take a section keyword
argument.

Here is what the relevant URLconf lines would look like for the previous example:

(r'*sitemap.xml$"',
'django.contrib.sitemaps.views.index"',
{'sitemaps': sitemaps}),

(r'~sitemap- (?P<section>.+) .xmls$",

'django.contrib.sitemaps.views.sitemap',
{'sitemaps': sitemaps})

This will automatically generate a sitemap .xml file that references both sitemap-flatpages.xml
and sitemap-blog.xml. The Sitemap classes and the sitemaps dictionary don’t change at all.

11.6.6 Pinging Google

You may want to “ping” Google when your sitemap changes, to let it know to reindex your site. The
framework provides a function to do just that: django.contrib.sitemaps.ping_google ().

Note

At the time this book was written, only Google responded to sitemap pings. However, it’s quite likely that
Yahoo and/or MSN will soon support these pings as well.

At that time, we’ll likely change the name of ping_google () to something like
ping_search_engines (), so make sure to check the latest sitemap documentation at

http://www.djangoproject.com/documentation/0.96/sitemaps/.

ping_google () takes an optional argument, sitemap_url, which should be the absolute URL of your
site’s sitemap (e.g., ' /sitemap.xml"). If this argument isn’t provided, ping_google () will attempt to
figure out your sitemap by performing a reverse lookup on your URLconf.

ping_google () raises the exception django.contrib.sitemaps.SitemapNotFound if it cannot
determine your sitemap URL.

One useful way to call ping_google () is from a model’s save () method:

from django.contrib.sitemaps import ping_google

class Entry(models.Model) :
# ...
def save (self):
super (Entry, self) .save()

11.6.4 Shortcuts 142


http://www.djangoproject.com/documentation/0.96/sitemaps/

The Django Book

try:
ping_google ()
except Exception:
# Bare 'except' because we could get a variety
# of HTTP-related exceptions.
pass

A more efficient solution, however, would be to call ping_google () from a cron script or some other

scheduled task. The function makes an HTTP request to Google’s servers, so you may not want to introduce
that network overhead each time you call save ().

11.7 What’s Next?

Next, we’ll continue to dig deeper into all the nifty built-in tools Django gives you. Chapter 12 looks at all the
tools you need to provide user-customized sites: sessions, users, and authentication.

Onward!

11.6.6 Pinging Google 143



12 Sessions, Users, and Registration

It’s time for a confession: we’ve been deliberately ignoring an incredibly important aspect of Web
development prior to this point. So far, we’ve thought of the traffic visiting our sites as some faceless,
anonymous mass hurtling itself against our carefully designed pages.

This isn’t true, of course. The browsers hitting our sites have real humans behind them (some of the time, at
least). That’s a big thing to ignore: the Internet is at its best when it serves to connect people, not machines. If
we’re going to develop truly compelling sites, eventually we’re going to have to deal with the bodies behind
the browsers.

Unfortunately, it’s not all that easy. HTTP is designed to be stateless— that is, each and every request
happens in a vacuum. There’s no persistence between one request and the next, and we can’t count on any
aspects of a request (IP address, user agent, etc.) to consistently indicate successive requests from the same
person.

In this chapter you’ll learn how to handle this lack of state. We’ll start at the lowest level (cookies), and work
up to the high-level tools for handling sessions, users and registration.

12.1 Cookies

Browser developers long ago recognized that HTTP’s statelessness poses a huge problem for Web developers,
and thus cookies were born. A cookie is a small piece of information that browsers store on behalf of Web
servers. Every time a browser requests a page from a certain server, it gives back the cookie that it initially
received.

Let’s take a look how this might work. When you open your browser and type in google . com, your
browser sends an HTTP request to Google that starts something like this:

GET / HTTP/1.1
Host: google.com

When Google replies, the HTTP response looks something like the following:

HTTP/1.1 200 OK

Content-Type: text/html

Set-Cookie: PREF=ID=5b14f22bdafle81lc:TM=1167000671:1M=1167000671;
expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com

Server: GWS/2.1

Notice the Set —Cookie header. Your browser will store that cookie value
(PREF=ID=5b14f22bdafle81c:TM=1167000671:LM=1167000671) and serve it back to Google
every time you access the site. So the next time you access Google, your browser is going to send a request
like this:

GET / HTTP/1.1
Host: google.com
Cookie: PREF=ID=5b14f22bdafle81c:TM=1167000671:LM=1167000671

Google then can use that Cookie value to know that you’re the same person who accessed the site earlier.
This value might, for example, be a key into a database that stores user information. Google could (and does)
use it to display your name on the page.

12 Sessions, Users, and Registration 144



The Django Book
12.1.1 Getting and Setting Cookies

When dealing with persistence in Django, most of the time you’ll want to use the higher-level session and/or
user frameworks discussed a little later in this chapter. However, we’ll pause and look at how to read and
write cookies at a low level. This should help you understand how the rest of the tools discussed in the chapter
actually work, and it will come in handy if you ever need to play with cookies directly.

Reading cookies that are already set is incredibly simple. Every request object has a COOKIES object that acts
like a dictionary; you can use it to read any cookies that the browser has sent to the view:

def show_color (request) :
if "favorite_color" in request.COOKIES:
return HttpResponse ("Your favorite color is %s" % \
request .COOKIES ["favorite_color"])
else:
return HttpResponse ("You don't have a favorite color.")

Writing cookies is slightly more complicated. You need to use the set__cookie () method on an
HttpResponse object. Here’s an example that sets the favorite_color cookie based on a GET
parameter:

def set_color (request) :
if "favorite_color" in request.GET:

# Create an HttpResponse object...
response = HttpResponse ("Your favorite color is now %s" % \
request .GET ["favorite_color"])

# ... and set a cookie on the response
response.set_cookie ("favorite_color",
request .GET ["favorite_color"])

return response

else:
return HttpResponse ("You didn't give a favorite color.")

You can also pass a number of optional arguments to response.set_cookie () that control aspects of
the cookie, as shown in Table 12-1.

Table 12-1: Cookie options

Parameter Default Description

Age (in seconds) that the cookie should last. If this parameter

max_age None . . . . .
X-ag is None, the cookie will last only until the browser is closed.

The actual date/time when the cookie should expire. It needs
to be in the format "Wdy, DD-Mth-YY HH:MM:SS
GMT". If given, this parameter overrides the max_age
parameter.

expires None

The path prefix that this cookie is valid for. Browsers will

only pass the cookie back to pages below this path prefix, so

you can use this to prevent cookies from being sent to other
path "/ sections of your site.

This is especially useful when you don’t control the top level
of your site’s domain.

domain None

12.1.1 Getting and Setting Cookies 145



The Django Book

The domain that this cookie is valid for. You can use this
parameter to set a cross-domain cookie. For example,
domain=".example.com" will set a cookie that is
readable by the domains www .example . com,

www?2 .example.com, and
an.other.sub.domain.example.com.

If this parameter is set to None, a cookie will only be
readable by the domain that set it.

If set to True, this parameter instructs the browser to only
return this cookie to pages accessed over HTTPS.

12.1.2 The Mixed Blessing of Cookies

secure False

You might notice a number of potential problems with the way cookies work. Let’s look at some of the more
important ones:

e Storage of cookies is essentially voluntary; browsers don’t guarantee anything. In fact, all browsers
enable users to control the policy for accepting cookies. If you want to see just how vital cookies are
to the Web, try turning on your browser’s “prompt to accept every cookie” option.

Despite their nearly universal use, cookies are still the definition of unreliability. This means that
developers should check that a user actually accepts cookies before relying on them.

More important, you should never store important data in cookies. The Web is filled with horror
stories of developers who’ve stored unrecoverable information in browser cookies only to have that
data purged by the browser for one reason or another.

¢ Cookies (especially those not sent over HTTPS) are not secure. Because HTTP data is sent in
cleartext, cookies are extremely vulnerable to snooping attacks. That is, an attacker snooping on the
wire can intercept a cookie and read it. This means you should never store sensitive information in a
cookie.

There’s an even more insidious attack, known as a man-in-the-middle attack, wherein an attacker
intercepts a cookie and uses it to pose as another user. Chapter 19 discusses attacks of this nature in
depth, as well as ways to prevent it.

¢ Cookies aren’t even secure from their intended recipients. Most browsers provide easy ways to edit
the content of individual cookies, and resourceful users can always use tools like mechanize
(http://wwwsearch.sourceforge.net/mechanize/) to construct HT'TP requests by hand.

So you can’t store data in cookies that might be sensitive to tampering. The canonical mistake in this
scenario is storing something like TsLoggedIn=1 in a cookie when a user logs in. You’d be
amazed at the number of sites that make mistakes of this nature; it takes only a second to fool these
sites’ “security” systems.

12.2 Django’s Session Framework

With all of these limitations and potential security holes, it’s obvious that cookies and persistent sessions are
examples of those “pain points” in Web development. Of course, Django’s goal is to be an effective
painkiller, so it comes with a session framework designed to smooth over these difficulties for you.

This session framework lets you store and retrieve arbitrary data on a per-site visitor basis. It stores data on

the server side and abstracts the sending and receiving of cookies. Cookies use only a hashed session ID—not
the data itself—thus protecting you from most of the common cookie problems.

12.1.2 The Mixed Blessing of Cookies 146


http://wwwsearch.sourceforge.net/mechanize/

The Django Book

Let’s look at how to enable sessions and use them in views.

12.2.1 Enabling Sessions

Sessions are implemented via a piece of middleware (see Chapter 15) and a Django model. To enable
sessions, you’ll need to follow these steps:

1. Edit your MIDDLEWARE_CLASSES setting and make sure MIDDLEWARE_CLASSES contains
'django.contrib.sessions.middleware.SessionMiddleware’'.

2. Make sure 'django.contrib.sessions"' isin your INSTALLED_APPS setting (and run
manage.py syncdb if you have to add it).

The default skeleton settings created by startproject have both of these bits already installed, so unless
you’ve removed them, you probably don’t have to change anything to get sessions to work.

If you don’t want to use sessions, you might want to remove the SessionMiddleware line from
MIDDLEWARE_CLASSES and 'django.contrib.sessions' from your INSTALLED_APPS. It will
save you only a small amount of overhead, but every little bit counts.

12.2.2 Using Sessions in Views

When SessionMiddleware is activated, each Ht t pRequest object—the first argument to any Django
view function—will have a session attribute, which is a dictionary-like object. You can read it and write to
it in the same way you’d use a normal dictionary. For example, in a view you could do stuff like this:

# Set a session value:
request.session["fav_color"] = "blue"

# Get a session value —-- this could be called in a different view,
# or many requests later (or both):
fav_color = request.session["fav_color"]

# Clear an item from the session:
del request.session["fav_color"]

# Check if the session has a given key:
if "fav_color" in request.session:

You can also use other mapping methods like keys () and items () on request.session.
There are a couple of simple rules for using Django’s sessions effectively:

¢ Use normal Python strings as dictionary keys on request . session (as opposed to integers,
objects, etc.). This is more of a convention than a hard-and-fast rule, but it’s worth following.

¢ Session dictionary keys that begin with an underscore are reserved for internal use by Django. In
practice, the framework uses only a small number of underscore-prefixed session variables, but unless
you know what they all are (and you are willing to keep up with any changes in Django itself), staying
away from underscore prefixes will keep Django from interfering with your application.

® Don’t replace request . session with a new object, and don’t access or set its attributes. Use it
like a Python dictionary.

Let’s take a look at a few quick examples. This simplistic view sets a has_commented variable to True
after a user posts a comment. It’s a simple (but not particularly secure) way of preventing a user from posting
more than one comment:

def post_comment (request, new_comment) :

12.2 Django’s Session Framework 147



The Django Book

if request.session.get ('has_commented', False):
return HttpResponse ("You've already commented.")

c = comments.Comment (comment=new_comment)
c.save ()
request.session['has_commented'] = True

return HttpResponse ('Thanks for your comment!"')

This simplistic view logs in a “member” of the site:

def login(request) :
try:
m = Member.objects.get (username__exact=request.POST['username'])
if m.password == request.POST['password']:
request.session|['member_id'] = m.id
return HttpResponse ("You're logged in.")
except Member.DoesNotExist:
return HttpResponse ("Your username and password didn't match.")

And this one logs out a member, according to 1ogin ():

def logout (request) :
try:
del request.session['member_id']
except KeyError:
pass
return HttpResponse ("You're logged out.")

Note

In practice, this is a lousy way of logging users in. The authentication framework discussed shortly handles
this task for you in a much more robust and useful manner. These examples are deliberately simplistic so that
you can easily see what’s going on.

12.2.3 Setting Test Cookies

As just mentioned, you can’t rely on every browser accepting cookies. So, as a convenience, Django provides
an easy way to test whether a user’s browser accepts cookies. You just need to call
request.session.set_test_cookie () ina view, and check
request.session.test_cookie_worked () in a subsequent view—not in the same view call.

This awkward split between set_test_cookie () and test_cookie_worked () is necessary due to
the way cookies work. When you set a cookie, you can’t actually tell whether a browser accepted it until the
browser’s next request.

It’s good practice to use delete_test_cookie () to clean up after yourself. Do this after you’ve verified
that the test cookie worked.

Here’s a typical usage example:

def login(request) :

# If we submitted the form...
if request.method == 'POST':

# Check that the test cookie worked (we set it below):
if request.session.test_cookie_worked() :

# The test cookie worked, so delete it.
request.session.delete_test_cookie()

12.2.2 Using Sessions in Views 148



The Django Book

# In practice, we'd need some logic to check username/password
# here, but since this is an example...
return HttpResponse ("You're logged in.")

# The test cookie failed, so display an error message. If this
# was a real site we'd want to display a friendlier message.
else:

return HttpResponse ("Please enable cookies and try again.")

# If we didn't post, send the test cookie along with the login form.
request.session.set_test_cookie ()
return render_to_response ('foo/login_form.html")

Note

Again, the built-in authentication functions handle this check for you.

12.2.4 Using Sessions Outside of Views

Internally, each session is just a normal Django model defined in
django.contrib.sessions.models. Each session is identified by a more-or-less random
32-character hash stored in a cookie. Because it’s a normal model, you can access sessions using the normal
Django database API:

>>> from django.contrib.sessions.models import Session

>>> s = Session.objects.get (pk='2b1189a188b44adl8c35ell3acbceead’)
>>> s.expire_date

datetime.datetime (2005, 8, 20, 13, 35, 12)

You’ll need to call get_decoded () to get the actual session data. This is necessary because the dictionary
is stored in an encoded format:

>>> s.session_data
'KGRwWMQpPpTJ19hdXRoX3VzZXJfaWQnCnAyCkkxCnMuMTExY2ZjODI2Yj. .. "'
>>> s.get_decoded()

{'user_id': 42}

12.2.5 When Sessions Are Saved

By default, Django only saves to the database if the session has been modified —that is, if any of its
dictionary values have been assigned or deleted:

# Session is modified.
request.session['foo'] = 'bar'

# Session is modified.
del request.session['foo']

# Session is modified.
request.session['foo'] = {}

# Gotcha: Session is NOT modified, because this alters
# request.session['foo'] instead of request.session.
request.session['foo']['bar'] = 'baz'

To change this default behavior, set SESSION_SAVE_EVERY_REQUEST to True. If

SESSION_SAVE_EVERY_REQUEST is True, Django will save the session to the database on every single
request, even if it wasn’t changed.

12.2.3 Setting Test Cookies 149



The Django Book

Note that the session cookie is sent only when a session has been created or modified. If
SESSION_SAVE_EVERY_REQUEST is True, the session cookie will be sent on every request. Similarly,
the expires part of a session cookie is updated each time the session cookie is sent.

12.2.6 Browser-Length Sessions vs. Persistent Sessions

You might have noticed that the cookie Google sent us contained expires=Sun, 17-Jan-2038
19:14:07 GMT; . Cookies can optionally contain an expiration date that advises the browser on when to
remove the cookie. If a cookie doesn’t contain an expiration value, the browser will expire it when the user
closes his or her browser window. You can control the session framework’s behavior in this regard with the
SESSION_EXPIRE_AT_BROWSER_CLOSE setting.

By default, SESSION_EXPIRE_AT_BROWSER_CLOSE is set to False, which means session cookies will
be stored in users’ browsers for SESSION_COOKIE_AGE seconds (which defaults to two weeks, or
1,209,600 seconds). Use this if you don’t want people to have to log in every time they open a browser.

If SESSION_EXPIRE_AT_BROWSER_CLOSE is set to True, Django will use browser-length cookies.

12.2.7 Other Session Settings

Besides the settings already mentioned, a few other settings influence how Django’s session framework uses
cookies, as shown in Table 12-2.

Table 12-2. Settings that influence cookie behavior

Setting Description Default

The domain to use for session cookies. Set this to a string
SESSION_COOKIE_DOMAIN suchas ".lawrence.com" for cross-domain cookies, or None
use None for a standard cookie.

The name of the cookie to use for sessions. This can be any

SESSION_COOKIE_NAME . sessionid"
string.
Whether to use a “secure” cookie for the session cookie. If
this is set to True, the cookie will be marked as “secure,”
SESSTON_COOKTE_SECURE Ty False

which means that browsers will ensure that the cookie is
only sent via HTTPS.

Technical Details
For the curious, here are a few technical notes about the inner workings of the session framework:

¢ The session dictionary accepts any Python object capable of being “pickled.” See the documentation
for Python’s built-in pickle module for information about how this works.

¢ Session data is stored in a database table named d jango_session.

¢ Session data is fetched upon demand. If you never access request . session, Django won’t hit
that database table.

¢ Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session
cookie (unless SESSION_SAVE_EVERY_REQUEST is set to True).

¢ The Django sessions framework is entirely, and solely, cookie based. It does not fall back to putting
session IDs in URLSs as a last resort, as some other tools (PHP, JSP) do.

This is an intentional design decision. Putting sessions in URLs don’t just make URLs ugly, but also
make your site vulnerable to a certain form of session ID theft via the Referer header.

12.2.5 When Sessions Are Saved 150



The Django Book

If you’re still curious, the source is pretty straightforward; look in django.contrib.sessions for more
details.

12.3 Users and Authentication

We’re now halfway to linking browsers directly to Real Peoplea...¢. Sessions give us a way of persisting data
through multiple browser requests; the second part of the equation is using those sessions for user login. Of
course, we can’t just trust that users are who they say they are, so we need to authenticate them along the way.

Naturally, Django provides tools to handle this common task (and many others). Django’s user authentication
system handles user accounts, groups, permissions, and cookie-based user sessions. This system is often
referred to as an auth/auth (authentication and authorization) system. That name recognizes that dealing with
users is often a two-step process. We need to

1. Verify (authenticate) that a user is who he or she claims to be (usually by checking a username and
password against a database of users)

2. Verify that the user is authorized to perform some given operation (usually by checking against a
table of permissions)

Following these needs, Django’s auth/auth system consists of a number of parts:

e Users: People registered with your site

® Permissions: Binary (yes/no) flags designating whether a user may perform a certain task
® Groups: A generic way of applying labels and permissions to more than one user

® Messages: A simple way to queue and display system messages to users

® Profiles: A mechanism to extend the user object with custom fields

If you’ve used the admin tool (detailed in Chapter 6), you’ve already seen many of these tools, and if you’ve
edited users or groups in the admin tool, you’ve actually been editing data in the auth system’s database
tables.

12.3.1 Enabling Authentication Support

Like the session tools, authentication support is bundled as a Django application in d jango . contrib,
which needs to be installed. Like the session system, it’s also installed by default, but if you’ve removed it,
you’ll need to follow these steps to install it:

1. Make sure the session framework is installed as described earlier in this chapter. Keeping track of
users obviously requires cookies, and thus builds on the session framework.

2.Put 'django.contrib.auth"' in your INSTALLED_APPS setting and run manage . py
syncdb.

3. Make sure that 'django.contrib.auth.middleware.AuthenticationMiddleware'
is in your MIDDLEWARE_CLASSES setting—affer SessionMiddleware.

With that installation out of the way, we’re ready to deal with users in view functions. The main interface
you’ll use to access users within a view is request . user; this is an object that represents the currently
logged-in user. If the user isn’t logged in, this will instead be an AnonymousUser object (see below for
more details).

You can easily tell if a user is logged in with the 1s_authenticated () method:

if request.user.is_authenticated() :

# Do something for authenticated users.
else:

# Do something for anonymous users.

12.2.7 Other Session Settings 151



The Django Book

12.3.2 Using Users

Once you have a User—often from request . user, but possibly through one of the other methods
discussed shortly—you have a number of fields and methods available on that object. AnonymousUser
objects emulate some of this interface, but not all of it, so you should always check
user.is_authenticated () before assuming you’re dealing with a bona fide user object. Tables 12-3
and 12-4 list the fields and methods, respectively, on User objects.

Table 12-3. Fields on User Objects

Field Description

Required; 30 characters or fewer. Alphanumeric characters only (letters, digits, and
username

underscores).
first_name Optional; 30 characters or fewer.
last_name Optional; 30 characters or fewer.
email Optional. Email address.

Required. A hash of, and metadata about, the password (Django doesn’t store the
password « » . :

raw password). See the “Passwords” section for more about this value.
is_staff Boolean. Designates whether this user can access the admin site.

is _active

Boolean. Designates whether this account can be used to log in. Set this flag to

False instead of deleting accounts.

is_superuser
—Sup them.

Boolean. Designates that this user has all permissions without explicitly assigning

last_login A datetime of the user’s last login. This is set to the current date/time by default.

date_joined

Method

is_authenticated()

is_anonymous ()

get_full_name ()

set_password (passwd)

check_password (passwd)

get_group_permissions ()

get_all_permissions ()

has_perm (perm)

12.3.2 Using Users

A datetime designating when the account was created. This is set to the current
date/time by default when the account is created.

Table 12-4. Methods on User Objects

Description

Always returns True for “real” User objects. This is a way to tell
if the user has been authenticated. This does not imply any
permissions, and it doesn’t check if the user is active. It only
indicates that the user has sucessfully authenticated.

Returns True only for AnonymousUser objects (and False for
“real” User objects). Generally, you should prefer using
is_authenticated () to this method.

Returns the first_name plus the last_name, with a space in
between.

Sets the user’s password to the given raw string, taking care of the
password hashing. This doesn’t actually save the User object.

Returns True if the given raw string is the correct password for the
user. This takes care of the password hashing in making the
comparison.

Returns a list of permission strings that the user has through the
groups he or she belongs to.

Returns a list of permission strings that the user has, both through
group and user permissions.

Returns True if the user has the specified permission, where perm
is in the format "package.codename". If the user is inactive,
this method will always return False.

152



The Django Book

Returns True if the user has all of the specified permissions. If the

has_perms (perm_list .. . . .
P (p _list) user is inactive, this method will always return False.

Returns True if the user has any permissions in the given
has_module_perms (app_label) app_label. If the user is inactive, this method will always return
False.

Returns a list of Message objects in the user’s queue and deletes

1
get_and_delete_messages () the messages from the queue.

Sends an email to the user. This email is sent from the
DEFAULT_FROM_EMAIL setting. You can also pass a third
argument, from_email, to override the From address on the
email.

email_user (subj, msqg)

, Returns a site-specific profile for this user. See the “Profiles”

get_profile() . .
section for more on this method.

Finally, User objects have two many-to-many fields: groups and permissions. User objects can

access their related objects in the same way as any other many-to-many field:

# Set a user's groups:
myuser.groups = group_list

# Add a user to some groups:
myuser.groups.add(groupl, group2,...)

# Remove a user from some groups:
myuser.groups.remove (groupl, group2,...)

# Remove a user from all groups:
myuser.groups.clear ()

# Permissions work the same way

myuser.permissions = permission_list
myuser.permissions.add(permissionl, permission2, ...)
myuser.permissions.remove (permissionl, permission2, ...)
myuser.permissions.clear ()

12.3.3 Logging In and Out

Django provides built-in view functions for handling logging in and out (and a few other nifty tricks), but
before we get to those, let’s take a look at how to log users in and out “by hand.” Django provides two
functions to perform these actions in d jango.contrib.auth: authenticate () and login ().

To authenticate a given username and password, use authenticate (). It takes two keyword arguments,
username and password, and it returns a User object if the password is valid for the given username. If
the password is invalid, authenticate () returns None:

>>> from django.contrib import auth
>>> user = auth.authenticate (username="'john', password='secret')
>>> if user is not None:
print "Correct!"
. else:
print "Oops, that's wrong!"

authenticate () only verifies a user’s credentials. To log in a user, use Login (). It takes an
HttpRequest object and a User object and saves the user’s ID in the session, using Django’s session
framework.

This example shows how you might use both authenticate () and login () within a view function:

from django.contrib import auth

12.3.3 Logging In and Out 153



The Django Book

def login(request) :
username = request.POST['username']
password = request.POST|['password']
user = auth.authenticate (username=username, password=password)
if user is not None and user.is_active:
# Correct password, and the user is marked "active"
auth.login (request, user)
# Redirect to a success page.
return HttpResponseRedirect ("/account/loggedin/")
else:
# Show an error page
return HttpResponseRedirect ("/account/invalid/")

To log out a user, use django.contrib.auth.logout () within your view. It takes an Ht tpRequest
object and has no return value:

from django.contrib import auth

def logout (request) :
auth.logout (request)
# Redirect to a success page.
return HttpResponseRedirect ("/account/loggedout/")

Note that logout () doesn’t throw any errors if the user wasn’t logged in.

In practice, you usually will not need to write your own login/logout functions; the authentication system
comes with a set of views for generically handling logging in and out.

The first step in using the authentication views is to wire them up in your URLconf. You’ll need to add this
snippet:

from django.contrib.auth.views import login, logout

urlpatterns = patterns('',
# existing patterns here...
(r'~accounts/login/$', login),
(r'~accounts/logout/$', logout),

/accounts/login/ and /accounts/logout/ are the default URLs that Django uses for these views.

By default, the 1ogin view renders a template at registration/login.html (you can change this
template name by passing an extra view argument , template_name™"). This form needs to contain a
username and a password field. A simple template might look like this:

{% extends "base.html" %}
{% block content %}
{%$ if form.errors %}

<p class="error">Sorry, that's not a valid username or password</p>
{% endif %}

<form action='.' method='post'>
<label for="username">User name:</label>
<input type="text" name="username" wvalue="" id="username">
<label for="password">Password:</label>
<input type="password" name="password" value="" id="password">

<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next|escape }}" />

12.3.3 Logging In and Out 154



The Django Book

<form action='.' method='post'>

{% endblock %}

If the user successfully logs in, he or she will be redirected to /accounts/profile/ by default. You can
override this by providing a hidden field called next with the URL to redirect to after logging in. You can
also pass this value as a GET parameter to the login view and it will be automatically added to the context as a
variable called next that you can insert into that hidden field.

The logout view works a little differently. By default it renders a template at
registration/logged_out.html (which usually contains a “You’ve successfully logged out”
message). However, you can call the view with an extra argument, next_page, which will instruct the view
to redirect after a logout.

12.3.4 Limiting Access to Logged-in Users
Of course, the reason we’re going through all this trouble is so we can limit access to parts of our site.

The simple, raw way to limit access to pages is to check request .user.is_authenticated () and
redirect to a login page:

from django.http import HttpResponseRedirect

def my_view (request) :
if not request.user.is_authenticated():
return HttpResponseRedirect ('/login/?next=%s' % request.path)
# ...

or perhaps display an error message:

def my_view (request) :
if not request.user.is_authenticated():
return render_to_response ('myapp/login_error.html')
# ...

As a shortcut, you can use the convenient 1ogin_required decorator:

from django.contrib.auth.decorators import login_required
@login_required

def my_view (request) :
# ...

login_required does the following:
o If the user isn’t logged in, redirect to /accounts/login/, passing the current absolute URL in the
query string as next, for example: /accounts/login/?next=/polls/3/.

o If the user is logged in, execute the view normally. The view code can then assume that the user is
logged in.

12.3.5 Limiting Access to Users Who Pass a Test

Limiting access based on certain permissions or some other test, or providing a different location for the login
view works essentially the same way.

The raw way is to run your test on request . user in the view directly. For example, this view checks to
make sure the user is logged in and has the permission polls.can_vote (more about how permissions

12.3.4 Limiting Access to Logged-in Users 155



The Django Book

works follows):

def vote(request):
if request.user.is_authenticated() and request.user.has_perm('polls.can_vote')):
# vote here
else:
return HttpResponse ("You can't vote in this poll.")

Again, Django provides a shortcut called user_passes_test. It takes arguments and generates a
specialized decorator for your particular situation:

def user_can_vote (user) :
return user.is_authenticated() and user.has_perm("polls.can_vote")

@Quser_passes_text (user_can_vote, login_url="/login/")
def vote(request):
# Code here can assume a logged-in user with the correct permission.

user_passes_test takes one required argument: a callable that takes a User object and returns True if
the user is allowed to view the page. Note that user_passes_test does not automatically check that the
User is authenticated; you should do that yourself.

In this example we’re also showing the second optional argument, 1login_url, which lets you specify the
URL for your login page (/accounts/login/ by default).

Since it’s a relatively common task to check whether a user has a particular permission, Django provides a
shortcut for that case: the permission_required () decorator. Using this decorator, the earlier example
can be written as follows:

from django.contrib.auth.decorators import permission_required
@permission_required('polls.can_vote', login_url="/login/")

def vote(request):
#

Note that permission_required () also takes an optional 1ogin_url parameter, which also defaults
to ' /accounts/login/"'.

Limiting Access to Generic Views

One of the most frequently asked questions on the Django users list deals with limiting access to a generic
view. To pull this off, you’ll need to write a thin wrapper around the view and point your URLconf to your
wrapper instead of the generic view itself:

from dango.contrib.auth.decorators import login_required
from django.views.generic.date_based import object_detail

@login_required
def limited_object_detail (*args, **kwargs):
return object_detail (*args, **kwargs)

You can, of course, replace 1login_required with any of the other limiting decorators.

12.3.6 Managing Users, Permissions, and Groups

The easiest way by far to manage the auth system is through the admin interface. Chapter 6 discusses how to
use Django’s admin interface to edit users and control their permissions and access, and most of the time

12.3.5 Limiting Access to Users Who Pass a Test 156



The Django Book

you’ll just use that interface.

However, there are low-level APIs you can delve into when you need absolute control, and we discuss these
in the sections that follow.

12.3.6.1 Creating Users

Create users with the create_user helper function:

>>> from django.contrib.auth.models import User

>>> user = User.objects.create_user (username='john',
email="Jjlennon@beatles.com’',
password='glass onion')

At this point, user is a User instance ready to be saved to the database (create_user () doesn’t actually
call save () itself). You can continue to change its attributes before saving, too:

>>> user.is_staff = True
>>> user.save ()

12.3.6.2 Changing Passwords

You can change a password with set_password ():

>>> user = User.objects.get (username="'john')
>>> user.set_password('goo goo goo joob')
>>> user.save ()

Don’t set the password attribute directly unless you know what you’re doing. The password is actually
stored as a salted hash and thus can’t be edited directly.

More formally, the password attribute of a User object is a string in this format:
hashtype$saltS$Shash
That’s a hash type, the salt, and the hash itself, separated by the dollar sign ($) character.

hashtype is either shal (default) or md5, the algorithm used to perform a one-way hash of the password.
salt is a random string used to salt the raw password to create the hash, for example:

shal$al976%a36cc8cbf81742a8fb52e22laacab48ed7£58ab4

The User.set_password () and User.check_password () functions handle the setting and
checking of these values behind the scenes.

Is a “Salted Hash” Some Kind of Drug?
No, a salted hash has nothing to do with marijuana; it’s actually a common way to securely store passwords.
A hash is a one-way cryptographic function—that is, you can easily compute the hash of a given value, but

it’s nearly impossible to take a hash and reconstruct the original value.

If we stored passwords as plain text, anyone who got their hands on the password database would instantly
know everyone’s password. Storing passwords as hashes reduces the value of a compromised database.

However, an attacker with the password database could still run a brute- force attack, hashing millions of
passwords and comparing those hashes against the stored values. This takes some time, but less than you

12.3.6 Managing Users, Permissions, and Groups 157



The Django Book

might think—computers are incredibly fast.

Worse, there are publicly available rainbow tables, or databases of precomputed hashes of millions of
passwords. With a rainbow table, an attacker can break most passwords in seconds.

Adding a salt—basically an initial random value—to the stored hash adds another layer of difficulty to
breaking passwords. Since salts differ from password to password, they also prevent the use of a rainbow
table, thus forcing attackers to fall back on a brute-force attack, itself made more difficult by the extra entropy
added to the hash by the salt.

While salted hashes aren’t absolutely the most secure way of storing passwords, they’re a good middle ground
between security and convenience.

12.3.6.3 Handling Registration

We can use these low-level tools to create views that allow users to sign up. Nearly every developer wants to
implement registration differently, so Django leaves writing a registration view up to you. Luckily, it’s pretty
easy.

At its simplest, we could provide a small view that prompts for the required user information and creates those
users. Django provides a built-in form you can use for this purpose, which we’ll use in this example:

from django import oldforms as forms

from django.http import HttpResponseRedirect

from django.shortcuts import render_to_response

from django.contrib.auth.forms import UserCreationForm

def register (request):

form = UserCreationForm/()
if request.method == 'POST':
data = request.POST.copy ()
errors = form.get_validation_errors(data)
if not errors:
new_user = form.save (data)
return HttpResponseRedirect ("/books/")
else:
data, errors = {}, {}

return render_to_response ("registration/register.html", {
'form' : forms.FormWrapper (form, data, errors)

})

This form assumes a template named registration/register.html. Here’s an example of what that
template might look like:

{% extends "base.html" %}
{% block title %}Create an account{% endblock %}

{% block content %}
<hl>Create an account</hl>
<form action="." method="post">
{%$ if form.error_dict %}
<p class="error">Please correct the errors below.</p>
{% endif %}

{%$ if form.username.errors %}
{{ form.username.html_error_list }}
{% endif %}
<label for="id_username">Username:</label> {{ form.username }}

12.3.6 Managing Users, Permissions, and Groups 158



The Django Book

{$ 1if form.passwordl.errors %}
{{ form.passwordl.html_error_list }}
{% endif %}
<label for="id_passwordl">Password: {{ form.passwordl }}

{%$ 1if form.password2.errors %}
{{ form.password2.html_error_list }}
{% endif %}
<label for="id_password2">Password (again): {{ form.password2 }}

<input type="submit" value="Create the account" />
</label>
{% endblock %}

Note

django.contrib.auth.forms.UserCreationForm is, at the time of publication, an oldforms
Form. See http://www.djangoproject.com/documentation/0.96/forms/ for details on oldforms. The transition
to newforms, as covered in Chapter 7, will be completed in the near future.

12.3.7 Using Authentication Data in Templates

The current logged-in user and his or her permissions are made available in the template context when you use
RequestContext (see Chapter 10).

Note

Technically, these variables are only made available in the template context if you use RequestContext
and your TEMPLATE_CONTEXT_PROCESSORS setting contains
"django.core.context_processors.auth", which is the default. Again, see Chapter 10 for more
information.

When using RequestContext, the current user (either a User instance or an AnonymousUser instance)
is stored in the template variable { { user }}:

{% if user.is_authenticated %}

<p>Welcome, {{ user.username }}. Thanks for logging in.</p>
{% else %}

<p>Welcome, new user. Please log in.</p>
{% endif %}

This user’s permissions are stored in the template variable { { perms }}. This is a template-friendly proxy
to a couple of permission methods described shortly.

There are two ways you can use this perms object. You can use something like { { perms.polls }} to
check if the user has any permissions for some given application, or you can use something like { {
perms.polls.can_vote }} tocheck if the user has a specific permission.

Thus, you can check permissions in template {$ if %} statements:

{%$ if perms.polls %}

<p>You have permission to do something in the polls app.</p>

{%$ 1if perms.polls.can_vote %}

<p>You can vote!</p>

{% endif %}
{% else %}

<p>You don't have permission to do anything in the polls app.</p>
{% endif %}

12.3.7 Using Authentication Data in Templates 159


http://www.djangoproject.com/documentation/0.96/forms/

The Django Book

12.4 The Other Bits: Permissions, Groups, Messages, and
Profiles

There are a few other bits of the authentication framework that we’ve only dealt with in passing. We’ll take a
closer look at them in the following sections.

12.4.1 Permissions

Permissions are a simple way to “mark” users and groups as being able to perform some action. They are
usually used by the Django admin site, but you can easily use them in your own code.

The Django admin site uses permissions as follows:

e Access to view the “add” form, and add an object is limited to users with the add permission for that
type of object.

e Access to view the change list, view the “change” form, and change an object is limited to users with
the change permission for that type of object.

e Access to delete an object is limited to users with the delete permission for that type of object.

Permissions are set globally per type of object, not per specific object instance. For example, it’s possible to
say “Mary may change news stories,” but it’s not currently possible to say “Mary may change news stories,
but only the ones she created herself” or “Mary may only change news stories that have a certain status,
publication date, or ID.”

These three basic permissions—add, change, and delete—are automatically created for each Django model
that has a class Admin. Behind the scenes, these permissions are added to the auth_permission
database table when you run manage .py syncdb.

These permissions will be of the form "<app>.<action>_<object_name>". Thatis, if you have a
polls application with a Choice model, you’ll get permissions named "polls.add_choice",
"polls.change_choice",and "polls.delete_choice".

Note that if your model doesn’t have class Admin set when you run syncdb, the permissions won’t be
created. If you initialize your database and add class Admin to models after the fact, you’ll need to run
syncdb again to create any missing permissions for your installed applications.

You can also create custom permissions for a given model object using the permissions attribute on
Meta. This example model creates three custom permissions:

class USCitizen (models.Model) :

# ...
class Meta:
permissions = (
# Permission identifier human-readable permission name
("can_drive", "Can drive"),
("can_vote", "Can vote in elections"),
("can_drink", "Can drink alcohol"),

This only creates those extra permissions when you run syncdb; it’s up to you to check for these permissions
in your views.

Just like users, permissions are implemented in a Django model that lives in

django.contrib.auth.models. This means that you can use Django’s database API to interact
directly with permissions if you like.

12.4 The Other Bits: Permissions, Groups, Messages, and Profiles 160



The Django Book
12.4.2 Groups

Groups are a generic way of categorizing users so you can apply permissions, or some other label, to those
users. A user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For example, if the group Site
editors has the permission can_edit_home_page, any user in that group will have that permission.

Groups are also a convenient way to categorize users to give them some label, or extended functionality. For
example, you could create a group ' Special users', and you could write code that could, say, give those
users access to a members-only portion of your site, or send them members-only email messages.

Like users, the easiest way to manage groups is through the admin interface. However, groups are also just
Django models that live in d jango.contrib.auth.models, so once again you can always use
Django’s database APIs to deal with groups at a low level.

12.4.3 Messages

The message system is a lightweight way to queue messages for given users. A message is associated with a
User. There’s no concept of expiration or timestamps.

Messages are used by the Django admin interface after successful actions. For example, when you create an
object, you’ll notice a “The object was created successfully” message at the top of the admin page.

You can use the same API to queue and display messages in your own application. The API is simple:

¢ To create a new message, use user.message_set.create (message="'message_text').
¢ To retrieve/delete messages, use user.get_and_delete_messages (), which returns a list of
Message objects in the user’s queue (if any) and deletes the messages from the queue.

In this example view, the system saves a message for the user after creating a playlist:

def create_playlist (request, songs):

# Create the playlist with the given songs.

#

request.user.message_set.create(
message="Your playlist was added successfully."

)

return render_to_response ("playlists/create.html",
context_instance=RequestContext (request))

When you use RequestContext, the current logged-in user and his or her messages are made available in
the template context as the template variable { { messages }}. Here’s an example of template code that
displays messages:

{%$ 1if messages %}

<ul>
{%$ for message in messages %}
<li>{{ message }}</1li>
{% endfor %}

</ul>

{% endif %}

Note that RequestContext calls get_and_delete_messages behind the scenes, so any messages
will be deleted even if you don’t display them.

12.4.2 Groups 161



The Django Book

Finally, note that this messages framework only works with users in the user database. To send messages to
anonymous users, use the session framework directly.

12.4.4 Profiles

The final piece of the puzzle is the profile system. To understand what profiles are all about, let’s first look at
the problem.

In a nutshell, many sites need to store more user information than is available on the standard User object.
To compound the problem, most sites will have different “extra” fields. Thus, Django provides a lightweight
way of defining a “profile” object that’s linked to a given user. This profile object can differ from project to
project, and it can even handle different profiles for different sites served from the same database.

The first step in creating a profile is to define a model that holds the profile information. The only requirement
Django places on this model is that it have a unique ForeignKey to the User model; this field must be
named user. Other that that, you can use any other fields you like. Here’s a strictly arbitrary profile model:

from django.db import models
from django.contrib.auth.models import User

class MySiteProfile (models.Model) :
# This is the only required field
user = models.ForeignKey (User, unique=True)

# The rest is completely up to you...

favorite_band = models.CharField(maxlength=100, blank=True)
favorite_cheese = models.CharField(maxlength=100, blank=True)
lucky_number = models.IntegerField()

Next, you’ll need to tell Django where to look for this profile object. You do that by setting the
AUTH_PROFILE_MODULE setting to the identifier for your model. So, if your model lives in an application
called myapp, you’d put this in your settings file:

AUTH_PROFILE_MODULE = "myapp.mysiteprofile"

Once that’s done, you can access a user’s profile by calling user.get_profile (). This function could
raisea SiteProfileNotAvailable exception if AUTH_PROFILE_MODULE isn’t defined, or it could
raise a DoesNotEx1st exception if the user doesn’t have a profile already (you’ll usually catch that
exception and create a new profile at that time).

12.5 What’s Next

Yes, the session and authorization system is a lot to absorb. Most of the time you won’t need all the features
described in this chapter, but when you need to allow complex interactions between users, it’s good to have all
that power available.

In the next chapter, we’ll take a look at a piece of Django that builds on top of this session/user system: the

comments application. It allows you to easily attach comments—from anonymous or authenticated users—to
arbitrary objects. Onward and upward!

12.4.3 Messages 162



13 Caching

Static Web sites, in which simple files are served directly to the Web, scale like crazy. But a fundamental
tradeoff in dynamic Web sites is, well, they’re dynamic. Each time a user requests a page, the Web server
makes all sorts of calculations—from database queries, to template rendering, to business logic— to create the
page that your site’s visitor sees. From a processing-overhead perspective, this is quite expensive.

For most Web applications, this overhead isn’t a big deal. Most Web applications aren’t washingtonpost.com
or Slashdot; they’re simply small- to medium-sized sites with so-so traffic. But for medium- to high-traffic
sites, it’s essential to cut as much overhead as possible. That’s where caching comes in.

To cache something is to save the result of an expensive calculation so that you don’t have to perform the
calculation next time. Here’s some pseudocode explaining how this would work for a dynamically generated
Web page:

given a URL, try finding that page in the cache
if the page is in the cache:
return the cached page
else:
generate the page
save the generated page in the cache (for next time)
return the generated page

Django comes with a robust cache system that lets you save dynamic pages so they don’t have to be
calculated for each request. For convenience, Django offers different levels of cache granularity. You can
cache the response of specific views, you can cache only the pieces that are difficult to produce, or you can
cache your entire site.

Django also works well with “upstream” caches, such as Squid (http://www.squid-cache.org/) and
browser-based caches. These are the types of caches that you don’t directly control but to which you can
provide hints (via HTTP headers) about which parts of your site should be cached, and how.

Read on to discover how to use Django’s caching system. When your site gets Slashdotted you’ll be happy
you understand this material.

13.1 Setting Up the Cache

The cache system requires a small amount of setup. Namely, you have to tell it where your cached data should
live, whether in a database, on the filesystem, or directly in memory. This is an important decision that affects
your cache’s performance (yes, some cache types are faster than others). In-memory caching will generally be
much faster than filesystem or database caching, because it lacks the overhead of hitting the filesystem or
database.

Your cache preference goes in the CACHE_BACKEND setting in your settings file. If you use caching and do
not specify CACHE_BACKEND, Django will use simple:/// by default. The following sections explain all
available values for CACHE_BACKEND.

13.1.1 Memcached

By far the fastest, most efficient type of cache available to Django, Memcached is an entirely memory-based
cache framework originally developed to handle high loads at LiveJournal (http://www.livejournal.com/) and
subsequently open-sourced by Danga Interactive (http://danga.com/). It’s used by sites such as Slashdot and
Wikipedia to reduce database access and dramatically increase site performance.

13 Caching 163


http://www.squid-cache.org/
http://www.livejournal.com/
http://danga.com/

The Django Book

Memcached is available for free at http://danga.com/memcached/. It runs as a daemon and is allotted a
specified amount of RAM. Its primary feature is to provide an interface—a super-lightning-fast interface—for
adding, retrieving, and deleting arbitrary data in the cache. All data is stored directly in memory, so there’s no
overhead of database or filesystem usage.

After installing Memcached itself, you’ll need to install the Memcached Python bindings, which are not
bundled with Django directly. These bindings are in a single Python module, memcache . py, which is

available at http://www.tummy.com/Community/software/python-memcached/.

To use Memcached with Django, set CACHE_BACKEND to memcached://ip:port/, where ip is the [P
address of the Memcached daemon and port is the port on which Memcached is running.

In this example, Memcached is running on localhost (127.0.0.1) port 11211:

CACHE_BACKEND = 'memcached://127.0.0.1:11211/"

One excellent feature of Memcached is its ability to share cache over multiple servers. This means you can
run Memcached daemons on multiple machines, and the program will treat the group of machines as a single
cache, without the need to duplicate cache values on each machine. To take advantage of this feature with
Django, include all server addresses in CACHE_BACKEND, separated by semicolons.

In this example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240 and
172.19.26.242, both of which are on port 11211:

CACHE_BACKEND = 'memcached://172.19.26.240:11211;172.19.26.242:11211/"

In the following example, the cache is shared over Memcached instances running on the IP addresses
172.19.26.240 (port 11211), 172.19.26.242 (port 11212), and 172.19.26.244 (port 11213):

CACHE_BACKEND = 'memcached://172.19.26.240:11211;172.19.26.242:11212;172.19.26.244:11213/"

A final point about Memcached is that memory-based caching has one important disadvantage. Because the
cached data is stored only in memory, the data will be lost if your server crashes. Clearly, memory isn’t
intended for permanent data storage, so don’t rely on memory-based caching as your only data storage.
Without a doubt, none of the Django caching back-ends should be used for permanent storage—they’re all
intended to be solutions for caching, not storage—but we point this out here because memory-based caching
is particularly temporary.

13.1.2 Database Caching

To use a database table as your cache back-end, create a cache table in your database and point Django’s
cache system at that table.

First, create a cache table by running this command:

python manage.py createcachetable [cache_table_name]

where [cache_table_name] is the name of the database table to create. This name can be whatever you
want, as long as it’s a valid table name that’s not already being used in your database. This command creates a
single table in your database that is in the proper format Django’s database-cache system expects.

Once you’ve created that database table, set your CACHE_BACKEND setting to "db://tablename",

where tablename is the name of the database table. In this example, the cache table’s name is
my_cache_table:

13.1.1 Memcached 164


http://danga.com/memcached/
http://www.tummy.com/Community/software/python-memcached/

The Django Book

CACHE_BACKEND = 'db://my_cache_table'

The database caching back-end uses the same database as specified in your settings file. You can’t use a
different database back-end for your cache table.

13.1.3 Filesystem Caching

To store cached items on a filesystem, use the "file://" cache type for CACHE_BACKEND, specifying the
directory on your filesystem that should store the cached data.

For example, to store cached data in /var/tmp/django_cache, use this setting:

CACHE_BACKEND = 'file:///var/tmp/django_cache'

Note that there are three forward slashes toward the beginning of the preceding example. The first two are for
file://, and the third is the first character of the directory path, /var/tmp/django_cache. If you're

on Windows, put the drive letter after the file://, likeso:: file://c:/foo/bar.

The directory path should be absolute—that is, it should start at the root of your filesystem. It doesn’t matter
whether you put a slash at the end of the setting.

Make sure the directory pointed to by this setting exists and is readable and writable by the system user under
which your Web server runs. Continuing the preceding example, if your server runs as the user apache,
make sure the directory /var/tmp/django_cache exists and is readable and writable by the user
apache.

Each cache value will be stored as a separate file whose contents are the cache data saved in a serialized

(“pickled”) format, using Python’s pickle module. Each file’s name is the cache key, escaped for safe
filesystem use.

13.1.4 Local-Memory Caching

If you want the speed advantages of in-memory caching but don’t have the capability of running Memcached,
consider the local-memory cache back-end. This cache is per-process and thread-safe, but it isn’t as efficient
as Memcached due to its simplistic locking and memory allocation strategies.

To use it, set CACHE_BACKEND to 'locmem: /// "', for example:

CACHE_BACKEND = 'locmem:///'

13.1.5 Simple Caching (for Development)

A simple, single-process memory cache is available as 'simple:/// ", for example:

CACHE_BACKEND = 'simple:///'

This cache merely saves cached data in process, which means it should be used only in development or testing
environments.

13.1.6 Dummy Caching (for Development)

Finally, Django comes with a “dummy” cache that doesn’t actually cache; it just implements the cache
interface without doing anything.

13.1.2 Database Caching 165



The Django Book

This is useful if you have a production site that uses heavy-duty caching in various places and a
development/test environment on which you don’t want to cache. In that case, set CACHE_BACKEND to
"dummy:///" in the settings file for your development environment, for example:

CACHE_BACKEND = 'dummy:///'

As a result, your development environment won’t use caching, but your production environment still will.

13.1.7 CACHE_BACKEND Arguments

Each cache back-end may take arguments. They’re given in query-string style on the CACHE_BACKEND
setting. Valid arguments are as follows:

e t imeout: The default timeout, in seconds, to use for the cache. This argument defaults to 300
seconds (5 minutes).

® max_entries: For the simple, local-memory, and database back-ends, the maximum number of
entries allowed in the cache before old values are deleted. This argument defaults to 300.

e cull_frequency: The ratio of entries that are culled when max_entries is reached. The actual
ratiois 1/cull_frequency, soset cull_frequency=2 to cull half of the entries when
max_entries is reached.

A value of 0 for cull_frequency means that the entire cache will be dumped when
max_entries is reached. This makes culling much faster at the expense of more cache misses. This
argument defaults to 3.

In this example, t imeout is set to 60:

CACHE_BACKEND = "locmem:///?timeout=60"

In this example, t imeout is 30 and max_entriesis 400:

CACHE_BACKEND = "locmem:///?timeout=30&max_entries=400"

Invalid arguments are silently ignored, as are invalid values of known arguments.

13.2 The Per-Site Cache

Once you’ve specified CACHE_BACKEND, the simplest way to use caching is to cache your entire site. This
means each page that doesn’t have GET or POST parameters will be cached for a specified amount of time
the first time it’s requested.

To activate the per-site cache, just add 'django.middleware.cache.CacheMiddleware' to your
MIDDLEWARE_CLASSES setting, as in this example:

MIDDLEWARE_CLASSES = (
'django.middleware.cache.CacheMiddleware',
'django.middleware.common.CommonMiddleware',

Note

The order of MIDDLEWARE_CLASSES matters. See the section “Order of MIDDLEWARE_CLASSES” later
in this chapter.

Then, add the following required settings to your Django settings file:

13.1.6 Dummy Caching (for Development) 166



The Django Book

® CACHE_MIDDLEWARE_SECONDS: The number of seconds each page should be cached.

e CACHE_MIDDLEWARE_KEY_PREFIX: If the cache is shared across multiple sites using the same
Django installation, set this to the name of the site, or some other string that is unique to this Django
instance, to prevent key collisions. Use an empty string if you don’t care.

The cache middleware caches every page that doesn’t have GET or POST parameters. That is, if a user
requests a page and passes GET parameters in a query string, or passes POST parameters, the middleware will
not attempt to retrieve a cached version of the page. If you intend to use the per-site cache, keep this in mind
as you design your application; don’t use URLs with query strings, for example, unless it is acceptable for
your application not to cache those pages.

The cache middleware supports another setting, CACHE_MIDDLEWARE_ANONYMOUS_ONLY. If you’ve
defined this setting, and it’s set to True, then the cache middleware will only cache anonymous requests (i.e.,
those requests made by a non-logged-in user). This is a simple and effective way of disabling caching for any
user-specific pages, such as Django’s admin interface. Note that if you use
CACHE_MIDDLEWARE_ANONYMOUS_ONLY, you should make sure you’ve activated
AuthenticationMiddleware and that AuthenticationMiddleware appears before
CacheMiddleware in your MIDDLEWARE_CLASSES.

Finally, note that CacheMiddleware automatically sets a few headers in each Ht tpResponse:

e It sets the Last—Modified header to the current date/time when a fresh (uncached) version of the
page is requested.

e |t sets the Expires header to the current date/time plus the defined
CACHE_MIDDLEWARE_SECONDS.

e |t sets the Cache-Control header to give a maximum age for the page, again from the
CACHE_MIDDLEWARE_SECONDS setting.

13.3 The Per-View Cache

A more granular way to use the caching framework is by caching the output of individual views. This has the
same effects as the per-site cache (including the omission of caching on requests with GET and POST
parameters). It applies to whichever views you specify, rather than the whole site.

Do this by using a decorator, which is a wrapper around your view function that alters its behavior to use
caching. The per-view cache decorator is called cache_page and is located in the
django.views.decorators.cache module, for example:

from django.views.decorators.cache import cache_page

def my_view(request, param):
# ...
my_view = cache_page (my_view, 60 * 15)

Alternatively, if you’re using Python 2.4 or greater, you can use decorator syntax. This example is equivalent
to the preceding one:

from django.views.decorators.cache import cache_page

@cache_page (60 * 15)
def my_view(request, param):
# ...

cache_page takes a single argument: the cache timeout, in seconds. In the preceding example, the result of

the my_view () view will be cached for 15 minutes. (Note that we’ve written it as 60 * 15 for the purpose
of readability. 60 * 15 will be evaluated to 900—that is, 15 minutes multiplied by 60 seconds per minute.)

13.2 The Per-Site Cache 167



The Django Book

The per-view cache, like the per-site cache, is keyed off of the URL. If multiple URLs point at the same view,
each URL will be cached separately. Continuing the my_ view example, if your URLconf looks like this:

urlpatterns = ('"',
(r'~foo/(\d{1,2})/$"', my_view),
)

then requests to /foo/1/ and /foo/23/ will be cached separately, as you may expect. But once a
particular URL (e.g., /£00/23/) has been requested, subsequent requests to that URL will use the cache.

13.3.1 Specifying Per-View Cache in the URLconf

The examples in the previous section have hard-coded the fact that the view is cached, because cache_page
alters the my_ view function in place. This approach couples your view to the cache system, which is not
ideal for several reasons. For instance, you might want to reuse the view functions on another, cacheless site,
or you might want to distribute the views to people who might want to use them without being cached. The
solution to these problems is to specify the per-view cache in the URLconf rather than next to the view
functions themselves.

Doing so is easy: simply wrap the view function with cache_page when you refer to it in the URLconf.
Here’s the old URLconf from earlier:

urlpatterns = ('"',
(r'~foo/(\d{1,2})/$"', my_view),
)

Here’s the same thing, with my_ view wrapped in cache_page:

from django.views.decorators.cache import cache_page

urlpatterns = ('"',
(r'~foo/ (\d{1,2})/$', cache_page (my_view, 60 * 15)),
)

If you take this approach, don’t forget to import cache_page within your URLconf.

13.4 The Low-Level Cache API

Sometimes, caching an entire rendered page doesn’t gain you very much and is, in fact, inconvenient overkill.

Perhaps, for instance, your site includes a view whose results depend on several expensive queries, the results
of which change at different intervals. In this case, it would not be ideal to use the full-page caching that the
per-site or per-view cache strategies offer, because you wouldn’t want to cache the entire result (since some of
the data changes often), but you’d still want to cache the results that rarely change.

For cases like this, Django exposes a simple, low-level cache API, which lives in the module
django.core.cache. You can use the low-level cache API to store objects in the cache with any level of
granularity you like. You can cache any Python object that can be pickled safely: strings, dictionaries, lists of
model objects, and so forth. (Most common Python objects can be pickled; refer to the Python documentation
for more information about pickling.)

Here’s how to import the API:

>>> from django.core.cache import cache

The basic interface is set (key, value, timeout_seconds) and get (key):

13.3 The Per-View Cache 168



The Django Book

>>> cache.set ('my_key', 'hello, world!', 30)
>>> cache.get ('my_key")
'hello, world!'

The t imeout_seconds argument is optional and defaults to the t imeout argument in the
CACHE_BACKEND setting explained earlier.

If the object doesn’t exist in the cache, or the cache back-end is unreachable, cache . get () returns None:

# Wait 30 seconds for 'my_key' to expire...

>>> cache.get ('my_key")
None

>>> cache.get ('some_unset_key"')
None

We advise against storing the literal value None in the cache, because you won’t be able to distinguish
between your stored None value and a cache miss signified by a return value of None.

cache.get () cantake a default argument. This specifies which value to return if the object doesn’t
exist in the cache:

>>> cache.get ('my_key', 'has expired')
'has expired’

To retrieve multiple cache values in a single shot, use cache .get_many () . If possible for the given cache
back-end, get_many () will hit the cache only once, as opposed to hitting it once per cache key.
get_many () returns a dictionary with all of the keys you asked for that exist in the cache and haven’t
expired:

>>> cache.set ('a', 1)

>>> cache.set ('b', 2)

>>> cache.set ('c', 3)
(['a', 'b', 'c'l)
1 3}

>>> cache.get_many
{'a': 1, 'b': 2, 'c':

If a cache key doesn’t exist or is expired, it won’t be included in the dictionary. The following is a
continuation of the example:

>>> cache.get_many(['a', 'b', 'c', 'd'])
{'a': 1, 'b': 2, 'c': 3}

Finally, you can delete keys explicitly with cache.delete (). This is an easy way of clearing the cache for
a particular object:

>>> cache.delete('a")

cache.delete () has no return value, and it works the same way whether or not a value with the given
cache key exists.

13.5 Upstream Caches

So far, this chapter has focused on caching your own data. But another type of caching is relevant to Web
development, too: caching performed by upstream caches. These are systems that cache pages for users even
before the request reaches your Web site.

Here are a few examples of upstream caches:

13.4 The Low-Level Cache API 169



The Django Book

® Your ISP may cache certain pages, so if you requested a page from http://example.com/, your ISP
would send you the page without having to access example.com directly. The maintainers of
example.com have no knowledge of this caching; the ISP sits between example.com and your Web
browser, handling all of the caching transparently.

® Your Django Web site may sit behind a proxy cache, such as Squid Web Proxy Cache
(http://www.squid-cache.org/), that caches pages for performance. In this case, each request first
would be handled by the proxy, and it would be passed to your application only if needed.

® Your Web browser caches pages, too. If a Web page sends out the appropriate headers, your browser
will use the local cached copy for subsequent requests to that page, without even contacting the Web
page again to see whether it has changed.

Upstream caching is a nice efficiency boost, but there’s a danger to it. The content of many Web pages differs
based on authentication and a host of other variables, and cache systems that blindly save pages based purely
on URLSs could expose incorrect or sensitive data to subsequent visitors to those pages.

For example, say you operate a Web e-mail system, and the contents of the “inbox” page obviously depend on
which user is logged in. If an ISP blindly cached your site, then the first user who logged in through that ISP
would have his or her user-specific inbox page cached for subsequent visitors to the site. That’s not cool.

Fortunately, HTTP provides a solution to this problem. A number of HTTP headers exist to instruct upstream
caches to differ their cache contents depending on designated variables, and to tell caching mechanisms not to
cache particular pages. We’ll look at some of these headers in the sections that follow.

13.5.1 Using Vary Headers

The Vary header defines which request headers a cache mechanism should take into account when building
its cache key. For example, if the contents of a Web page depend on a user’s language preference, the page is
said to ““vary on language.”

By default, Django’s cache system creates its cache keys using the requested path (e.g.,
"/stories/2005/jun/23/bank_robbed/"). This means every request to that URL will use the same
cached version, regardless of user-agent differences such as cookies or language preferences. However, if this
page produces different content based on some difference in request headers—such as a cookie, or a language,
or a user-agent—you’ll need to use the Vary header to tell caching mechanisms that the page output depends
on those things.

To do this in Django, use the convenient vary_on_headers view decorator, like so:

from django.views.decorators.vary import vary_on_headers

# Python 2.3 syntax.
def my_view (request) :
# ...

my_view = vary_on_headers (my_view, 'User-Agent')

# Python 2.4+ decorator syntax.
@vary_on_headers ('User-Agent')
def my_view (request) :

# ...

In this case, a caching mechanism (such as Django’s own cache middleware) will cache a separate version of
the page for each unique user-agent.

The advantage to using the vary_on_headers decorator rather than manually setting the Vary header

(using something like response['Vary'] = 'user—agent') s that the decorator adds to the Vary
header (which may already exist), rather than setting it from scratch and potentially overriding anything that

13.5 Upstream Caches 170


http://example.com/
http://www.squid-cache.org/

The Django Book

was already in there.

You can pass multiple headers to vary_on_headers ():

@vary_on_headers ('User—-Agent', 'Cookie')
def my_view (request) :
#

This tells upstream caches to vary on both, which means each combination of user-agent and cookie will get
its own cache value. For example, a request with the user-agent Moz1i11a and the cookie value foo=bar
will be considered different from a request with the user-agent Moz i11a and the cookie value foo=ham.

Because varying on cookie is so common, there’s a vary_on_cookie decorator. These two views are
equivalent:

@vary_on_cookie
def my_view (request) :
#

@vary_on_headers ('Cookie')

def my_view (request) :
#

The headers you pass to vary_on_headers are not case sensitive; "User—Agent" is the same thing as
"user—agent".

You can also use a helper function, django.utils.cache.patch_vary_headers, directly. This
function sets, or adds to, the Vary header, for example:

from django.utils.cache import patch_vary_headers

def my_view (request) :

#
response = render_to_response ('template_name', context)
patch_vary_headers (response, ['Cookie'])

return response

patch_vary_headers takes an Ht t pResponse instance as its first argument and a list/tuple of
case-insensitive header names as its second argument.

13.5.2 Other Cache Headers

Other problems with caching are the privacy of data and the question of where data should be stored in a
cascade of caches.

A user usually faces two kinds of caches: his or her own browser cache (a private cache) and his or her
provider’s cache (a public cache). A public cache is used by multiple users and controlled by someone else.
This poses problems with sensitive data—you don’t want, say, your bank account number stored in a public
cache. So Web applications need a way to tell caches which data is private and which is public.

The solution is to indicate a page’s cache should be “private.” To do this in Django, use the
cache_control view decorator:

from django.views.decorators.cache import cache_control
@cache_control (private=True)

def my_view (request) :
#

13.5.1 Using Vary Headers 171



The Django Book

This decorator takes care of sending out the appropriate HTTP header behind the scenes.

There are a few other ways to control cache parameters. For example, HTTP allows applications to do the
following:

® Define the maximum time a page should be cached.

¢ Specify whether a cache should always check for newer versions, only delivering the cached content
when there are no changes. (Some caches might deliver cached content even if the server page
changed, simply because the cache copy isn’t yet expired.)

In Django, use the cache_control view decorator to specify these cache parameters. In this example,
cache_control tells caches to revalidate the cache on every access and to store cached versions for, at
most, 3,600 seconds:

from django.views.decorators.cache import cache_control
@cache_control (must_revalidate=True, max_age=3600)
def my_view (request) :

Any valid Cache-Control HTTP directive is valid in cache_control (). Here’s a full list:

®*public=True
®*private=True

® no_cache=True

® no_transform=True
emust_revalidate=True
®* proxy_revalidate=True
®* max_age=num_seconds

® s_maxage=num_seconds

Tip

For explanation of Cache—-Control HTTP directives, see the specification at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.

Note
The caching middleware already sets the cache header’s max—age with the value of the

CACHE_MIDDLEWARE_SETTINGS setting. If you use a custom max_age in a cache_control
decorator, the decorator will take precedence, and the header values will be merged correctly.)

13.6 Other Optimizations

Django comes with a few other pieces of middleware that can help optimize your applications’ performance:
® django.middleware.http.ConditionalGetMiddleware adds support for modern
browsers to conditionally GET responses based on the ETag and Last-Modi fied headers.

® django.middleware.gzip.GZipMiddleware compresses responses for all moderns
browsers, saving bandwidth and transfer time.

13.7 Order of MIDDLEWARE_CLASSES

If you use CacheMiddleware, it’s important to put it in the right place within the
MIDDLEWARE_CLASSES setting, because the cache middleware needs to know the headers by which to vary

13.5.2 Other Cache Headers 172


http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

The Django Book

the cache storage.

Put the CacheMiddleware after any middlewares that might add something to the Vary header, including
the following:

® SessionMiddleware, which adds Cookie
¢ GZipMiddleware, which adds Accept-Encoding

13.8 What’s Next?

Django ships with a number of “contrib” packages—cool, optional features. We’ve already covered a few of
the: the admin system (Chapter 6) and the session/user framework (Chapter 11).

The next chapter covers the rest of the “contributed” subframeworks. There’s a lot of cool tools available; you
won’t want to miss any of them.

13.7 Order of MIDDLEWARE_CLASSES 173



14 Other Contributed Subframeworks

One of the many strengths of Python is its “batteries included” philosophy: when you install Python, it comes
with a large standard library of packages that you can start using immediately, without having to download
anything else. Django aims to follow this philosophy, and it includes its own standard library of add-ons
useful for common Web development tasks. This chapter covers that collection of add-ons.

14.1 The Django Standard Library

Django’s standard library lives in the package d jango . cont rib. Within each subpackage is a separate
piece of add-on functionality. These pieces are not necessarily related, but some django.contrib
subpackages may require other ones.

There’s no hard requirement for the types of functionality in d jango . cont rib. Some of the packages
include models (and hence require you to install their database tables into your database), but others consist
solely of middleware or template tags.

The single characteristic the d jango . contrib packages have in common is this: if you were to remove the
django.contrib package entirely, you could still use Django’s fundamental features with no problems.
When the Django developers add new functionality to the framework, they use this rule of thumb in deciding
whether the new functionality should live in d jango . contrib or elsewhere.

django.contrib consists of these packages:

® admin: The automatic admin site. See Chapters 6 and 18.

e auth: Django’s authentication framework. See Chapter 12.

e comments: A comments application. This application is currently under heavy development and
thus couldn’t be covered fully in time for this book’s publication. Check the Django Web site for the
latest information about the comments application.

e contenttypes: A framework for hooking into “types” of content, where each installed Django
model is a separate content type. This framework is used internally by other “contrib” applications
and is mostly intended for very advanced Django developers. Those developers should find out more
about this application by reading the source code in d jango/contrib/contenttypes/.

e csrf: Protection against Cross-Site Request Forgery (CSRF). See the later section titled “CSRF
Protection.”

e flatpages: A framework for managing simple “flat” HTML content in a database. See the later
section titled “Flatpages.”

e humanize: A set of Django template filters useful for adding a “human touch” to data. See the later
section titled “Humanizing Data.”

e markup: A set of Django template filters that implement a number of common markup languages.
See the later section titled “Markup Filters.”

e redirects: A framework for managing redirects. See the later section titled “Redirects.”

® sessions: Django’s session framework. See Chapter 12.

® sitemaps: A framework for generating sitemap XML files. See Chapter 11.

e sites: A framework that lets you operate multiple Web sites from the same database and Django
installation. See the next section, “Sites.”

e syndication: A framework for generating syndication feeds in RSS and Atom. See Chapter 11.

The rest of this chapter goes into detail about each d jango . contrib package that we haven’t yet covered
in this book.

14 Other Contributed Subframeworks 174



The Django Book
14.2 Sites

Django’s sites system is a generic framework that lets you operate multiple Web sites from the same database
and Django project. This is an abstract concept, and it can be tricky to understand, so we’ll start with a couple
of scenarios where it would be useful.

14.2.1 Scenario 1: Reusing Data on Multiple Sites

As we explained in Chapter 1, the Django-powered sites LJWorld.com and Lawrence.com are operated by the
same news organization: the Lawrence Journal-World newspaper in Lawrence, Kansas. LJWorld.com focuses
on news, while Lawrence.com focuses on local entertainment. But sometimes editors want to publish an
article on both sites.

The brain-dead way of solving the problem would be to use a separate database for each site and to require
site producers to publish the same story twice: once for LIWorld.com and again for Lawrence.com. But that’s
inefficient for site producers, and it’s redundant to store multiple copies of the same story in the database.

The better solution? Both sites use the same article database, and an article is associated with one or more
sites via a many-to-many relationship. The Django sites framework provides the database table to which
articles can be related. It’s a hook for associating data with one or more “sites.”

14.2.2 Scenario 2: Storing Your Site Name/Domain in One Place

LJWorld.com and Lawrence.com both have e-mail alert functionality, which lets readers sign up to get
notifications when news happens. It’s pretty basic: a reader signs up on a Web form, and he immediately gets
an e-mail saying, “Thanks for your subscription.”

It would be inefficient and redundant to implement this signup-processing code twice, so the sites use the
same code behind the scenes. But the “Thank you for your subscription” notice needs to be different for each
site. By using Site objects, we can abstract the thank-you notice to use the values of the current site’s name
(e.g., 'LJdWorld.com') and domain (e.g., 'www.ljworld.com").

The Django sites framework provides a place for you to store the name and domain for each site in your
Django project, which means you can reuse those values in a generic way.

14.2.3 How to Use the Sites Framework

The sites framework is more a series of conventions than a framework. The whole thing is based on two
simple concepts:

¢ The Site model, found in django.contrib.sites, has domain and name fields.
e The SITE_ ID setting specifies the database ID of the Site object associated with that particular
settings file.

How you use these two concepts is up to you, but Django uses them in a couple of ways automatically via
simple conventions.

To install the sites application, follow these steps:
1. Add 'django.contrib.sites"' to your INSTALLED_APPS.
2. Run the command manage .py syncdb to install the django_site table into your database.

3. Add one or more Site objects, either through the Django admin site or via the Python API. Create a
Site object for each site/domain that this Django project powers.

14.2 Sites 175



The Django Book

4. Define the SITE_ID setting in each of your settings files. This value should be the database ID of the
Site object for the site powered by that settings file.

14.2.4 The Sites Framework’s Capabilities
The sections that follow describe the various things you can do with the sites framework.
14.2.4.1 Reusing Data on Multiple Sites

To reuse data on multiple sites, as explained in the first scenario, just create a ManyToManyFieldto Site
in your models, for example:

from django.db import models
from django.contrib.sites.models import Site

class Article (models.Model) :
headline = models.CharField (maxlength=200)
# ...
sites = models.ManyToManyField(Site)

That’s the infrastructure you need to associate articles with multiple sites in your database. With that in place,
you can reuse the same Django view code for multiple sites. Continuing the Art icle model example, here’s
what an article_detail view might look like:

from django.conf import settings

def article_detail (request, article_id):
try:
a = Article.objects.get (id=article_id, sites__id=settings.SITE_ID)
except Article.DoesNotExist:
raise Http404
# ...

This view function is reusable because it checks the article’s site dynamically, according to the value of the
SITE_ID setting.

For example, say LJWorld.com’s settings file has a SITE_ID setto 1, and Lawrence.com’s settings file has a
SITE_ID setto 2. If this view is called when LIWorld.com’s settings file is active, then it will limit the
article lookup to articles in which the list of sites includes LIJWorld.com.

14.2.4.2 Associating Content with a Single Site
Similarly, you can associate a model to the Site model in a many-to-one relationship using ForeignKey.

For example, if an article is allowed on only a single site, you could use a model like this:

from django.db import models
from django.contrib.sites.models import Site

class Article (models.Model) :
headline = models.CharField (maxlength=200)

# ...
site = models.ForeignKey (Site)

This has the same benefits as described in the last section.

14.2.3 How to Use the Sites Framework 176



The Django Book
14.2.4.3 Hooking Into the Current Site from Views

On a lower level, you can use the sites framework in your Django views to do particular things based on the
site in which the view is being called, for example:

from django.conf import settings

def my_view (request) :
if settings.SITE_ID == 3:
# Do something.
else:
# Do something else.

Of course, it’s ugly to hard-code the site IDs like that. A slightly cleaner way of accomplishing the same thing
is to check the current site’s domain:

from django.conf import settings
from django.contrib.sites.models import Site

def my_view (request) :
current_site = Site.objects.get (id=settings.SITE_1ID)
if current_site.domain == 'foo.com':
# Do something
else:
# Do something else.

The idiom of retrieving the Site object for the value of settings.SITE_ID is quite common, so the
Site model’s manager (Site.objects) hasa get_current () method. This example is equivalent to
the previous one:

from django.contrib.sites.models import Site

def my_view (request) :

current_site = Site.objects.get_current ()
if current_site.domain == 'foo.com':

# Do something
else:

# Do something else.
Note
In this final example, you don’t have to import d jango.conf.settings.
14.2.4.4 Getting the Current Domain for Display

For a DRY (Don’t Repeat Yourself) approach to storing your site’s name and domain name, as explained in
“Scenario 2: Storing Your Site Name/Domain in One Place,” just reference the name and domain of the
current Site object. For example:

from django.contrib.sites.models import Site
from django.core.mail import send_mail

def register_for_newsletter (request) :

# Check form values, etc., and subscribe the user.
#
current_site = Site.objects.get_current ()

send_mail ('Thanks for subscribing to %s alerts' % current_site.name,
'Thanks for your subscription. We appreciate it.\n\n-The %s team.' % current_site.name,
o

'editor@%s' % current_site.domain,
[user_emaill)

14.2.4 The Sites Framework’s Capabilities 177



The Django Book

Continuing our ongoing example of LIWorld.com and Lawrence.com, on Lawrence.com this e-mail has the
subject line “Thanks for subscribing to lawrence.com alerts.” On LJWorld.com, the e-mail has the subject line
“Thanks for subscribing to LJWorld.com alerts.” This same site-specific behavior is applied to the e-mails’
message body.

An even more flexible (but more heavyweight) way of doing this would be to use Django’s template system.
Assuming Lawrence.com and LJWorld.com have different template directories (TEMPLATE_DIRS), you
could simply delegate to the template system like so:

from django.core.mail import send_mail
from django.template import loader, Context

def register_for_newsletter (request) :

# Check form values, etc., and subscribe the user.

#

subject = loader.get_template('alerts/subject.txt').render (Context ({}))
message = loader.get_template ('alerts/message.txt').render (Context ({}))
send_mail (subject, message, 'do-not-replyl@example.com', [user_email])

#

In this case, you have to create subject .txt and message.txt templates in both the LJWorld.com and
Lawrence.com template directories. As mentioned previously, that gives you more flexibility, but it’s also
more complex.

It’s a good idea to exploit the Site objects as much as possible to remove unneeded complexity and
redundancy.

14.2.4.5 Getting the Current Domain for Full URLs

Django’s get_absolute_url () convention is nice for getting your objects’ URLs without the domain
name, but in some cases you might want to display the full URL — with http:// and the domain and
everything — for an object. To do this, you can use the sites framework. Here’s a simple example:

>>> from django.contrib.sites.models import Site
>>> obj = MyModel.objects.get (id=3)
>>> obj.get_absolute_url ()

' /mymodel/objects/3/"'

>>> Site.objects.get_current () .domain

'example.com'

>>> 'http://%s%s' % (Site.objects.get_current ().domain, obj.get_absolute_url())

'http://example.com/mymodel/objects/3/"

14.2.5 CurrentSiteManager

IfSite’ s play a key role in your application, consider using the helpful
' CurrentSiteManager in your model(s). It’s a model manager (see Appendix B) that automatically
filters its queries to include only objects associated with the current Site.

Use CurrentSiteManager by adding it to your model explicitly. For example:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo (models.Model) :
photo = models.FileField (upload_to='/home/photos"')
photographer_name = models.CharField(maxlength=100)
pub_date = models.DateField()
site = models.ForeignKey (Site)

14.2.4 The Sites Framework’s Capabilities 178



The Django Book

objects = models.Manager ()
on_site = CurrentSiteManager ()

With this model, Photo.objects.all () will return all Photo objects in the database, but
Photo.on_site.all () will return only the Photo objects associated with the current site, according to
the SITE_ID setting.

In other words, these two statements are equivalent:

Photo.objects.filter (site=settings.SITE_ID)
Photo.on_site.all ()

How did CurrentSiteManager know which field of Phot o was the Site? It defaults to looking for a
field called site. If your model has a ForeignKey or ManyToManyField called something other than
site, you need to explicitly pass that as the parameter to Current SiteManager. The following model,
which has a field called publish_on, demonstrates this:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo (models.Model) :
photo = models.FileField (upload_to='/home/photos"')
photographer_name = models.CharField(maxlength=100)
pub_date = models.DateField()
publish_on = models.ForeignKey (Site)
objects = models.Manager ()
on_site = CurrentSiteManager ('publish_on')

If you attempt to use CurrentSiteManager and pass a field name that doesn’t exist, Django will raise a
ValueError.

Note

You’ll probably want to keep a normal (non-site-specific) Manager on your model, even if you use
CurrentSiteManager. As explained in Appendix B, if you define a manager manually, then Django
won’t create the automatic objects = models.Manager () manager for you.

Also, certain parts of Django — namely, the Django admin site and generic views — use whichever manager
is defined first in the model, so if you want your admin site to have access to all objects (not just site-specific
ones), put objects = models.Manager () in your model, before you define
CurrentSiteManager

14.2.6 How Django Uses the Sites Framework

Although it’s not required that you use the sites framework, it’s strongly encouraged, because Django takes
advantage of it in a few places. Even if your Django installation is powering only a single site, you should
take a few seconds to create the site object with your domain and name, and point to its ID in your
SITE_ID setting.

Here’s how Django uses the sites framework:

¢ In the redirects framework (see the later section “Redirects”), each redirect object is associated with a
particular site. When Django searches for a redirect, it takes into account the current SITE_ID.

¢ In the comments framework, each comment is associated with a particular site. When a comment is
posted, its site is set to the current SITE_ID, and when comments are listed via the appropriate
template tag, only the comments for the current site are displayed.

14.2.5 CurrentSiteManager 179



The Django Book

¢ In the flatpages framework (see the later section “Flatpages”), each flatpage is associated with a
particular site. When a flatpage is created, you specify its site, and the flatpage middleware checks
the current STTE_ ID in retrieving flatpages to display.

¢ In the syndication framework (see Chapter 11), the templates for title and description
automatically have access to a variable { { site }}, whichisthe Site object representing the
current site. Also, the hook for providing item URLs will use the domain from the current Site
object if you don’t specify a fully qualified domain.

¢ In the authentication framework (see Chapter 12), the django.contrib.auth.views.login
view passes the current Site name to the template as { { site_name }}.

14.3 Flatpages

Often you’ll have a database-driven Web application up and running, but you’ll need to add a couple of
one-off static pages, such as an About page or a Privacy Policy page. It would be possible to use a standard
Web server such as Apache to serve these files as flat HTML files, but that introduces an extra level of
complexity into your application, because then you have to worry about configuring Apache, you have to set
up access for your team to edit those files, and you can’t take advantage of Django’s template system to style
the pages.

The solution to this problem is Django’s flatpages application, which lives in the package
django.contrib.flatpages. This application lets you manage such one-off pages via Django’s admin
site, and it lets you specify templates for them using Django’s template system. It uses Django models behind
the scenes, which means it stores the pages in a database, just like the rest of your data, and you can access
flatpages with the standard Django database API.

Flatpages are keyed by their URL and site. When you create a flatpage, you specify which URL it’s associated
with, along with which site(s) it’s on. (For more on sites, see the “Sites” section.)

14.3.1 Using Flatpages
To install the flatpages application, follow these steps:

1. Add 'django.contrib.flatpages' to your INSTALLED_APPS.
django.contrib.flatpages depends on django.contrib.sites, so make sure the both
packages are in INSTALLED_APPS.

2. Add 'django.contrib.flatpages.middleware.FlatpageFallbackMiddleware'
toyourMIDDLEWARE_CLASSESsaﬁng

3. Run the command manage .py syncdb to install the two required tables into your database.

The flatpages application creates two tables in your database: django_flatpage and
django_flatpage_sites. django_flatpage simply maps a URL to a title and bunch of text
content. django_flatpage_sites is a many-to-many table that associates a flatpage with one or more
sites.

The application comes with a single F1at Page model, defined in
django/contrib/flatpages/models.py. It looks like this:

from django.db import models
from django.contrib.sites.models import Site

class FlatPage (models.Model) :
url = models.CharField (maxlength=100)
title = models.CharField(maxlength=200)
content = models.TextField()
enable_comments = models.BooleanField()

14.2.6 How Django Uses the Sites Framework 180



The Django Book

template_name = models.CharField (maxlength=70, blank=True)
registration_required = models.BooleanField()
sites = models.ManyToManyField(Site)

Let’s examine these fields one at a time:

e url: The URL at which this flatpage lives, excluding the domain name but including the leading
slash (e.g., /about/contact/).

e t it le: The title of the flatpage. The framework doesn’t do anything special with this. It’s your
responsibility to display it in your template.

e content: The content of the flatpage (i.e., the HTML of the page). The framework doesn’t do
anything special with this. It’s your responsibility to display it in the template.

® enable_comments: Whether to enable comments on this flatpage. The framework doesn’t do
anything special with this. You can check this value in your template and display a comment form if
needed.

e template_name: The name of the template to use for rendering this flatpage. This is optional; if
it’s not given or if this template doesn’t exist, the framework will fall back to the template
flatpages/default.html.

® registration_required: Whether registration is required for viewing this flatpage. This
integrates with Django’s authentication/user framework, which is explained further in Chapter 12.

e sites: The sites that this flatpage lives on. This integrates with Django’s sites framework, which is
explained in the “Sites” section of this chapter.

You can create flatpages through either the Django admin interface or the Django database API. For more
information on this, see the section “Adding, Changing, and Deleting Flatpages.”

Once you’ve created flatpages, FlatpageFallbackMiddleware does all of the work. Each time any
Django application raises a 404 error, this middleware checks the flatpages database for the requested URL as
a last resort. Specifically, it checks for a flatpage with the given URL with a site ID that corresponds to the
SITE_ID setting.

If it finds a match, it loads the flatpage’s template or flatpages/default.html if the flatpage has not
specified a custom template. It passes that template a single context variable, f latpage, which is the
flatpage object. It uses RequestContext in rendering the template.

If FlatpageFallbackMiddleware doesn’t find a match, the request continues to be processed as usual.
Note

This middleware only gets activated for 404 (page not found) errors — not for 500 (server error) or other error

responses. Also note that the order of MIDDLEWARE_ CLASSES matters. Generally, you can put
FlatpageFallbackMiddleware at or near the end of the list, because it’s a last resort.

14.3.2 Adding, Changing, and Deleting Flatpages
You can add, change and delete flatpages in two ways:
14.3.2.1 Via the Admin Interface

If you’ve activated the automatic Django admin interface, you should see a “Flatpages” section on the admin
index page. Edit flatpages as you would edit any other object in the system.

14.3.1 Using Flatpages 181



The Django Book
14.3.2.2 Via the Python API

As described previously, flatpages are represented by a standard Django model that lives in
django/contrib/flatpages/models.py. Hence, you can access flatpage objects via the Django
database API, for example:

>>> from django.contrib.flatpages.models import FlatPage
>>> from django.contrib.sites.models import Site
>>> fp = FlatPage (
url='/about/"',
title='About',
content="'<p>About this site...</p>"',
enable_comments=False,
template_name='",
registration_required=False,
--)
>>> fp.save ()
>>> fp.sites.add(Site.objects.get (id=1))
>>> FlatPage.objects.get (url="'/about/")
<FlatPage: /about/ —- About>

14.3.3 Using Flatpage Templates

By default, flatpages are rendered via the template f1latpages/default.html, but you can override that
for a particular flatpage with the template_name field on the FlatPage object.

Creating the flatpages/default.html template is your responsibility. In your template directory, just
create a f latpages directory containing a default .html file.

Flatpage templates are passed a single context variable, £ 1atpage, which is the flatpage object.

Here’s a sample flatpages/default.html template:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/REC-html140/loose.dtd">

<html>

<head>

<title>{{ flatpage.title }}</title>

</head>

<body>

{{ flatpage.content }}

</body>

</html>

14.4 Redirects

Django’s redirects framework lets you manage redirects easily by storing them in a database and treating them
as any other Django model object. For example, you can use the redirects framework to tell Django, ‘“Redirect
any request to /music/ to /sections/arts/music/.” This comes in handy when you need to move
things around on your site; Web developers should do whatever is necessary to avoid broken links.

14.4.1 Using the Redirects Framework
To install the redirects application, follow these steps:
1. Add 'django.contrib.redirects' to your INSTALLED_APPS.
2. Add 'django.contrib.redirects.middleware.RedirectFallbackMiddleware'

to your MIDDLEWARE_CLASSES setting.

14.3.2 Adding, Changing, and Deleting Flatpages 182



The Django Book

3. Run the command manage .py syncdb to install the single required table into your database.

manage .py syncdb creates a django_redirect table in your database. This is a simple lookup table
with site_id, old_path, and new_path fields.

You can create redirects through either the Django admin interface or the Django database API. For more, see
the section “Adding, Changing, and Deleting Redirects.”

Once you’ve created redirects, the RedirectFallbackMiddleware class does all of the work. Each
time any Django application raises a 404 error, this middleware checks the redirects database for the requested
URL as a last resort. Specifically, it checks for a redirect with the given o1d_path with a site ID that
corresponds to the STTE_ ID setting. (See the earlier section “Sites” for more information on SITE_ID and
the sites framework.) Then it follows these steps:

e If it finds a match, and new_path is not empty, it redirects to new_path.

e If it finds a match, and new_path is empty, it sends a 410 (“Gone”) HTTP header and an empty
(contentless) response.

e If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404 errors — not for 500 errors or responses of any other status code.

Note that the order of MIDDLEWARE_ CLASSES matters. Generally, you can put
RedirectFallbackMiddleware toward the end of the list, because it’s a last resort.

Note

If you’re using both the redirect and flatpage fallback middleware, consider which one (redirect or flatpage)
you’d like checked first. We suggest flatpages before redirects (thus putting the flatpage middleware before
the redirect middleware), but you might feel differently.

14.4.2 Adding, Changing, and Deleting Redirects
You can add, change and delete redirects in two ways:
14.4.2.1 Via the Admin Interface

If you’ve activated the automatic Django admin interface, you should see a “Redirects” section on the admin
index page. Edit redirects as you would edit any other object in the system.

14.4.2.2 Via the Python API

Redirects are represented by a standard Django model that lives in
django/contrib/redirects/models.py. Hence, you can access redirect objects via the Django
database API, for example:

>>> from django.contrib.redirects.models import Redirect
>>> from django.contrib.sites.models import Site
>>> red = Redirect (
site=Site.objects.get (id=1),
old_path='/music/"',
new_path='/sections/arts/music/"',
)
>>> red.save ()
>>> Redirect.objects.get (old_path='/music/")
<Redirect: /music/ ---> /sections/arts/music/>

14.4.1 Using the Redirects Framework 183



The Django Book
14.5 CSRF Protection

The django.contrib.csrf package protects against Cross-Site Request Forgery (CSRF).

CSREF, also known as “session riding,” is a Web site security exploit. It happens when a malicious Web site
tricks a user into unknowingly loading a URL from a site at which that user is already authenticated, hence
taking advantage of the user’s authenticated status. This can be a bit tricky to understand at first, so we walk
through two examples in this section.

14.5.1 A Simple CSRF Example

Suppose you’re logged in to a webmail account at example . com. This webmail site has a Log Out button
that points to the URL example.com/logout — thatis, the only action you need to take in order to log
out is to visit the page example.com/logout.

A malicious site can coerce you to visit the URL example.com/logout by including that URL as a
hidden <iframe> on its own (malicious) page. Thus, if you're logged in to the example . com webmail
account and visit the malicious page that has an <i frame> to example.com/logout, the act of visiting
the malicious page will log you out from example. com.

Clearly, being logged out of a webmail site against your will is not a terrifying breach of security, but this
same type of exploit can happen to any site that “trusts” users, such as an online banking site or an
e-commerce site.

14.5.2 A More Complex CSRF Example

In the previous example, example . com was partially at fault because it allowed a state change (i.e., logging
the user out) to be requested via the HTTP GET method. It’s much better practice to require an HTTP POST
for any request that changes state on the server. But even Web sites that require POST for state-changing
actions are vulnerable to CSRF.

Suppose example . com has upgraded its Log Out functionality so that it’s a <form> button that is
requested via POST to the URL example.com/logout. Furthermore, the logout <form> includes this
hidden field:

<input type="hidden" name="confirm" value="true" />

This ensures that a simple POST to the URL example.com/logout won’tlog a user out; in order for a
user to log out, the user must request example.com/logout via POST and send the confirm POST
variable with a value of 'true'.

Well, despite the extra security, this arrangement can still be exploited by CSRF — the malicious page just

needs to do a little more work. Attackers can create an entire form targeting your site, hide it in an invisible
<iframe>, and then use JavaScript to submit that form automatically.

14.5.3 Preventing CSRF

How, then, can your site protect itself from this exploit? The first step is to make sure all GET requests are
free of side effects. That way, if a malicious site includes one of your pages as an <iframe>, it won’t have a
negative effect.

That leaves POST requests. The second step is to give each POST <form> a hidden field whose value is
secret and is generated from the user’s session ID. Then, when processing the form on the server side, check

14.5 CSRF Protection 184



The Django Book

for that secret field and raise an error if it doesn’t validate.
This is exactly what Django’s CSRF prevention layer does, as explained in the sections that follow.
14.5.3.1 Using the CSRF Middleware

The django.contrib.csrf package contains only one module: middleware.py. This module
contains a Django middleware class, CsrfMiddleware, which implements the CSRF protection.

To activate this CSRF protection, add 'django.contrib.csrf.middleware.CsrfMiddleware'
to the MIDDLEWARE_CLASSES setting in your settings file. This middleware needs to process the response
after SessionMiddleware, so CsrfMiddleware must appear before SessionMiddleware in the
list (because the response middleware is processed last-to-first). Also, it must process the response before the
response gets compressed or otherwise mangled, so CsrfMiddleware must come after
GZipMiddleware. Once you’ve added that to your MIDDLEWARE_CLASSES setting, you’re done. See the
section “Order of MIDDLEWARE_CLASSES” in Chapter 13 for more explanation.

In case you’re interested, here’s how CsrfMiddleware works. It does these two things:

1. It modifies outgoing requests by adding a hidden form field to all POST forms, with the name
csrfmiddlewaretoken and a value that is a hash of the session ID plus a secret key. The
middleware does not modify the response if there’s no session ID set, so the performance penalty is
negligible for requests that don’t use sessions.

2. On all incoming POST requests that have the session cookie set, it checks that
csrfmiddlewaretoken is present and correct. If it isn’t, the user will get a 403 HTTP error. The
content of the 403 error page is the message “Cross Site Request Forgery detected. Request aborted.”

This ensures that only forms originating from your Web site can be used to POST data back.

This middleware deliberately targets only HTTP POST requests (and the corresponding POST forms). As we
explained, GET requests ought never to have side effects; it’s your own responsibility to ensure this.

POST requests not accompanied by a session cookie are not protected, but they don’t need to be protected,
because a malicious Web site could make these kind of requests anyway.

To avoid altering non-HTML requests, the middleware checks the response’s Content-Type header before
modifying it. Only pages that are served as text /html or application/xml+xhtml are modified.

14.5.3.2 Limitations of the CSRF Middleware

CsrfMiddleware requires Django’s session framework to work. (See Chapter 12 for more on sessions.) If
you’re using a custom session or authentication framework that manually manages session cookies, this
middleware will not help you.

If your application creates HTML pages and forms in some unusual way (e.g., if it sends fragments of HTML
in JavaScript document . write statements), you might bypass the filter that adds the hidden field to the
form. In this case, the form submission will always fail. (This happens because CsrfMiddleware uses a
regular expression to add the csrfmiddlewaretoken field to your HTML before the page is sent to the
client, and the regular expression sometimes cannot handle wacky HTML.) If you suspect this might be
happening, just view the source in your Web browser to see whether csrfmiddlewaretoken was inserted
into your <form>.

For more CSRF information and examples, visit http://en.wikipedia.org/wiki/CSRF.

14.5.3 Preventing CSRF 185


http://en.wikipedia.org/wiki/CSRF

The Django Book
14.6 Humanizing Data

This application holds a set of Django template filters useful for adding a “human touch” to data. To activate
these filters, add 'django.contrib.humanize' to your INSTALLED_APPS setting. Once you’ve
done that, use {$ load humanize %} inatemplate, and you’ll have access to the filters described in the
following sections.

14.6.1 apnumber

For numbers 1 through 9, this filter returns the number spelled out. Otherwise, it returns the numeral. This
follows Associated Press style.

Examples:
e | becomes “one”.
e 2 becomes “two”.

® 10 becomes “10”.

You can pass in either an integer or a string representation of an integer.

14.6.2 intcomma
This filter converts an integer to a string containing commas every three digits.
Examples:

@ 4500 becomes “4,500”.

@ 45000 becomes “45,000”.

® 450000 becomes “450,000”.

® 4500000 becomes “4,500,000”.

You can pass in either an integer or a string representation of an integer.

14.6.3 intword

This filter converts a large integer to a friendly text representation. It works best for numbers over 1 million.
Examples:

¢ 1000000 becomes “1.0 million”.

® 1200000 becomes “1.2 million”.

¢ 1200000000 becomes “1.2 billion”.
Values up to 1 quadrillion (1,000,000,000,000,000) are supported.

You can pass in either an integer or a string representation of an integer.

14.6.4 ordinal

This filter converts an integer to its ordinal as a string.

Examples:

14.6 Humanizing Data 186



The Django Book

e | becomes “1st”.
e 2 becomes “2nd”.
® 3 becomes “3rd”.

You can pass in either an integer or a string representation of an integer.

14.7 Markup Filters

The following collection of template filters implements common markup languages:

e textile: Implements Textile (http://en.wikipedia.org/wiki/Textile %28markup language%?29)
® markdown: Implements Markdown (http://en.wikipedia.org/wiki/Markdown)

® restructuredtext: Implements ReStructured Text
(http://en.wikipedia.org/wiki/ReStructured Text)

In each case, the filter expects formatted markup as a string and returns a string representing the marked-up
text. For example, the text ile filter converts text that is marked up in Textile format to HTML:

% load markup %}
{{ object.content|textile }}

To activate these filters, add 'django.contrib.markup' to your INSTALLED_APPS setting. Once
you’ve done that, use {$ load markup %} inatemplate, and you’ll have access to these filters. For more
documentation, read the source code in django/contrib/markup/templatetags/markup.py.

14.8 What’s Next?

Many of these contributed frameworks (CSRF, the auth system, etc.) do their magic by providing a piece of
middleware. Middleware is essentially code that runs before and/or after every single request and can modify
each request and response at will. Next, we’ll discuss Django’s built-in middleware and explain how you can
write your own.

14.6.4 ordinal 187


http://en.wikipedia.org/wiki/Textile_%28markup_language%29
http://en.wikipedia.org/wiki/Markdown
http://en.wikipedia.org/wiki/ReStructuredText

15 Middleware

On occasion, you’ll need to run a piece of code on each and every request that Django handles. This code
might need to modify the request before the view handles it, it might need to log information about the request
for debugging purposes, and so forth.

You can do this with Django’s middleware framework, which is a set of hooks into Django’s request/response
processing. It’s a light, low-level “plug-in” system capable of globally altering both Django’s input and
output.

Each middleware component is responsible for doing some specific function. If you’re reading this book
linearly (sorry, postmodernists), you’ve seen middleware a number of times already:

o All of the session and user tools that we looked at in Chapter 12 are made possible by a few small
pieces of middleware (more specifically, the middleware makes request . session and
request .user available to you in views).

¢ The sitewide cache discussed in Chapter 13 is actually just a piece of middleware that bypasses the
call to your view function if the response for that view has already been cached.

e The flatpages, redirects, and csrf contributed applications from Chapter 14 all do their
magic through middleware components.

This chapter dives deeper into exactly what middleware is and how it works, and explains how you can write
your own middleware.

15.1 What’s Middleware?

A middleware component is simply a Python class that conforms to a certain API. Before diving into the
formal aspects of what that APl is, let’s look at a very simple example.

High-traffic sites often need to deploy Django behind a load-balancing proxy (see Chapter 20). This can cause
a few small complications, one of which is that every request’s remote IP

(request .META["REMOTE_IP"]) will be that of the load balancer, not the actual IP making the request.
Load balancers deal with this by setting a special header, Xx-Forwarded-For, to the actual requesting IP
address.

So here’s a small bit of middleware that lets sites running behind a proxy still see the correct IP address in
request .META["REMOTE_ADDR"]:

class SetRemoteAddrFromForwardedFor (object) :
def process_request (self, request):

try:
real_ip = request.META['HTTP_X_ FORWARDED_FOR']

except KeyError:
pass

else:
# HTTP_X_ FORWARDED_FOR can be a comma-separated list of IPs.
# Take just the first one.
real_ip = real_ip.split (",") [0]
request .META['REMOTE_ADDR'] = real_ip

If this is installed (see the next section), every request’s X-Forwarded-For value will be automatically
inserted into request .META [ 'REMOTE_ADDR' ]. This means your Django applications don’t need to be
concerned with whether they’re behind a load-balancing proxy or not; they can simply access

request .META [ 'REMOTE_ADDR' ], and that will work whether or not a proxy is being used.

15 Middleware 188



The Django Book

In fact, this is a common enough need that this piece of middleware is a built-in part of Django. It lives in
django.middleware.http, and you can read a bit more about it in the next section.

15.2 Middleware Installation

If you’ve read this book straight through, you’ve already seen a number of examples of middleware
installation; many of the examples in previous chapters have required certain middleware. For completeness,
here’s how to install middleware.

To activate a middleware component, add it to the MIDDLEWARE_CLASSES tuple in your settings module.
In MIDDLEWARE_CLASSES, each middleware component is represented by a string: the full Python path to
the middleware’s class name. For example, here’s the default MIDDLEWARE_CLASSES created by
django-admin.py startproject:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.middleware.doc.XViewMiddleware'

A Django installation doesn’t require any middleware — MIDDLEWARE_CLASSES can be empty, if you’d
like — but we recommend that you activate CommonMiddleware, which we explain shortly.

The order is significant. On the request and view phases, Django applies middleware in the order given in
MIDDLEWARE_CLASSES, and on the response and exception phases, Django applies middleware in reverse
order. That is, Django treats MIDDLEWARE_CLASSES as a sort of “wrapper” around the view function: on
the request it walks down the list to the view, and on the response it walks back up. See the section “How
Django Processes a Request: Complete Details” in Chapter 3 for a review of the phases.

15.3 Middleware Methods

Now that you know what middleware is and how to install it, let’s take a look at all the available methods that
middleware classes can define.

15.3.1 Initializer: __init__(self)
Use___init__ () to perform systemwide setup for a given middleware class.

For performance reasons, each activated middleware class is instantiated only once per server process. This
means that __init__ () is called only once — at server startup — not for individual requests.

A common reason to implementan __init__ () method is to check whether the middleware is indeed
needed. If __init__ () raises django.core.exceptions.MiddlewareNotUsed, then Django will
remove the middleware from the middleware stack. You might use this feature to check for some piece of
software that the middleware class requires, or check whether the server is running debug mode, or any other
such environment situation.

If a middleware class defines an __init__ () method, the method should take no arguments beyond the
standard self.

15.1 What’s Middleware? 189



The Django Book

15.3.2 Request Preprocessor: process_request(self, request)

This method gets called as soon as the request has been received — before Django has parsed the URL to
determine which view to run. It gets passed the Ht t pRequest object, which you may modify at will.

process_request () should return either None or an Ht t pResponse object.

e If it returns None, Django will continue processing this request, executing any other middleware and
then the appropriate view.

e If it returns an Ht tpResponse object, Django won’t bother calling any other middleware (of any
type) or the appropriate view. Django will immediately return that Ht t pResponse.

15.3.3 View Preprocessor: process_view(self, request, view, args,
kwargs)

This method gets called after the request preprocessor is called and Django has determined which view to
execute, but before that view has actually been executed.

The arguments passed to this view are shown in Table 15-1.

Table 15-1. Arguments Passed to process_view()

Argument Explanation
request The HttpRequest object.

view The Python function that Djang'o will call 'to handle this request. This is the actual function object
itself, not the name of the function as a string.

args The list of pos.itio'nal arguments .that will be passed Fo the view, not including the request
argument (which is always the first argument to a view).

kwargs The dictionary of keyword arguments that will be passed to the view.

Just like process_request (), process_view () should return either None or an Ht tpResponse
object.

e [f it returns None, Django will continue processing this request, executing any other middleware and
then the appropriate view.

e [f it returns an Ht t pResponse object, Django won’t bother calling any other middleware (of any
type) or the appropriate view. Django will immediately return that Ht t pResponse.

15.3.4 Response Postprocessor: process_response(self, request,
response)

This method gets called after the view function is called and the response is generated. Here, the processor can
modify the content of a response; one obvious use case is content compression, such as gzipping of the
request’s HTML.

The parameters should be pretty self-explanatory: request is the request object, and response is the
response object returned from the view.

Unlike the request and view preprocessors, which may return None, process_response () must return

an Ht t pResponse object. That response could be the original one passed into the function (possibly
modified) or a brand-new one.

15.3.2 Request Preprocessor: process_request(self, request) 190



The Django Book

15.3.5 Exception Postprocessor: process_exception(self, request,
exception)

This method gets called only if something goes wrong and a view raises an uncaught exception. You can use
this hook to send error notifications, dump postmortem information to a log, or even try to recover from the

error automatically.

The parameters to this function are the same request object we’ve been dealing with all along, and
exception, which is the actual Except ion object raised by the view function.

process_exception () should return a either None or an Ht tpResponse object.
e If it returns None, Django will continue processing this request with the framework’s built-in
exception handling.
e If it returns an Ht t pResponse object, Django will use that response instead of the framework’s
built-in exception handling.

Note

Django ships with a number of middleware classes (discussed in the following section) that make good
examples. Reading the code for them should give you a good feel for the power of middleware.

You can also find a number of community-contributed examples on Django’s wiki:
http://code.djangoproject.com/wiki/ContributedMiddleware

15.4 Built-in Middleware

Django comes with some built-in middleware to deal with common problems, which we discuss in the
sections that follow.

15.4.1 Authentication Support Middleware
Middleware class: django.contrib.auth.middleware.AuthenticationMiddleware.

This middleware enables authentication support. It adds the request . user attribute, representing the
currently logged-in user, to every incoming Ht t pRequest object.

See Chapter 12 for complete details.

15.4.2 “Common” Middleware

Middleware class: django.middleware.common.CommonMiddleware.
This middleware adds a few conveniences for perfectionists:

® Forbids access to user agents in the “"DISALLOWED_USER_AGENTS"" setting: If provided, this
setting should be a list of compiled regular expression objects that are matched against the user-agent
header for each incoming request. Here’s an example snippet from a settings file:

import re
DISALLOWED_USER_AGENTS = (

re.compile (r'~OmniExplorer_Bot'),
re.compile (r'~Googlebot")

15.3.5 Exception Postprocessor: process_exception(self, request, exception) 191


http://code.djangoproject.com/wiki/ContributedMiddleware

The Django Book

)

Note the import re, because DISALLOWED_USER_AGENTS requires its values to be compiled
regexes (i.e., the output of re.compile ()). The settings file is regular python, so it’s perfectly OK
to include Python import statements in it.

Performs URL rewriting based on the "APPEND_SLASH " and “*PREPEND_WWW"" settings: If
APPEND_SLASH is True, URLs that lack a trailing slash will be redirected to the same URL with a
trailing slash, unless the last component in the path contains a period. So foo.com/bar is
redirected to foo.com/bar/, but foo.com/bar/file.txt is passed through unchanged.

If PREPEND_WWW is True, URLs that lack a leading “www.” will be redirected to the same URL
with a leading “www.”.

Both of these options are meant to normalize URLs. The philosophy is that each URL should exist in
one — and only one — place. Technically the URL example.com/bar is distinct from
example.com/bar/, which in turn is distinct from www . example.com/bar/. A
search-engine indexer would treat these as separate URLs, which is detrimental to your site’s
search-engine rankings, so it’s a best practice to normalize URLs.

Handles ETags based on the “"USE_ETAGS"" setting: ETags are an HTTP-level optimization for
caching pages conditionally. If USE_ETAGS is set to True, Django will calculate an ETag for each
request by MD5-hashing the page content, and it will take care of sending Not Modified
responses, if appropriate.

Note there is also a conditional GET middleware, covered shortly, which handles ETags and does a bit
more.

15.4.3 Compression Middleware

Middleware class: django.middleware.gzip.GZipMiddleware.
This middleware automatically compresses content for browsers that understand gzip compression (all
modern browsers). This can greatly reduce the amount of bandwidth a Web server consumes. The tradeoff is

that it takes a bit of processing time to compress pages.

We usually prefer speed over bandwidth, but if you prefer the reverse, just enable this middleware.

15.4.4 Conditional GET Middleware

Middleware class: django.middleware.http.ConditionalGetMiddleware.

This middleware provides support for conditional GET operations. If the response has an Last-Modified
or ETag or header, and the request has I f-None-Match or If-Modified-Since, the response is
replaced by an 304 (“Not modified”) response. ETag support depends on on the USE_ETAGS setting and
expects the ETag response header to already be set. As discussed above, the ETag header is set by the
Common middleware.

It also removes the content from any response to a HEAD request and sets the Date and Content-Length
response headers for all requests.

15.4.5 Reverse Proxy Support (X-Forwarded-For Middleware)

Middleware class: django.middleware.http.SetRemoteAddrFromForwardedFor.

15.4.2 “Common” Middleware 192



The Django Book

This is the example we examined in the “What’s Middleware?” section earlier. It sets

request .META [ 'REMOTE_ADDR' ] based on request .META [ 'HTTP_X_ FORWARDED_FOR'], if
the latter is set. This is useful if you’re sitting behind a reverse proxy that causes each request’s
REMOTE_ADDRtobesetto 127.0.0.1.

Danger!

This middleware does not validate H-TTP_ X FORWARDED_FOR.

If you’re not behind a reverse proxy that sets HTTP_X_FORWARDED_FOR automatically, do not use this
middleware. Anybody can spoof the value of HTTP_X_FORWARDED_FOR, and because this sets
REMOTE_ADDR based on HTTP_X_FORWARDED_ FOR, that means anybody can fake his IP address.

Only use this middleware when you can absolutely trust the value of HTTP_X_FORWARDED_FOR.

15.4.6 Session Support Middleware

Middleware class: django.contrib.sessions.middleware.SessionMiddleware.

This middleware enables session support. See Chapter 12 for details.

15.4.7 Sitewide Cache Middleware

Middleware class: django.middleware.cache.CacheMiddleware.

This middleware caches each Django-powered page. This was discussed in detail in Chapter 13.

15.4.8 Transaction Middleware

Middleware class: django.middleware.transaction.TransactionMiddleware.

This middleware binds a database COMMIT or ROLLBACK to the request/response phase. If a view function
runs successfully, a COMMIT is issued. If the view raises an exception, a ROLLBACK is issued.

The order of this middleware in the stack is important. Middleware modules running outside of it run with
commit-on-save — the default Django behavior. Middleware modules running inside it (coming later in the

stack) will be under the same transaction control as the view functions.

See Appendix C for more about information about database transactions.

15.4.9 “X-View” Middleware

Middleware class: django.middleware.doc.XViewMiddleware.

This middleware sends custom X-View HTTP headers to HEAD requests that come from IP addresses
defined in the INTERNAL_ TIPS setting. This is used by Django’s automatic documentation system.

15.5 What’s Next?

Web developers and database-schema designers don’t always have the luxury of starting from scratch. In the
next chapter, we’ll cover how to integrate with legacy systems, such as database schemas you’ve inherited
from the 1980s.

15.4.5 Reverse Proxy Support (X-Forwarded-For Middleware) 193



16 Integrating with Legacy Databases and
Applications

Django is best suited for so-called green-field development — that is, starting projects from scratch, as if you
were constructing a building on a fresh field of green grass. But despite the fact that Django favors
from-scratch projects, it’s possible to integrate the framework into legacy databases and applications. This
chapter explains a few integration strategies.

16.1 Integrating with a Legacy Database

Django’s database layer generates SQL schemas from Python code — but with a legacy database, you already
have the SQL schemas. In such a case, you’ll need to create models for your existing database tables. For this

purpose, Django comes with a tool that can generate model code by reading your database table layouts. This

tool is called inspectdb, and you can call it by executing the command manage .py inspectdb.

16.1.1 Using inspectdb

The inspectdb utility introspects the database pointed to by your settings file, determines a Django model
representation for each of your tables, and prints the Python model code to standard output.

Here’s a walk-through of a typical legacy database integration process from scratch. The only assumptions are
that Django is installed and that you have a legacy database.

1. Create a Django project by running d jango-admin.py startproject mysite (where
mysite is your project’s name). We’ll use mysite as the project name in this example.

2. Edit the settings file in that project, mysite/settings.py, to tell Django what your database
connection parameters are and what the name of the database is. Specifically, provide the
DATABASE_NAME, DATABASE_ENGINE, DATABASE_USER, DATABASE_PASSWORD,
DATABASE_HOST, and DATABASE_PORT settings. (Note that some of these settings are optional.
Refer to Chapter 5 for more information.)

3. Create a Django application within your project by running python mysite/manage.py
startapp myapp (where myapp is your application’s name). We’ll use myapp as the application
name here.

4. Run the command python mysite/manage.py inspectdb. This will examine the tables in
the DATABASE_NAME database and print the generated model class for each table. Take a look at the
output to get an idea of what inspectdb can do.

5. Save the output to the models . py file within your application by using standard shell output
redirection:

python mysite/manage.py inspectdb > mysite/myapp/models.py

6. Edit the mysite/myapp/models . py file to clean up the generated models and make any
necessary customizations. We’ll give some hints for this in the next section.

16.1.2 Cleaning Up Generated Models

As you might expect, the database introspection isn’t perfect, and you’ll need to do some light cleanup of the
resulting model code. Here are a few pointers for dealing with the generated models:

1. Each database table is converted to a model class (i.e., there is a one-to-one mapping between

database tables and model classes). This means that you’ll need to refactor the models for any
many-to-many join tables into ManyToManyF ield objects.

16 Integrating with Legacy Databases and Applications 194



The Django Book

2. Each generated model has an attribute for every field, including id primary key fields. However,
recall that Django automatically adds an id primary key field if a model doesn’t have a primary key.
Thus, you’ll want to remove any lines that look like this:

id = models.IntegerField (primary_key=True)

Not only are these lines redundant, but also they can cause problems if your application will be adding
new records to these tables. The inspectdb command cannot detect whether a field is
autoincremented, so it’s up to you to change this to AutoField, if necessary.

3. Each field’s type (e.g., CharField, DateField) is determined by looking at the database column
type (e.g., VARCHAR, DATE). If inspectdb cannot map a column’s type to a model field type, it
will use TextField and will insert the Python comment ' This field type is a guess.'
next to the field in the generated model. Keep an eye out for that, and change the field type
accordingly if needed.

If a field in your database has no good Django equivalent, you can safely leave it off. The Django
model layer is not required to include every field in your table(s).

4. If a database column name is a Python reserved word (such as pass, class, or for), inspectdb
will append '_field"' to the attribute name and set the db_column attribute to the real field name
(e.g., pass, class,or for).

For example, if a table has an INT column called for, the generated model will have a field like this:
for_field = models.IntegerField(db_column="'for'")

inspectdb will insert the Python comment 'Field renamed because it was a
Python reserved word. ' nextto the field.

5. If your database contains tables that refer to other tables (as most databases do), you might need to
rearrange the order of the generated models so that models that refer to other models are ordered
properly. For example, if model Book has a ForeignKey to model Author, model Author
should be defined before model Book. If you need to create a relationship on a model that has not yet
been defined, you can use the name of the model, rather than the model object itself.

6. inspectdb detects primary keys for PostgreSQL, MySQL, and SQLite. That is, it inserts
primary_key=True where appropriate. For other databases, you’ll need to insert
primary_key=True for at least one field in each model, because Django models are required to
have a primary_key=True field.

7. Foreign-key detection only works with PostgreSQL and with certain types of MySQL tables. In other
cases, foreign-key fields will be generated as IntegerField *s, assuming the
foreign-key column was an ~ INT column.

16.2 Integrating with an Authentication System

It’s possible to integrate Django with an existing authentication system — another source of usernames and
passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username and password for every
employee. It would be a hassle for both the network administrator and the users themselves if users had
separate accounts in LDAP and the Django-based applications.

To handle situations like this, the Django authentication system lets you plug in other authentication sources.

You can override Django’s default database-based scheme, or you can use the default system in tandem with
other systems.

16.1.2 Cleaning Up Generated Models 195



The Django Book
16.2.1 Specifying Authentication Back-ends

Behind the scenes, Django maintains a list of “authentication back-ends” that it checks for authentication.
When somebody calls django.contrib.auth.authenticate () (as described in Chapter 12),
Django tries authenticating across all of its authentication back-ends. If the first authentication method fails,
Django tries the second one, and so on, until all back-ends have been attempted.

The list of authentication back-ends to use is specified in the AUTHENTICATION_BACKENDS setting. This
should be a tuple of Python path names that point to Python classes that know how to authenticate. These
classes can be anywhere on your Python path.

By default, AUTHENTICATION_BACKENDS is set to the following:

('django.contrib.auth.backends.ModelBackend',)
That’s the basic authentication scheme that checks the Django users database.

The order of AUTHENTICATION_BACKENDS matters, so if the same username and password are valid in
multiple back-ends, Django will stop processing at the first positive match.

16.2.2 Writing an Authentication Back-end

An authentication back-end is a class that implements two methods: get_user (id) and
authenticate (**credentials).

The get_user method takes an id — which could be a username, database ID, or whatever — and returns
a User object.

The authent icate method takes credentials as keyword arguments. Most of the time it looks like this:

class MyBackend (object) :
def authenticate(self, username=None, password=None) :
# Check the username/password and return a User.

But it could also authenticate a token, like so:

class MyBackend (object) :
def authenticate(self, token=None) :
# Check the token and return a User.

Either way, authenticate should check the credentials it gets, and it should return a User object that
matches those credentials, if the credentials are valid. If they’re not valid, it should return None.

The Django admin system is tightly coupled to Django’s own database-backed User object described in
Chapter 12. The best way to deal with this is to create a Django User object for each user that exists for your
back-end (e.g., in your LDAP directory, your external SQL database, etc.). Either you can write a script to do
this in advance or your authenticate method can do it the first time a user logs in.

Here’s an example back-end that authenticates against a username and password variable defined in your
settings.py file and creates a Django Usexr object the first time a user authenticates:

from django.conf import settings
from django.contrib.auth.models import User, check_password

class SettingsBackend (object) :

16.2.1 Specifying Authentication Back-ends 196



The Django Book

Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.
Use the login name, and a hash of the password. For example:

ADMIN_LOGIN = 'admin'
ADMIN_PASSWORD = 'shal$4e987Safbcfd42e21bd417fb71db8c660b321e9fc33051de’’
mmow
def authenticate(self, username=None, password=None) :
login_valid = (settings.ADMIN_LOGIN == username)
pwd_valid = check_password (password, settings.ADMIN_PASSWORD)
if login_valid and pwd_valid:
try:
user = User.objects.get (username=username)
except User.DoesNotExist:
# Create a new user. Note that we can set password
# to anything, because it won't be checked; the password
# from settings.py will.
user = User (username=username, password='get from settings.py')
user.is_staff = True
user.is_superuser = True
user.save ()
return user
return None

def get_user(self, user_id):
try:
return User.objects.get (pk=user_id)
except User.DoesNotExist:
return None

16.3 Integrating with Legacy Web Applications

It’s possible to run a Django application on the same Web server as an application powered by another
technology. The most straightforward way of doing this is to use Apache’s configuration file, ht tpd. conf,
to delegate different URL patterns to different technologies. (Note that Chapter 20 covers Django deployment
on Apache/mod_python, so it might be worth reading that chapter first before attempting this integration.)

The key is that Django will be activated for a particular URL pattern only if your httpd. conf file says so.
The default deployment explained in Chapter 20 assumes you want Django to power every page on a
particular domain:

<Location "/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonDebug On

</Location>

Here, the <Location "/"> line means “handle every URL, starting at the root,” with Django.

It’s perfectly fine to limit this <Locat ion> directive to a certain directory tree. For example, say you have a
legacy PHP application that powers most pages on a domain and you want to install a Django admin site at
/admin/ without disrupting the PHP code. To do this, just set the <Location> directive to /admin/:

<Location "/admin/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonDebug On

</Location>

16.2.2 Writing an Authentication Back-end 197



The Django Book

With this in place, only the URLs that start with /admin/ will activate Django. Any other page will use
whatever infrastructure already existed.

Note that attaching Django to a qualified URL (such as /admin/ in this section’s example) does not affect

the Django URL parsing. Django works with the absolute URL (e.g., /admin/people/person/add/),

not a “stripped” version of the URL (e.g., /people/person/add/). This means that your root URLconf
should include the leading /admin/.

16.4 What’s Next?

Speaking of the Django admin site and bending the framework to fit legacy needs, another common task is to
customize the Django admin site. The next chapter focuses on such customization.

16.3 Integrating with Legacy Web Applications 198



17 Extending Django’s Admin Interface

Chapter 6 introduced Django’s admin interface, and now it’s time to circle back and take a closer look.

As we’ve said a few times before, Django’s admin interface is one of the framework’s “killer features,” and
most Django developers find it time-saving and useful. Because the admin interface is so popular, it’s
common for Django developers to want to customize or extend it.

The last few sections of Chapter 6 offer some simple ways to customize certain parts of the admin interface.
Before proceeding with this chapter, consider reviewing that material; it covers how to customize the admin
interface’s change lists and edit forms, as well as an easy way to “rebrand” the admin interface to match your
site.

Chapter 6 also discusses when and why you’d want to use the admin interface, and since that material makes a
good jumping-off point for the rest of this chapter, we’ll reproduce it here:

Obviously, the admin interface is extremely useful for editing data (fancy that). If you have
any sort of data entry task, the admin interface simply can’t be beat. We suspect that the vast
majority of readers of this book will have a whole host of data entry tasks.

Django’s admin interface especially shines when nontechnical users need to be able to enter
data; that’s the purpose behind the feature, after all. At the newspaper where Django was first
developed, development of a typical online feature — a special report on water quality in the
municipal supply, say — goes something like this:

¢ The reporter responsible for the story meets with one of the developers and goes over
the available data.
¢ The developer designs a model around this data and then opens up the admin
interface to the reporter.
¢ While the reporter enters data into Django, the programmer can focus on developing
the publicly accessible interface (the fun part!).
In other words, the raison d’Atre of Django’s admin interface is facilitating the simultaneous
work of content producers and programmers.

However, beyond the obvious data entry tasks, we find the admin interface useful in a few
other cases:

¢ Inspecting data models: The first thing we do when we’ve defined a new model is to
call it up in the admin interface and enter some dummy data. This is usually when we
find any data modeling mistakes; having a graphical interface to a model quickly
reveals problems.

¢ Managing acquired data: There’s little actual data entry associated with a site like
http://chicagocrime. org, since most of the data comes from an automated
source. However, when problems with the automatically acquired data crop up, it’s
useful to be able to go in and edit that data easily.

Django’s admin interface handles these common cases with little or no customization. As with most design
tradeoffs, though, handling these common cases so well means that Django’s admin interface doesn’t handle

some other modes of editing as well.

We’ll talk about the cases Django’s admin interface isn’t designed to cover a bit later on, but first, let’s briefly
digress to a discussion on philosophy.

17 Extending Django’s Admin Interface 199



The Django Book
17.1 The Zen of Admin

At its core, Django’s admin interface is designed for a single activity:
Trusted users editing structured content.

Yes, it’s extremely simple — but that simplicity is based on a whole host of assumptions. The entire
philosophy of Django’s admin interface follows directly from these assumptions, so let’s dig into the subtext
of this phrase in the sections that follow.

17.1.1 “Trusted users ...”

The admin interface is designed to be used by people whom you, the developer, trust. This doesn’t just mean
“people who have been authenticated”; it means that Django assumes that your content editors can be trusted
to do the right thing.

This in turn means that there’s no approval process for editing content — if you trust your users, nobody
needs to approve of their edits. Another implication is that the permission system, while powerful, has no
support for limiting access on a per-object basis as of this writing. If you trust someone to edit his or her own
stories, you trust that user not to edit anyone else’s stories without permission.

17.1.2 “... editing ...”

The primary purpose of Django’s admin interface is to let people edit data. This seems obvious at first, but
again it has some subtle and powerful repercussions.

For instance, although the admin interface is quite useful for reviewing data (as just described), it’s not
designed with that purpose in mind. For example, note the lack of a “can view” permission (see Chapter 12).
Django assumes that if people are allowed to view content in the admin interface, they’re also allowed to edit
it.

Another more important thing to note is the lack of anything even remotely approaching “workflow.” If a
given task requires a series of steps, there’s no support for enforcing that those steps be done in any particular
order. Django’s admin interface focuses on editing, not on activities surrounding editing. This avoidance of
workflow also stems from the principle of trust: the admin interface’s philosophy is that workflow is a
personnel issue, not something to be implemented in code.

Finally, note the lack of aggregation in the admin interface. That is, there’s no support for displaying totals,

averages, and so forth. Again, the admin interface is for editing — it’s expected that you’ll write custom
views for all the rest.

17.1.3 “... structured content”
As with the rest of Django, the admin interface wants you to work with structured data. Thus, it only supports

editing data stored in Django models; for anything else, such as data stored on a filesystem, you’ll need
custom views.

17.1.4 Full Stop

It should be clear by now that Django’s admin interface does not try to be all things to all people; instead, we
choose to focus tightly on one thing and do that thing extremely well.

17.1 The Zen of Admin 200



The Django Book

When it comes to extending Django’s admin interface, much of that same philosophy holds (note that
“extensibility” shows up nowhere in our goals). Because custom Django views can do anything, and because
they can easily be visually integrated into the admin interface (as described in the next section), the built-in
opportunities for customizing the admin interface are somewhat limited by design.

You should keep in mind that the admin interface is “just an app,” albeit a very complicated one. It doesn’t do
anything that any Django developer with sufficient time couldn’t reproduce. It’s entirely possible that in the
future someone will develop a different admin interface that is based on a different set of assumptions and
thus will behave differently.

Finally, we should point out that, as of this writing, Django developers were working on a new version of the
admin interface that allows for much more flexibility in customization. By the time you read this, those new
features may have made their way into the bona fide Django distribution. To find out, ask somebody in the
Django community whether the “newforms-admin” branch has been integrated.

17.2 Customizing Admin Templates

Out of the box, Django provides a number of tools for customizing the built-in admin templates, which we’ll
go over shortly, but for tasks beyond that (e.g., anything requiring custom workflow or granular permissions),
you’ll need to read the section titled “Creating Custom Admin Views” later in this chapter.

For now, though, let’s look at some quick ways of customizing the appearance (and, to some extent, behavior)
of the admin interface. Chapter 6 covers a few of the most common tasks: “rebranding” the Django admin
interface (for those pointy-haired bosses who hate blue) and providing a custom admin form.

Past that point, the goal usually involves changing some of the templates for a particular item. Each of the
admin views — the change lists, edit forms, delete confirmation pages, and history views — has an associated
template that can be overridden in a number of ways.

First, you can override the template globally. The admin view looks for templates using the standard
template-loading mechanism, so if you create templates in one of your template directories, Django will load
those instead of the default admin templates bundled with Django. These global templates are outlined in
Table 17-1.

Table 17-1. Global Admin Templates

View Base Template Name
Change list admin/change_list.html
Add/edit form admin/change_form.html

Delete confirmation admin/delete_confirmation.html
Object history admin/object_history.html
Most of the time, however, you’ll want to change the template for just a single object or application (not

globally). Thus, each admin view looks for model- and application-specific templates first. Those views look
for templates in this order:

® admin/<app_label>/<object_name>/<template>.html
® admin/<app_label>/<template>.html

® admin/<template>.html

For example, the add/edit form view for a Book model in the books application looks for templates in this
order:

® admin/books/book/change_form.html

17.1.4 Full Stop 201



The Django Book

® admin/books/change_form.html
® admin/change_form.html

17.2.1 Custom Model Templates

Most of the time, you’ll want to use the first template to create a model-specific template. This is usually best
done by extending the base template and adding information to one of the blocks defined in that template.

For example, say we want to add a little bit of help text to the top of that book page. Maybe something like the
form shown in Figure 17-1.

Nalak Add book | Django site admin e

;m @ . € http: / /localhost:8000/admin/ch6/book fadd/ Q ~(Q- Google B

Welcome, jacob. Documentation [ Change password [ Log out

Home » Books » Add book

Title: |

Publisher: S )
Publication I |Today| @

date:

Authors: Daniel Friedman &+

Matthias Felleisen
Erich Gamma
Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Moss

Hold down “Control®, or “Command” on a Mac, to select more than one.

("save and add another ) [ Save and continue ediring‘ﬁ | Save |

Figure 17-1. A customized admin edit form

This is pretty easy to do: simply create a template called
admin/bookstore/book/change_form.html and insert this code:

% extends "admin/change_form.html" %}

{% block form_top %}
<p>Insert meaningful help message here...</p>
% endblock %}

All these templates define a number of blocks you can override. As with most programs, the best

documentation is the code, so we encourage you to look through the admin templates (they’re in
django/contrib/admin/templates/) for the most up-to-date information.

17.2 Customizing Admin Templates 202



The Django Book
17.2.2 Custom JavaScript

A common use for these custom model templates involves adding custom JavaScript to admin pages —
perhaps to implement some special widget or client-side behavior.

Luckily, that couldn’t be easier. Each admin template defines a {$ block extrahead %}, which you
can use to put extra content into the <head> element. For example, if you want to include jQuery
(http://jquery.com/) in your admin history, it’s as simple as this:

{%$ extends "admin/object_history.html" %}

{% block extrahead %}
<script src="http://media.example.com/javascript/jquery.js" type="text/Jjavascript"></script>
<script type="text/javascript">

// code to actually use jQuery here...

</script>
{% endblock %}

Note

We’re not sure why you’d need jQuery on the object history page, but, of course, this example applies to any
of the admin templates.

You can use this technique to include any sort of extra JavaScript widgets you might need.

17.3 Creating Custom Admin Views

At this point, anyone looking to add custom behavior to Django’s admin interface is probably starting to get a
bit frustrated. “All you’ve talked about is how to change the admin interface visually,” we hear them cry. “But
how do I change the way the admin interface works?”

The first thing to understand is that it’s not magic. That is, nothing the admin interface does is “special” in any
way — the admin interface is just a set of views (they live in django.contrib.admin.views) that
manipulate data just like any other view.

Sure, there’s quite a bit of code in there; it has to deal with all the various options, field types, and settings that
influence model behavior. Still, when you realize that the admin interface is just a set of views, adding custom
admin views becomes easier to understand.

By way of example, let’s add a “publisher report” view to our book application from Chapter 6. We’ll build
an admin view that shows the list of books broken down by publisher — a pretty typical example of a custom
admin “report” view you might need to build.

First, let’s wire up a view in our URLconf. We need to insert this line:
(r'~admin/books/report/S$', 'mysite.books.admin_views.report'),
before the line including the admin views. A bare-bones URLconf might look like this:

from django.conf.urls.defaults import *
urlpatterns = patterns('',

(r'~admin/bookstore/report/$', 'bookstore.admin_views.report'),
(r'~admin/"', include('django.contrib.admin.urls')),

17.2.2 Custom JavaScript 203


http://jquery.com/

The Django Book

Why put the custom view before the admin inclusion? Recall that Django processes URL patterns in order.
The admin inclusion matches nearly anything that falls under the inclusion point, so if we reverse the order of
those lines, Django will find a built-in admin view for that pattern, which won’t work. In this particular case,
it will try to load a change list for a Report model in the book s application, which doesn’t exist.

Now let’s write our view. For the sake of simplicity, we’ll just load all books into the context and let the

template handle the grouping with the {$ regroup %} tag. Create a file, books/admin_views.py,
with this code:

from mysite.books.models import Book

from django.template import RequestContext

from django.shortcuts import render_to_response

from django.contrib.admin.views.decorators import staff_member_required

def report (request) :
return render_to_response (
"admin/books/report.html",
{'book_list' : Book.objects.all()},
RequestContext (request, {}),
)

report = staff _member_required(report)

Because we left the grouping up to the template, this view is pretty simple. However, there are some subtle
bits here worth making explicit:

® We use the staff_member_required decorator from
django.contrib.admin.views.decorators. This is similar to the login_required
decorator discussed in Chapter 12, but this decorator also checks that the given user is marked as a
“staff” member, and thus is allowed access to the admin interface.

This decorator protects all the built-in admin views and makes the authentication logic for your view
match the rest of the admin interface.

® We render a template located under admin/. While this isn’t strictly required, it’s considered good
practice to keep all your admin templates grouped in an admin directory. We’ve also put the
template in a directory named books after our application — also a best practice.

® We use RequestContext as the third parameter (context_instance) to
render_to_response. This ensures that information about the current user is available to the
template.

See Chapter 10 for more about RequestContext.

Finally, we’ll make a template for this view. We’ll extend the built-in admin templates to make this view
visually appear to be part of the admin interface:

{% extends "admin/base_site.html" %}
{% block title %}List of books by publisher{% endblock %}

{% block content %}
<div id="content-main">
<hl>List of books by publisher:</hl>
{% regroup book_list|dictsort:"publisher.name" by publisher as books_by_publisher %}
{% for publisher in books_by_publisher %}
<h3>{{ publisher.grouper }}</h3>
<ul>
{%$ for book in publisher.list|dictsort:"title" %}
<li>{{ book }}</1i>
{% endfor %}
</ul>

17.3 Creating Custom Admin Views 204



The Django Book

% endfor %}
</div>
% endblock %}

By extending admin/base_site.html, we get the look and feel of the Django admin “for free.” Figure
17-2 shows what the end result looks like.

List of books by publisher

D @ - € http: / /localhost:8000/admin/bookstore freport/ @ 2l Google

D‘jan go administration Welcome, jacob. Documentation f Change password [ Log out

Home

List of books by publisher:

Addison-Wesley
= [esign Patterns

Apress

= Pro C55 Technigues
s The Django Book

MIT Press
= The Little Schemer

Wiley
= Applied Cryptography

Figure 17-2. A custom “books by publisher” admin view
You can use this technique to add anything you can dream of to the admin interface. Remember that these
so-called custom admin views are really just normal Django views; you can use all the techniques you learn in

the rest of this book to provide as complex an admin interface as you need.

We’ll close out this chapter with some ideas for custom admin views.

17.4 Overriding Built-in Views

At times the default admin views just don’t cut it. You can easily swap in your own custom view for any stage
of the admin interface; just let your URL “shadow” the built-in admin one. That is, if your view comes before
the default admin view in the URLconf, your view will be called instead of the default one.

For example, we could replace the built-in “create” view for a book with a form that lets the user simply enter
an ISBN. We could then look up the book’s information from http://isbn.nu/ and create the object

automatically.

The code for such a view is left as an exercise for the reader, but the important part is this URLconf snippet:

17.4 Overriding Built-in Views 205


http://isbn.nu/

The Django Book

(r'~admin/bookstore/book/add/$"', 'mysite.books.admin_views.add_by_isbn'),

If this bit comes before the admin URLs in your URLconf, the add_by_isbn view will completely replace
the standard admin view.

We could follow a similar tack to replace a delete confirmation page, the edit page, or any other part of the
admin interface.

17.5 What’s Next?

If you’re a native English speaker—and we expect that many readers of this English-language book are—you
might not have noticed one of the coolest features of the admin interface: it’s available in almost 40 different
languages! This is made possible by Django’s internationalization framework (and the hard work of Django’s
volunteer translators). The next chapter explains how to use this framework to provide localized Django sites.

Avanti!

17.5 What's Next? 206



18 Internationalization

Django was originally developed smack in the middle of the United States (literally; Lawrence, Kansas, is less
than 40 miles from the geographic center of the continental United States). Like most open source projects,
though, Django’s community grew to include people from all over the globe. As Django’s community became
increasingly diverse, internationalization and localization became increasingly important. Since many
developers have at best a fuzzy understanding of these terms, we’ll define them briefly.

Internationalization refers to the process of designing programs for the potential use of any locale. This
includes marking text (like UI elements and error messages) for future translation, abstracting the display of
dates and times so that different local standards may be observed, providing support for differing time zones,
and generally making sure that the code contains no assumptions about the location if its users. You’ll often
see “internationalization” abbreviated 1/8N (the number 18 refers to the number of letters omitted between the
initial “T”” and the terminal “N”).

Localization refers to the process of actually translating an internationalized program for use in a particular
locale. You’ll sometimes see “localization” abbreviated as LION.

Django itself is fully internationalized; all strings are marked for translation, and settings control the display
of locale-dependent values like dates and times. Django also ships with over 40 different localization files. If
you’re not a native English speaker, there’s a good chance that Django is already is translated into your
primary language.

The same internationalization framework used for these localizations is available for you to use in your own
code and templates.

In a nutshell, you’ll need to add a minimal number of hooks to your Python code and templates. These hooks
are called translation strings. They tell Django, “This text should be translated into the end user’s language, if

a translation for this text is available in that language.”

Django takes care of using these hooks to translate Web applications, on the fly, according to users’ language
preferences.

Essentially, Django does two things:
e It lets developers and template authors specify which parts of their applications should be translatable.
e |t uses that information to translate Web applications for particular users according to their language
preferences.

Note

Django’s translation machinery uses GNU gettext (http://www.gnu.org/software/gettext/) via the standard
gettext module that comes with Python.

If You Don’t Need Internationalization:
Django’s internationalization hooks are enabled by default, which incurs a small bit of overhead. If you don’t
use internationalization, you should set USE_TI18N = False in your settings file. If USE_T18N is set to

False, then Django will make some optimizations so as not to load the internationalization machinery.

You’ll probably also want to remove 'django.core.context_processors.il8n' from your
TEMPLATE_CONTEXT_PROCESSORS setting.

18 Internationalization 207


http://www.gnu.org/software/gettext/

The Django Book
18.1 Specifying Translation Strings in Python Code

Translation strings specify “This text should be translated.” These strings can appear in your Python code and
templates. It’s your responsibility to mark translatable strings; the system can only translate strings it knows
about.

18.1.1 Standard Translation Functions

Specify a translation string by using the function _ () . (Yes, the name of the function is the underscore
character.) This function is available globally (i.e., as a built-in language); you don’t have to import it.

In this example, the text "Welcome to my site." is marked as a translation string:

def my_view (request) :
output = _ ("Welcome to my site.")
return HttpResponse (output)

The function django.utils.translation.gettext () isidentical to _ (). This example is identical
to the previous one:

from django.utils.translation import gettext
def my_view (request) :
output = gettext ("Welcome to my site.")
return HttpResponse (output)

Most developers prefer to use _ (), as it’s shorter.

Translation works on computed values. This example is identical to the previous two:

def my_view (request) :
words = ['Welcome', 'to', 'my', 'site.']
output = _ (' '.join(words))
return HttpResponse (output)

Translation works on variables. Again, here’s an identical example:

def my_view (request) :
sentence = 'Welcome to my site.'’
output = _ (sentence)
return HttpResponse (output)

(The caveat with using variables or computed values, as in the previous two examples, is that Django’s
translation-string-detecting utility, make-messages . py, won’t be able to find these strings. More on
make-messages later.)

The strings you pass to _ () or gettext () can take placeholders, specified with Python’s standard
named-string interpolation syntax, for example:

def my_view (request, n):
output = _('$(name)s is my name.') % {'name': n}
return HttpResponse (output)

This technique lets language-specific translations reorder the placeholder text. For example, an English

translation may be "Adrian is my name.", while a Spanish translation may be "Me 1llamo
Adrian.", with the placeholder (the name) placed after the translated text instead of before it.

18.1 Specifying Translation Strings in Python Code 208



The Django Book

For this reason, you should use named-string interpolation (e.g., $ (name) s) instead of positional
interpolation (e.g., $s or $d). If you use positional interpolation, translations won’t be able to reorder
placeholder text.

18.1.2 Marking Strings As No-op

Use the function django.utils.translation.gettext_noop () to mark a string as a translation
string without actually translating it at that moment. Strings thus marked aren’t translated until the last
possible moment.

Use this approach if you have constant strings that should be stored in the original language — such as strings
in a database — but should be translated at the last possible point in time, such as when the string is presented
to the user.

18.1.3 Lazy Translation

Use the function django.utils.translation.gettext_lazy () to translate strings lazily — when
the value is accessed rather than when the gettext_lazy () function is called.

For example, to mark a fields’s help_text attribute as translatable, do the following:

from django.utils.translation import gettext_lazy

class MyThing (models.Model) :
name = models.CharField(help_text=gettext_lazy('This is the help text'))

In this example, gettext_lazy () stores a lazy reference to the string — not the actual translation. The
translation itself will be done when the string is used in a string context, such as template rendering on the
Django admin site.

If you don’t like the verbose name gettext_lazy, you can just alias it as _ (underscore), like so:

from django.utils.translation import gettext_lazy as _

class MyThing (models.Model) :
name = models.CharField(help_text=_('This is the help text'))

Always use lazy translations in Django models (otherwise they won’t be translated correctly on a per-user
basis). And it’s a good idea to add translations for the field names and table names, too. This means writing
explicit verbose_name and verbose_name_plural options in the Meta class:

from django.utils.translation import gettext_lazy as _

class MyThing (models.Model) :

name = models.CharField(_('name'), help_text=_('This is the help text'))
class Meta:

verbose_name = _ ('my thing')

verbose_name_plural = _ ('mythings"')

18.1.4 Pluralization

Use the function django.utils.translation.ngettext () to specify messages that have different
singular and plural forms, for example:

from django.utils.translation import ngettext
def hello_world(request, count):
page = ngettext (

18.1.1 Standard Translation Functions 209



The Django Book

'there is % (count)d object',

'there are % (count)d objects', count
) % {'count': count}
return HttpResponse (page)

ngettext takes three arguments: the singular translation string, the plural translation string, and the number
of objects (which is passed to the translation languages as the count variable).

18.2 Specifying Translation Strings in Template Code

Using translations in Django templates uses two template tags and a slightly different syntax than in Python
code. To give your template access to these tags, put {$ load i118n %} toward the top of your template.

The {$ trans %} template tag marks a string for translations:

<title>{% trans "This is the title." %}</title>

If you only want to mark a value for translation, but translate it later, use the noop option:
<title>{% trans "value" noop %}</title>

It’s not possible to use template variables in {$ trans %} — only constant strings, in single or double
quotes, are allowed. If your translations require variables (placeholders), use {$ blocktrans %}, for
example:

{% blocktrans %}This will have {{ wvalue }} inside.{% endblocktrans %}

To translate a template expression — say, using template filters — you need to bind the expression to a local
variable for use within the translation block:

{% blocktrans with valuel|filter as myvar %}
This will have {{ myvar }} inside.
% endblocktrans %}

If you need to bind more than one expression inside a blocktrans tag, separate the pieces with and:

{% blocktrans with book|title as book_t and author|title as author_t %}
This is {{ book_t }} by {{ author_t }}
% endblocktrans %}

To pluralize, specify both the singular and plural forms with the {$ plural %} tag, which appears within
{%$ blocktrans %} and {% endblocktrans %}, for example:

{% blocktrans count list]|length as counter %}
There is only one {{ name }} object.
{% plural %}
There are {{ counter }} {{ name }} objects.
{% endblocktrans %}

Internally, all block and inline translations use the appropriate gettext/ngettext call.

When you use RequestContext (see Chapter 10), your templates have access to three translation-specific
variables:

® {{ LANGUAGES }} is alist of tuples in which the first element is the language code and the second
is the language name (in that language).

18.1.4 Pluralization 210



The Django Book

® {{ LANGUAGE_CODE }} is the current user’s preferred language, as a string (e.g., en—us). (See
the “How Django Discovers Language Preference” section for more information.)

® {{ LANGUAGE_BIDI }} isthe current language’s writing system. If True, it’s a right-to-left
language (e.g., Hebrew, Arabic). If False, it’s a left-to-right language (e.g., English, French,
German).

You can also load these values using template tags:

{% load i18n %}

{% get_current_language as LANGUAGE_CODE %}

{% get_available_languages as LANGUAGES %}

{% get_current_language_bidi as LANGUAGE_BIDI %}

Translation hooks are also available within any template block tag that accepts constant strings. In those cases,
justuse _ () syntax to specify a translation string, for example:

{% some_special_tag _ ("Page not found") wvaluel|yesno:_("yes,no") %}

In this case, both the tag and the filter will see the already-translated string (i.e., the string is translated before
being passed to the tag handler functions), so they don’t need to be aware of translations.

18.3 Creating Language Files

Once you’ve tagged your strings for later translation, you need to write (or obtain) the language translations
themselves. In this section we explain how that works.

18.3.1 Creating Message Files

The first step is to create a message file for a new language. A message file is a plain-text file representing a
single language that contains all available translation strings and how they should be represented in the given
language. Message files have a . po file extension.

Django comes with a tool, bin/make-messages . py, that automates the creation and maintenance of
these files.

To create or update a message file, run this command:

bin/make-messages.py -1 de

where de is the language code for the message file you want to create. The language code, in this case, is in
locale format. For example, it’s pt_BR for Brazilian Portuguese and de_AT for Austrian German. Take a
look at thelanguage codes in the django/conf/locale/ directory to see which languages are currently
supported.

The script should be run from one of three places:

¢ The root d jango directory (not a Subversion checkout, but the one that is linked to via
SPYTHONPATH or is located somewhere on that path)

® The root directory of your Django project

® The root directory of your Django application

The script runs over the entire tree it is run on and pulls out all strings marked for translation. It creates (or

updates) a message file in the directory conf/locale. In the de example, the file will be
conf/locale/de/LC_MESSAGES/django.po.

18.2 Specifying Translation Strings in Template Code 211



The Django Book

If run over your project source tree or your application source tree, it will do the same, but the location of the
locale directory is locale/LANG/LC_MESSAGES (note the missing conf prefix). The first time you run it
on your tree you’ll need to create the 1ocale directory.

No gettext?

If you don’t have the get text utilities installed, nake-messages . py will create empty files. If that’s the
case, either install the get text utilities or just copy the English message file
(conf/locale/en/LC_MESSAGES/django.po) and use it as a starting point; it’s just an empty
translation file.

The format of . po files is straightforward. Each . po file contains a small bit of metadata, such as the
translation maintainer’s contact information, but the bulk of the file is a list of messages — simple mappings
between translation strings and the actual translated text for the particular language.

For example, if your Django application contains a translation string for the text "Welcome to my
site.", like so:

_("Welcome to my site.")

then make-messages.py will have created a . po file containing the following snippet — a message:

#: path/to/python/module.py:23
msgid "Welcome to my site."
msgstr ""

A quick explanation is in order:

® msgid is the translation string, which appears in the source. Don’t change it.

® msgstr is where you put the language-specific translation. It starts out empty, so it’s your
responsibility to change it. Make sure you keep the quotes around your translation.

® As a convenience, each message includes the file name and line number from which the translation
string was gleaned.

Long messages are a special case. The first string directly after msgstr (or msgid) is an empty string. Then
the content itself will be written over the next few lines as one string per line. Those strings are directly
concatenated. Don’t forget trailing spaces within the strings; otherwise, they’ll be tacked together without
whitespace!

For example, here’s a multiline translation (taken from the Spanish localization that ships with Django):

msgid ""

"There's been an error. It's been reported to the site administrators via e-"
"mail and should be fixed shortly. Thanks for your patience."

msgstr ""

"Ha ocurrido un error. Se ha informado a los administradores del sitio "
"mediante correo electrAdnico y deberA-a arreglarse en breve. Gracias por su "
"paciencia."

Note the trailing spaces.
Mind Your Charset
When creating a . po file with your favorite text editor, first edit the charset line (search for "CHARSET")

and set it to the charset you’ll be using to edit the content. Generally, UTF-8 should work for most languages,
but gettext should handle any charset you throw at it.

18.3.1 Creating Message Files 212



The Django Book

To reexamine all source code and templates for new translation strings and update all message files for all
languages, run this:

make-messages.py —-a

18.3.2 Compiling Message Files

After you create your message file, and each time you make changes to it, you’ll need to compile it into a
more efficient form, for use by gettext. Do this with the bin/compile-messages.py utility.

This tool runs over all available . po files and creates . mo files, which are binary files optimized for use by
gettext. In the same directory from which you ran make-messages.py, run
compile-messages.py like this:

bin/compile-messages.py

That’s it. Your translations are ready for use.

18.4 How Django Discovers Language Preference

Once you’ve prepared your translations — or, if you just want to use the translations that are included with
Django — you’ll just need to activate translation for your application.

Behind the scenes, Django has a very flexible model of deciding which language should be used —
installation-wide, for a particular user, or both.

To set an installation-wide language preference, set LANGUAGE_CODE in your settings file. Django uses this
language as the default translation — the final attempt if no other translator finds a translation.

If all you want to do is run Django with your native language, and a language file is available for your
language, simply set LANGUAGE_CODE.

If you want to let each individual user specify the language he or she prefers, use LocaleMiddleware.
LocaleMiddleware enables language selection based on data from the request. It customizes content for
each user.

Touse LocaleMiddleware, add 'django.middleware.locale.LocaleMiddleware' to your
MIDDLEWARE_CLASSES setting. Because middleware order matters, you should follow these guidelines:

® Make sure it’s among the first middleware classes installed.

e [t should come after SessionMiddleware, because LocaleMiddleware makes use of session
data.

e If you use CacheMiddleware, put LocaleMiddleware after it (otherwise users could get
cached content from the wrong locale).

For example, your MIDDLEWARE_ CLASSES might look like this:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware"',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware'

LocaleMiddleware tries to determine the user’s language preference by following this algorithm:

18.3.2 Compiling Message Files 213



The Django Book

e First, it looks for a django_language key in the current user’s session.

e Failing that, it looks for a cookie called d jango_language.

e Failing that, it looks at the Accept-Language HTTP header. This header is sent by your browser
and tells the server which language(s) you prefer, in order of priority. Django tries each language in
the header until it finds one with available translations.

e Failing that, it uses the global LANGUAGE_CODE setting.

In each of these places, the language preference is expected to be in the standard language format, as a string.
For example, Brazilian Portuguese is pt —br. If a base language is available but the sub-language specified is
not, Django uses the base language. For example, if a user specifies de—at (Austrian German) but Django
only has de available, Django uses de.

Only languages listed in the LANGUAGES setting can be selected. If you want to restrict the language
selection to a subset of provided languages (because your application doesn’t provide all those languages), set
your LANGUAGES setting to a list of languages, for example:

LANGUAGES = (
('de', _('German')),
('en', _('English'")),

This example restricts languages that are available for automatic selection to German and English (and any
sub-language, like de—ch or en-us).

If you define a custom LANGUAGES, it’s OK to mark the languages as translation strings — but use a
“dummy” gettext () function, not the one in django.utils.translation. You should never
import django.utils.translation from within your settings file, because that module itself depends
on the settings, and that would cause a circular import.

The solution is to use a “dummy” gettext () function. Here’s a sample settings file:

_ = lambda s: s

LANGUAGES = (
('de', _('German')),
('en', _('English'")),

With this arrangement, make-messages . py will still find and mark these strings for translation, but the
translation won’t happen at runtime, so you’ll have to remember to wrap the languages in the real
gettext () in any code that uses LANGUAGES at runtime.

The LocaleMiddleware can only select languages for which there is a Django-provided base translation.
If you want to provide translations for your application that aren’t already in the set of translations in Django’s
source tree, you’ll want to provide at least basic translations for that language. For example, Django uses
technical message IDs to translate date formats and time formats — so you will need at least those translations
for the system to work correctly.

A good starting point is to copy the English . po file and to translate at least the technical messages, and
maybe the validator messages, too.

Technical message IDs are easily recognized; they’re all uppercase. You don’t translate the message ID as
with other messages; rather, you provide the correct local variant on the provided English value. For example,
with DATETIME_FORMAT (or DATE_FORMAT or TIME_FORMAT), this would be the format string that you
want to use in your language. The format is identical to the format strings used by the now template tag.

18.4 How Django Discovers Language Preference 214



The Django Book

Once LocaleMiddleware determines the user’s preference, it makes this preference available as
request . LANGUAGE_CODE for each request object. Feel free to read this value in your view code. Here’s
a simple example:

def hello_world(request, count):
if request.LANGUAGE_CODE == 'de-at':
return HttpResponse ("You prefer to read Austrian German.")
else:
return HttpResponse ("You prefer to read another language.")

Note that, with static (i.e. without middleware) translation, the language is in
settings.LANGUAGE_CODE, while with dynamic (middleware) translation, it’s in
request . LANGUAGE_CODE.

18.5 The set_language Redirect View

As a convenience, Django comes with a view, django.views.118n.set_language, that sets a user’s
language preference and redirects back to the previous page.

Activate this view by adding the following line to your URLconf:

(r'~i18n/', include('django.conf.urls.i18n')),
(Note that this example makes the view available at /118n/setlang/.)

The view expects to be called via the GET method, with a 1anguage parameter set in the query string. If
session support is enabled, the view saves the language choice in the user’s session. Otherwise, it saves the
language choice in a django_language cookie.

After setting the language choice, Django redirects the user, following this algorithm:

® Django looks for a next parameter in the query string.

o If that doesn’t exist or is empty, Django tries the URL in the Referer header.

e If that’s empty — say, if a user’s browser suppresses that header — then the user will be redirected to
/ (the site root) as a fallback.

Here’s example HTML template code:

<form action="/i18n/setlang/" method="get">

<input name="next" type="hidden" value="/next/page/" />
<select name="language">

{%$ for lang in LANGUAGES %}

<option value="{{ lang.0 }}">{{ lang.l }}</option>

{% endfor %}

</select>

<input type="submit" value="Go" />

</form>

18.6 Using Translations in Your Own Projects

Django looks for translations by following this algorithm:

e First, it looks for a 1ocale directory in the application directory of the view that’s being called. If it
finds a translation for the selected language, the translation will be installed.

e Next, it looks for a 1ocale directory in the project directory. If it finds a translation, the translation
will be installed.

18.5 The set_language Redirect View 215



The Django Book

¢ Finally, it checks the base translation in django/conf/locale.

This way, you can write applications that include their own translations, and you can override base
translations in your project path. Or, you can just build a big project out of several applications and put all
translations into one big project message file. The choice is yours.

Note

If you’re using manually configured settings, the 1ocale directory in the project directory will not be
examined, since Django loses the ability to work out the location of the project directory. (Django normally
uses the location of the settings file to determine this, and a settings file doesn’t exist if you’re manually
configuring your settings.)

All message file repositories are structured the same way:

® SAPPPATH/locale/<language>/LC_MESSAGES/django. (po|mo)

® SPROJECTPATH/locale/<language>/LC_MESSAGES/django. (po|mo)

e All paths listed in LOCALE_PATHS in your settings file are searched in that order for
<language>/LC_MESSAGES/django. (po|mo)

® SPYTHONPATH/django/conf/locale/<language>/LC_MESSAGES/django. (po|mo)

To create message files, you use the same make-messages . py tool as with the Django message files. You
only need to be in the right place — in the directory where either the conf/locale (in case of the source
tree) or the locale/ (in case of application messages or project messages) directory is located. And you use
the same compile-messages.py to produce the binary d jango . mo files that are used by gettext.

Application message files are a bit complicated to discover — they need the LocaleMiddleware. If you
don’t use the middleware, only the Django message files and project message files will be processed.

Finally, you should give some thought to the structure of your translation files. If your applications need to be
delivered to other users and will be used in other projects, you might want to use application-specific
translations. But using application-specific translations and project translations could produce weird problems
with make-messages. make-messages will traverse all directories below the current path and so might
put message IDs into the project message file that are already in application message files.

The easiest way out is to store applications that are not part of the project (and so carry their own translations)

outside the project tree. That way, make-messages on the project level will only translate strings that are
connected to your explicit project and not strings that are distributed independently.

18.7 Translations and JavaScript

Adding translations to JavaScript poses some problems:
® JavaScript code doesn’t have access to a get text implementation.
® JavaScript code doesn’t have access to . po or .mo files; they need to be delivered by the server.

¢ The translation catalogs for JavaScript should be kept as small as possible.

Django provides an integrated solution for these problems: it passes the translations into JavaScript, so you
can call gettext and friends from within JavaScript.

18.7.1 The javascript_catalog View

The main solution to these problems is the javascript_catalog view, which generates a JavaScript
code library with functions that mimic the get text interface, plus an array of translation strings. Those

18.6 Using Translations in Your Own Projects 216



The Django Book

translation strings are taken from the application, project, or Django core, according to what you specify in
either the info_dict or the URL.

You hook it up like this:

js_info_dict = {
'packages': ('your.app.package',),
}

urlpatterns = patterns('',
(r'~jsil8n/$', 'django.views.il8n.javascript_catalog', js_info_dict),

)

Each string in packages should be in Python dotted-package syntax (the same format as the strings in
INSTALLED_APPS) and should refer to a package that contains a 1ocale directory. If you specify multiple
packages, all those catalogs are merged into one catalog. This is useful if you’re depending upon JavaScript
that uses strings from different applications.

You can make the view dynamic by putting the packages into the URL pattern:

urlpatterns = patterns('',
(r'~jsil8n/ (?P<packages>\S+?)/$, 'django.views.il8n.javascript_catalog'),

)

With this, you specify the packages as a list of package names delimited by plus signs (+) in the URL. This is
especially useful if your pages use code from different applications, and this changes often and you don’t want
to pull in one big catalog file. As a security measure, these values can only be either d jango . conf or any
package from the INSTALLED_APPS setting.

18.7.2 Using the JavaScript Translation Catalog

To use the catalog, just pull in the dynamically generated script like this:
<script type="text/Jjavascript" src="/path/to/jsil8n/"></script>

This is how the admin site fetches the translation catalog from the server. When the catalog is loaded, your
JavaScript code can use the standard get text interface to access it:

document .write (gettext ('this is to be translated'));
There even is a ngettext interface and a string interpolation function:

d

{

count: 10
}i
s

The interpolate function supports both positional interpolation and named interpolation. So the
preceding code could have been written as follows:

s = interpolate (ngettext ('this is %s object', 'this are %s objects', 11), [11]);

The interpolation syntax is borrowed from Python. You shouldn’t go over the top with string interpolation,
though — this is still JavaScript, so the code will have to do repeated regular-expression substitutions. This
isn’t as fast as string interpolation in Python, so keep it to those cases where you really need it (e.g., in
conjunction with ngettext to produce proper pluralization).

18.7.1 The javascript_catalog View 217

interpolate (ngettext ('this is % (count)s object', 'this are % (count)s objects', d.count),

d);



The Django Book
18.7.3 Creating JavaScript Translation Catalogs

You create and update the translation catalogs the same way as the other Django translation catalogs: with the
‘make-messages.py’ tool. The only difference is you need to provide a ~d django js parameter, like
this:

make-messages.py —-d djangoijs -1 de

This creates or updates the translation catalog for JavaScript for German. After updating translation catalogs,
justrun compile-messages.py the same way as you do with normal Django translation catalogs.

18.8 Notes for Users Familiar with gettext

If you know gettext, you might note these special things in the way Django does translation:

® The string domain is django or d jango js. The string domain is used to differentiate between
different programs that store their data in a common message-file library (usually
/usr/share/locale/). The django domain is used for Python and template translation strings,
and is loaded into the global translation catalogs. The d jango js domain is only used for JavaScript
translation catalogs to make sure that those are as small as possible.

® Django only uses gettext and gettext_noop. That’s because Django always uses
DEFAULT_CHARSET strings internally. There isn’t much benefit to using ugettext, because

you’ll always need to produce UTF-8 anyway.
® Django doesn’t use xgettext alone. It uses Python wrappers around xgettext and msgfmt.

That’s mostly for convenience.

18.9 What’s Next?

This chapter mostly concludes our coverage of Django’s features. You should now know enough to start
producing your own Django sites.

However, writing the code is only the first step in deploying a successful Web site. The next two chapters
cover the things you’ll need to know if you want your site to survive in the real world. Chapter 19 discuses
how you can secure your sites and your users from malicious attackers, and Chapter 20 details how to deploy
a Django application onto one or many servers.

18.7.3 Creating JavaScript Translation Catalogs 218



19 Security

The Internet can be a scary place.

These days, high-profile security gaffes seem to crop up on a daily basis. We’ve seen viruses spread with
amazing speed, swarms of compromised computers wielded as weapons, a never-ending arms race against
spammers, and many, many reports of identify theft from hacked Web sites.

As Web developers, we have a duty to do what we can to combat these forces of darkness. Every Web
developer needs to treat security as a fundamental aspect of Web programming. Unfortunately, it turns out
that implementing security is hard — attackers need to find only a single vulnerability, but defenders have to
protect every single one.

Django attempts to mitigate this difficulty. It’s designed to automatically protect you from many of the
common security mistakes that new (and even experienced) Web developers make. Still, it’s important to
understand what these problems are, how Django protects you, and — most important — the steps you can
take to make your code even more secure.

First, though, an important disclaimer: We do not intend to present a definitive guide to every known Web
security exploit, and so we won’t try to explain each vulnerability in a comprehensive manner. Instead, we’ll
give a short synopsis of security problems as they apply to Django.

19.1 The Theme of Web Security

If you learn only one thing from this chapter, let it be this:
Never — under any circumstances — trust data from the browser.

You never know who’s on the other side of that HTTP connection. It might be one of your users, but it just as
easily could be a nefarious cracker looking for an opening.

Any data of any nature that comes from the browser needs to be treated with a healthy dose of paranoia. This
includes data that’s both “in band” (i.e., submitted from Web forms) and “out of band” (i.e., HTTP headers,
cookies, and other request information). It’s trivial to spoof the request metadata that browsers usually add
automatically.

Every one of the vulnerabilities discussed in this chapter stems directly from trusting data that comes over the
wire and then failing to sanitize that data before using it. You should make it a general practice to
continuously ask, “Where does this data come from?”

19.2 SQL Injection

SQL injection is a common exploit in which an attacker alters Web page parameters (such as GET/POST data
or URLSs) to insert arbitrary SQL snippets that a naive Web application executes in its database directly. It’s
probably the most dangerous — and, unfortunately, one of the most common — vulnerabilities out there.

This vulnerability most commonly crops up when constructing SQL “by hand” from user input. For example,
imagine writing a function to gather a list of contact information from a contact search page. To prevent
spammers from reading every single email in our system, we’ll force the user to type in someone’s username
before providing her email address:

def user_contacts (request) :
user = request.GET['username']

19 Security 219



The Django Book

sgql = "SELECT * FROM user_contacts WHERE username = '$s';" % username
# execute the SQL here...

Note

In this example, and all similar “don’t do this”” examples that follow, we’ve deliberately left out most of the
code needed to make the functions actually work. We don’t want this code to work if someone accidentally
takes it out of context.

Though at first this doesn’t look dangerous, it really is.

First, our attempt at protecting our entire email list will fail with a cleverly constructed query. Think about

what happens if an attacker types "' OR 'a'='a" into the query box. In that case, the query that the string
interpolation will construct will be:

SELECT * FROM user_contacts WHERE username = '' OR 'a' = 'a';

Because we allowed unsecured SQL into the string, the attacker’s added OR clause ensures that every single
row is returned.

However, that’s the least scary attack. Imagine what will happen if the attacker submits " '; DELETE FROM
user_contacts WHERE 'a' = 'a'".We’ll end up with this complete query:

SELECT * FROM user_contacts WHERE username = ''; DELETE FROM user_contacts WHERE 'a' = 'a';

Yikes! Where’d our contact list go?

19.2.1 The Solution

Although this problem is insidious and sometimes hard to spot, the solution is simple: never trust
user-submitted data, and always escape it when passing it into SQL.

The Django database API does this for you. It automatically escapes all special SQL parameters, according to
the quoting conventions of the database server you’re using (e.g., PostgreSQL or MySQL).

For example, in this API call:
foo.get_list (bar__exact="' OR 1=1")
Django will escape the input accordingly, resulting in a statement like this:
SELECT * FROM foos WHERE bar = '\' OR 1=1'
Completely harmless.
This applies to the entire Django database API, with a couple of exceptions:
® The where argument to the extra () method (see Appendix C). That parameter accepts raw SQL
by design.

® Queries done “by hand” using the lower-level database API.

In each of these cases, it’s easy to keep yourself protected. In each case, avoid string interpolation in favor of
passing in bind parameters. That is, the example we started this section with should be written as follows:

from django.db import connection

19.2 SQL Injection 220



The Django Book

def user_contacts (request) :
user = request.GET['username']
sgql = "SELECT * FROM user_contacts WHERE username = %s;"
cursor = connection.cursor ()
cursor.execute (sgl, [user])
# ... do something with the results

The low-level execute method takes a SQL string with %s placeholders and automatically escapes and
inserts parameters from the list passed as the second argument. You should a/ways construct custom SQL this
way.

Unfortunately, you can’t use bind parameters everywhere in SQL; they’re not allowed as identifiers (i.e., table
or column names). Thus, if you need to, say, dynamically construct a list of tables from a POST variable,
you’ll need to escape that name in your code. Django provides a function,
django.db.backend.quote_name, which will escape the identifier according to the current database’s
quoting scheme.

19.3 Cross-Site Scripting (XSS)

Cross-site scripting (XSS), is found in Web applications that fail to escape user-submitted content properly
before rendering it into HTML. This allows an attacker to insert arbitrary HTML into your Web page, usually
in the form of <script> tags.

Attackers often use XSS attacks to steal cookie and session information, or to trick users into giving private
information to the wrong person (aka phishing).

This type of attack can take a number of different forms and has almost infinite permutations, so we’ll just
look at a typical example. Consider this extremely simple “Hello, World” view:

def say_hello(request) :
name = request.GET.get ('name', 'world')
return render_to_response ("hello.html", {"name" : name})

This view simply reads a name from a GET parameter and passes that name to the hello.html template.
We might write a template for this view as follows:

<hl>Hello, {{ name }}!</hl>

So if we accessed http://example.com/hello/name=Jacob, the rendered page would contain this:

<hl>Hello, Jacob!</hl>

But wait — what happens if we access http://example.com/hello/name=<i>Jacob</1i>? Then
we get this:

<hl>Hello, <i>Jacob</i>!</hl>

Of course, an attacker wouldn’t use something as benign as <i> tags; he could include a whole set of HTML
that hijacked your page with arbitrary content. This type of attack has been used to trick users into entering
data into what looks like their bank’s Web site, but in fact is an XSS-hijacked form that submits their back
account information to an attacker.

The problem gets worse if you store this data in the database and later display it it on your site. For example,
MySpace was once found to be vulnerable to an XSS attack of this nature. A user inserted JavaScript into his
profile that automatically added him as your friend when you visited his profile page. Within a few days, he
had millions of friends.

19.2.1 The Solution 221



The Django Book

Now, this may sound relatively benign, but keep in mind that this attacker managed to get Ais code — not
MySpace’s — running on your computer. This violates the assumed trust that all the code on MySpace is
actually written by MySpace.

MySpace was extremely lucky that this malicious code didn’t automatically delete viewers’ accounts, change
their passwords, flood the site with spam, or any of the other nightmare scenarios this vulnerability unleashes.

19.3.1 The Solution

The solution is simple: always escape any content that might have come from a user. If we simply rewrite our
template as follows:

<hl>Hello, {{ name|escape }}!</hl>

then we’re no longer vulnerable. You should always use the escape tag (or something equivalent) when
displaying user-submitted content on your site.

Why Doesn’t Django Just Do This for You?

Modifying Django to automatically escape all variables displayed in templates is a frequent topic of
discussion on the Django developer mailing list.

So far, Django’s templates have avoided this behavior because it subtly changes what should be relatively
straightforward behavior (displaying variables). It’s a tricky issue and a difficult tradeoff to evaluate. Adding
hidden implicit behavior is against Django’s core ideals (and Python’s, for that matter), but security is equally
important.

All this is to say, then, that there’s a fair chance Django will grow some form of auto-escaping (or nearly
auto-escaping) behavior in the future. It’s a good idea to check the official Django documentation for the
latest in Django features; it will always be more up to date than this book, especially the print edition.

Even if Django does add this feature, however, you should still be in the habit of asking yourself, at all times,
“Where does this data come from?” No automatic solution will ever protect your site from XSS attacks 100%
of the time.

19.4 Cross-Site Request Forgery

Cross-site request forgery (CSRF) happens when a malicious Web site tricks users into unknowingly loading
a URL from a site at which they’re already authenticated — hence taking advantage of their authenticated
status.

Django has built-in tools to protect from this kind of attack. Both the attack itself and those tools are covered
in great detail in Chapter 14.

19.5 Session Forging/Hijacking

This isn’t a specific attack, but rather a general class of attacks on a user’s session data. It can take a number
of different forms:

® A man-in-the-middle attack, where an attacker snoops on session data as it travels over the wire (or
wireless) network.

e Session forging, where an attacker uses a session ID (perhaps obtained through a man-in-the-middle
attack) to pretend to be another user.

19.3 Cross-Site Scripting (XSS) 222



The Django Book

An example of these first two would be an attacker in a coffee shop using the shop’s wireless network
to capture a session cookie. She could then use that cookie to impersonate the original user.

® A cookie-forging attack, where an attacker overrides the supposedly read-only data stored in a cookie.
Chapter 12 explains in detail how cookies work, and one of the salient points is that it’s trivial for
browsers and malicious users to change cookies without your knowledge.

There’s a long history of Web sites that have stored a cookie like TsLoggedIn=1 or even
LoggedInAsUser=jacob. It’s dead simple to exploit these types of cookies.

On a more subtle level, though, it’s never a good idea to trust anything stored in cookies; you never
know who’s been poking at them.
e Session fixation, where an attacker tricks a user into setting or reseting the user’s session ID.

For example, PHP allows session identifiers to be passed in the URL (e.g.,
http://example.com/?PHPSESSID=fa90197ca25f6ab40bbl1374c510d7a32). An
attacker who tricks a user into clicking a link with a hard-coded session ID will cause the user to pick
up that session.

Session fixation has been used in phishing attacks to trick users into entering personal information
into an account the attacker owns. He can later log into that account and retrieve the data.

e Session poisoning, where an attacker injects potentially dangerous data into a user’s session —
usually through a Web form that the user submits to set session data.

A canonical example is a site that stores a simple user preference (like a page’s background color) in a
cookie. An attacker could trick a user into clicking a link to submit a “color” that actually contains an
XSS attack; if that color isn’t escaped, the user could again inject malicious code into the user’s
environment.

19.5.1 The Solution

There are a number of general principles that can protect you from these attacks:
® Never allow session information to be contained in the URL.

Django’s session framework (see Chapter 12) simply doesn’t allow sessions to be contained in the
URL.

® Don’t store data in cookies directly; instead, store a session ID that maps to session data stored on the
back-end.

If you use Django’s built-in session framework (i.e., request . session), this is handled
automatically for you. The only cookie that the session framework uses is a single session ID; all the
session data is stored in the database.

® Remember to escape session data if you display it in the template. See the earlier XSS section, and
remember that it applies to any user-created content as well as any data from the browser. You should
treat session information as being user created.

® Prevent attackers from spoofing session IDs whenever possible.

Although it’s nearly impossible to detect someone who’s hijacked a session ID, Django does have
built-in protection against a brute-force session attack. Session IDs are stored as hashes (instead of
sequential numbers), which prevents a brute-force attack, and a user will always get a new session ID
if she tries a nonexistent one, which prevents session fixation.

Notice that none of those principles and tools prevents man-in-the-middle attacks. These types of attacks are
nearly impossible to detect. If your site allows logged-in users to see any sort of sensitive data, you should

19.5 Session Forging/Hijacking 223



The Django Book

always serve that site over HTTPS. Additionally, if you have an SSL-enabled site, you should set the
SESSION_COOKIE_SECURE setting to True; this will make Django only send session cookies over
HTTPS.

19.6 Email Header Injection

SQL injection’s less well-known sibling, email header injection, hijacks Web forms that send email. An
attacker can use this technique to send spam via your mail server. Any form that constructs email headers
from Web form data is vulnerable to this kind of attack.

Let’s look at the canonical contact form found on many sites. Usually this sends a message to a hard-coded
email address and, hence, doesn’t appear vulnerable to spam abuse at first glance.

However, most of these forms also allow the user to type in his own subject for the email (along with a “from”
address, body, and sometimes a few other fields). This subject field is used to construct the “subject” header
of the email message.

If that header is unescaped when building the email message, an attacker could submit something like
"hello\ncc:spamvictim@example.com" (where "\n” is a newline character). That would make the
constructed email headers turn into:

To: hardcoded@example.com
Subiject: hello
cc: spamvictim@example.com

Like SQL injection, if we trust the subject line given by the user, we’ll allow him to construct a malicious set
of headers, and he can use our contact form to send spam.

19.6.1 The Solution

We can prevent this attack in the same way we prevent SQL injection: always escape or validate
user-submitted content.

Django’s built-in mail functions (in d jango.core.mail) simply do not allow newlines in any fields used
to construct headers (the from and to addresses, plus the subject). If you try to use
django.core.mail.send_mail with a subject that contains newlines, Django will raise a
BadHeaderError exception.

If you do not use Django’s built-in mail functions to send email, you’ll need to make sure that newlines in

headers either cause an error or are stripped. You may want to examine the SafeMIMEText class in
django.core.mail to see how Django does this.

19.7 Directory Traversal

Directory traversal is another injection-style attack, wherein a malicious user tricks filesystem code into
reading and/or writing files that the Web server shouldn’t have access to.

An example might be a view that reads files from the disk without carefully sanitizing the file name:

def dump_file (request) :

filename = request.GET["filename"]

filename = os.path.join (BASE_PATH, filename)
content = open(filename) .read()

# ...

19.5.1 The Solution 224



The Django Book

Though it looks like that view restricts file access to files beneath BASE_PATH (by using os . path. join),
if the attacker passes in a £ilename containing . . (that’s two periods, a shorthand for “the parent
directory”), she can access files “above” BASE_PATH. It’s only a matter of time before she can discover the
correct number of dots to successfully access, say, . ./../../../../etc/passwd.

Anything that reads files without proper escaping is vulnerable to this problem. Views that write files are just
as vulnerable, but the consequences are doubly dire.

Another permutation of this problem lies in code that dynamically loads modules based on the URL or other
request information. A well-publicized example came from the world of Ruby on Rails. Prior to mid-2006,
Rails used URLs like http://example.com/person/poke/1 directly to load modules and call
methods. The result was that a carefully constructed URL could automatically load arbitrary code, including a
database reset script!

19.7.1 The Solution

If your code ever needs to read or write files based on user input, you need to sanitize the requested path very
carefully to ensure that an attacker isn’t able to escape from the base directory you’re restricting access to.

Note
Needless to say, you should never write code that can read from any area of the disk!

A good example of how to do this escaping lies in Django’s built-in static content-serving view (in
django.views.static). Here’s the relevant code:

import os
import posixpath

# ...

path = posixpath.normpath (urllib.unquote (path))
newpath = "'
for part in path.split('/"'):
if not part:
# strip empty path components
continue

drive, part = os.path.splitdrive (part)
head, part = os.path.split (part)
if part in (os.curdir, os.pardir):

# strip '.' and '..' in path
continue
newpath = os.path.join (newpath, part).replace('\\', '/")

Django doesn’t read files (unless you use the static.serve function, but that’s protected with the code
just shown), so this vulnerability doesn’t affect the core code much.

In addition, the use of the URLconf abstraction means that Django will never load code you’ve not explicitly
told it to load. There’s no way to create a URL that causes Django to load something not mentioned in a
URLconf.

19.8 Exposed Error Messages

During development, being able to see tracebacks and errors live in your browser is extremely useful. Django
has “pretty” and informative debug messages specifically to make debugging easier.

19.7 Directory Traversal 225



The Django Book

However, if these errors get displayed once the site goes live, they can reveal aspects of your code or
configuration that could aid an attacker.

Furthermore, errors and tracebacks aren’t at all useful to end users. Django’s philosophy is that site visitors
should never see application-related error messages. If your code raises an unhandled exception, a site visitor
should not see the full traceback — or any hint of code snippets or Python (programmer-oriented) error
messages. Instead, the visitor should see a friendly “This page is unavailable” message.

Naturally, of course, developers need to see tracebacks to debug problems in their code. So the framework
should hide all error messages from the public, but it should display them to the trusted site developers.

19.8.1 The Solution

Django has a simple flag that controls the display of these error messages. If the DEBUG setting is set to
True, error messages will be displayed in the browser. If not, Django will render return an HTTP 500
(“Internal server error”’) message and render an error template that you provide. This error template is called
500.html and should live in the root of one of your template directories.

Because developers still need to see errors generated on a live site, any errors handled this way will send an
email with the full traceback to any addresses given in the ADMINS setting.

Users deploying under Apache and mod_python should also make sure they have PythonDebug Off in
their Apache conf files; this will suppress any errors that occur before Django has had a chance to load.

19.9 A Final Word on Security

We hope all this talk of security problems isn’t too intimidating. It’s true that the Web can be a wild and
wooly world, but with a little bit of foresight, you can have a secure Web site.

Keep in mind that Web security is a constantly changing field; if you’re reading the dead-tree version of this
book, be sure to check more up to date security resources for any new vulnerabilities that have been
discovered. In fact, it’s always a good idea to spend some time each week or month researching and keeping
current on the state of Web application security. It’s a small investment to make, but the protection you’ll get
for your site and your users is priceless.

19.10 What’s Next

In the next chapter, we’ll finally cover the subtleties of deploying Django: how to launch a production site and
how to set it up for scalability.

19.8 Exposed Error Messages 226



20 Deploying Django

Throughout this book, we’ve mentioned a number of goals that drive the development of Django. Ease of use,
friendliness to new programmers, abstraction of repetitive tasks — these all drive Django’s developers.

However, since Django’s inception, there’s always been another important goal: Django should be easy to
deploy, and it should make serving large amounts of traffic possible with limited resources.

The motivations for this goal are apparent when you look at Django’s background: a small, family-owned
newspaper in Kansas can hardly afford top-of-the-line server hardware, so Django’s original developers were
concerned with squeezing the best possible performance out of limited resources. Indeed, for years Django’s
developers acted as their own system administrators — there simply wasn’t enough hardware to need
dedicated sysadmins — even as their sites handled tens of millions of hits a day.

As Django became an open source project, this focus on performance and ease of deployment became
important for a different reason: hobbyist developers have the same requirements. Individuals who want to use
Django are pleased to learn they can host a small- to medium-traffic site for as little as $10 a month.

But being able to scale down is only half the battle. Django also needs to be capable of scaling up to meet the
needs of large companies and corporations. Here, Django adopts a philosophy common among LAMP-like
Web stacks often called shared nothing.

What’s LAMP?

The acronym LAMP was originally coined to describe a popular set of open source software used to drive
many Web sites:

¢ Linux (operating system)

e Apache (Web server)

* MySQL (database)

® PHP (programming language)

Over time, though, the acronym has come to refer more to the philosophy of these types of open source
software stacks than to any one particular stack. So while Django uses Python and is database-agnostic, the
philosophies proven by the LAMP stack permeate Django’s deployment mentality.

There have been a few (mostly humorous) attempts at coining a similar acronym to describe Django’s
technology stack. The authors of this book are fond of LAPD (Linux, Apache, PostgreSQL, and Django) or
PAID (PostgreSQL, Apache, Internet, and Django). Use Django and get PAID!

20.1 Shared Nothing

At its core, the philosophy of shared nothing is really just the application of loose coupling to the entire
software stack. This architecture arose in direct response to what was at the time the prevailing architecture: a
monolithic Web application server that encapsulates the language, database, and Web server — even parts of
the operating system — into a single process (e.g., Java).

When it comes time to scale, this can be a major problem; it’s nearly impossible to split the work of a
monolithic process across many different physical machines, so monolithic applications require enormously
powerful servers. These servers, of course, cost tens or even hundreds of thousands of dollars, putting
large-scale Web sites out of the reach of cash-hungry individuals and small companies.

20 Deploying Django 227



The Django Book

What the LAMP community noticed, however, was that if you broke each piece of the Web stack up into
individual components, you could easily start with an inexpensive server and simply add more inexpensive
servers as you grew. If your $3,000 database server couldn’t handle the load, you’d simply buy a second (or
third, or fourth) until it could. If you needed more storage capacity, you’d add an NFS server.

For this to work, though, Web applications had to stop assuming that the same server would handle each
request — or even each part of a single request. In a large-scale LAMP (and Django) deployment, as many as
half a dozen servers might be involved in handling a single page! The repercussions of this are numerous, but
they boil down to these points:

e State cannot be saved locally. In other words, any data that must be available between multiple
requests must be stored in some sort of persistent storage like the database or a centralized cache.

e Software cannot assume that resources are local. For example, the Web platform cannot assume that
the database runs on the same server; it must be capable of connecting to a remote database server.

® Each piece of the stack must be easily moved or replicated. If Apache for some reason doesn’t work
for a given deployment, you should be able to swap it out for another server with a minimum of fuss.
Or, on a hardware level, if a Web server fails, you should be able to replace it with another physical
box with minimum downtime. Remember, this whole philosophy is based around deployment on
cheap, commodity hardware. Failure of individual machines is to be expected.

As you’ve probably come to expect, Django handles this more or less transparently — no part of Django
violates these principles — but knowing the philosophy helps when it comes time to scale up.

But Does It Work?
This philosophy might sound good on paper (or on your screen), but does it actually work?

Well, instead of answering directly, let’s instead look at a by-no-means-complete list of a few companies that
have based their business on this architecture. You might recognize some of these names:

® Amazon

® Blogger

® Craigslist

e Facebook

® Google

e LiveJournal
e Slashdot

® Wikipedia
® Yahoo

® YouTube

To paraphrase the famous scene from When Harry Met Sally...: “We’ll have what they’re having!”

20.2 A Note on Personal Preferences

Before we get into the details, a quick aside.
Open source is famous for its so-called religious wars; much (digital) ink has been spilled arguing over text
editors (emacs vs. vi), operating systems (Linux vs. Windows vs. Mac OS), database engines (MySQL vs.

PostgreSQL), and — of course — programming languages.

We try to stay away from these battles. There just isn’t enough time.

20.1 Shared Nothing 228



The Django Book

However, there are a number of choices when it comes to deploying Django, and we’re constantly asked for
our preferences. Since stating these preferences comes dangerously close to firing a salvo in one of the
aforementioned battles, we’ve mostly refrained. However, for the sake of completeness and full disclosure,
we’ll state them here. We prefer the following:

¢ Linux (Ubuntu, specifically) as our operating system
¢ Apache and mod_python for the Web server
® PostgreSQL as a database server

Of course, we can point to many Django users who have made other choices with great success.

20.3 Using Django with Apache and mod_python

Apache with mod_python currently is the most robust setup for using Django on a production server.

mod_python (http://www.djangoproject.com/r/mod python/) is an Apache plug-in that embeds Python within
Apache and loads Python code into memory when the server starts. Code stays in memory throughout the life
of an Apache process, which leads to significant performance gains over other server arrangements.

Django requires Apache 2.x and mod_python 3.x, and we prefer Apache’s prefork MPM, as opposed to the
worker MPM.

Note

Configuring Apache is well beyond the scope of this book, so we’ll simply mention details as needed.
Luckily, a number of great resources are available if you need to learn more about Apache. A few of them we
like are as follows:

¢ The free online Apache documentation, available via http://www.djangoproject.com/r/apache/docs/
® Pro Apache, Third Edition (Apress, 2004) by Peter Wainwright, available via

http://www.djangoproject.com/r/books/pro-apache/
® Apache: The Definitive Guide, Third Edition (O’Reilly, 2002) by Ben Laurie and Peter Laurie,

available via http://www.djangoproject.com/t/books/apache-pra/
20.3.1 Basic Configuration

To configure Django with mod_python, first make sure you have Apache installed with the mod_python
module activated. This usually means having a LoadModule directive in your Apache configuration file. It
will look something like this:

LoadModule python_module /usr/lib/apache2/modules/mod_python.so

Then, edit your Apache configuration file and add the following:

<Location "/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonDebug On

</Location>

Make sure to replace mysite.settings with the appropriate DJANGO_SETTINGS_MODULE for your
site.

20.2 A Note on Personal Preferences 229


http://www.djangoproject.com/r/mod_python/
http://www.djangoproject.com/r/apache/docs/
http://www.djangoproject.com/r/books/pro-apache/
http://www.djangoproject.com/r/books/apache-pra/

The Django Book

This tells Apache, “Use mod_python for any URL at or under ‘/’, using the Django mod_python handler.” It
passes the value of DJANGO_SETTINGS_MODULE so mod_python knows which settings to use.

Note that we’re using the <Locat ion> directive, not the <Directory> directive. The latter is used for
pointing at places on your filesystem, whereas <Locat ion> points at places in the URL structure of a Web
site. <Directory> would be meaningless here.

Apache likely runs as a different user than your normal login and may have a different path and sys.path. You
may need to tell mod_python how to find your project and Django itself.

PythonPath "['/path/to/project', '/path/to/django'] + sys.path"

You can also add directives such as PythonAutoReload Off for performance. See the mod_python
documentation for a full list of options.

Note that you should set PythonDebug Off on a production server. If you leave PythonDebug On,
your users will see ugly (and revealing) Python tracebacks if something goes wrong within mod_python.

Restart Apache, and any request to your site (or virtual host if you’ve put this directive inside a
<VirtualHost> block) will be served by Django.

Note

If you deploy Django at a subdirectory — that is, somewhere deeper than “/” — Django worn’t trim the URL
prefix off of your URLpatterns. So if your Apache config looks like this:

<Location "/mysite/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonDebug On

</Location>

then all your URL patterns will need to start with " /mysite/". For this reason we usually recommend
deploying Django at the root of your domain or virtual host. Alternatively, you can simply shift your URL
configuration down one level by using a shim URLconf:

urlpatterns = patterns('',
(r'"mysite/', include ('normal.root.urls')),

)

20.3.2 Running Multiple Django Installations on the Same Apache
Instance

It’s entirely possible to run multiple Django installations on the same Apache instance. You might want to do
this if you’re an independent Web developer with multiple clients but only a single server.

To accomplish this, just use VirtualHost like so:

NameVirtualHost *

<VirtualHost *>

ServerName www.example.com

# ...

SetEnv DJANGO_SETTINGS_MODULE mysite.settings
</VirtualHost>

<VirtualHost *>

20.3.1 Basic Configuration 230



The Django Book

ServerName www2.example.com

# ...

SetEnv DJANGO_SETTINGS_MODULE mysite.other_settings
</VirtualHost>

If you need to put two Django installations within the same VirtualHost, you’ll need to take a special
precaution to ensure mod_python’s code cache doesn’t mess things up. Use the PythonInterpreter
directive to give different <Locat ion> directives separate interpreters:

<VirtualHost *>
ServerName www.example.com
# ...
<Location "/something">
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonInterpreter mysite
</Location>

<Location "/otherthing">
SetEnv DJANGO_SETTINGS_MODULE mysite.other_settings
PythonInterpreter mysite_other
</Location>
</VirtualHost>

The values of PythonInterpreter don’t really matter, as long as they’re different between the two
Location blocks.

20.3.3 Running a Development Server with mod_python

Because mod_python caches loaded Python code, when deploying Django sites on mod_python you’ll need to
restart Apache each time you make changes to your code. This can be a hassle, so here’s a quick trick to avoid
it: just add MaxRequestsPerChild 1 to your config file to force Apache to reload everything for each
request. But don’t do that on a production server, or we’ll revoke your Django privileges.

If you’re the type of programmer who debugs using scattered print statements (we are), note that print
statements have no effect in mod_python; they don’t appear in the Apache log, as you might expect. If you
have the need to print debugging information in a mod_python setup, you’ll probably want to use Python’s
standard logging package. More information is available at http://docs.python.org/lib/module-logging.html.
Alternatively, you can or add the debugging information to the template of your page.

20.3.4 Serving Django and Media Files from the Same Apache Instance

Django should not be used to serve media files itself; leave that job to whichever Web server you choose. We
recommend using a separate Web server (i.e., one that’s not also running Django) for serving media. For more
information, see the “Scaling” section.

If, however, you have no option but to serve media files on the same Apache VirtualHost as Django,
here’s how you can turn off mod_python for a particular part of the site:

<Location "/media/">
SetHandler None
</Location>

Change Locat ion to the root URL of your media files.

You can also use <LocationMatch> to match a regular expression. For example, this sets up Django at the
site root but explicitly disables Django for the media subdirectory and any URL that ends with . jpg, .gif,

or .png:

20.3.2 Running Multiple Django Installations on the Same Apachelnstance 231


http://docs.python.org/lib/module-logging.html

The Django Book

<Location "/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
</Location>

<Location "/media/">
SetHandler None
</Location>

<LocationMatch "\. (jpglgif|png)s$">
SetHandler None
</LocationMatch>

In all of these cases, you’ll need to set the DocumentRoot directive so Apache knows where to find your
static files.

20.3.5 Error Handling

When you use Apache/mod_python, errors will be caught by Django — in other words, they won’t propagate
to the Apache level and won’t appear in the Apache error_log.

The exception to this is if something is really messed up in your Django setup. In that case, you’ll see an
“Internal Server Error” page in your browser and the full Python traceback in your Apache error_1og file.
The error_1log traceback is spread over multiple lines. (Yes, this is ugly and rather hard to read, but it’s
how mod_python does things.)

20.3.6 Handling a Segmentation Fault

Sometimes, Apache segfaults when you install Django. When this happens, it’s almost always one of two
causes mostly unrelated to Django itself:

¢ [t may be that your Python code is importing the pyexpat module (used for XML parsing), which
may conflict with the version embedded in Apache. For full information, see “Expat Causing Apache
Crash” at http://www.djangoproject.com/r/articles/expat-apache-crash/.

¢ [t may be because you’re running mod_python and mod_php in the same Apache instance, with
MySQL as your database back-end. In some cases, this causes a known mod_python issue due to
version conflicts in PHP and the Python MySQL back-end. There’s full information in a mod_python

FAQ entry, accessible via http://www.djangoproject.com/r/articles/php-modpython-fag/.

If you continue to have problems setting up mod_python, a good thing to do is get a bare-bones mod_python
site working, without the Django framework. This is an easy way to isolate mod_python-specific problems.
The article “Getting mod_python Working” details this procedure:

http://www.djangoproject.com/r/articles/getting-modpython-working/.

The next step should be to edit your test code and add an import of any Django-specific code you’re using —
your views, your models, your URLconf, your RSS configuration, and so forth. Put these imports in your test
handler function and access your test URL in a browser. If this causes a crash, you’ve confirmed it’s the
importing of Django code that causes the problem. Gradually reduce the set of imports until it stops crashing,
so as to find the specific module that causes the problem. Drop down further into modules and look into their
imports as necessary. For more help, system tools like 1dconfig on Linux, otool on Mac OS, and
ListDLLs (from Syslnternals) on Windows can help you identify shared dependencies and possible version
conflicts.

20.3.4 Serving Django and Media Files from the Same Apache Instance 232


http://www.djangoproject.com/r/articles/expat-apache-crash/
http://www.djangoproject.com/r/articles/php-modpython-faq/
http://www.djangoproject.com/r/articles/getting-modpython-working/

The Django Book
20.4 Using Django with FastCGl

Although Django under Apache and mod_python is the most robust deployment setup, many people use
shared hosting, on which FastCGI is the only available deployment option.

Additionally, in some situations, FastCGI allows better security and possibly better performance than
mod_python. For small sites, FastCGI can also be more lightweight than Apache.

20.4.1 FastCGl Overview

FastCGl is an efficient way of letting an external application serve pages to a Web server. The Web server
delegates the incoming Web requests (via a socket) to FastCGI, which executes the code and passes the
response back to the Web server, which, in turn, passes it back to the client’s Web browser.

Like mod_python, FastCGI allows code to stay in memory, allowing requests to be served with no startup
time. Unlike mod_python, a FastCGI process doesn’t run inside the Web server process, but in a separate,
persistent process.

Why Run Code in a Separate Process?

The traditional mod_ * arrangements in Apache embed various scripting languages (most notably PHP,
Python/mod_python, and Perl/mod_perl) inside the process space of your Web server. Although this lowers
startup time (because code doesn’t have to be read off disk for every request), it comes at the cost of memory
use.

Each Apache process gets a copy of the Apache engine, complete with all the features of Apache that Django
simply doesn’t take advantage of. FastCGI processes, on the other hand, only have the memory overhead of
Python and Django.

Due to the nature of FastCGl, it’s also possible to have processes that run under a different user account than
the Web server process. That’s a nice security benefit on shared systems, because it means you can secure
your code from other users.

Before you can start using FastCGI with Django, you’ll need to install £1up, a Python library for dealing
with FastCGI. Some users have reported stalled pages with older £ 1up versions, so you may want to use the
latest SVN version. Get £ 1up at http://www.djangoproject.com/r/flup/.

20.4.2 Running Your FastCGl Server

FastCGI operates on a client/server model, and in most cases you’ll be starting the FastCGI server process on
your own. Your Web server (be it Apache, lighttpd, or otherwise) contacts your Django-FastCGI process only
when the server needs a dynamic page to be loaded. Because the daemon is already running with the code in
memory, it’s able to serve the response very quickly.

Note

If you’re on a shared hosting system, you’ll probably be forced to use Web server-managed FastCGI
processes. If you’re in this situation, you should read the section titled “Running Django on a Shared-Hosting
Provider with Apache,” below.

A Web server can connect to a FastCGI server in one of two ways: it can use either a Unix domain socket (a

named pipe on Win32 systems) or a TCP socket. What you choose is a manner of preference; a TCP socket is
usually easier due to permissions issues.

20.4 Using Django with FastCGl 233


http://www.djangoproject.com/r/flup/

The Django Book

To start your server, first change into the directory of your project (wherever your manage . py is), and then
run manage . py with the runfcgi command:

./manage.py runfcgi [options]
If you specify help as the only option after runfcgi, a list of all the available options will display.

You’ll need to specify either a socket or both host and port. Then, when you set up your Web server,
you’ll just need to point it at the socket or host/port you specified when starting the FastCGI server.

A few examples should help explain this:

® Running a threaded server on a TCP port:

./manage.py runfcgi method=threaded host=127.0.0.1 port=3033
® Running a preforked server on a Unix domain socket:

./manage.py runfcgi method=prefork socket=/home/user/mysite.sock pidfile=django.pid
® Run without daemonizing (backgrounding) the process (good for debugging):

./manage.py runfcgi daemonize=false socket=/tmp/mysite.sock
20.4.2.1 Stopping the FastCGl Daemon

If you have the process running in the foreground, it’s easy enough to stop it: simply press Ctrl+C to stop and
quit the FastCGI server. However, when you’re dealing with background processes, you’ll need to resort to
the Unix k111 command.

If you specify the pidfile option to your manage .py runfcgi, you can kill the running FastCGI
daemon like this:

kill “cat $PIDFILE’
where SPIDFILE is the pidfile you specified.

To easily restart your FastCGI daemon on Unix, you can use this small shell script:

#!/bin/bash

# Replace these three settings.
PROJDIR="/home/user/myproject"
PIDFILE="$PROJDIR/mysite.pid"
SOCKET="$PROJDIR/mysite.sock"

cd $PROJDIR

if [ -f $PIDFILE ]; then
kill “cat -- SPIDFILE’
rm —-f —— S$PIDFILE

fi

exec /usr/bin/env - \
PYTHONPATH="../python:.." \
./manage.py runfcgi socket=$SOCKET pidfile=$SPIDFILE

20.4.3 Using Django with Apache and FastCGl

To use Django with Apache and FastCGI, you’ll need Apache installed and configured, with mod_fastcgi
installed and enabled. Consult the Apache and mod_fastcgi documentation for instructions:

20.4.2 Running Your FastCGl Server 234



The Django Book
http://www.djangoproject.com/r/mod fastcgi/.

Once you’ve completed the setup, point Apache at your Django FastCGI instance by editing the
httpd.conf (Apache configuration) file. You’ll need to do two things:

e Use the FastCGIExternalServer directive to specify the location of your FastCGI server.
e Use mod_rewrite to point URLs at FastCGI as appropriate.

20.4.3.1 Specifying the Location of the FastCGl Server

The FastCGIExternalServer directive tells Apache how to find your FastCGI server. As the

FastCGIExternalServer docs (http://www.djangoproject.com/r/mod fastcgi/FastCGIExternalServer/) explain,
you can specify either a socket or a host. Here are examples of both:

# Connect to FastCGI via a socket/named pipe:
FastCGIExternalServer /home/user/public_html/mysite.fcgi —-socket /home/user/mysite.sock

# Connect to FastCGI via a TCP host/port:
FastCGIExternalServer /home/user/public_html/mysite.fcgi -host 127.0.0.1:3033

In either case, the the directory /home/user/public_html/ should exist, though the file
/home/user/public_html/mysite.fcgi doesn’t actually have to exist. It’s just a URL used by the
Web server internally — a hook for signifying which requests at a URL should be handled by FastCGI. (More
on this in the next section.)

20.4.3.2 Using mod_rewrite to Point URLs at FastCGl

The second step is telling Apache to use FastCGI for URLs that match a certain pattern. To do this, use the
mod_rewrite module and rewrite URLs tomysite.fcgi (or whatever you specified in the
FastCGIExternalServer directive, as explained in the previous section).

In this example, we tell Apache to use FastCGI to handle any request that doesn’t represent a file on the
filesystem and doesn’t start with /media/. This is probably the most common case, if you’re using Django’s
admin site:

<VirtualHost 12.34.56.78>

ServerName example.com

DocumentRoot /home/user/public_html

Alias /media /home/user/python/django/contrib/admin/media

RewriteEngine On

RewriteRule */(media.*)$ /$1 [QSA,L]

RewriteCond %${REQUEST_FILENAME} !-f

RewriteRule */(.*)$ /mysite.fcgi/$1 [QSA,L]
</VirtualHost>

20.4.4 FastCGl and lighttpd

lighttpd (http://www.djangoproject.com/t/lighttpd/) is a lightweight Web server commonly used for serving
static files. It supports FastCGI natively and thus is also an ideal choice for serving both static and dynamic
pages, if your site doesn’t have any Apache-specific needs.

Make sure mod_ fastcgi is in your modules list, somewhere after mod_rewrite and mod_access, but
not after mod_accesslog. You’ll probably want mod_alias as well, for serving admin media.

Add the following to your lighttpd config file:

server.document-root = "/home/user/public_html"

20.4.3 Using Django with Apache and FastCGl 235


http://www.djangoproject.com/r/mod_fastcgi/
http://www.djangoproject.com/r/mod_fastcgi/FastCGIExternalServer/
http://www.djangoproject.com/r/lighttpd/

The Django Book

fastcgi.server = (
"/mysite.fcgi" => (
"main" => (
# Use host / port instead of socket for TCP fastcgi
# "host" => "127.0.0.1",
# "port" => 3033,

"socket" => "/home/user/mysite.sock",
"check-local" => "disable",
)
) r
)
alias.url = (
"/media/" => "/home/user/django/contrib/admin/media/",

)
url.rewrite-once = (
"~ (/media.*)s$" => "S$1",

"~/favicon\.ico$" => "/media/favicon.ico",
"A(/.F)S" => "/mysite.fcgi$l",

20.4.4.1 Running Multiple Django Sites on One lighttpd Instance

lighttpd lets you use “conditional configuration” to allow configuration to be customized per host. To specify
multiple FastCGI sites, just add a conditional block around your FastCGI config for each site:

# If the hostname is 'www.examplel.com'...

SHTTP ["host"] == "www.examplel.com" {
server.document—-root = "/foo/sitel"
fastcgi.server = (

)

}

# If the hostname is 'www.example2Z.com'...

SHTTP ["host"] == "www.example2.com" {
server.document—-root = "/foo/site2"
fastcgi.server = (

)

You can also run multiple Django installations on the same site simply by specifying multiple entries in the
fastcgi.server directive. Add one FastCGI host for each.

20.4.5 Running Django on a Shared-Hosting Provider with Apache

Many shared-hosting providers don’t allow you to run your own server daemons or edit the ht tpd.conf
file. In these cases, it’s still possible to run Django using Web server-spawned processes.

Note

If you’re using Web server-spawned processes, as explained in this section, there’s no need for you to start the
FastCGI server on your own. Apache will spawn a number of processes, scaling as it needs to.

In your Web root directory, add this to a file named .htaccess

AddHandler fastcgi-script .fcgi
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f

20.4.4 FastCGl and lighttpd 236



The Django Book

RewriteRule 7~ (.*)$ mysite.fcgi/$1 [QSA,L]

Then, create a small script that tells Apache how to spawn your FastCGI program. Create a file,
mysite.fcgi, and place it in your Web directory, and be sure to make it executable

#!/usr/bin/python
import sys, os

# Add a custom Python path.
sys.path.insert (0, "/home/user/python")

# Switch to the directory of your project. (Optional.)
# os.chdir ("/home/user/myproject")

# Set the DJANGO_SETTINGS_MODULE environment variable.
os.environ['DJANGO_SETTINGS_MODULE'] = "myproject.settings"

from django.core.servers.fastcgl import runfastcgi
runfastcgi (method="threaded", daemonize="false")

20.4.5.1 Restarting the Spawned Server

If you change any Python code on your site, you’ll need to tell FastCGI the code has changed. But there’s no
need to restart Apache in this case. Rather, just reupload mysite.fcgi — or edit the file — so that the
timestamp on the file changes. When Apache sees the file has been updated, it will restart your Django
application for you.

If you have access to a command shell on a Unix system, you can accomplish this easily by using the t ouch
command:

touch mysite.fcgi

20.5 Scaling

Now that you know how to get Django running on a single server, let’s look at how you can scale out a
Django installation. This section walks through how a site might scale from a single server to a large-scale
cluster that could serve millions of hits an hour.

It’s important to note, however, that nearly every large site is large in different ways, so scaling is anything
but a one-size-fits-all operation. The following coverage should suffice to show the general principle, and
whenever possible we’ll try to point out where different choices could be made.

First off, we’ll make a pretty big assumption and exclusively talk about scaling under Apache and

mod_python. Though we know of a number of successful medium- to large-scale FastCGI deployments,
we’re much more familiar with Apache.

20.5.1 Running on a Single Server

Most sites start out running on a single server, with an architecture that looks something like Figure 20-1.

20.4.5 Running Django on a Shared-Hosting Provider with Apache 237



The Django Book

django

database

iil-»

media

server

Figure 20-1: a single server Django setup.

This works just fine for small- to medium-sized sites, and it’s relatively cheap — you can put together a
single-server site designed for Django for well under $3,000.

However, as traffic increases you’ll quickly run into resource contention between the different pieces of
software. Database servers and Web servers love to have the entire server to themselves, so when run on the
same server they often end up “fighting” over the same resources (RAM, CPU) that they’d prefer to
monopolize.

This is solved easily by moving the database server to a second machine, as explained in the following
section.

20.5.2 Separating Out the Database Server

As far as Django is concerned, the process of separating out the database server is extremely easy: you’ll
simply need to change the DATABASE_HOST setting to the IP or DNS name of your database server. It’s
probably a good idea to use the IP if at all possible, as relying on DNS for the connection between your Web

server and database server isn’t recommended.

With a separate database server, our architecture now looks like Figure 20-2.

django

ii-e

webh server

database

l

database server

Figure 20-2: Moving the database onto a dedicated server.

20.5.1 Running on a Single Server 238



The Django Book

Here we’re starting to move into what’s usually called n-fier architecture. Don’t be scared by the buzzword —
it just refers to the fact that different “tiers” of the Web stack get separated out onto different physical
machines.

At this point, if you anticipate ever needing to grow beyond a single database server, it’s probably a good idea
to start thinking about connection pooling and/or database replication. Unfortunately, there’s not nearly
enough space to do those topics justice in this book, so you’ll need to consult your database’s documentation
and/or community for more information.

20.5.3 Running a Separate Media Server

We still have a big problem left over from the single-server setup: the serving of media from the same box
that handles dynamic content.

Those two activities perform best under different circumstances, and by smashing them together on the same
box you end up with neither performing particularly well. So the next step is to separate out the media — that
is, anything not generated by a Django view — onto a dedicated server (see Figure 20-3).

ner media server

django
we

;]
h

database server

Figure 20-3: Separating out the media server.

Ideally, this media server should run a stripped-down Web server optimized for static media delivery. lighttpd
and tux (http://www.djangoproject.com/r/tux/) are both excellent choices here, but a heavily stripped down
Apache could work, too.

For sites heavy in static content (photos, videos, etc.), moving to a separate media server is doubly important
and should likely be the first step in scaling up.

This step can be slightly tricky, however. Django’s admin needs to be able to write uploaded media to the
media server (the MEDIA_ROOT setting controls where this media is written). If media lives on another

server, however, you’ll need to arrange a way for that write to happen across the network.

The easiest way to do this is to use NFS to mount the media server’s media directories onto the Web server(s).
If you mount them in the same location pointed to by MEDIA_ROOT, media uploading will Just Worka...¢.

20.5.4 Implementing Load Balancing and Redundancy

At this point, we’ve broken things down as much as possible. This three-server setup should handle a very
large amount of traffic — we served around 10 million hits a day from an architecture of this sort — so if you
grow further, you’ll need to start adding redundancy.

20.5.2 Separating Out the Database Server 239


http://www.djangoproject.com/r/tux/

The Django Book

This is a good thing, actually. One glance at Figure 20-3 shows you that if even a single one of your three
servers fails, you’ll bring down your entire site. So as you add redundant servers, not only do you increase
capacity, but you also increase reliability.

For the sake of this example, let’s assume that the Web server hits capacity first. It’s easy to get multiple
copies of a Django site running on different hardware — just copy all the code onto multiple machines, and
start Apache on both of them.

However, you’ll need another piece of software to distribute traffic over your multiple servers: a load
balancer. You can buy expensive and proprietary hardware load balancers, but there are a few high-quality
open source software load balancers out there.

Apache’s mod_proxy is one option, but we’ve found Perlbal (http://www.djangoproject.com/r/perlbal/) to
be simply fantastic. It’s a load balancer and reverse proxy written by the same folks who wrote memcached
(see Chapter 13).

Note

If you’re using FastCGI, you can accomplish this same distribution/load balancing step by separating your
front-end Web servers and back-end FastCGI processes onto different machines. The front-end server
essentially becomes the load balancer, and the back-end FastCGI processes replace the

Apache/mod_python/Django servers.

With the Web servers now clustered, our evolving architecture starts to look more complex, as shown in
Figure 20-4.

perlbal

load balancer media server

|

web server cluster

database server

Figure 20-4: A load-balanced, redundant server setup.
Notice that in the diagram the Web servers are referred to as a “cluster” to indicate that the number of servers

is basically variable. Once you have a load balancer out front, you can easily add and remove back-end Web
servers without a second of downtime.

20.5.4 Implementing Load Balancing and Redundancy 240


http://www.djangoproject.com/r/perlbal/

The Django Book
20.5.5 Going Big

At this point, the next few steps are pretty much derivatives of the last one:

¢ As you need more database performance, you’ll need to add replicated database servers. MySQL
includes built-in replication; PostgreSQL users should look into Slony
(http://www.djangoproject.com/t/slony/) and pgpool (http://www.djangoproject.com/r/pgpool/) for
replication and connection pooling, respectively.

o If the single load balancer isn’t enough, you can add more load balancer machines out front and
distribute among them using round-robin DNS.

e If a single media server doesn’t suffice, you can add more media servers and distribute the load with
your load-balancing cluster.

¢ If you need more cache storage, you can add dedicated cache servers.

e At any stage, if a cluster isn’t performing well, you can add more servers to the cluster.

After a few of these iterations, a large-scale architecture might look like Figure 20-5.

perlbal perlbal perlbal media media

load balancing cluster media server cluster

N

web server cluster cache cluster

|
v v v

database server cluster

Figure 20-5. An example large-scale Django setup.

Though we’ve shown only two or three servers at each level, there’s no fundamental limit to how many you
can add.

Once you get up to this level, you’ve got quite a few options. Appendix A has some information from a few

developers responsible for some large-scale Django installations. If you’re planning a high-traffic Django site,
it’s worth a read.

20.6 Performance Tuning

If you have huge amount of money, you can just keep throwing hardware at scaling problems. For the rest of
us, though, performance tuning is a must.

20.5.5 Going Big 241


http://www.djangoproject.com/r/slony/
http://www.djangoproject.com/r/pgpool/

The Django Book

Note

Incidentally, if anyone with monstrous gobs of cash is actually reading this book, please consider a substantial
donation to the Django project. We accept uncut diamonds and gold ingots, too.

Unfortunately, performance tuning is much more of an art than a science, and it is even more difficult to write
about than scaling. If you’re serious about deploying a large-scale Django application, you should spend a
great deal of time learning how to tune each piece of your stack.

The following sections, though, present a few Django-specific tuning tips we’ve discovered over the years.

20.6.1 There’s No Such Thing As Too Much RAM

As of this writing, the really expensive RAM costs only about $200 per gigabyte — pennies compared to the
time spent tuning elsewhere. Buy as much RAM as you can possibly afford, and then buy a little bit more.

Faster processors won’t improve performance all that much; most Web servers spend up to 90% of their time
waiting on disk I/O. As soon as you start swapping, performance will just die. Faster disks might help slightly,
but they’re much more expensive than RAM, such that it doesn’t really matter.

If you have multiple servers, the first place to put your RAM is in the database server. If you can afford it, get
enough RAM to get fit your entire database into memory. This shouldn’t be too hard. LIJWorld.com’s
database — including over half a million newspaper articles dating back to 1989 — is under 2GB.

Next, max out the RAM on your Web server. The ideal situation is one where neither server swaps — ever. If
you get to that point, you should be able to withstand most normal traffic.

20.6.2 Turn Off Keep-Alive

Keep—-Alive is a feature of HTTP that allows multiple HTTP requests to be served over a single TCP
connection, avoiding the TCP setup/teardown overhead.

This looks good at first glance, but it can kill the performance of a Django site. If you’re properly serving
media from a separate server, each user browsing your site will only request a page from your Django server

every ten seconds or so. This leaves HTTP servers waiting around for the next keep-alive request, and an idle
HTTP server just consumes RAM that an active one should be using.

20.6.3 Use memcached
Although Django supports a number of different cache back-ends, none of them even come close to being as

fast as memcached. If you have a high-traffic site, don’t even bother with the other back-ends — go straight to
memcached.

20.6.4 Use memcached Often
Of course, selecting memcached does you no good if you don’t actually use it. Chapter 13 is your best friend

here: learn how to use Django’s cache framework, and use it everywhere possible. Aggressive, preemptive
caching is usually the only thing that will keep a site up under major traffic.

20.6.5 Join the Conversation

Each piece of the Django stack — from Linux to Apache to PostgreSQL or MySQL — has an awesome
community behind it. If you really want to get that last 1% out of your servers, join the open source

20.6 Performance Tuning 242



The Django Book

communities behind your software and ask for help. Most free-software community members will be happy to
help.

And also be sure to join the Django community. Your humble authors are only two members of an incredibly

active, growing group of Django developers. Our community has a huge amount of collective experience to
offer.

20.7 What’s Next?

You’ve reached the end of our regularly scheduled program. The following appendixes all contain reference
material that you might need as you work on your Django projects.

We wish you the best of luck in running your Django site, whether it’s a little toy for you and a few friends, or
the next Google.

20.6.5 Join the Conversation 243



21 Appendix A: Case Studies

To help answer questions about how Django works in the “real world,” we spoke with (well, emailed) a
handful of people who have complete, deployed Django sites under their belts. Most of this appendix is in
their words, which have been lightly edited for clarity.

21.1 Cast of Characters

Let’s meet our cast and their projects.

® Ned Batchelder is the lead engineer at Tabblo.com. Tabblo started life as a storytelling tool built
around photo sharing, but it was recently bought by Hewlett-Packard for more wide-reaching
purposes:

HP saw real value in our style of web development, and in the way we bridged the

virtual and physical worlds. They acquired us so that we could bring that technology

to other sites on the Web. Tabblo.com is still a great storytelling site, but now we are

also working to componentize and rehost the most interesting pieces of our

technology.

® Johannes Beigel is a lead developer at Brainbot Technologies AG. Brainbot’s major public-facing

Django site is http://pediapress.com/, where you can order printed versions of Wikipedia articles.
Johannes’s team is currently working on an enterprise-class knowledge-management program known
as Brainfiler.

Johannes tells us that Brainfiler

[...] is a software solution to manage, search for, categorize, and share information
from distributed information sources. It’s built for enterprise usage for both the
intranet and the Internet and is highly scalable and customizable. The development of
the core concepts and components started in 2001. Just recently we have
redesigned/reimplemented the application server and Web front-end, which is [now]
based on Django.
® David Cramer is the lead developer at Curse, Inc. He develops Curse.com, a gaming site devoted to
massively multiplayer online games like World of Warcraft, Ultima Online, and others.

Curse.com is one of the largest deployed Django sites on the Internet:

We do roughly 60-90 million page views in an average month, and we have peaked at

over 130 million page views [in a month] using Django. We are a very dynamic and

user-centric Web site for online gamers, specifically massively multiplayer games,

and are one of the largest Web sites globally for World of Warcraft. Our Web site

was established in early 2005, and since late 2006 we have been expanding our reach

into games beyond World of Warcraft.

e Christian Hammond is a senior engineer at VMware (a leading developer of virtualization software).

He’s also the lead developer of Review Board (http:/www.review-board.org/), a Web-based code
review system. Review Board began life as an internal VMware project, but is now open source:

In late 2006, David Trowbridge and I were discussing the process we used at
VMware for handling code reviews. Before people committed code to the source
repository, they were supposed to send out a diff of the change to a mailing list and
get it reviewed. It was all handled over email, and as such, it became hard to keep
track of reviews requiring your attention. We began to discuss potential solutions for
this problem.

21 Appendix A: Case Studies 244


http://pediapress.com/
http://www.review-board.org/

The Django Book

Rather than writing down my ideas, I put them into code. Before long, Review Board
was born. Review Board helps developers, contributors, and reviewers to keep track
of the code that’s out for review and to better communicate with each other. Rather
than vaguely referencing some part of the code in an email, the reviewer is able to
comment directly on the code. The code, along with the comments, will then appear
in the review, giving the developer enough context to work with to quickly make the
necessary changes.

Review Board grew quickly at VMware. Much faster than expected, actually. Within
a few short weeks, we had ten teams using Review Board. However, this project is
not internal to VMware. It was decided day one that this should be open source and
be made available for any company or project to use.

We made an open source announcement and put a site together, which is available at
http://www.review-board.org/. The response to our public announcement was as
impressive as our internal VMware announcement. Before long, our demo server
reached over 600 users, and people began to contribute back to the project.

Review Board isn’t the only code review tool on the market, but it is the first we have
seen that is open source and has the extensive feature set we’ve worked to build into
it. We hope this will in time benefit many open source and commercial projects.

21.2 Why Django?

We asked each developer why he decided to use Django, what other options were considered, and how the
decision to use Django was ultimately made.

Ned Batchelder:

Before I joined Tabblo, Antonio Rodriguez (Tabblo’s founder/CTO) did an evaluation of
Rails and Django, and found that both provided a great quick-out-of-the-blocks rapid
development environment. In comparing the two, he found that Django had a greater
technical depth that would make it easier to build a robust, scalable site. Also, Django’s
Python foundation meant that we’d have all the richness of the Python ecosystem to support
our work. This has definitely been proven out as we’ve built Tabblo.

Johannes Beigel:
As we have been coding in Python for many years now, and quickly started using the Twisted
framework, Nevow was the most “natural” solution for our Web application stuff. But we
soon realized that — despite the perfect Twisted integration — many things were getting a

little cumbersome and got in the way of our agile development process.

After some Internet research it quickly became clear that Django was the most promising
Web development framework for our requirements.

The trigger that led us to Django was its template syntax, but we soon appreciated all the
other features that are included, and so Django was pretty much a fast-selling item.

After doing a few years of parallel development and deployment (Nevow is still in use for
some projects on customer sites), we came to the conclusion that Django is a lot less

cumbersome, results in code that is much better to maintain, and is more fun to work with.

David Cramer:

21.1 Cast of Characters 245


http://www.review-board.org/

The Django Book

I heard about Django in the summer of 2006, about the time we were getting ready to do an
overhaul of Curse, and we did some research on it. We were all very impressed at what it
could do, and where it could save time for us. We talked it over, decided on Django, and
began writing the third revision to the Web site almost immediately.

Christian Hammond:
I had toyed around with Django on a couple of small projects and had been very impressed
with it. It’s based on Python, which I had become a big fan of, and it made it easy not only to
develop Web sites and Web apps, but also to keep them organized and maintainable. This was

always tricky in PHP and Perl. Based on past experiences, going with Django was a
no-brainer.

21.3 Getting Started

Since Django’s a relatively new tool, there aren’t that many experienced Django developers out there. We
asked our “panel” how they got their team up to speed on Django and for any tips they wanted to share with
new Django developers.

Johannes Beigel:

After coding mostly in C++ and Perl, we switched to Python and continued using C++ for the
computationally intensive code.

[We learned Django by] working through the tutorial, browsing the documentation to get an
idea of what’s possible (it’s easy to miss many features by just doing the tutorial), and trying
to understand the basic concepts behind middleware, request objects, database models,
template tags, custom filters, forms, authorization, localization... Then [we could] take a
deeper look at those topics when [we] actually needed them.

David Cramer:
The Web site documentation is great. Stick with it.

Christian Hammond:
David and I both had prior experience with Django, though it was limited. We had learned a
lot through our development of Review Board. I would advise new users to read through the
well-written Django documentation and [the book you’re reading now], both of which have

been invaluable to us.

We didn’t have to bribe Christian to get that quote — promise!

21.4 Porting Existing Code

Although Review Board and Tabblo were ground-up development, the other sites were ported from existing
code. We were interested in hearing how that process went.

Johannes Beigel:
We started to “port” the site from Nevow, but we soon realized that we’d like to change so

many conceptual things (both in the Ul part and in the application server part) that we started
from scratch and used the former code merely as a reference.

21.2 Why Django? 246



The Django Book

David Cramer:

The previous site was written in PHP. Going from PHP to Python was great
programmatically. The only downfall is you have to be a lot more careful with memory
management [since Django processes stay around a lot longer than PHP processes (which are
single cycle)].

21.5 How Did It Go?

Now for the million-dollar question: How did Django treat you? We were especially interested in hearing
where Django fell down — it’s important to know where your tools are weak before you run into roadblocks.

Ned Batchelder:

Django has really enabled us to experiment with our Web site’s functionality. Both as a
startup heat-seeking customers and businesses, and now as a part of HP working with a
number of partners, we’ve had to be very nimble when it comes to adapting the software to
new demands. The separation of functionality into models, views, and controllers has given
us modularity so we can appropriately choose where to extend and modify. The underlying
Python environment gives us the opportunity to make use of existing libraries to solve
problems without reinventing the wheel. PIL, PDFlib, ZSI, JSmin, and BeautifulSoup are just
a handful of the libraries we’ve pulled in to do some heavy lifting for us.

The most difficult part of our Django use has been the relationship of memory objects to
database objects, in a few ways. First, Django’s ORM does not ensure that two references to
the same database record are the same Python object, so you can get into situations where two
parts of the code are both trying to modify the same record, and one of the copies is stale.
Second, the Django development model encourages you to base your data objects on database
objects. We’ve found over time more and more uses for data objects that are not tied to the
database, and we’ve had to migrate away from assuming that data is stored in the database.

For a large, long-lived code base, it definitely makes sense to spend time up front anticipating
the ways your data will be stored and accessed, and building some infrastructure to support
those ways.

We’ve also added our own database migration facility so that developers don’t have to apply
SQL patches to keep their database schemas current. Developers who change the schema
write a Python function to update the database, and these are applied automatically when the
server is started.

Johannes Beigel:

We consider Django as a very successful platform that perfectly fits in the Pythonic way of
thinking. Almost everything just worked as intended.

One thing that needed a bit of work in our current project was tweaking the global
settings.py file and directory structure/configuration (for apps, templates, locale data,
etc.), because we implemented a highly modular and configurable system, where all Django
views are actually methods of some class instances. But with the omnipotence of dynamic
Python code, that was still possible.

David Cramer:

21.4 Porting Existing Code 247



The Django Book

We managed to push out large database applications in a weekend. This would have taken
one to two weeks to do on the previous Web site, in PHP. Django has shined exactly where
we wanted it to.

Now, while Django is a great platform, it can’t go without saying that it’s not built specific to
everyone’s needs. Upon the initial launch of the Django Web site, we had our highest traffic
month of the year, and we weren’t able to keep up. Over the next few months we tweaked bits
and pieces, mostly hardware and the software serving Django requests. [This included
modification of our] hardware configuration, optimization of Django, [and tuning] the
software we were using to serve the requests (which, at the time, was lighttpd and FastCGI).

In May of 2007, Blizzard (the creators of World of Warcraft) released another quite large
patch, as they had done in December when we first launched Django. The first thing going
through our heads was, “Hey, we nearly held up in December, this is nowhere near as big, we
should be fine.” We lasted about 12 hours before the servers started to feel the heat. The
question was raised again: was Django really the best solution for what we want to
accomplish?

Thanks to a lot of great support from the community, and a late night, we managed to
implement several “hot-fixes” to the Web site during those few days. The changes (which
hopefully have been rolled back into Django by the time this book is released) managed to
completely reassure everyone that while not everyone needs to be able to do 300 Web
requests per second, the people who do, can, with Django.

Christian Hammond:
Django allowed us to build Review Board fairly quickly by forcing us to stay organized
through its URL, view, and template separations, and by providing useful built-in
components, such as the authentication app, built-in caching, and the database abstraction.
Most of this has worked really well for us.
Being a dynamic [Web application], we’ve had to write a lot of JavaScript code. This is an
area that Django hasn’t really helped us with so far. Django’s templates, template tags, filters,
and forms support are great, but aren’t easily usable from JavaScript code. There are times
when we would want to use a particular template or filter but had no way of using it from

JavaScript. I would personally like to see some creative solutions for this incorporated into
Django.

21.6 Team Structure

Often successful projects are made so by their teams, not their choice of technology. We asked our panel how
their teams work, and what tools and techniques they use to stay on track.

Ned Batchelder:

We’re a pretty standard Web startup environment: Trac/SVN, five developers. We have a
staging server, a production server, an ad hoc deploy script, and so on.

Memcached rocks.
Johannes Beigel:

We use Trac as our bug tracker and wiki and have recently switched from using
Subversion+SVK to Mercurial (a Python-written distributed version- control system that

21.5 How Did It Go? 248



The Django Book

handles branching/merging like a charm).

I think we have a very agile development process, but we do not follow a “rigid”
methodology like Extreme Programming ([though] we borrow many ideas from it). We are
more like Pragmatic Programmers.

We have an automated build system (customized but based on SCons) and unit tests for
almost everything.

David Cramer:

Our team consists of four Web developers, all working in the same office space, so it’s quite
easy to communicate. We rely on common tools such as SVN and Trac.

Christian Hammond:

Review Board currently has two main developers (myself and David Trowbridge) and a
couple of contributors. We’re hosted on Google Code and make use of their Subversion
repository, issue tracker, and wiki. We actually use Review Board to review our changes
before they go in. We test on our local computers, both by hand and through unit tests. Our
users at VMware who use Review Board every day provide a lot of useful feedback and bug
reports, which we try to incorporate into the program.

21.7 Deployment

The Django developers take ease of deployment and scaling very seriously, so we’re always interested in
hearing about real-world trials and tribulations.

Ned Batchelder:

We’ve used caching both at the query and response layers to speed response time. We have a
classic configuration: a multiplexer, many app servers, one database server. This has worked
well for us, because we can use caching at the app server to avoid database access, and then
add app servers as needed to handle the volume.

Johannes Beigel:

Linux servers, preferably Debian, with many gigs of RAM. Lighttpd as the Web server,
Pound as the HTTPS front-end and load balancer if needed, and Memcached for caching.
SQLite for small databases, Postgres if data grows larger, and highly specialized custom
database stuff for our search and knowledge management components.

David Cramer:
Our structure is still up for debate... [but this is what’s current]:

When a user requests the site they are sent to a cluster of Squid servers using lighttpd. There,
servers then check if the user is logged in. If not, they’re served a cached page. A logged-in
user is forwarded to a cluster of Web servers running apache2 plus mod_python (each with a
large amount of memory), which then each rely on a distributed Memcached system and a
beastly MySQL database server. Static content is hosted on a cluster of lighttpd servers.
Media, such as large files and videos, are hosted (currently) on a server using a minimal
Django install using lighttpd plus fastcgi. As of right now we’re moving toward pushing all
media to a service similar to Amazon’s S3.

21.6 Team Structure 249



The Django Book

Christian Hammond:

There are two main production servers right now. One is at VMware and consists of an
Ubuntu virtual machine running on VMware ESX. We use MySQL for the database,
Memcached for our caching back-end, and currently Apache for the Web server. We have
several powerful servers that we can scale across when we need to. We may find ourselves
moving MySQL or Memcached to another virtual machine as our user base increases.

The second production server is the one for Review Board itself. The setup is nearly identical
to the one at VMware, except the virtual machine is being hosted on VMware Server.

21.7 Deployment 250



22 Appendix B: Model Definition Reference

Chapter 5 explains the basics of defining models, and we use them throughout the rest of the book. There is,
however, a huge range of model options available not covered elsewhere. This appendix explains each
possible model definition option.

Note that although these APIs are considered very stable, the Django developers consistently add new
shortcuts and conveniences to the model definition. It’s a good idea to always check the latest documentation

online at http://www.djangoproject.com/documentation/0.96/model-api/.

22.1 Fields

The most important part of a model — and the only required part of a model — is the list of database fields it
defines.

Field Name Restrictions
Django places only two restrictions on model field names:

1. A field name cannot be a Python reserved word, because that would result in a Python syntax error,
for example:

class Example (models.Model) :
pass = models.IntegerField() # 'pass' is a reserved word!

2. A field name cannot contain more than one underscore in a row, due to the way Django’s query
lookup syntax works, for example:

class Example (models.Model) :
foo__bar = models.IntegerField() # 'foo_ _bar' has two underscores!

These limitations can be worked around, though, because your field name doesn’t necessarily have to match
your database column name. See “db_column”, below. below.

SQL reserved words, such as join, where, or select, are allowed as model field names, because Django
escapes all database table names and column names in every underlying SQL query. It uses the quoting syntax
of your particular database engine.

Each field in your model should be an instance of the appropriate Field class. Django uses the field class
types to determine a few things:

® The database column type (e.g., INTEGER, VARCHAR).
® The widget to use in Django’s admin interface, if you care to use it (e.g., <input type="text">,
<select>).

® The minimal validation requirements, which are used in Django’s admin interface.

A complete list of field classes follows, sorted alphabetically. Note that relationship fields (ForeignKey,
etc.) are handled in the next section.

22.1.1 AutoField

An IntegerField that automatically increments according to available IDs. You usually won’t need to use
this directly; a primary key field will automatically be added to your model if you don’t specify otherwise.

22 Appendix B: Model Definition Reference 251


http://www.djangoproject.com/documentation/0.96/model-api/

The Django Book
22.1.2 BooleanField

A true/false field.

22.1.3 CharField

A string field, for small- to large-sized strings. For large amounts of text, use TextField.

CharField has an extra required argument, maxlength, which is the maximum length (in characters) of
the field. This maximum length is enforced at the database level and in Django’s validation.

22.1.4 CommaSeparatedintegerField

A field of integers separated by commas. As in CharField, the maxlength argument is required.

22.1.5 DateField

A date field. DateField has a few extra optional arguments, as shown in Table B-1.
Table B-1. Extra DateField Options

Argument Description

Automatically sets the field to now every time the object is saved. It’s useful for
auto_now “last-modified” timestamps. Note that the current date is always used; it’s not just a
default value that you can override.

Automatically sets the field to now when the object is first created. It’s useful for creation
auto_now_add of timestamps. Note that the current date is always used; it’s not just a default value that
you can override.

22.1.6 DateTimeField

A date and time field. It takes the same extra options as DateField.

22.1.7 EmailField

A CharField that checks that the value is a valid email address. This doesn’t accept maxlength; its
maxlength is automatically set to 75.

22.1.8 FileField

A file-upload field. It has one required argument, as shown in Table B-3.
Table B-2. Extra FileField Option

Argument Description
A local filesystem path that will be appended to your MEDIA_ROOT setting to determine the
output of the get_<fieldname>_url () helper function

This path may contain st rftime formatting (see http://www.djangoproject.com/r/python/strftime/), which
will be replaced by the date/time of the file upload (so that uploaded files don’t fill up the given directory).

upload_to

UsingaFileField or an ImageField in a model takes a few steps:

22.1.2 BooleanField 252


http://www.djangoproject.com/r/python/strftime/

The Django Book

1. In your settings file, you’ll need to define MEDIA_ROOT as the full path to a directory where you’d
like Django to store uploaded files. (For performance, these files are not stored in the database.)
Define MEDIA_URL as the base public URL of that directory. Make sure that this directory is
writable by the Web server’s user account.

2. Addthe FileField or ImageField to your model, making sure to define the upload_to
option to tell Django to which subdirectory of MEDIA_ROOT it should upload files.

3. All that will be stored in your database is a path to the file (relative to MEDIA_ROOT). You’ll most
likely want to use the convenience get_<fieldname>_url function provided by Django. For
example, if your ImageField is called mug_shot, you can get the absolute URL to your image in
a template with { { object.get_mug_shot_url }}.

For example, say your MEDIA_ROOT is setto ' /home/media', and upload_to is set to
'photos/%Y/%m/%d"'. The '$Y/%m/%d" part of upload_to is strftime formatting; '$Y ' is the
four-digit year, ' $m"' is the two-digit month, and '%d"' is the two-digit day. If you upload a file on January
15, 2007, it will be saved in the directory /home/media/photos/2007/01/15.

If you want to retrieve the upload file’s on-disk file name, or a URL that refers to that file, or the file’s size,
you can use the get _FIELD_filename (), get_FIELD_url (),and get_FIELD_size () methods.
See Appendix C for a complete explanation of these methods.

Note

Whenever you deal with uploaded files, you should pay close attention to where you’re uploading them and
what type of files they are, to avoid security holes. Validate all uploaded files so that you’re sure the files are
what you think they are.

For example, if you blindly let somebody upload files, without validation, to a directory that’s within your

Web server’s document root, then somebody could upload a CGI or PHP script and execute that script by
visiting its URL on your site. Don’t let that happen!

22.1.9 FilePathField

A field whose choices are limited to the file names in a certain directory on the filesystem. It has three special
arguments, as shown in Table B-4.

Table B-3. Extra FilePathField Options

Argument Description
Required; the absolute filesystem path to a directory from which this

th . .

pa FilePathField should get its choices (e.g., " /home/images").
Optional; a regular expression, as a string, that FilePathField will use to filter

match file names. Note that the regex will be applied to the base file name, not the full
path (e.g., "foo.*\.txt”"", which will match a file called foo23.txt, but not
bar.txt or foo23.gif).

, Optional; either True or False. The defaultis False. It specifies whether all
recursive

subdirectories of path should be included.
Of course, these arguments can be used together.

The one potential gotcha is that mat ch applies to the base file name, not the full path. So, this example:
FilePathField (path="/home/images", match="foo.*", recursive=True)

will match /home/images/foo.gif butnot /home/images/foo/bar.gif because the match
applies to the base file name (foo.gif and bar.gif).

22.1.8 FileField 253



The Django Book
22.1.10 FloatField

A floating-pint number, represented in Python by a f1oat instance. It has two required arguments, as shown
in Table B-2.

Table B-4. Extra FloatField Options

Argument Description
max_digits The maximum number of digits allowed in the number
decimal_places The number of decimal places to store with the number
For example, to store numbers up to 999 with a resolution of two decimal places, you’d use the following:

models.FloatField (..., max_digits=5, decimal_places=2)

And to store numbers up to approximately 1 billion with a resolution of ten decimal places, you would use
this:

models.FloatField (..., max_digits=19, decimal_places=10)

22.1.11 ImageField

Like FileField, but validates that the uploaded object is a valid image. It has two extra optional
arguments, height_field and width_field, which, if set, will be autopopulated with the height and
width of the image each time a model instance is saved.

In addition to the special get_FIELD_* methods that are available for FileField, an ImageField also
has get_FIELD_height () and get_FIELD_width () methods. These are documented in Appendix C.

ImageField requires the Python Imaging Library (http://www.pythonware.com/products/pil/).

22.1.12 IntegerField

An integer.

22.1.13 IPAddressField

An IP address, in string format (e.g., "24.124.1.30").

22.1.14 NullBooleanField

Like a BooleanField, but allows None/NULL as one of the options. Use this instead of a
BooleanField withnull=True.

22.1.15 PhoneNumberField

A CharField that checks that the value is a valid U.S.-style phone number (in the format
XXX -XXX—=XXXX).

Note

If you need to represent a phone number from another country, check the
django.contrib.localflavor package to see if field definitions for your country are included.

22.1.10 FloatField 254


http://www.pythonware.com/products/pil/

The Django Book
22.1.16 PositivelntegerField

Like an IntegerField, but must be positive.

22.1.17 PositiveSmallintegerField

Like aPositiveIntegerField, but only allows values under a certain point. The maximum value
allowed by these fields is database dependent, but since databases have a 2-byte small integer field, the
maximum positive small integer is usually 65,535.

22.1.18 SlugField

“Slug” is a newspaper term. A slug is a short label for something, containing only letters, numbers,
underscores, or hyphens. They’re generally used in URLs.

Like a CharField, you can specify maxlength. If maxlength is not specified, Django will use a
default length of 50.

A SlugField implies db_index=True since slugs are primarily used for database lookups.

SlugField accepts an extra option, prepopulate_from, which is a list of fields from which to
autopopulate the slug, via JavaScript, in the object’s admin form:

models.SlugField (prepopulate_fpom=("pre_name", "name"))

prepopulate_fromdoesn’t accept DateTimeField names as arguments.

22.1.19 SmallintegerField

Like an IntegerField, but only allows values in a certain database-dependent range (usually -32,768 to
+32,767).

22.1.20 TextField

An unlimited-length text field.

22.1.21 TimeField

A time of day. It accepts the same autopopulation options as DateField and DateTimeField.

22.1.22 URLField

A field for a URL. If the verify_exists option is True (the default), the URL given will be checked for
existence (i.e., the URL actually loads and doesn’t give a 404 response).

Like other character fields, URLField takes the maxlength argument. If you don’t specify maxlength,
a default of 200 is used.

22.1.23 USStateField

A two-letter U.S. state abbreviation.

22.1.16 PositivelntegerField 255



The Django Book

Note

If you need to represent other countries or states, look first in the django.contrib.localflavor
package to see if Django already includes fields for your locale.

22.1.24 XMLField

A TextField that checks that the value is valid XML that matches a given schema. It takes one required
argument, schema_path, which is the filesystem path to a RELAX NG (http://www.relaxng.org/) schema
against which to validate the field.

Requires jing (http://thaiopensource.com/relaxng/jing.html) to validate the XML.

22.2 Universal Field Options

The following arguments are available to all field types. All are optional.

22.2.1 null

If True, Django will store empty values as NULL in the database. The defaultis False.

Note that empty string values will always get stored as empty strings, not as NULL. Only use null=True for
nonstring fields such as integers, Booleans, and dates. For both types of fields, you will also need to set
blank=True if you wish to permit empty values in forms, as the nul1l parameter only affects database
storage (see the following section, titled “blank™).

Avoid using null on string-based fields such as CharField and TextField unless you have an
excellent reason. If a string-based field has nul1=True, that means it has two possible values for “no data”:

NULL and the empty string. In most cases, it’s redundant to have two possible values for “no data”; Django’s
convention is to use the empty string, not NULL.

22.2.2 blank
If True, the field is allowed to be blank. The default is False.
Note that this is different from null. null is purely database related, whereas blank is validation related.

If a field has blank=True, validation on Django’s admin site will allow entry of an empty value. If a field
has blank=False, the field will be required.

22.2.3 choices

An iterable (e.g., a list, tuple, or other iterable Python object) of two tuples to use as choices for this field.

If this is given, Django’s admin interface will use a select box instead of the standard text field and will limit
choices to the choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = (

('"FR', 'Freshman'),
('SO', 'Sophomore'),
('"JR', 'Junior'),
('"SR', 'Senior'),
("GR', 'Graduate'),

22.1.23 USStateField 256


http://www.relaxng.org/
http://thaiopensource.com/relaxng/jing.html

The Django Book

)

The first element in each tuple is the actual value to be stored. The second element is the human-readable
name for the option.

The choices list can be defined either as part of your model class:

class Foo (models.Model) :
GENDER_CHOICES = (
('M', 'Male'),
('F', 'Female'),
)
gender = models.CharField(maxlength=1, choices=GENDER_CHOICES)

or outside your model class altogether:
GENDER_CHOICES = (

('M', 'Male'),

('F', 'Female'),
)

class Foo (models.Model) :
gender = models.CharField(maxlength=1, choices=GENDER_CHOICES)

For each model field that has choices set, Django will add a method to retrieve the human-readable name
for the field’s current value. See Appendix C for more details.

22.2.4 db_column

The name of the database column to use for this field. If this isn’t given, Django will use the field’s name.
This is useful when you’re defining a model around a database that already exists.

If your database column name is an SQL reserved word, or if it contains characters that aren’t allowed in

Python variable names (notably the hyphen), that’s OK. Django quotes column and table names behind the
scenes.

22.2.5 db_index

If True, Django will create a database index on this column when creating the table (i.e., when running
manage.py syncdb). ta default —-

The default value for the field.

22.2.6 editable

If False, the field will not be editable in the admin interface or via form processing. The default is True.

22.2.7 help_text

Extra “help” text to be displayed under the field on the object’s admin form. It’s useful for documentation
even if your object doesn’t have an admin form.

22.2.8 primary_key

If True, this field is the primary key for the model.

22.2.3 choices 257



The Django Book

If you don’t specify primary_key=True for any fields in your model, Django will automatically add this
field:

id = models.AutoField('ID', primary_key=True)

Thus, you don’t need to set primary_key=True on any of your fields unless you want to override the
default primary-key behavior.

primary_key=True implies blank=False, null=False, and unique=True. Only one primary key
is allowed on an object.

22.2.9 radio_admin

By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey or have
choices set. If radio_admin is set to True, Django will use a radio-button interface instead.

Don’t use this for a field unless it’s a ForeignKey or has choices set.

22.2.10 unique

If True, the value for this field must be unique throughout the table.

22.2.11 unique_for_date

Set to the name of a DateField or DateTimeField to require that this field be unique for the value of
the date field, for example:

class Story(models.Model) :
pub_date = models.DateTimeField()
slug = models.SlugField(unique_for_date="pub_date")

In the preceding code, Django won’t allow the creation of two stories with the same slug published on the
same date. This differs from using a unique_together constraint in that only the date of the pub_date
field is taken into account; the time doesn’t matter.

22.2.12 unique_for_month

Like unique_for_date, but requires the field to be unique with respect to the month of the given field.

22.2.13 unique_for_year

Like unique_for_date and unique_for_month, but for an entire year.

22.2.14 verbose name
Each field type, except for ForeignKey, ManyToManyField, and OneToOneField, takes an optional
first positional argument — a verbose name. If the verbose name isn’t given, Django will automatically create

it using the field’s attribute name, converting underscores to spaces.

In this example, the verbose name is "Person's first name™:

first_name = models.CharField("Person's first name", maxlength=30)

22.2.8 primary_key 258



The Django Book

In this example, the verbose name is "first name":

first_name = models.CharField (maxlength=30)

ForeignKey, ManyToManyField, and OneToOneF1ield require the first argument to be a model class,
so use the verbose_name keyword argument:

poll = models.ForeignKey (Poll, verbose_name="the related poll")
sites = models.ManyToManyField(Site, verbose_name="list of sites")
place = models.OneToOneField(Place, verbose_name="related place")

The convention is not to capitalize the first letter of the verbose_name. Django will automatically
capitalize the first letter where it needs to.

22.3 Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define the
three most common types of database relationships: many-to-one, many-to-many, and one-to-one.

However, the semantics of one-to-one relationships are being revisited as this book goes to print, so they’re
not covered in this section. Check the online documentation for the latest information.

22.3.1 Many-to-One Relationships

To define a many-to-one relationship, use ForeignKey. You use it just like any other Field type: by
including it as a class attribute of your model.

ForeignKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manufacturer — thatis, a Manufacturer makes multiple cars but
each Car only has one Manufacturer — use the following definitions:

class Manufacturer (models.Model) :

class Car (models.Model) :
manufacturer = models.ForeignKey (Manufacturer)

To create a recursive relationship — an object that has a many-to-one relationship with itself — use
models.ForeignKey ('self'):

class Employee (models.Model) :
manager = models.ForeignKey ('self')

If you need to create a relationship on a model that has not yet been defined, you can use the name of the
model, rather than the model object itself:

class Car (models.Model) :
manufacturer = models.ForeignKey ('Manufacturer')

class Manufacturer (models.Model) :

Note, however, that you can only use strings to refer to models in the same models . py file — you cannot
use a string to reference a model in a different application, or to reference a model that has been imported

22.2.14 verbose_name 259



The Django Book

from elsewhere.

Behind the scenes, Django appends "_id" to the field name to create its database column name. In the
preceding example, the database table for the Car model will have a manufacturer_id column. (You can
change this explicitly by specifying db_column; see the earlier “db_column” section.) However, your code
should never have to deal with the database column name, unless you write custom SQL. You’ll always deal
with the field names of your model object.

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example) be
the name of the model, in lowercase letters. You can, of course, call the field whatever you want, for example:

class Car (models.Model) :
company_that_makes_it = models.ForeignKey (Manufacturer)
# ...

ForeignKey fields take a number of extra arguments for defining how the relationship should work (see
Table B-5). All are optional.

Table B-5. ForeignKey Options

Argument Description

If not False, this related object is edited “inline” on the related object’s page.
This means that the object will not have its own admin interface. Use either

edit_inline models.TABULAR or models.STACKED, which, respectively, designate
whether the inline-editable objects are displayed as a table or as a “stack” of
fieldsets.

A dictionary of lookup arguments and values (see Appendix C) that limit the
available admin choices for this object. Use this with functions from the Python
datet ime module to limit choices of objects by date. For example, the
following:

limit_choices_to = {'pub_date__lte': datetime.now}
Limit_choices_to only allows the choice of related objects with a pulo__date before the current
date/time to be chosen.

Instead of a dictionary, this can be a Q object (see Appendix C) for more
complex queries.

This is not compatible with edit_inline.

For inline-edited objects, this is the maximum number of related objects to

display in the admin interface. Thus, if a pizza could have only up to ten

toppings, max_num_in_admin=10 would ensure that a user never enters

more than ten toppings.

max_num_in_admin pping
Note that this doesn’t ensure more than ten related toppings ever get created. It
simply controls the admin interface; it doesn’t enforce things at the Python API
level or database level.
The minimum number of related objects displayed in the admin interface.
Normally, at the creation stage, num__in_admin inline objects are shown, and

min_num_in_admin at the edit stage, num_extra_on_change blank objects are shown in
addition to all pre-existing related objects. However, no fewer than
min_num_in_admin related objects will ever be displayed.

num_extra_on_change The number of extra blank related-object fields to show at the change stage.

22.3.1 Many-to-One Relationships 260



The Django Book

. . The default number of inline objects to display on the object page at the add
num_in_admin

stage.
Only display a field for the integer to be entered instead of a drop-down menu.
This is useful when related to an object type that will have too many rows to

raw_id_admin make a select box practical.

This is not used with edit_inline.

The name to use for the relation from the related object back to this one. See
Appendix C for more information.

The field on the related object that the relation is to. By default, Django uses the
primary key of the related object.

22.3.2 Many-to-Many Relationships

related_name

to_field

To define a many-to-many relationship, use ManyToManyField. Like ForeignKey,
ManyToManyField requires a positional argument: the class to which the model is related.

For example, if a Pizza has multiple Topping objects — that is, a Topping can be on multiple pizzas and
each P1izza has multiple toppings — here’s how you’d represent that:

class Topping (models.Model) :

class Pizza (models.Model) :
toppings = models.ManyToManyField (Topping)

As with ForeignKey, a relationship to self can be defined by using the string ' self ' instead of the model
name, and you can refer to as-yet undefined models by using a string containing the model name. However,
you can only use strings to refer to models in the same models . py file — you cannot use a string to
reference a model in a different application, or to reference a model that has been imported from elsewhere.

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example) be a
plural term describing the set of related model objects.

Behind the scenes, Django creates an intermediary join table to represent the many-to-many relationship.

It doesn’t matter which model gets the ManyToManyField, but you need it in only one of the models —
not in both.

If you’re using the admin interface, ManyToManyField instances should go in the object that’s going to be
edited in the admin interface. In the preceding example, t oppings is in Pizza (rather than Topping
having a pizzas ManyToManyField ) because it’s more natural to think about a Pizza having toppings
than a topping being on multiple pizzas. The way it’s set up in the example, the P1zza admin form would let
users select the toppings.

ManyToManyField objects take a number of extra arguments for defining how the relationship should
work (see Table B-6). All are optional.

Table B-6. ManyToManyField Options

Argument Description

The name to use for the relation from the related object back to this one. See

lated . . .
re-ateqfiame Appendix C for more information.

filter_interface

22.3.2 Many-to-Many Relationships 261



The Django Book

Use a nifty, unobtrusive JavaScript “filter” interface instead of the
usability-challenged <select multiple> in the admin form for this object. The
value should be models.HORIZONTAL or models.VERTICAL (i.e., should the
interface be stacked horizontally or vertically).

limit_choices_to See the description under ForeignKey.

Only used in the definition of ManyToManyF ield on self. Consider the following
model:

class Person (models.Model) :
friends = models.ManyToManyField("self")

When Django processes this model, it identifies that it has a ManyToManyField
on itself, and as a result, it doesn’t add a person_set attribute to the Person
class. Instead, the ManyToManyField is assumed to be symmetrical — that is, if
am your friend, then you are my friend.

symmetrical

If you do not want symmetry in ManyToMany relationships with self, set
symmetrical to False. This will force Django to add the descriptor for the
reverse relationship, allowing ManyToMany relationships to be nonsymmetrical.

The name of the table to create for storing the many-to-many data. If this is not
db_table provided, Django will assume a default name based upon the names of the two
tables being joined.

22.4 Model Metadata Options
Model-specific metadata lives in a class Meta defined in the body of your model class:

class Book (models.Model) :
title = models.CharField (maxlength=100)

class Meta:
# model metadata options go here

Model metadata is “anything that’s not a field,” such as ordering options and so forth.

The sections that follow present a list of all possible Meta options. No options are required. Adding class
Meta to a model is completely optional.

22.4.1 db_table

The name of the database table to use for the model.

To save you time, Django automatically derives the name of the database table from the name of your model
class and the application that contains it. A model’s database table name is constructed by joining the model’s
“app label” — the name you used in manage.py startapp — to the model’s class name, with an

underscore between them.

For example, if you have an application books (as created by manage .py startapp books), a model
defined as class Book will have a database table named books.

To override the database table name, use the db_table parameter in class Meta:

class Book (models.Model) :

22.4 Model Metadata Options 262



The Django Book

class Meta:
db_table = 'things_to_read'

If this isn’t given, Django will use app_label + '_' + model_class_name. See the section “Table
Names” for more information.

If your database table name is an SQL reserved word, or it contains characters that aren’t allowed in Python
variable names (notably the hyphen), that’s OK. Django quotes column and table names behind the scenes.

22.4.2 get_latest_by

The name of a DateField or DateTimeField in the model. This specifies the default field to use in your
model Manager‘s latest () method.

Here’s an example:

class CustomerOrder (models.Model) :
order_date = models.DateTimeField()

class Meta:
get_latest_by = "order_date"

See Appendix C for more information on the latest () method.

22.4.3 order_with_respect_to

Marks this object as “orderable” with respect to the given field. This is almost always used with related
objects to allow them to be ordered with respect to a parent object. For example, if an Answer relates to a
Question object, and a question has more than one answer, and the order of answers matters, you’d do this:

class Answer (models.Model) :
question = models.ForeignKey (Question)
# ...

class Meta:
order_with_respect_to = 'question'

22.4.4 ordering

The default ordering for the object, for use when obtaining lists of objects:

class Book (models.Model) :
title = models.CharField(maxlength=100)

class Meta:
ordering = ['title']

This is a tuple or list of strings. Each string is a field name with an optional - prefix, which indicates
descending order. Fields without a leading — will be ordered ascending. Use the string " 2" to order randomly.

For example, to order by a t it 1e field in ascending order (i.e., A-Z), use this:
ordering = ['title']
To order by t it le in descending order (i.e., Z-A), use this:

ordering = ['-title']

22.4.1 db_table 263



The Django Book

To order by t it le in descending order, and then by t it 1e in ascending order, use this:
ordering = ['-title', 'author']

Note that, regardless of how many fields are in ordering, the admin site uses only the first field.

22.4.5 permissions

Extra permissions to enter into the permissions table when creating this object. Add, delete, and change
permissions are automatically created for each object that has admin set. This example specifies an extra
permission, can_deliver_pizzas:

class Employee (models.Model) :

class Meta:
permissions = (
("can_deliver_pizzas", "Can deliver pizzas"),

)

This is a list or tuple of two tuples in the format (permission_code,
human_readable_permission_name).

See Chapter 12 for more on permissions.

22.4.6 unique_together

Sets of field names that, taken together, must be unique:

class Employee (models.Model) :
department = models.ForeignKey (Department)
extension = models.CharField (maxlength=10)

class Meta:
unique_together = [ ("department", "extension")]

This is a list of lists of fields that must be unique when considered together. It’s used in the Django admin

interface and is enforced at the database level (i.e., the appropriate UNIQUE statements are included in the
CREATE TABLE statement).

22.4.7 verbose _name

A human-readable name for the object, singular:

class CustomerOrder (models.Model) :
order_date = models.DateTimeField()

class Meta:
verbose_name = "order"

If this isn’t given, Django will use a adapted version of the class name in which Came1Case becomes
camel case.

22.4.4 ordering 264



The Django Book
22.4.8 verbose_name_plural

The plural name for the object:

class Sphynx (models.Model) :

class Meta:
verbose_name_plural = "sphynges"

If this isn’t given, Django will add an “s” to the verbose_name.

22.5 Managers

A Manager is the interface through which database query operations are provided to Django models. At least
one Manager exists for every model in a Django application.

The way Manager classes work is documented in Appendix C. This section specifically touches on model
options that customize Manager behavior.

22.5.1 Manager Names

By default, Django adds a Manager with the name ob ject s to every Django model class. However, if you
want to use objects as a field name, or if you want to use a name other than objects for the Manager,
you can rename it on a per-model basis. To rename the Manager for a given class, define a class attribute of
type models.Manager () on that model, for example:

from django.db import models

class Person (models.Model) :

people = models.Manager ()
Using this example model, Person.objects will generate an Att ributeError exception (since

Person doesn’t have a objects attribute), but Person.people.all () will provide a list of all
Person objects.

22.5.2 Custom Managers

You can use a custom Manager in a particular model by extending the base Manager class and instantiating
your custom Manager in your model.

There are two reasons you might want to customize a Manager: to add extra Manager methods, and/or to
modify the initial QuerySet the Manager returns.

22.5.2.1 Adding Extra Manager Methods
Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For
“row-level” functionality — that is, functions that act on a single instance of a model object — use model

methods (see below), not custom Manager methods.)

A custom Manager method can return anything you want. It doesn’t have to return a QuerySet.

22.4.8 verbose _name_plural 265



The Django Book

For example, this custom Manager offers a method with_counts (), which returns a list of all
OpinionPoll objects, each with an extra num_responses attribute that is the result of an aggregate

query:
from django.db import connection
class PollManager (models.Manager) :

def with_counts(self):

cursor = connection.cursor ()

cursor.execute ("""
SELECT p.id, p.question, p.poll_date, COUNT (*)
FROM polls_opinionpoll p, polls_response r
WHERE p.id = r.poll_id
GROUP BY 1, 2, 3
ORDER BY 3 DESC""")

result_list = []

for row in cursor.fetchall() :
p = self.model (id=row[0], question=row[l], poll_date=row([2])
p.num_responses = rowl[3]
result_list.append(p)

return result_list

class OpinionPoll (models.Model) :
question = models.CharField (maxlength=200)
poll_date = models.DateField()
objects = PollManager ()

class Response (models.Model) :
poll = models.ForeignKey (Poll)
person_name = models.CharField (maxlength=50)
response = models.TextField()

With this example, you’d use OpinionPoll.objects.with_counts () to return that list of
OpinionPoll objects with num_responses attributes.

Another thing to note about this example is that Manager methods can access self.model to get the
model class to which they’re attached.

22.5.2.2 Modifying Initial Manager QuerySets

A Manager‘s base QuerySet returns all objects in the system. For example, using this model:

class Book (models.Model) :
title = models.CharField(maxlength=100)
author = models.CharField (maxlength=50)

the statement Book .objects.all () will return all books in the database.

You can override the base QuerySet by overriding the Manager.get_query_set () method.
get_query_set () should return a QuerySet with the properties you require.

For example, the following model has two managers — one that returns all objects, and one that returns only
the books by Roald Dahl:

# First, define the Manager subclass.
class DahlBookManager (models.Manager) :
def get_query_set (self):
return super (DahlBookManager, self) .get_query_set().filter (author='Roald Dahl')

# Then hook it into the Book model explicitly.
class Book (models.Model) :

22.5.2 Custom Managers 266



The Django Book

title = models.CharField(maxlength=100)
author = models.CharField (maxlength=50)

objects = models.Manager () # The default manager.
dahl_objects = DahlBookManager () # The Dahl-specific manager.

With this sample model, Book .objects.all () will return all books in the database, but
Book.dahl_objects.all () will return only the ones written by Roald Dahl.

Of course, because get_query_set () returns a QuerySet object, youcanuse filter (),
exclude (), and all the other QuerySet methods on it. So these statements are all legal:

Book.dahl_objects.all()
Book.dahl_objects.filter(title="Matilda"')
Book.dahl_objects.count ()

This example also points out another interesting technique: using multiple managers on the same model. You
can attach as many Manager () instances to a model as you’d like. This is an easy way to define common
“filters” for your models. Here’s an example:

class MaleManager (models.Manager) :
def get_query_set (self):
return super (MaleManager, self).get_query_set().filter (sex="'M")

class FemaleManager (models.Manager) :
def get_query_set (self):
return super (FemaleManager, self).get_query_set () .filter (sex='F")

class Person (models.Model) :
first_name = models.CharField (maxlength=50)
last_name = models.CharField(maxlength=50)
sex = models.CharField(maxlength=1, choices=(('M', 'Male'), ('F', 'Female')))
people = models.Manager ()
men = MaleManager ()
women = FemaleManager ()

This example allows you to request Person.men.all (), Person.women.all (), and
Person.people.all (), yielding predictable results.

If you use custom Manager objects, take note that the first Manager Django encounters (in order by which
they’re defined in the model) has a special status. Django interprets the first Manager defined in a class as
the “default” Manager. Certain operations — such as Django’s admin site — use the default Manager to
obtain lists of objects, so it’s generally a good idea for the first Manager to be relatively unfiltered. In the
last example, the people Manager is defined first — so it’s the default Manager.

22.6 Model Methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas
Manager methods are intended to do “tablewide” things, model methods should act on a particular model
instance.

This is a valuable technique for keeping business logic in one place: the model. For example, this model has a
few custom methods:

class Person (models.Model) :
first_name = models.CharField (maxlength=50)
last_name = models.CharField(maxlength=50)
birth_date = models.DateField()
address = models.CharField (maxlength=100)

22.6 Model Methods 267



The Django Book

city = models.CharField (maxlength=50)
state = models.USStateField() # Yes, this is America-centric...

def baby_boomer_status (self):

"""Returns the person's baby-boomer status."""

import datetime

if datetime.date (1945, 8, 1) <= self.birth_date <= datetime.date (1964, 12, 31):
return "Baby boomer"

if self.birth_date < datetime.date (1945, 8, 1):
return "Pre-boomer"

return "Post-boomer"

def is_midwestern(self):
"""Returns True if this person is from the Midwest."""
return self.state in ('IL', 'WI', 'MI', 'IN', 'OH', 'IA', 'MO'")

@property
def full _name (self):
"""Returns the person's full name."""

<)

return '%s %s' % (self.first_name, self.last_name)

The last method in this example is a property — an attribute implemented by custom getter/setter user code.
Properties are a nifty trick added to Python 2.2; you can read more about them at

http://www.python.org/download/releases/2.2/descrintro/#property.

There are also a handful of model methods that have “special” meaning to Python or Django. These methods
are described in the sections that follow.

22.6.1 ___str__

__str__ () is a Python “magic method” that defines what should be returned if you call str () on the
object. Django uses str (obj) (or the related function, unicode (obj), described shortly) in a number of
places, most notably as the value displayed to render an object in the Django admin site and as the value
inserted into a template when it displays an object. Thus, you should always return a nice, human-readable
string for the object’s ___str__ . Although this isn’t required, it’s strongly encouraged.

Here’s an example:

class Person (models.Model) :
first_name = models.CharField (maxlength=50)
last_name = models.CharField(maxlength=50)

def _ str_ (self):
return '%s %s' % (self.first_name, self.last_name)

22.6.2 get_absolute_url

Define a get_absolute_url () method to tell Django how to calculate the URL for an object, for
example:

def get_absolute_url (self):
return "/people/%i/" % self.id

Django uses this in its admin interface. If an object defines get_absolute_url (), the object-editing page
will have a “View on site” link that will take you directly to the object’s public view, according to

get_absolute_url ().

Also, a couple of other bits of Django, such as the syndication-feed framework, use
get_absolute_url () asaconvenience to reward people who’ve defined the method.

22.6.1 __str__ 268


http://www.python.org/download/releases/2.2/descrintro/#property

The Django Book

It’s good practice to use get_absolute_url () in templates, instead of hard-coding your objects’ URLs.
For example, this template code is bad:

<a href="/people/{{ object.id }}/">{{ object.name }}</a>
But this template code is good:
<a href="{{ object.get_absolute_url }}">{{ object.name }}</a>

The problem with the way we just wrote get_absolute_url () is that it slightly violates the DRY
principle: the URL for this object is defined both in the URLconf file and in the model.

You can further decouple your models from the URLconf using the permal ink decorator. This decorator is
passed the view function, a list of positional parameters, and (optionally) a dictionary of named parameters.
Django then works out the correct full URL path using the URLconf, substituting the parameters you have
given into the URL. For example, if your URLconf contained a line such as the following:

(r'"people/ (\d+)/$"', 'people.views.details'),
your model could have a get _absolute_url method that looked like this:

@models.permalink
def get_absolute_url (self):
return ('people.views.details', [str(self.id)])

Similarly, if you had a URLconf entry that looked like this:
(r'/archive/ (?P<year>\d{4})/ (?P<month>\d{1,2})/ (?P<day>\d{1,2})/$', archive_view)
you could reference this using permalink () as follows:

@models.permalink
def get_absolute_url (self):

return ('archive_view', (), {
'yvear': self.created.year,
'month': self.created.month,

'day': self.created.day})

Notice that we specify an empty sequence for the second argument in this case, because we want to pass only
keyword arguments, not named arguments.

In this way, you’re tying the model’s absolute URL to the view that is used to display it, without repeating the
URL information anywhere. You can still use the get_absolute_url method in templates, as before.

22.6.3 Executing Custom SQL

Feel free to write custom SQL statements in custom model methods and module-level methods. The object
django.db.connection represents the current database connection. To use it, call
connection.cursor () to geta cursor object. Then, call cursor.execute (sql, [params]) to
execute the SQL, and cursor.fetchone () or cursor.fetchall () to return the resulting rows:

def my_custom_sqgl (self):
from django.db import connection
cursor = connection.cursor ()
cursor.execute ("SELECT foo FROM bar WHERE baz = %s", [self.baz])
row = cursor.fetchone ()
return row

22.6.2 get_absolute_url 269



The Django Book

connection and cursor mostly implement the standard Python DB-API
(http://www.python.org/peps/pep-0249.html). If you’re not familiar with the Python DB-API, note that the
SQL statement in cursor.execute () uses placeholders, "%s", rather than adding parameters directly
within the SQL. If you use this technique, the underlying database library will automatically add quotes and
escaping to your parameter(s) as necessary. (Also note that Django expects the "%$s" placeholder, not the

" 2" placeholder, which is used by the SQLite Python bindings. This is for the sake of consistency and
sanity.)

A final note: If all you want to do is use a custom WHERE clause, you can just use the where, tables, and
params arguments to the standard lookup API. See Appendix C.

22.6.4 Overriding Default Model Methods

As explained in Appendix C, each model gets a few methods automatically — most notably, save () and
delete (). You can override these methods to alter behavior.

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save
an object, for example:

class Blog(models.Model) :
name = models.CharField (maxlength=100)
tagline = models.TextField()

def save (self):
do_something ()
super (Blog, self).save() # Call the "real" save() method.
do_something_else ()

You can also prevent saving:

class Blog(models.Model) :
name = models.CharField (maxlength=100)
tagline = models.TextField()

def save (self):

if self.name == "Yoko Ono's blog":
return # Yoko shall never have her own blog!
else:
super (Blog, self).save() # Call the "real" save() method

22.7 Admin Options

The Admin class tells Django how to display the model in the admin site.

The following sections present a list of all possible Admin options. None of these options is required. To use
an admin interface without specifying any options, use pass, like so:

class Admin:
pass

Adding class Admin to a model is completely optional.

22.7.1 date_hierarchy

Set date_hierarchy to the name of a DateField or DateTimeField in your model, and the change
list page will include a date-based navigation using that field.

22.6.3 Executing Custom SQL 270


http://www.python.org/peps/pep-0249.html

The Django Book

Here’s an example:

class CustomerOrder (models.Model) :
order_date = models.DateTimeField()

class Admin:
date_hierarchy = "order_date"

22.7.2 fields

Set fields to control the layout of admin interface “add” and “change” pages.

fields is a pretty complex nested data structure best demonstrated with an example. The following is taken
from the F1latPage model that’s part of django.contrib.flatpages:

class FlatPage (models.Model) :

class Admin:

fields = (
(None, {
'fields': ('url', 'title', 'content', 'sites')
P
('Advanced options', {
'classes': 'collapse',
'fields' : ('enable_comments', 'registration_required', 'template_name')

1)y

Formally, fields is a list of two tuples, in which each two-tuple represents a <fieldset> on the admin
form page. (A <fieldset> isa “section” of the form.)

The two-tuples are in the format (name, field_options), where name is a string representing the title
of the fieldset and field_options is a dictionary of information about the fieldset, including a list of

fields to be displayed in it.

If fields isn’t given, Django will default to displaying each field that isn’t an Aut oField and has
editable=True, in a single fieldset, in the same order as the fields are defined in the model.

The field_options dictionary can have the keys described in the sections that follow.
22.7.2.1 fields
A tuple of field names to display in this fieldset. This key is required.

To display multiple fields on the same line, wrap those fields in their own tuple. In this example, the
first_name and last_name fields will display on the same line:

'fields': (('first_name', 'last_name'), 'address', 'city', 'state'),
22.7.2.2 classes
A string containing extra CSS classes to apply to the fieldset.

Apply multiple classes by separating them with spaces:

'classes': 'wide extrapretty',

22.7.1 date_hierarchy 271



The Django Book

Two useful classes defined by the default admin site stylesheet are collapse and wide. Fieldsets with the
collapse style will be initially collapsed in the admin site and replaced with a small “click to expand” link.

Fieldsets with the wide style will be given extra horizontal space.

22.7.2.3 description

A string of optional extra text to be displayed at the top of each fieldset, under the heading of the fieldset. It’s

used verbatim, so you can use any HTML and you must escape any special HTML characters (such as
ampersands) yourself.

2273 s

A list of strings representing URLs of JavaScript files to link into the admin screen via <script src="">
tags. This can be used to tweak a given type of admin page in JavaScript or to provide “quick links” to fill in

default values for certain fields.

If you use relative URLs — that is, URLs that don’t start with http:// or / — then the admin site will

automatically prefix these links with settings.ADMIN_MEDIA_ PREFIX.

22.7.4 list_display

Set 1ist_display to control which fields are displayed on the change list page of the admin.

If youdon’tset 1ist_display, the admin site will display a single column that displays the __str_

representation of each object.
Here are a few special cases to note about 1ist_display:

o If the field is a ForeignKey, Django will display the __str__ () of the related object.

)

22.7.2 fields

e ManyToManyField fields aren’t supported, because that would entail executing a separate SQL
statement for each row in the table. If you want to do this nonetheless, give your model a custom
method, and add that method’s name to 1ist_display. (More information on custom methods in
list_display shortly.)

o If the field is a BooleanField or NullBooleanField, Django will display a pretty “on” or
“off” icon instead of True or False.

e If the string given is a method of the model, Django will call it and display the output. This method
should have a short_description function attribute, for use as the header for the field.

Here’s a full example model:

class Person (models.Model) :
name = models.CharField (maxlength=50)
birthday = models.DateField()

class Admin:
list_display = ('name', 'decade_born_in')

def decade_born_in(self):
return self.birthday.strftime('$Y") [:3] + "O0's"
decade_born_in.short_description = 'Birth decade'

e If the string given is a method of the model, Django will HTML-escape the output by default. If you’d
rather not escape the output of the method, give the method an allow_tags attribute whose value is
True.

Here’s a full example model:

272



The Django Book

class Person (models.Model) :
first_name = models.CharField (maxlength=50)
last_name = models.CharField(maxlength=50)
color_code = models.CharField(maxlength=6)

class Admin:
list_display = ('first_name', 'last_name', 'colored_name')

def colored_name (self) :
return '<span style="color: %$s;">%s %$s</span>' % (self.color_code, self.first_nam
colored_name.allow_tags = True

e If the string given is a method of the model that returns True or False, Django will display a pretty
“on” or “off” icon if you give the method a boolean attribute whose value is True.

Here’s a full example model:

class Person (models.Model) :
first_name = models.CharField (maxlength=50)
birthday = models.DateField()

class Admin:
list_display = ('name', 'born_in_fifties"')

def born_in_fifties(self):

return self.birthday.strftime('$Y"') [:3] == 5
born_in_fifties.boolean = True
e The _ str__ () methods are just as valid in 1ist_display as any other model method, so it’s
perfectly OK to do this:
list_display = ('__str__ ', 'some_other_field')

e Usually, elements of 1ist_display that aren’t actual database fields can’t be used in sorting
(because Django does all the sorting at the database level).

However, if an element of 1ist_display represents a certain database field, you can indicate this
fact by setting the admin_order_field attribute of the item, for example:

class Person (models.Model) :
first_name = models.CharField (maxlength=50)
color_code = models.CharField(maxlength=6)

class Admin:
list_display = ('first_name', 'colored_first_name')

def colored_first_name (self):

return '<span style="color: %$s; ">%s</span>' % (self.color_code, self.first_name)
colored_first_name.allow_tags = True
colored_first_name.admin_order_field = 'first_name'

The preceding code will tell Django to order by the first_name field when trying to sort by
colored_first_ name in the admin site.

22.7.5 list_display_links

Set 1ist_display_links to control which fieldsin 1ist_display should be linked to the “change”
page for an object.

By default, the change list page will link the first column — the first field specified in 1ist_display —to

the change page for each item. But 1ist_display_1links lets you change which columns are linked. Set
list_display_links to alist or tuple of field names (in the same format as 1ist_display) to link.

22.7.4 list_display 273



The Django Book

list_display_1links can specify one or many field names. As long as the field names appear in
list_display, Django doesn’t care how many (or how few) fields are linked. The only requirement is that
if you want touse 1ist_display_links, you mustdefine 1ist_display.

In this example, the first_name and last_name fields will be linked on the change list page:

class Person (models.Model) :

class Admin:
list_display = ('first_name', 'last_name', 'birthday"')
list_display_links = ('first_name', 'last_name')

Finally, note that in order touse 1ist_display_links, you mustdefine 1ist_display, too.

22.7.6 list_filter

Set 1ist_filter to activate filters in the right sidebar of the change list page of the admin interface. This
should be a list of field names, and each specified field should be either a BooleanField, DateField,
DateTimeField, or ForeignKey.

This example, taken from the django.contrib.auth.models.User model, shows how both
list_displayand list_filter work:

class User (models.Model) :

class Admin:
list_display = ('username', 'email', 'first_name', 'last_name', 'is_staff')
list_filter = ('is_staff', 'is_superuser')

22.7.7 list_per_page

Set 1ist_per_page to control how many items appear on each paginated admin change list page. By
default, this is set to 100.

22.7.8 list_select_related

Set 1ist_select_related to tell Django to use select_related () in retrieving the list of objects
on the admin change list page. This can save you a bunch of database queries if you’re using related objects in
the admin change list display.

The value should be either True or False. The default is False unless one of the 1ist_display fields
isaForeignKey.

For more on select_related (), see Appendix C.

22.7.9 ordering

Set ordering to specify how objects on the admin change list page should be ordered. This should be a list
or tuple in the same format as a model’s ordering parameter.

If this isn’t provided, the Django admin interface will use the model’s default ordering.

22.7.5 list_display_links 274



The Django Book

22.7.10 save _as

Set save_as to True to enable a “save as” feature on admin change forms.

’

Normally, objects have three save options: “Save,” “Save and continue editing,” and “Save and add another.’
If save_as is True, “Save and add another” will be replaced by a “Save as” button.

“Save as” means the object will be saved as a new object (with a new ID), rather than the old object.

By default, save_as issetto False.

22.7.11 save_on_top
Set save_on_top to add save buttons across the top of your admin change forms.

Normally, the save buttons appear only at the bottom of the forms. If you set save_on_top, the buttons will
appear both on the top and the bottom.

By default, save_on_topissettoFalse.

22.7.12 search_fields

Set search_fields to enable a search box on the admin change list page. This should be set to a list of
field names that will be searched whenever somebody submits a search query in that text box.

These fields should be some kind of text field, such as CharField or TextField. You can also perform a
related lookup on a ForeignKey with the lookup API “follow” notation:

class Employee (models.Model) :
department = models.ForeignKey (Department)

class Admin:
search_fields = ['department__ _name']

When somebody does a search in the admin search box, Django splits the search query into words and returns
all objects that contain each of the words, case insensitive, where each word must be in at least one of
search_fields. For example, if search_fieldsissetto ['first_name', 'last_name'] and
a user searches for john lennon, Django will do the equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE '$john%' OR last_name ILIKE '$john%')
AND (first_name ILIKE '$%lennon%' OR last_name ILIKE '$%lennon%')

For faster and/or more restrictive searches, prefix the field name with an operator, as shown in Table B-7.

Table B-7. Operators Allowed in search_fields

Operator Meaning

A Matches the beginning of the field. For example, if search_fields is setto
['~"first_name', '“last_name'], and auser searches for john lennon, Django will
do the equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE 'john%' OR last_name ILIKE 'Jjohn%')
AND (first_name ILIKE 'lennon%' OR last_name ILIKE 'lennon%')

22.7.10 save_as 275



The Django Book

This query is more efficient than the normal ' % john% ' query, because the database only needs to
check the beginning of a column’s data, rather than seeking through the entire column’s data. Plus,
if the column has an index on it, some databases may be able to use the index for this query, even
though it’s a LIKE query.

Matches exactly, case-insensitive. For example, if search_fields is setto
['=first_name', '=last_name'] and auser searches for john lennon, Django will
do the equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE 'john' OR last_name ILIKE 'Jjohn')
AND (first_name ILIKE 'lennon' OR last_name ILIKE 'lennon')

Note that the query input is split by spaces, so, following this example, it’s currently not possible
to search for all records in which first_name is exactly ' john winston' (containing a
space).

Performs a full-text match. This is like the default search method, but it uses an index. Currently
this is available only for MySQL.

22.7.12 search_fields 276



23 Appendix C: Database API Reference

Django’s database API is the other half of the model API discussed in Appendix B. Once you’ve defined a
model, you’ll use this API any time you need to access the database. You’ve seen examples of this API in use
throughout the book; this appendix explains all the various options in detail.

Like the model APIs discussed in Appendix B, though these APIs are considered very stable, the Django
developers consistently add new shortcuts and conveniences. It’s a good idea to always check the latest
documentation online, available at http://www.djangoproject.com/documentation/0.96/db-api/.

Throughout this reference, we’ll refer to the following models, which might form a simple Weblog
application:

from django.db import models

class Blog(models.Model) :
name = models.CharField (max_length=100)
tagline = models.TextField()

def _ str_ (self):
return self.name

class Author (models.Model) :
name = models.CharField (max_length=50)
emailil = models.EmailField()

def _ str_ (self):
return self.name

class Entry(models.Model) :
blog = models.ForeignKey (Blog)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateTimeField()
authors = models.ManyToManyField (Author)

def _ str_ (self):
return self.headline

23.1 Creating Objects

To create an object, instantiate it using keyword arguments to the model class, and then call save () to save
it to the database:

>>> from mysite.blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save ()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you
explicitly call save ().

The save () method has no return value.

To create an object and save it all in one step see the create manager method discussed shortly.

23 Appendix C: Database API Reference 277


http://www.djangoproject.com/documentation/0.96/db-api/

The Django Book
23.1.1 What Happens When You Save?

When you save an object, Django performs the following steps:

1. Emit a pre_save signal. This provides a notification that an object is about to be saved. You can
register a listener that will be invoked whenever this signal is emitted. These signals are still in
development and weren’t documented when this book went to press; check the online documentation
for the latest information.

2. Preprocess the data. Each field on the object is asked to perform any automated data modification
that the field may need to perform.

Most fields do no preprocessing — the field data is kept as is. Preprocessing is only used on fields
that have special behavior, like file fields.

3. Prepare the data for the database. Each field is asked to provide its current value in a data type that
can be written to the database.

Most fields require no data preparation. Simple data types, such as integers and strings, are “ready to
write” as a Python object. However, more complex data types often require some modification. For
example, DateFields use a Python datet ime object to store data. Databases don’t store
datetime objects, so the field value must be converted into an ISO-compliant date string for
insertion into the database.

4. Insert the data into the database. The preprocessed, prepared data is then composed into an SQL
statement for insertion into the database.

5. Emit a post_save signal. As with the pre_save signal, this is used to provide notification that an
object has been successfully saved. Again, these signals are not yet documented.

23.1.2 Autoincrementing Primary Keys

For convenience, each model is given an autoincrementing primary key field named id unless you explicitly
specify primary_key=True on a field (see the section titled “AutoField” in Appendix B).

If your model has an Aut oField, that autoincremented value will be calculated and saved as an attribute on
your object the first time you call save ():

>>> b2 = Blog(name='Cheddar Talk', tagline='Thoughts on cheese."')
>>> b2.id # Returns None, because b doesn't have an ID yet.
None

>>> b2.save ()
>>> b2.id # Returns the ID of your new object.
14

There’s no way to tell what the value of an ID will be before you call save (), because that value is
calculated by your database, not by Django.

If a model has an AutoField but you want to define a new object’s ID explicitly when saving, just define it
explicitly before saving, rather than relying on the autoassignment of the ID:

>>> b3 = Blog(id=3, name='Cheddar Talk', tagline='Thoughts on cheese.')
>>> b3.id

3

>>> b3.save ()

>>> b3.id

3

23.1.1 What Happens When You Save? 278



The Django Book

If you assign auto-primary-key values manually, make sure not to use an already existing primary key value!
If you create a new object with an explicit primary key value that already exists in the database, Django will
assume you’re changing the existing record rather than creating a new one.

Given the preceding 'Cheddar Talk' blog example, this example would override the previous record in
the database:

>>> b4 = Blog(id=3, name='Not Cheddar', tagline='Anything but cheese.')
>>> b4 .save () # Overrides the previous blog with ID=3!

Explicitly specifying auto-primary-key values is mostly useful for bulk-saving objects, when you’re confident
you won’t have primary key collision.

23.2 Saving Changes to Objects

To save changes to an object that’s already in the database, use save ().

Given a Blog instance b5 that has already been saved to the database, this example changes its name and
updates its record in the database:

>>> b5.name = 'New name'
>>> Db5.save ()

This performs an UPDATE SQL statement behind the scenes. Again, Django doesn’t hit the database until you
explicitly call save ().

How Django Knows When to UPDATE and When to INSERT

You may have noticed that Django database objects use the same save () method for creating and changing
objects. Django abstracts the need to use INSERT or UPDATE SQL statements. Specifically, when you call
save (), Django follows this algorithm:

o If the object’s primary key attribute is set to a value that evaluates to True (i.e., a value other than
None or the empty string), Django executes a SELECT query to determine whether a record with the
given primary key already exists.

o If the record with the given primary key does already exist, Django executes an UPDATE query.

e If the object’s primary key attribute is not set, or if it’s set but a record doesn’t exist, Django executes
an INSERT.

Because of this, you should be careful not to specify a primary key value explicitly when saving new objects
if you cannot guarantee the primary key value is unused.

Updating ForeignKey fields works exactly the same way; simply assign an object of the right type to the
field in question:

>>> joe = Author.objects.create (name="Joe")
>>> entry.author = Jjoe
>>> entry.save ()

Django will complain if you try to assign an object of the wrong type.

23.3 Retrieving Objects

Throughout the book you’ve seen objects retrieved using code like the following:

23.1.2 Autoincrementing Primary Keys 279



The Django Book

>>> blogs = Blog.objects.filter (author___name__contains="Joe")

There are quite a few “moving parts” behind the scenes here: when you retrieve objects from the database,
you’re actually constructing a QuerySet using the model’s Manager. This QuerySet knows how to
execute SQL and return the requested objects.

Appendix B looked at both of these objects from a model-definition point of view; now we’ll look at how they
operate.

A QuerySet represents a collection of objects from your database. It can have zero, one, or many filters —
criteria that narrow down the collection based on given parameters. In SQL terms, a QuerySet equates to a
SELECT statement, and a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s
called objects by default. Access it directly via the model class, like so:

>>> Blog.objects
<django.db.models.manager.Manager object at 0x137d00d>

Managers are accessible only via model classes, rather than from model instances, to enforce a separation
between “table-level” operations and “record-level” operations:

>>> b = Blog(name='Foo', tagline='Bar')
>>> b.objects
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: Manager isn't accessible via Blog instances.

The Manager is the main source of QuerySets for a model. It acts as a “root” QuerySet that describes
all objects in the model’s database table. For example, Blog.objects is the initial QuerySet that
contains all B1og objects in the database.

23.4 Caching and QuerySets

Each QuerySet contains a cache, to minimize database access. It’s important to understand how it works, in
order to write the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated — and, hence, a
database query happens — Django saves the query results in the QuerySet ‘s cache and returns the results
that have been explicitly requested (e.g., the next element, if the QuerySet is being iterated over).
Subsequent evaluations of the QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySet " ' s
correctly. For example, the following will create two " QuerySets, evaluate
them, and throw them away:

print [e.headline for e in Entry.objects.all()]
print [e.pub_date for e in Entry.objects.all()]

That means the same database query will be executed twice, effectively doubling your database load. Also,
there’s a possibility the two lists may not include the same database records, because an Ent ry may have

been added or deleted in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

queryset = Poll.objects.all()

23.3 Retrieving Objects 280



The Django Book

print [p.headline for p in queryset] # Evaluate the query set.
print [p.pub_date for p in queryset] # Reuse the cache from the evaluation.

23.5 Filtering Objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the a11 () method on a
Manager:

>>> Entry.objects.all ()
The a1l () method returns a QuerySet of all the objects in the database.

Usually, though, you’ll need to select only a subset of the complete set of objects. To create such a subset, you
refine the initial QuerySet, adding filter conditions. You’ll usually do this using the filter () and/or
exclude () methods:

>>> y2006 = Entry.objects.filter (pub_date__year=2006)
>>> not2006 = Entry.objects.exclude (pub_date_ _year=2006)

filter () and exclude () both take field lookup arguments, which are discussed in detail shortly.

23.5.1 Chaining Filters

The result of refining a QuerySet isitself a QuerySet, so it’s possible to chain refinements together, for
example:

>>> gs = Entry.objects.filter (headline__startswith='What')
>>> gs = gs..exclude (pub_date__gte=datetime.datetime.now())
>>> gs = gs.filter (pub_date__gte=datetime.datetime (2005, 1, 1))

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, and then
another filter. The final result is a QuerySet containing all entries with a headline that starts with “What”
that were published between January 1, 2005, and the current day.

It’s important to point out here that QuerySet s are lazy — the act of creating a QuerySet doesn’t involve
any database activity. In fact, the three preceding lines don’t make any database calls; you can chain filters
together all day long and Django won’t actually run the query until the QuerySet is evaluated.

You can evaluate a QuerySet in any following ways:

e Jterating: A QuerySet is iterable, and it executes its database query the first time you iterate over it.
For example, the following QuerySet isn’t evaluated until it’s iterated over in the for loop:

gs = Entry.objects.filter (pub_date__year=2006)
gs = gs.filter (headline__icontains="bill")
for e in gs:

print e.headline

This prints all headlines from 2006 that contain “bill” but causes only one database hit.

® Printing it: A QuerySet is evaluated when you call repr () on it. This is for convenience in the
Python interactive interpreter, so you can immediately see your results when using the API
interactively.

e Slicing: As explained in the upcoming “Limiting QuerySets” section, a QuerySet can be sliced
using Python’s array-slicing syntax. Usually slicing a QuerySet returns another
(unevaluated) " QuerySet ™", but Django will execute the database query if you use the “step”
parameter of slice syntax.

23.4 Caching and QuerySets 281



The Django Book

e Converting to a list: You can force evaluation of a QuerySet by calling 1ist () on it, for example:

>>> entry_list = list (Entry.objects.all())

Be warned, though, that this could have a large memory overhead, because Django will load each
element of the list into memory. In contrast, iterating over a QuerySet will take advantage of your
database to load data and instantiate objects only as you need them.

Filtered QuerySets Are Unique

Each time you refine a QuerySet, you get a brand-new QuerySet that is in no way bound to the previous
QuerySet. Each refinement creates a separate and distinct QuerySet that can be stored, used, and reused:

gl = Entry.objects.filter (headline__startswith="What")
q2 gl.exclude (pub_date__gte=datetime.now())
a3 gl.filter (pub_date__gte=datetime.now())

These three QuerySets are separate. The first is a base QuerySet containing all entries that contain a
headline starting with “What”. The second is a subset of the first, with an additional criterion that excludes
records whose pub_date is greater than now. The third is a subset of the first, with an additional criterion
that selects only the records whose pub_date is greater than now. The initial QuerySet (gl) is unaffected
by the refinement process.

23.5.2 Limiting QuerySets

Use Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This is the
equivalent of SQL’s LIMIT and OFFSET clauses.

For example, this returns the first five entries (LIMIT 5):

>>> Entry.objects.all() [:5]

This returns the sixth through tenth entries (OFFSET 5 LIMIT 5):

>>> Entry.objects.all() [5:10]

Generally, slicing a QuerySet returns a new QuerySet — it doesn’t evaluate the query. An exception is if
you use the “step” parameter of Python slice syntax. For example, this would actually execute the query in

order to return a list of every second object of the first ten:

>>> Entry.objects.all()[:10:2]

To retrieve a single object rather than a list (e.g., SELECT foo FROM bar LIMIT 1), use asimple index
instead of a slice. For example, this returns the first Ent ry in the database, after ordering entries
alphabetically by headline:

>>> Entry.objects.order_by ('headline') [0]

This is roughly equivalent to the following:

>>> Entry.objects.order_by('headline') [0:1].get ()

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if
no objects match the given criteria.

23.5.1 Chaining Filters 282



The Django Book
23.5.3 Query Methods That Return New QuerySets

Django provides a range of QuerySet refinement methods that modify either the types of results returned by
the QuerySet or the way its SQL query is executed. These methods are described in the sections that follow.
Some of the methods take field lookup arguments, which are discussed in detail a bit later on.

23.5.3.1 filter(**lookup)

Returns a new QuerySet containing objects that match the given lookup parameters.
23.5.3.2 exclude(**kwargs)

Returns a new QuerySet containing objects that do notr match the given lookup parameters.
23.5.3.3 order_by(*fields)

By default, results returned by a QuerySet are ordered by the ordering tuple given by the ordering
option in the model’s metadata (see Appendix B). You can override this for a particular query using the
order_by () method:

>> Entry.objects.filter (pub_date__year=2005) .order_by ('-pub_date', 'headline')

This result will be ordered by pub_date descending, then by headline ascending. The negative sign in
front of "—pub_date™" indicates descending order. Ascending order is assumed if the - is absent. To order
randomly, use " 2", like so:

>>> Entry.objects.order_by('?")
23.5.3.4 distinct()

Returns a new QuerySet that uses SELECT DISTINCT in its SQL query. This eliminates duplicate rows
from the query results.

By default, a QuerySet will not eliminate duplicate rows. In practice, this is rarely a problem, because
simple queries such as Blog.objects.all () don’tintroduce the possibility of duplicate result rows.

However, if your query spans multiple tables, it’s possible to get duplicate results when a QuerySet is
evaluated. That’s when you’d use distinct ().

23.5.3.5 values(*fields)

Returns a special QuerySet that evaluates to a list of dictionaries instead of model-instance objects. Each of
those dictionaries represents an object, with the keys corresponding to the attribute names of model objects:

# This list contains a Blog object.
>>> Blog.objects.filter (name__startswith='Beatles')
[Beatles Blog]

# This list contains a dictionary.
>>> Blog.objects.filter (name__startswith='Beatles') .values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.'}]

values () takes optional positional arguments, * f ie1ds, which specify field names to which the SELECT
should be limited. If you specify the fields, each dictionary will contain only the field keys/values for the
fields you specify. If you don’t specify the fields, each dictionary will contain a key and value for every field
in the database table:

23.5.3 Query Methods That Return New QuerySets 283



The Django Book

>>> Blog.objects.values()

[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.'}],
>>> Blog.objects.values ('id', 'name')
[{'id': 1, 'name': 'Beatles Blog'}]

This method is useful when you know you’re only going to need values from a small number of the available
fields and you won’t need the functionality of a model instance object. It’s more efficient to select only the
fields you need to use.

23.5.3.6 dates(field, kind, order)

Returns a special QuerySet that evaluates to a list of datet ime . datet ime objects representing all
available dates of a particular kind within the contents of the QuerySet.

The field argument must be the name of a DateField or DateTimeField of your model. The kind
argument must be either "year™, "month", or "day". Each datetime.datet ime object in the result
list is “truncated” to the given type:

e "year" returns a list of all distinct year values for the field.
® "month" returns a list of all distinct year/month values for the field.
® "day" returns a list of all distinct year/month/day values for the field.

order, which defaults to "ASC"', should be either ' ASC' or 'DESC". This specifies how to order the
results.

Here are a few examples:

>>> Entry.objects.dates ('pub_date', 'year')
[datetime.datetime (2005, 1, 1)]

>>> Entry.objects.dates ('pub_date', 'month')
[datetime.datetime (2005, 2, 1), datetime.datetime (2005, 3, 1)]

>>> Entry.objects.dates ('pub_date', 'day')
[datetime.datetime (2005, 2, 20), datetime.datetime (2005, 3, 20)]

>>> Entry.objects.dates ('pub_date', 'day', order='DESC')
[datetime.datetime (2005, 3, 20), datetime.datetime (2005, 2, 20)]

>>> Entry.objects.filter (headline___contains='Lennon') .dates ('pub_date', 'day')
[datetime.datetime (2005, 3, 20)]

23.5.3.7 select_related()

Returns a QuerySet that will automatically “follow” foreign key relationships, selecting that additional
related-object data when it executes its query. This is a performance booster that results in (sometimes much)
larger queries but means later use of foreign key relationships won’t require database queries.

The following examples illustrate the difference between plain lookups and select_related () lookups.
Here’s standard lookup:

# Hits the database.
>>> e = Entry.objects.get (1d=5)

# Hits the database again to get the related Blog object.
>>> b = e.blog

And here’s select_related lookup:

23.5.3 Query Methods That Return New QuerySets 284



The Django Book

# Hits the database.
>>> e = Entry.objects.select_related() .get (id=5)

# Doesn't hit the database, because e.blog has been prepopulated
# in the previous query.
>>> b = e.blog

select_related () follows foreign keys as far as possible. If you have the following models:

class City(models.Model) :
#

class Person (models.Model) :
#
hometown = models.ForeignKey (City)

class Book (models.Model) :
#
author = models.ForeignKey (Person)

then a call to Book.objects.select_related () .get (id=4) will cache the related Person and
the related City:

>>> b = Book.objects.select_related() .get (id=4)

>>> p = b.author # Doesn't hit the database.

>>> c = p.hometown # Doesn't hit the database.

>>> b = Book.objects.get (id=4) # No select_related() in this example.
>>> p = b.author # Hits the database.

>>> c = p.hometown # Hits the database.

Note that select_related () does not follow foreign keys that have null=True.

Usually, using select_related () can vastly improve performance because your application can avoid
many database calls. However, in situations with deeply nested sets of relationships, select_related ()
can sometimes end up following “too many” relations and can generate queries so large that they end up being
slow.

23.5.3.8 extra()

Sometimes, the Django query syntax by itself can’t easily express a complex WHERE clause. For these edge
cases, Django provides the extra () QuerySet modifier — a hook for injecting specific clauses into the
SQL generated by a QuerySet.

By definition, these extra lookups may not be portable to different database engines (because you’re explicitly
writing SQL code) and violate the DRY principle, so you should avoid them if possible.

Specify one or more of params, select, where, or tables. None of the arguments is required, but you
should use at least one of them.

The select argument lets you put extra fields in the SELECT clause. It should be a dictionary mapping
attribute names to SQL clauses to use to calculate that attribute:

>>> Entry.objects.extra(select={"'is_recent': "pub_date > '2006-01-01'"})

As aresult, each Ent ry object will have an extra attribute, is_recent, a Boolean representing whether the
entry’s pub_date is greater than January 1, 2006.

23.5.3 Query Methods That Return New QuerySets 285



The Django Book

The next example is more advanced; it does a subquery to give each resulting B1og object an
entry_count attribute, an integer count of associated Ent ry objects:

>>> subg = 'SELECT COUNT (*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id'
>>> Blog.objects.extra(select={'entry_count': subqg})

(In this particular case, we’re exploiting the fact that the query will already contain the blog_blog table in
its FROM clause.)

You can define explicit SQL WHERE clauses — perhaps to perform nonexplicit joins — by using where.
You can manually add tables to the SQL FROM clause by using tables.

where and tables both take a list of strings. All where parameters are ANDed to any other search
criteria:

>>> Entry.objects.extra(where=['id IN (3, 4, 5, 20)'])

The select and where parameters described previously may use standard Python database string
placeholders: '%s ' to indicate parameters the database engine should automatically quote. The params
argument is a list of any extra parameters to be substituted:

>>> Entry.objects.extra (where=['headline=%s'], params=['Lennon'])

Always use params instead of embedding values directly into select or where because params will
ensure values are quoted correctly according to your particular database.

Here’s an example of the wrong way:

o)

Entry.objects.extra (where=["headline="'%s'" % name])

Here’s an example of the correct way:

Entry.objects.extra (where=['headline=%s'], params=[name])

23.5.4 QuerySet Methods That Do Not Return QuerySets

The following QuerySet methods evaluate the QuerySet and return something other than a QuerySet
— a single object, value, and so forth.

23.5.4.1 get(**lookup)

Returns the object matching the given lookup parameters, which should be in the format described in the
“Field Lookups” section. This raises AssertionError if more than one object was found.

get () raises a DoesNotExist exception if an object wasn’t found for the given parameters. The
DoesNotExist exception is an attribute of the model class, for example:

>>> Entry.objects.get (id='foo') # raises Entry.DoesNotExist

The DoesNotExist exception inherits from d jango.core.exceptions.ObjectDoesNotExist,
so you can target multiple DoesNotExist exceptions:

>>> from django.core.exceptions import ObjectDoesNotExist
>>> try:
e = Entry.objects.get (1id=3)
b = Blog.objects.get (id=1)
. except ObjectDoesNotExist:

23.5.4 QuerySet Methods That Do Not Return QuerySets 286



The Django Book

print "Either the entry or blog doesn't exist."
23.5.4.2 create(**kwargs)

This is a convenience method for creating an object and saving it all in one step. It lets you compress two
common steps:

>>> p = Person(first_name="Bruce", last_name="Springsteen")
>>> p.save ()

into a single line:
>>> p = Person.objects.create(first_name="Bruce", last_name="Springsteen")
23.5.4.3 get_or_create(**kwargs)

This is a convenience method for looking up an object and creating one if it doesn’t exist. It returns a tuple of
(object, created), where object is the retrieved or created object and created is a Boolean
specifying whether a new object was created.

This method is meant as a shortcut to boilerplate code and is mostly useful for data-import scripts, for
example:

try:
obj = Person.objects.get (first_name='John', last_name='Lennon')

except Person.DoesNotExist:
obj = Person(first_name='John', last_name='Lennon', birthday=date (1940, 10, 9))
obj.save ()

This pattern gets quite unwieldy as the number of fields in a model increases. The previous example can be
rewritten using get_or_create () like so:

obj, created = Person.objects.get_or_create(

first_name = 'John',
last_name = 'Lennon',
defaults = {'birthday': date (1940, 10, 9)}

Any keyword arguments passed to get_or_create () — except an optional one called defaults —
will be used in a get () call. If an object is found, get_or_create () returns a tuple of that object and
False. If an object is not found, get_or_create () will instantiate and save a new object, returning a
tuple of the new object and True. The new object will be created according to this algorithm:

defaults = kwargs.pop('defaults', {})

params = dict([(k, v) for k, v in kwargs.items () if '__' not in kJ])
params.update (defaults)

obj = self.model (**params)

obj.save ()

In English, that means start with any non-'defaults' keyword argument that doesn’t contain a double
underscore (which would indicate a nonexact lookup). Then add the contents of defaults, overriding any
keys if necessary, and use the result as the keyword arguments to the model class.

If you have a field named defaults and want to use it as an exact lookup in get_or_create (), just use
'defaults__ _exact' like so:

Foo.objects.get_or_create(
defaults_ _exact = 'bar',
defaults={'defaults': 'baz'}

23.5.4 QuerySet Methods That Do Not Return QuerySets 287



The Django Book

Note

As mentioned earlier, get_or_create () is mostly useful in scripts that need to parse data and create new
records if existing ones aren’t available. But if you need to use get_or_create () in a view, please make
sure to use it only in POST requests unless you have a good reason not to. GET requests shouldn’t have any
effect on data; use POST whenever a request to a page has a side effect on your data.

23.5.4.4 count()

Returns an integer representing the number of objects in the database matching the QuerySet. count ()
never raises exceptions. Here’s an example:

# Returns the total number of entries in the database.
>>> Entry.objects.count ()
4

# Returns the number of entries whose headline contains 'Lennon'
>>> Entry.objects.filter (headline___contains='Lennon') .count ()
1

count () performs a SELECT COUNT (*) behind the scenes, so you should always use count () rather
than loading all of the records into Python objects and calling 1en () on the result.

Depending on which database you’re using (e.g., PostgreSQL or MySQL), count () may return a long
integer instead of a normal Python integer. This is an underlying implementation quirk that shouldn’t pose any
real-world problems.

23.5.4.5 in_bulk(id_list)

Takes a list of primary key values and returns a dictionary mapping each primary key value to an instance of
the object with the given ID, for example:

>>> Blog.objects.in_bulk ([1])

{1: Beatles Blog}

>>> Blog.objects.in_bulk ([1, 2])
{l1: Beatles Blog, 2: Cheddar Talk}
>>> Blog.objects.in_bulk ([])

{}

IDs of objects that don’t exist are silently dropped from the result dictionary. If you pass in_bulk () an
empty list, you’ll get an empty dictionary.

23.5.4.6 latest(field_name=None)

Returns the latest object in the table, by date, using the field_name provided as the date field. This
example returns the latest Ent ry in the table, according to the pub_date field:

>>> Entry.objects.latest ('pub_date')

If your model’s Met a specifies get _latest_by, you can leave off the field_name argument to
latest (). Django will use the field specified in get_latest_by by default.

Like get (), latest () raises DoesNotExist if an object doesn’t exist with the given parameters.

23.5.4 QuerySet Methods That Do Not Return QuerySets 288



The Django Book
23.6 Field Lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword
arguments to the QuerySet methods filter (), exclude (), and get ().

Basic lookup keyword arguments take the form field__lookuptype=value (note the double
underscore). For example:

>>> Entry.objects.filter (pub_date__ 1te='2006-01-01")

translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01";
If you pass an invalid keyword argument, a lookup function will raise TypeError.

The supported lookup types follow.

23.6.1 exact

Performs an exact match:

>>> Entry.objects.get (headline__exact="Man bites dog")
This matches any object with the exact headline “Man bites dog”.

If you don’t provide a lookup type — that is, if your keyword argument doesn’t contain a double underscore
— the lookup type is assumed to be exact.

For example, the following two statements are equivalent:

>>> Blog.objects.get (id__exact=14) # Explicit form
>>> Blog.objects.get (id=14) # __exact is implied

This is for convenience, because exact lookups are the common case.

23.6.2 iexact

Performs a case-insensitive exact match:

>>> Blog.objects.get (name___iexact='beatles blog')

This will match 'Beatles Blog', 'beatles blog', 'BeAtLes BLoG', and so forth.

23.6.3 contains

Performs a case-sensitive containment test:

Entry.objects.get (headline___contains='Lennon')
This will match the headline ' Today Lennon honored' butnot 'today lennon honored’'.

SQLite doesn’t support case-sensitive LIKE statements; when using SQLite, “contains™ acts like
icontains.

23.6 Field Lookups 289



The Django Book

Escaping Percent Signs and Underscores in LIKE Statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith,
istartswith, endswith, and iendswith) will automatically escape the two special characters used in
LIKE statements — the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a

multiple-character wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the
entries that contain a percent sign, just use the percent sign as any other character:

Entry.objects.filter (headline___contains='%")

Django takes care of the quoting for you. The resulting SQL will look something like this:

SELECT ... WHERE headline LIKE '$\%%';

The same goes for underscores. Both percentage signs and underscores are handled for you transparently.

23.6.4 icontains

Performs a case-insensitive containment test:
>>> Entry.objects.get (headline__icontains='Lennon')

Unlike contains, icontains will match 'today lennon honored'.

23.6.5 gt, gte, It, and Ite

These represent greater than, greater than or equal to, less than, and less than or equal to:

>>> Entry.objects.filter (id__gt=4)
>>> Entry.objects.filter (id__1t=15)
>>> Entry.objects.filter (id___gte=0)

These queries return any object with an ID greater than 4, an ID less than 15, and an ID greater than or equal
to 1, respectively.

You’ll usually use these on numeric fields. Be careful with character fields since character order isn’t always
what you’d expect (i.e., the string “4” sorts after the string “10”).

23.6.6 in

Filters where a value is on a given list:
Entry.objects.filter (id__in=[1, 3, 4])

This returns all objects with the ID 1, 3, or 4.

23.6.7 startswith

Performs a case-sensitive starts-with:

>>> Entry.objects.filter (headline__startswith='Will"')

23.6.3 contains 290



The Django Book

This will return the headlines “Will he run?” and “Willbur named judge”, but not “Who is Will?”” or “will
found in crypt”.

23.6.8 istartswith

Performs a case-insensitive starts-with:
>>> Entry.objects.filter (headline__istartswith="'will"')

This will return the headlines “Will he run?”, “Willbur named judge”, and “will found in crypt”, but not “Who
is Will?”

23.6.9 endswith and iendswith

Perform case-sensitive and case-insensitive ends-with:

>>> Entry.objects.filter (headline__endswith='cats"')
>>> Entry.objects.filter (headline___iendswith='cats"')

23.6.10 range

Performs an inclusive range check:

>>> start_date = datetime.date (2005, 1, 1)
>>> end_date = datetime.date (2005, 3, 31)
>>> Entry.objects.filter (pub_date__range=(start_date, end_date))

You can use range anywhere you can use BETWEEN in SQL — for dates, numbers, and even characters.

23.6.11 year, month, and day

For date/datetime fields, perform exact year, month, or day matches:

# Year lookup
>>>Entry.objects.filter (pub_date__year=2005)

# Month lookup —-- takes integers
>>> Entry.objects.filter (pub_date__month=12)

# Day lookup
>>> Entry.objects.filter (pub_date__day=3)

# Combination: return all entries on Christmas of any year
>>> Entry.objects.filter (pub_date__month=12, pub_date_day=25)

23.6.12 isnull

Takes either True or False, which correspond to SQL queries of IS NULL and IS NOT NULL,
respectively:

>>> Entry.objects.filter (pub_date__isnull=True)
~_disnull=Truevs. ___exact=None

There is an important difference between __isnull=True and __exact=None.___exact=None will
always return an empty result set, because SQL requires that no value is equal to NULL. __isnull

23.6.7 startswith 291



The Django Book

determines if the field is currently holding the value of NULL without performing a comparison.

23.6.13 search

A Boolean full-text search that takes advantage of full-text indexing. This is like contains butis
significantly faster due to full-text indexing.

Note this is available only in MySQL and requires direct manipulation of the database to add the full-text
index.

23.6.14 The pk Lookup Shortcut

For convenience, Django provides a pk lookup type, which stands for “primary_key”.

In the example B1og model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get (id__exact=14) # Explicit form
>>> Blog.objects.get (id=14) # __exact is implied
>>> Blog.objects.get (pk=14) # pk implies id__exact

The use of pk isn’t limited to __exact queries — any query term can be combined with pk to perform a
query on the primary key of a model:

# Get blogs entries with id 1, 4, and 7
>>> Blog.objects.filter (pk__in=[1,4,7])

# Get all blog entries with id > 14
>>> Blog.objects.filter (pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter (blog__id__exact=3) # Explicit form
>>> Entry.objects.filter (blog__id=3) # _ _exact is implied
>>> Entry.objects.filter (blog__pk=3) # _ _pk implies __id__exact

23.7 Complex Lookups with Q Objects

Keyword argument queries — in filter () and so on — are ANDed together. If you need to execute more
complex queries (e.g., queries with OR statements), you can use Q objects.

A Q object (django.db.models. Q) is an object used to encapsulate a collection of keyword arguments.
These keyword arguments are specified as in the “Field Lookups” section.

For example, this Q object encapsulates a single LIKE query:

Q(question__startswith="'What"')

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a
new Q object. For example, this statement yields a single Q object that represents the OR of two
"question__startswith" queries:

Q(question__startswith='Who') | Q(question__startswith='What')

This is equivalent to the following SQL WHERE clause:

WHERE question LIKE 'Who%' OR question LIKE 'What%'

23.6.12 isnull 292



The Django Book

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators. You
can also use parenthetical grouping.

Each lookup function that takes keyword arguments (e.g., filter (), exclude (), get () ) can also be
passed one or more Q objects as positional (not-named) arguments. If you provide multiple Q object
arguments to a lookup function, the arguments will be ANDed together, for example:

Poll.objects.get (
Q(question__startswith='Who'),
Q (pub_date=date (2005, 5, 2)) | Q(pub_date=date (2005, 5, 6))

roughly translates into the following SQL.:

SELECT * from polls WHERE question LIKE 'Who%'
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06")

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup
function (be they keyword arguments or Q objects) are ANDed together. However, if a Q object is provided, it
must precede the definition of any keyword arguments. For example, the following:

Poll.objects.get (
Q (pub_date=date (2005, 5, 2)) | Q(pub_date=date (2005, 5, 6)),
question__startswith="'Who')

would be a valid query, equivalent to the previous example, but this:

# INVALID QUERY
Poll.objects.get (
question__startswith='Who',
Q (pub_date=date (2005, 5, 2)) | Q(pub_date=date (2005, 5, 6)))

would not be valid.

You can find some examples online at
http://www.djangoproject.com/documentation/0.96/models/or lookups/.

23.8 Related Objects

When you define a relationship in a model (i.e., a ForeignKey, OneToOneField, or
ManyToManyField), instances of that model will have a convenient API to access the related object(s).

For example, an Ent ry object e can get its associated B1og object by accessing the b1og attribute
e.blog.

Django also creates API accessors for the “other” side of the relationship — the link from the related model to
the model that defines the relationship. For example, a B1og object b has access to a list of all related Entry

objects via the entry_set attribute: b.entry_set.all ().

All examples in this section use the sample B1og, Author, and Ent ry models defined at the top of this
page.

23.8.1 Lookups That Span Relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL
JOINs for you automatically behind the scenes. To span a relationship, just use the field name of related

23.7 Complex Lookups with Q Objects 293


http://www.djangoproject.com/documentation/0.96/models/or_lookups/

The Django Book
fields across models, separated by double underscores, until you get to the field you want.
This example retrieves all Ent ry objects with a Blog whose name is 'Beatles Blog':

>>> Entry.objects.filter (blog___name__exact='Beatles Blog')
This spanning can be as deep as you’d like.
It works backward, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all B1og objects that have at least one Ent ry whose headl ine contains
'Lennon':

>>> Blog.objects.filter (entry__headline__ contains='Lennon')

23.8.2 Foreign Key Relationships

If a model has a ForeignKey, instances of that model will have access to the related (foreign) object via a
simple attribute of the model, for example:

e = Entry.objects.get (id=2)
e.blog # Returns the related Blog object.

You can get and set via a foreign key attribute. As you may expect, changes to the foreign key aren’t saved to
the database until you call save (), for example:

e = Entry.objects.get (id=2)
e.blog = some_blog
e.save ()

If aForeignKey field has nul1l=True set (i.e., it allows NULL values), you can assign None to it:

e = Entry.objects.get (id=2)
e.blog = None
e.save () # "UPDATE blog_entry SET blog_id = NULL ...;"

Forward access to one-to-many relationships is cached the first time the related object is accessed. Subsequent
accesses to the foreign key on the same object instance are cached, for example:

e = Entry.objects.get (id=2)
print e.blog # Hits the database to retrieve the associated Blog.
print e.blog # Doesn't hit the database; uses cached version.

Note that the select_related () QuerySet method recursively prepopulates the cache of all
one-to-many relationships ahead of time:

e = Entry.objects.select_related() .get (id=2)
print e.blog # Doesn't hit the database; uses cached version.
print e.blog # Doesn't hit the database; uses cached version.

select_related () is documented in the “QuerySet Methods That Return New QuerySets” section.

23.8.3 “Reverse” Foreign Key Relationships

Foreign key relationships are automatically symmetrical — a reverse relationship is inferred from the
presence of a ForeignKey pointing to another model.

23.8.1 Lookups That Span Relationships 294



The Django Book

If a model has a ForeignKey, instances of the foreign key model will have access to a Manager that
returns all instances of the first model. By default, this Manager is named FOO_set, where FOO is the
source model name, lowercased. This Manager returns QuerySet s, which can be filtered and manipulated
as described in the “Retrieving Objects” section.

Here’s an example:

b = Blog.objects.get (id=1)
b.entry_set.all() # Returns all Entry objects related to Blog.

# b.entry_set is a Manager that returns QuerySets.
b.entry_set.filter (headline__contains='Lennon')
b.entry_set.count ()

You can override the FOO_set name by setting the related_name parameter in the ForeignKey ()
definition. For example, if the Ent ry model was altered to blog = ForeignKey (Blog,
related_name='entries'), the preceding example code would look like this:

b = Blog.objects.get (id=1)
b.entries.all() # Returns all Entry objects related to Blog.

# b.entries is a Manager that returns QuerySets.
b.entries.filter (headline_ contains='Lennon')
b.entries.count ()

You cannot access a reverse ForeignKey Manager from the class; it must be accessed from an instance:

Blog.entry_set # Raises AttributeError: "Manager must be accessed via instance".

In addition to the QuerySet methods defined in the “Retrieving Objects” section, the ForeignKey
Manager has these additional methods:

® add (objl, obj2, ...):Adds the specified model objects to the related object set, for example:

b = Blog.objects.get (id=1)
e = Entry.objects.get (1id=234)
b.entry_set.add(e) # Associates Entry e with Blog b.
e create (**kwargs) : Creates a new object, saves it, and puts it in the related object set. It returns

the newly created object:

b Blog.objects.get (id=1)
e = b.entry_set.create (headline="'Hello', body_text="'Hi', pub_date=datetime.date (2005, 1, 1
# No need to call e.save() at this point -- it's already been saved.

This is equivalent to (but much simpler than) the following:

b = Blog.objects.get (id=1)
e = Entry(blog=b, headline='Hello', body_text='Hi', pub_date=datetime.date (2005, 1, 1))
e.save ()

Note that there’s no need to specify the keyword argument of the model that defines the relationship.
In the preceding example, we don’t pass the parameter blog to create (). Django figures out that
the new Ent ry object’s blog field should be set to b.

® remove (objl, obj2, ...):Removes the specified model objects from the related object set:

b Blog.objects.get (id=1)
e Entry.objects.get (id=234)
b.entry_set.remove (e) # Disassociates Entry e from Blog b.

23.8.3 “Reverse” Foreign Key Relationships 295



The Django Book

In order to prevent database inconsistency, this method only exists on ForeignKey objects where
null=True. If the related field can’t be set to None (NULL), then an object can’t be removed from
a relation without being added to another. In the preceding example, removing e from
b.entry_set () isequivalent to doing e .blog = None, and because the blog ForeignKey
doesn’t have null=True, this is invalid.

e clear (): Removes all objects from the related object set:

b = Blog.objects.get (id=1)
b.entry_set.clear ()

Note this doesn’t delete the related objects — it just disassociates them.
Just like remove (), clear () is only available on ForeignKey  's where " ‘null=True.

To assign the members of a related set in one fell swoop, just assign to it from any iterable object, for
example:

b = Blog.objects.get (id=1)
b.entry_set = [el, e2]

If the clear () method is available, any pre-existing objects will be removed from the entry_set before
all objects in the iterable (in this case, a list) are added to the set. If the c1lear () method is not available, all
objects in the iterable will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition,
creation, and deletion is immediately and automatically saved to the database.

23.8.4 Many-to-Many Relationships

Both ends of a many-to-many relationship get automatic API access to the other end. The API works just as a
“reverse”” one-to-many relationship (described in the previous section).

The only difference is in the attribute naming: the model that defines the ManyToManyField uses the
attribute name of that field itself, whereas the “reverse” model uses the lowercased model name of the original
model, plus '_set ' (just like reverse one-to-many relationships).

An example makes this concept easier to understand:

= Entry.objects.get (1d=3)

.authors.all() # Returns all Author objects for this Entry.
.authors.count ()

.authors.filter (name___contains='John')

Q

= Author.objects.get (id=5)
.entry_set.all() # Returns all Entry objects for this Author.

Q

Like ForeignKey, ManyToManyField can specify related_name. In the preceding example, if the
ManyToManyFieldin Entry had specified related_name='entries', then each Author instance
would have an ent ries attribute instead of entry_set.

How Are the Backward Relationships Possible?
Other object-relational mappers require you to define relationships on both sides. The Django developers
believe this is a violation of the DRY (Don’t Repeat Yourself) principle, so Django requires you to define the

relationship on only one end. But how is this possible, given that a model class doesn’t know which other
model classes are related to it until those other model classes are loaded?

23.8.4 Many-to-Many Relationships 296



The Django Book

The answer lies in the INSTALLED_APPS setting. The first time any model is loaded, Django iterates over
every model in INSTALLED_APPS and creates the backward relationships in memory as needed. Essentially,
one of the functions of INSTALLED_APPS is to tell Django the entire model domain.

23.8.5 Queries Over Related Objects

Queries involving related objects follow the same rules as queries involving normal value fields. When
specifying the value for a query to match, you may use either an object instance itself or the primary key value
for the object.

For example, if you have a B1log object b with id=5, the following three queries would be identical:

Entry.objects.filter (blog=b) # Query using object instance
Entry.objects.filter (blog=b.id) # Query using id from instance
Entry.objects.filter (blog=5) # Query using id directly

23.9 Deleting Objects

The delete method, conveniently, is named delete (). This method immediately deletes the object and has
no return value:

e.delete ()

You can also delete objects in bulk. Every QuerySet has a delete () method, which deletes all members
of that QuerySet. For example, this deletes all Ent ry objects with a pub_date year of 2005:

Entry.objects.filter (pub_date__year=2005) .delete ()

When Django deletes an object, it emulates the behavior of the SQL constraint ON DELETE CASCADE — in
other words, any objects that had foreign keys pointing at the object to be deleted will be deleted along with it,
for example:

b = Blog.objects.get (pk=1)
# This will delete the Blog and all of its Entry objects.
b.delete()

Note that delete () is the only QuerySet method that is not exposed on a Manager itself. This is a
safety mechanism to prevent you from accidentally requesting Entry .objects.delete () and deleting
all the entries. If you do want to delete all the objects, then you have to explicitly request a complete query
set:

Entry.objects.all() .delete()

23.10 Extra Instance Methods

In addition to save () and delete (), a model object might get any or all of the following methods.

23.10.1 get_FOO_display()

For every field that has choices set, the object will have a get_FOO_display () method, where FOO is
the name of the field. This method returns the “human-readable” value of the field. For example, in the
following model:

GENDER_CHOICES = (
('M', 'Male'),

23.8.5 Queries Over Related Objects 297



The Django Book

('F', 'Female'),
)
class Person (models.Model) :
name = models.CharField (max_length=20)
gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

each Person instance will have a get_gender_display () method:

>>> p = Person(name='John', gender='M')
>>> p.save ()

>>> p.gender

IMI

>>> p.get_gender_display ()

'Male'

23.10.2 get_next_by FOO(**kwargs) and
get_previous_by FOO(**kwargs)

For every DateField and DateTimeField that does not have null=True, the object will have
get_next_by_FO0O0 () and get_previous_by_FO0O () methods, where FOO is the name of the field.
This returns the next and previous object with respect to the date field, raising the appropriate
DoesNotExist exception when appropriate.

Both methods accept optional keyword arguments, which should be in the format described in the “Field
Lookups” section.

Note that in the case of identical date values, these methods will use the ID as a fallback check. This
guarantees that no records are skipped or duplicated. For a full example, see the lookup API samples at

http://www.djangoproject.com/documentation/0.96/models/lookup/.

23.10.3 get_FOO_filename()

For every FileField, the object will have a get_FOO_filename () method, where FOO is the name of
the field. This returns the full filesystem path to the file, according to your MEDIA_ROOT setting.

Note that ImageField is technically a subclass of FileField, so every model with an ImageField
will also get this method.

23.10.4 get_FOO_url()

For every FileField, the object will have a get_FOO_url () method, where FOO is the name of the
field. This returns the full URL to the file, according to your MEDIA_URL setting. If the value is blank, this
method returns an empty string.

23.10.5 get_FOO_size()

For every FileField, the object will have a get_FOO_size () method, where FOO is the name of the
field. This returns the size of the file, in bytes. (Behind the scenes, it uses os.path.getsize.)

23.10.6 save_FOO file(filename, raw_contents)

For every FileField, the object will have a save_FOO_file () method, where FOO is the name of the
field. This saves the given file to the filesystem, using the given file name. If a file with the given file name
already exists, Django adds an underscore to the end of the file name (but before the extension) until the file
name is available.

23.10.1 get_ FOO_display() 298


http://www.djangoproject.com/documentation/0.96/models/lookup/

The Django Book
23.10.7 get_FOO_height() and get_FOO_width()

For every ImageField, the object will have get_FOO_height () and get_FOO_width () methods,
where FOO is the name of the field. This returns the height (or width) of the image, as an integer, in pixels.

23.11 Shortcuts

As you develop views, you will discover a number of common idioms in the way you use the database API.
Django encodes some of these idioms as shortcuts that can be used to simplify the process of writing views.
These functions are in the d jango . shortcuts module.

23.11.1 get_object_or_404()

One common idiom to use get () and raise Ht t p404 if the object doesn’t exist. This idiom is captured by
get_object_or_404 (). This function takes a Django model as its first argument and an arbitrary number
of keyword arguments, which it passes to the default manager’s get () function. It raises Ht tp4 04 if the
object doesn’t exist, for example:

# Get the Entry with a primary key of 3
e = get_object_or_404 (Entry, pk=3)

When you provide a model to this shortcut function, the default manager is used to execute the underlying
get () query. If you don’t want to use the default manager, or if you want to search a list of related objects,
you can provide get_object_or_404 () with a Manager object instead:

# Get the author of blog instance e with a name of 'Fred'
a = get_object_or_404 (e.authors, name='Fred')

# Use a custom manager 'recent_entries' in the search for an
# entry with a primary key of 3
e = get_object_or_404 (Entry.recent_entries, pk=3)

23.11.2 get_list_or_404()

get_list_or_404 behaves the same way as get_object_or_404 (), except thatituses filter ()
instead of get (). It raises Ht tp4 04 if the list is empty.

23.12 Falling Back to Raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database mapper to
handle, you can fall back into raw SQL statement mode.

The preferred way to do this is by giving your model custom methods or custom manager methods that
execute queries. Although there’s nothing in Django that requires database queries to live in the model layer,
this approach keeps all your data access logic in one place, which is smart from a code organization
standpoint. For instructions, see Appendix B..

Finally, it’s important to note that the Django database layer is merely an interface to your database. You can

access your database via other tools, programming languages, or database frameworks — there’s nothing
Django-specific about your database.

23.10.7 get_FOO_height() and get FOO_width() 299



24 Appendix D: Generic View Reference

Chapter 9 introduces generic views but leaves out some of the gory details. This appendix describes each
generic view along with all the options each view can take. Be sure to read Chapter 9 before trying to
understand the reference material that follows. You might want to refer back to the Book, Publisher, and
Author objects defined in that chapter; the examples that follow use these models.

24.1 Common Arguments to Generic Views

Most of these views take a large number of arguments that can change the generic view’s behavior. Many of
these arguments work the same across a large number of views. Table D-1 describes each of these common
arguments; anytime you see one of these arguments in a generic view’s argument list, it will work as
described in the table.

Table D-1. Common Arguments to Generic Views

Argument Description

A Boolean specifying whether to display the page if no objects are available. If
allow_empty this is False and no objects are available, the view will raise a 404 error
instead of displaying an empty page. By default, this is False.

A list of additional template-context processors (besides the defaults) to apply
context_processors  tothe view’s template. See Chapter 10 for information on template context
processors.

A dictionary of values to add to the template context. By default, this is an
extra_context empty dictionary. If a value in the dictionary is callable, the generic view will
call it just before rendering the template.

The MIME type to use for the resulting document. It defaults to the value of
mimetype the DEFAULT_MIME_TYPE setting, which is text /html if you haven’t
changed it.

A QuerySet (i.e., something like Author.objects.all ()) toread
queryset objects from. See Appendix C for more information about QuerySet objects.
Most generic views require this argument.

The template loader to use when loading the template. By default, it’s
template_loader django.template.loader. See Chapter 10 for information on template
loaders.

The full name of a template to use in rendering the page. This lets you

template_name . .
P - override the default template name derived from the QuerySet.

The name of the template variable to use in the template context. By default,
this is 'object '. Views that list more than one object (i.e., object_list
views and various objects-for-date views) will append '_1ist' to the value
of this parameter.

24.2 “Simple” Generic Views

template_object_name

The module " django.views.generic.simple™ contains simple views that handle a couple of common cases:
rendering a template when no view logic is needed and issuing a redirect.

24.2.1 Rendering a Template

View function: django.views.generic.simple.direct_to_template

24 Appendix D: Generic View Reference 300



The Django Book

This view renders a given template, passingita { { params }} template variable, which is a dictionary of
the parameters captured in the URL.

24.2.1.1 Example

Given the following URLconf:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template

urlpatterns = patterns('',
(r'~foo/S$"', direct_to_template, {'template': 'foo_index.html'}),
(r'~foo/ (?P<id>\d+) /$', direct_to_template, {'template': 'foo_detail.html'}),

arequest to / foo/ would render the template foo_index.html, and a request to /foo/15/ would
render foo_detail.html with a context variable { { params.id }} thatissetto 15.
24.2.1.2 Required Arguments

e template: The full name of a template to use.

24.2.2 Redirecting to Another URL

View function: django.views.generic.simple.redirect_to

This view redirects to another URL. The given URL may contain dictionary-style string formatting, which
will be interpolated against the parameters captured in the URL.

If the given URL is None, Django will return an HTTP 410 (“Gone”) message.
24.2.2.1 Example

This URLconf redirects from /foo/<id>/ to /bar/<id>/:

from django.conf.urls.defaults import *
from django.views.generic.simple import redirect_to

urlpatterns = patterns('django.views.generic.simple',

("~foo/ (?p<id>\d+)/$', redirect_to, {'url': '/bar/%$(id)s/'}),
)

This example returns a “Gone” response for requests to /bar/:

from django.views.generic.simple import redirect_to

urlpatterns = patterns('django.views.generic.simple',
('""bar/$', redirect_to, {'url': None}),

)
24.2.2.2 Required Arguments

e url: The URL to redirect to, as a string. Or None to return a 410 (“Gone”’) HTTP response.

24.2.1 Rendering a Template 301



The Django Book
24.3 List/Detail Generic Views

The list/detail generic views (in the module django.views.generic.list_detail) handle the
common case of displaying a list of items at one view and individual “detail” views of those items at another.

24.3.1 Lists of Objects

View function: django.views.generic.list_detail.object_list
Use this view to display a page representing a list of objects.
24.3.1.1 Example

Given the Author object from Chapter 5, we can use the object_11ist view to show a simple list of all
authors given the following URLconf snippet:

from mysite.books.models import Author
from django.conf.urls.defaults import *
from django.views.generic import list_detail

author_1list_info = {
'queryset' : Author.objects.all(),
'allow_empty': True,

}

urlpatterns = patterns('',
(r'authors/$', list_detail.object_list, author_list_info)
)

24.3.1.2 Required Arguments
® queryset: A QuerySet of objects to list (see Table D-1).
24.3.1.3 Optional Arguments

® paginate_by: An integer specifying how many objects should be displayed per page. If this is
given, the view will paginate objects with paginate_by objects per page. The view will expect
either a page query string parameter (via GET) containing a zero-indexed page number, or a page
variable specified in the URLconf. See the following ‘“Notes on Pagination” section.

Additionally, this view may take any of these common arguments described in Table D-1:

®allow_empty

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

® template_object_name

24.3.1.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_list.html by default. Both the application label and the model name
are derived from the queryset parameter. The application label is the name of the application that the
model is defined in, and the model name is the lowercased version of the name of the model class.

24 .3 List/Detail Generic Views 302



The Django Book

In the previous example using Author.objects.all () asthe queryset, the application label would
be books and the model name would be author. This means the default template would be
books/author list.html.

24.3.1.5 Template Context
In addition to ext ra_context, the template’s context will contain the following:

® object_list: The list of objects. This variable’s name depends on the
template_object_name parameter, which is 'object ' by default. If
template_object_nameis 'foo', this variable’s name will be foo_1list.

® is_paginated: A Boolean representing whether the results are paginated. Specifically, this is set
to False if the number of available objects is less than or equal to paginate_by.

If the results are paginated, the context will contain these extra variables:

® results_per_page: The number of objects per page. (This is the same as the paginate_by
parameter.)

® has_next: A Boolean representing whether there’s a next page.

® has_previous: A Boolean representing whether there’s a previous page.

® page: The current page number, as an integer. This is 1-based.

® next: The next page number, as an integer. If there’s no next page, this will still be an integer
representing the theoretical next-page number. This is 1-based.

e previous: The previous page number, as an integer. This is 1-based.

® pages: The total number of pages, as an integer.

® hits: The total number of objects across all pages, not just this page.

A Note on Pagination

If paginate_by is specified, Django will paginate the results. You can specify the page number in the URL
in one of two ways:

e Use the page parameter in the URLconf. For example, this is what your URLconf might look like:

(r'"“objects/page (?P<page>[0-9]+)/$"', 'object_list', dict (info_dict))
® Pass the page number via the page query-string parameter. For example, a URL would look like this:

/objects/?page=3

In both cases, page is 1-based, not 0-based, so the first page would be represented as page 1.

24.3.2 Detail Views

View function: django.views.generic.list_detail.object_detail
This view provides a “detail” view of a single object.

24.3.2.1 Example

Continuing the previous object_11ist example, we could add a detail view for a given author by
modifying the URLconf:

from mysite.books.models import Author
from django.conf.urls.defaults import *
from django.views.generic import list_detail

24.3.1 Lists of Objects 303



The Django Book

author_list_info = {
'queryset' : Author.objects.all(),
'allow_empty': True,
}
author_detail_info = {
"queryset" : Author.objects.all(),
"template_object_name" : "author",

}

urlpatterns = patterns('',
(r'authors/$', list_detail.object_list, author_list_info),
(r'*authors/ (?P<object_id>d+)/$', list_detail.object_detail, author_detail_info),

24.3.2.2 Required Arguments

e queryset: A QuerySet that will be searched for the object (see Table D-1).
and either

® object_1id: The value of the primary-key field for the object.
or

® s1ug: The slug of the given object. If you pass this field, then the s1ug_field argument (see the
following section) is also required.

24.3.2.3 Optional Arguments

® slug_field: The name of the field on the object containing the slug. This is required if you are
using the s lug argument, but it must be absent if you’re using the object_1id argument.

e template_name_field: The name of a field on the object whose value is the template name to
use. This lets you store template names in your data.

In other words, if your object has a field 'the_template' that contains a string ' foo.html"',
and you set template_name_fieldto 'the_template', then the generic view for this object
will use the template ' foo.html"'.

If the template named by template_name_field doesn’t exist, the one named by
template_name is used instead. It’s a bit of a brain-bender, but it’s useful in some cases.

This view may also take these common arguments (see Table D-1):

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

e template_object_name

24.3.2.4 Template Name

If template_name and template_name_field aren’t specified, this view will use the template
<app_label>/<model_name>_detail.html by default.

24 .3.2 Detail Views 304



The Django Book
24.3.2.5 Template Context

In addition to ext ra_context, the template’s context will be as follows:

® object: The object. This variable’s name depends on the template_object_name parameter,
which is 'object ' by default. If template_object_nameis 'foo"', this variable’s name will
be foo.

24.4 Date-Based Generic Views

Date-based generic views are generally used to provide a set of “archive” pages for dated material. Think
year/month/day archives for a newspaper, or a typical blog archive.

Tip:
By default, these views ignore objects with dates in the future.

This means that if you try to visit an archive page in the future, Django will automatically show a 404 (“Page
not found”) error, even if there are objects published that day.

Thus, you can publish postdated objects that don’t appear publicly until their desired publication date.

However, for different types of date-based objects, this isn’t appropriate (e.g., a calendar of upcoming events).
For these views, setting the allow_future option to True will make the future objects appear (and allow
users to visit “future” archive pages).

24.4.1 Archive Index

View function: django.views.generic.date_based.archive_index
This view provides a top-level index page showing the “latest” (i.e., most recent) objects by date.
24.4.1.1 Example

Say a typical book publisher wants a page of recently published books. Given some Book object with a
publication_date field, we can use the archive_index view for this common task:

from mysite.books.models import Book
from django.conf.urls.defaults import *
from django.views.generic import date_based

book_info = {
"queryset" : Book.objects.all(),
"date_field" : "publication_date"
}

urlpatterns = patterns('',
(r'~books/$', date_based.archive_index, book_info),

)
24.4.1.2 Required Arguments
¢ date_field: The name of the DateField or DateTimeField in the QuerySet ‘s model that

the date-based archive should use to determine the objects on the page.
® queryset: A QuerySet of objects for which the archive serves.

24 .3.2 Detail Views 305



The Django Book
24.4.1.3 Optional Arguments

® allow_future: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.
e num_latest: The number of latest objects to send to the template context. By default, it’s 15.

This view may also take these common arguments (see Table D-1):

®allow_empty

® context_processors
® cxtra_context
*mimetype

e template_loader

® template_name

24.4.1.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_archive.html by default.

24.4.1.5 Template Context
In addition to ext ra_context, the template’s context will be as follows:

e date_list: Alistof datetime.date objects representing all years that have objects available
according to queryset. These are ordered in reverse.

For example, if you have blog entries from 2003 through 2006, this list will contain four
datetime.date objects: one for each of those years.

® latest: The num_1latest objects in the system, in descending order by date_field. For
example, if num_latest is 10, then latest will be a list of the latest ten objects in queryset.

24.4.2 Year Archives

View function: django.views.generic.date_based.archive_year

Use this view for yearly archive pages. These pages have a list of months in which objects exists, and they can
optionally display all the objects published in a given year.

24.4.2.1 Example

Extending the archive_index example from earlier, we’ll add a way to view all the books published in a
given year:

from mysite.books.models import Book
from django.conf.urls.defaults import *
from django.views.generic import date_based

book_info = {
"queryset" : Book.objects.all(),
"date_field" : "publication_date"
}

urlpatterns = patterns('',

(r'~books/$', date_based.archive_index, book_info),

(r'*books/ (?P<year>d{4})/?$', date_based.archive_year, book_info),
)

24.4 1 Archive Index 306



The Django Book
24.4.2.2 Required Arguments

e date_field: Asfor archive_index (see the previous section).

® queryset: A QuerySet of objects for which the archive serves.

e year: The four-digit year for which the archive serves (as in our example, this is usually taken from
a URL parameter).

24.4.2.3 Optional Arguments

® make_object_list: A Boolean specifying whether to retrieve the full list of objects for this year
and pass those to the template. If True, this list of objects will be made available to the template as
object_1list. (The name object_1ist may be different; see the information about
object_list in the following “Template Context” section.) By default, this is False.

® allow_future: A Boolean specifying whether to include “future” objects on this page.

This view may also take these common arguments (see Table D-1):

®allow_empty

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

®e template_object_name

24.4.2.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_archive_year.html by default.

24.4.2.5 Template Context
In addition to ext ra_context, the template’s context will be as follows:
e date_list: Alistof datetime.date objects representing all months that have objects available
in the given year, according to queryset, in ascending order.
e year: The given year, as a four-character string.
e object_list: Ifthe make_object_1list parameteris True, this will be set to a list of objects
available for the given year, ordered by the date field. This variable’s name depends on the
template_object_name parameter, which is 'object ' by default. If

template_object_nameis 'foo', this variable’s name will be foo_1list.

If make_object_listisFalse, object_1ist will be passed to the template as an empty list.

24.4.3 Month Archives

View function: django.views.generic.date_based.archive_month
This view provides monthly archive pages showing all objects for a given month.
24.4.3.1 Example

Continuing with our example, adding month views should look familiar:

urlpatterns = patterns('',

24.4.2 Year Archives 307



The Django Book

(r'~books/$', date_based.archive_index, book_info),
(r'"books/ (?P<year>d{4})/?$', date_based.archive_year, book_info),
(

r'” (?P<year>d{4})/ (?P<month>[a-z] {3})/$',

date_based.archive_month,

book_info

) 14

)

24.4.3.2 Required Arguments

e year: The four-digit year for which the archive serves (a string).

e month: The month for which the archive serves, formatted according to the month_format
argument.

® queryset: A QuerySet of objects for which the archive serves.

¢ date_field: The name of the DateField or DateTimeField in the QuerySet ‘s model that
the date-based archive should use to determine the objects on the page.

24.4.3.3 Optional Arguments

e month_format: A format string that regulates what format the month parameter uses. This should
be in the syntax accepted by Python’s t ime . st rft ime. (See Python’s strftime documentation at
http://www.djangoproject.com/r/python/strftime/.) It’s set to "$b" by default, which is a three-letter
month abbreviation (i.e., “jan”, “feb”, etc.). To change it to use numbers, use " $m".

® allow_future: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

This view may also take these common arguments (see Table D-1):

®allow_empty

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

e template_object_name

24.4.3.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_archive_month.html by default.

24.4.3.5 Template Context
In addition to ext ra_context, the template’s context will be as follows:

e month: A datetime.date object representing the given month.

® next_month: A datetime.date object representing the first day of the next month. If the next
month is in the future, this will be None.

e previous_month: A datetime.date object representing the first day of the previous month.
Unlike next_month, this will never be None

® object_list: A list of objects available for the given month. This variable’s name depends on the
template_object_name parameter, which is 'object ' by default. If
template_object_nameis 'foo', this variable’s name will be foo_1list.

24.4.3 Month Archives 308


http://www.djangoproject.com/r/python/strftime/

The Django Book
24.4.4 Week Archives

View function: django.views.generic.date_based.archive_week
This view shows all objects in a given week.
Note

For the sake of consistency with Python’s built-in date/time handling, Django assumes that the first day of the
week is Sunday.

24.4.4.1 Example

urlpatterns = patterns('',
# ...
(
r'” (?P<year>d{4})/ (?P<week>d{2})/$"',
date_based.archive_week,
book_info
) 14
)

24.4.4.2 Required Arguments

¢ year: The four-digit year for which the archive serves (a string).

e week: The week of the year for which the archive serves (a string).

® queryset: A QuerySet of objects for which the archive serves.

¢ date_field: The name of the DateField or DateTimeField in the QuerySet ‘s model that
the date-based archive should use to determine the objects on the page.

24.4.4.3 Optional Arguments

® allow_future: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

This view may also take these common arguments (see Table D-1):

®allow_empty

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

e template_object_name

24.4.4.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_archive_week.html by default.

24.4.4.5 Template Context
In addition to ext ra_context, the template’s context will be as follows:

® week: A datetime.date object representing the first day of the given week.

24.4.4 Week Archives 309



The Django Book

® object_list: A list of objects available for the given week. This variable’s name depends on the
template_object_name parameter, which is 'object ' by default. If
template_object_nameis 'foo', this variable’s name will be foo_1list.

24.4.5 Day Archives

View function: django.views.generic.date_based.archive_day
This view generates all objects in a given day.

24.4.5.1 Example

urlpatterns = patterns('',
# ...
(
r'” (?P<year>d{4})/ (?P<month>[a-z] {3})/ (?P<day>d{2})/$"',
date_based.archive_day,
book_info
) 14
)

24.4.5.2 Required Arguments

¢ year: The four-digit year for which the archive serves (a string).

e month: The month for which the archive serves, formatted according to the month_format
argument.

® day: The day for which the archive serves, formatted according to the day_ format argument.

® queryset: A QuerySet of objects for which the archive serves.

¢ date_field: The name of the DateField or DateTimeField in the QuerySet ‘s model that
the date-based archive should use to determine the objects on the page.

24.4.5.3 Optional Arguments

emonth_format: A format string that regulates what format the month parameter uses. See the
detailed explanation in the “Month Archives” section, above.

® day_format: Like month_format, but for the day parameter. It defaults to "$d" (the day of
the month as a decimal number, 01-31).

® allow_future: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

This view may also take these common arguments (see Table D-1):

®allow_empty

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

e template_object_name

24.4.5.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_archive_day.html by default.

24.4.5 Day Archives 310



The Django Book
24.4.5.5 Template Context

In addition to ext ra_context, the template’s context will be as follows:

® day: A datetime.date object representing the given day.

® next_day: A datetime.date object representing the next day. If the next day is in the future,
this will be None.

e previous_day: A datetime.date object representing the given day. Unlike next_day, this
will never be None.

® object_list: A list of objects available for the given day. This variable’s name depends on the
template_object_name parameter, which is 'object ' by default. If
template_object_nameis 'foo', this variable’s name will be foo_1list.

24.4.6 Archive for Today

The django.views.generic.date_based.archive_today view shows all objects for today. This
is exactly the same as archive_day, except the year/month/day arguments are not used, and today’s
date is used instead.

24.4.6.1 Example

urlpatterns = patterns('',
¥ o...
(r'*books/today/$', date_based.archive_today, book_info),

24.4.7 Date-Based Detail Pages

View function: django.views.generic.date_based.object_detail
Use this view for a page representing an individual object.

This has a different URL from the object_detail view; the object_detail view uses URLs like
/entries/<slug>/, while this one uses URLs like /entries/2006/aug/27/<slug>/.

Note

If you’re using date-based detail pages with slugs in the URLSs, you probably also want to use the
unique_for_date option on the slug field to validate that slugs aren’t duplicated in a single day. See
Appendix B for details on unique_for_date.

24.4.7.1 Example

This one differs (slightly) from all the other date-based examples in that we need to provide either an object
ID or a slug so that Django can look up the object in question.

Since the object we’re using doesn’t have a slug field, we’ll use ID-based URLs. It’s considered a best
practice to use a slug field, but in the interest of simplicity we’ll let it go.

urlpatterns = patterns('',
# ...
(
r'* (?P<year>d{4})/ (?P<month>[a-z] {3})/ (?P<day>d{2})/ (?P<object_id>[w-]+)/$"',
date_based.object_detail,
book_info

),

24.4.5 Day Archives 311



The Django Book

)
24.4.7.2 Required Arguments

e year: The object’s four-digit year (a string).

e month: The object’s month, formatted according to the month_format argument.

® day: The object’s day, formatted according to the day_ format argument.

® queryset: A QuerySet that contains the object.

¢ date_field: The name of the DateField or DateTimeField in the QuerySet ‘s model that
the generic view should use to look up the object according to year, month, and day.

You’ll also need either:
® object_1id: The value of the primary-key field for the object.
or:

® s1ug: The slug of the given object. If you pass this field, then the s1lug_field argument
(described in the following section) is also required.

24.4.7.3 Optional Arguments

® allow_future: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

® day_format: Like month_format, but for the day parameter. It defaults to "$d" (the day of
the month as a decimal number, 01-31).

e month_format: A format string that regulates what format the month parameter uses. See the
detailed explanation in the “Month Archives” section, above.

® slug_field: The name of the field on the object containing the slug. This is required if you are
using the s lug argument, but it must be absent if you’re using the object_id argument.

e template_name_field: The name of a field on the object whose value is the template name to
use. This lets you store template names in the data. In other words, if your object has a field
'"the_template' that contains a string ' foo.html', and youset template_name_fieldto
'the_template’', then the generic view for this object will use the template ' foo.html"'.

This view may also take these common arguments (see Table D-1):

® context_processors

® cxtra_context
*mimetype

e template_loader

® template_name

e template_object_name

24.4.7.4 Template Name

If template_name and template_name_field aren’t specified, this view will use the template
<app_label>/<model_name>_detail.html by default.

24.4.7.5 Template Context
In addition to ext ra_context, the template’s context will be as follows:

® object: The object. This variable’s name depends on the template_object_name parameter,
which is 'object ' by default. If template_object_nameis 'foo"', this variable’s name will

24.4.7 Date-Based Detail Pages 312



The Django Book

be foo.

24.5 Create/Update/Delete Generic Views

The django.views.generic.create_update module contains a set of functions for creating,
editing, and deleting objects.

Note

These views may change slightly when Django’s revised form architecture (currently under development as
django.newforms) is finalized.

These views all present forms if accessed with GET and perform the requested action (create/update/delete) if
accessed via POST.

These views all have a very coarse idea of security. Although they take a 1ogin_required attribute,
which if given will restrict access to logged-in users, that’s as far as it goes. They won’t, for example, check
that the user editing an object is the same user who created it, nor will they validate any sort of permissions.

Much of the time, however, those features can be accomplished by writing a small wrapper around the generic
view; see “Extending Generic Views” in Chapter 9.

24.5.1 Create Object View

View function: django.views.generic.create_update.create_object

This view displays a form for creating an object. When the form is submitted, this view redisplays the form
with validation errors (if there are any) or saves the object.

24.5.1.1 Example

If we wanted to allow users to create new books in the database, we could do something like this:

from mysite.books.models import Book

from django.conf.urls.defaults import *
from django.views.generic import date_based
book_info = {'model' : Book}

urlpatterns = patterns('',

(r'"books/create/$"', create_update.create_object, book_info),

)
24.5.1.2 Required Arguments

® model: The Django model of the object that the form will create.
Note

Notice that this view takes the model to be created, not a QuerySet (as all the list/detail/date-based views
presented previously do).

24.5 Create/Update/Delete Generic Views 313



The Django Book
24.5.1.3 Optional Arguments

® post_save_redirect: A URL to which the view will redirect after saving the object. By default,
it’s object.get_absolute_url ().

post_save_redirect: May contain dictionary string formatting, which will be interpolated
against the object’s field attributes. For example, you could use
post_save_redirect="/polls/%(slug)s/".

® login_required: A Boolean that designates whether a user must be logged in, in order to see the
page and save changes. This hooks into the Django authentication system. By default, this is False.

If this is True, and a non-logged-in user attempts to visit this page or save the form, Django will
redirect the request to /accounts/login/.

This view may also take these common arguments (see Table D-1):

® context_processors
® cxtra_context

e template_loader

® template_name

24.5.1.4 Template Name

If template_name isn’t specified, this view will use the template
<app_label>/<model_name>_form.html by default.

24.5.1.5 Template Context
In addition to ext ra_ context, the template’s context will be as follows:

e form: A FormWrapper instance representing the form for editing the object. This lets you refer to
form fields easily in the template system — for example, if the model has two fields, name and
address:

<form action="" method="post">
<p><label for="id_name">Name:</label> {{ form.name }}</p>
<p><label for="id_address">Address:</label> {{ form.address }}</p>
</form>

Note that form is an oldforms FormWrapper, which is not covered in this book. See
http://www.djangoproject.com/documentation/0.96/forms/ for details.

24.5.2 Update Object View

View function: django.views.generic.create_update.update_object

This view is almost identical to the create object view. However, this one allows the editing of an existing
object instead of the creation of a new one.

24.5.2.1 Example

Following the previous example, we could provide an edit interface for a single book with this URLconf
snippet:

from mysite.books.models import Book

24.5.1 Create Object View 314


http://www.djangoproject.com/documentation/0.96/forms/

The Django Book

from django.conf.urls.defaults import *
from django.views.generic. import date_based

book_info = {'model' : Book}

urlpatterns = patterns('',
(r'"books/create/$"', create_update.create_object, book_info),

(
r'*books/edit/ (?P<object_id>d+) /$',
create_update.update_object,
book_info
)I
)

24.5.2.2 Required Arguments

® model: The Django model to edit. Again, this is the actual model itself, not a QuerySet.
And either:

® object_1id: The value of the primary-key field for the object.
or:

® s1ug: The slug of the given object. If you pass this field, then the s1ug_field argument (below)
is also required.

24.5.2.3 Optional Arguments

® slug_field: The name of the field on the object containing the slug. This is required if you are
using the s lug argument, but it must be absent if you’re using the object_1id argument.

Additionally, this view takes all same optional arguments as the creation view, plus the
template_object_name common argument from Table D-1.

24.5.2.4 Template Name

This view uses the same default template name (<app_label>/<model_name>_form.html) as the
creation view.

24.5.2.5 Template Context
In addition to ext ra_context, the template’s context will be as follows:
e form: A FormWrapper instance representing the form for editing the object. See the “Create
Object View” section for more information about this value.

® object: The original object being edited (this variable may be named differently if you’ve provided
the template_object_name argument).

24.5.3 Delete Object View

View function: django.views.generic.create_update.delete_object
This view is very similar to the other two create/edit views. This view, however, allows deletion of objects.

If this view is fetched with GET, it will display a confirmation page (i.e., “Do you really want to delete this
object?”). If the view is submitted with POST, the object will be deleted without confirmation.

24.5.2 Update Object View 315



The Django Book

All the arguments are the same as for the update object view, as is the context; the template name for this view
is <app_label>/<model_name>_confirm_delete.html.

24.5.3 Delete Object View 316



25 Appendix F: Built-in Template Tags and Filters

Chapter 4 lists a number of the most useful built-in template tags and filters. However, Django ships with
many more built-in tags and filters. This appendix lists the ones that were included at the time this book was
written, but new tags get added fairly regularly.

The best reference to all the available tags and filters is directly in your admin interface. Django’s admin
interface includes a complete reference of all tags and filters available for a given site. To see it, go to your

admin interface and click the Documentation link at the upper right of the page.

The tags and filters sections of the built-in documentation describe all the built-in tags (in fact, the tag and
filter references in this appendix come directly from those pages) as well as any custom tag libraries available.

For those without an admin site available, reference for the stock tags and filters follows. Because Django is

highly customizable, the reference in your admin site should be considered the final word on the available tags
and filters and what they do.

25.1 Built-in Tag Reference

25.1.1 block

Defines a block that can be overridden by child templates. See the section on template inheritance in Chapter
4 for more information.

25.1.2 comment

Ignores everything between {$ comment %} and {$ endcomment %}.

25.1.3 cycle

Cycles among the given strings each time this tag is encountered.

Within a loop, it cycles among the given strings each time through the loop:

% for o in some_list %}
<tr class="{% cycle rowl,row2 %$}">

</tr>
% endfor %}

Outside of a loop, give the values a unique name the first time you call it, and then use that name each
successive time through:

<tr class="{% cycle rowl,row2,row3 as rowcolors %}">...</tr>
<tr class="{% cycle rowcolors %$}">...</tr>
<tr class="{% cycle rowcolors %$}">...</tr>

You can use any number of values, separated by commas. Make sure not to put spaces between the values —
only commas.

25.1.4 debug

Outputs a whole load of debugging information, including the current context and imported modules.

25 Appendix F: Built-in Template Tags and Filters 317



The Django Book
25.1.5 extends
Signals that this template extends a parent template.
This tag can be used in two ways:
® {$ extends "base.html" %} (with quotes) uses the literal value "base.html" as the name
of the parent template to extend.
® {$ extends variable %} uses the value of variable. If the variable evaluates to a string,
Django will use that string as the name of the parent template. If the variable evaluates to a

Template object, Django will use that object as the parent template.

See Chapter 4 for many usage examples.

25.1.6 filter

Filters the contents of the variable through variable filters.
Filters can also be piped through each other, and they can have arguments — just like in variable syntax.

Here’s a sample usage:

% filter escapel|lower %}
This text will be HTML-escaped, and will appear in all lowercase.
% endfilter %}

25.1.7 firstof

Outputs the first variable passed that is not False. Outputs nothing if all the passed variables are False.

Here’s a sample usage:

% firstof varl var2 var3 %}

This is equivalent to the following:

—
oe

if varl %}
{{ varl }}
else %} {% if var2 %}
{{ var2 }}
else %} {% if var3 %}
{{ var3 }}
endif %} {% endif %}{% endif %}

—
oe

—
oe

—
oe

25.1.8 for

Loops over each item in an array. For example, to display a list of athletes given athlete_list:

<ul>

% for athlete in athlete_list %}
<1li>{{ athlete.name }}</1i>

% endfor %}

</ul>

You can also loop over a list in reverse by using {$ for obj in list reversed %}.

25.1.5 extends 318



The Django Book

The for loop sets a number of variables available within the loop (see Table F-1).

Table F-1. Variables Available Inside {% for %} Loops

Variable Description
forloop.counter The current iteration of the loop (1-indexed).
forloop.counter0 The current iteration of the loop (0-indexed).

forloop.revcounter The number of iterations from the end of the loop (1-indexed).
forloop.revcounter0 The number of iterations from the end of the loop (0-indexed).
forloop.first True if this is the first time through the loop.
forloop.last True if this is the last time through the loop.
forloop.parentloop For nested loops, this is the loop “above” the current one.

25.1.9 if

The {$ 1f %} tagevaluates a variable, and if that variable is “true” (i.e., it exists, is not empty, and is not a
false Boolean value), the contents of the block are output:

% 1f athlete_list %}

Number of athletes: {{ athlete_list|length }}
% else %}

No athletes.
% endif %}

If athlete_1l1ist is not empty, the number of athletes will be displayed by the { {
athlete_list|length }} variable.

As you can see, the if tag can take an optional {$ else %} clause that will be displayed if the test fails.

if tags may use and, or, or not to test a number of variables or to negate a given variable:

—~—
oe

if athlete_list and coach_list %}
Both athletes and coaches are available.
endif %}

—~—
o

—~—
oe

if not athlete_list %}
There are no athletes.
endif %}

—~—
oe

—~—
oe

if athlete_list or coach_list %}
There are some athletes or some coaches.
endif %}

—~—
o

—~—
oe

if not athlete_list or coach_list %}

There are no athletes or there are some coaches (OK, so
writing English translations of Boolean logic sounds
stupid; it's not our fault).
endif %}

—~—
oe

—~—
oe

if athlete_list and not coach_list %}
There are some athletes and absolutely no coaches.
endif %}

—~—
o

if tags don’t allow and and or clauses within the same tag, because the order of logic would be ambiguous.
For example, this is invalid:

% 1f athlete_list and coach_list or cheerleader_list %}

25.1.8 for 319



The Django Book

If you need to combine and and or to do advanced logic, just use nested 1 f tags, for example:

% 1f athlete_list %}
% 1f coach_list or cheerleader_list %}
We have athletes, and either coaches or cheerleaders!
% endif %}
% endif %}

Multiple uses of the same logical operator are fine, as long as you use the same operator. For example, this is
valid:

o)

% 1f athlete_list or coach_list or parent_list or teacher_list %}

25.1.10 ifchanged

Checks if a value has changed from the last iteration of a loop.
The i fchanged block tag is used within a loop. It has two possible uses:

1. It checks its own rendered contents against its previous state and only displays the content if it has
changed. For example, this displays a list of days, only displaying the month if it changes:

<hl>Archive for {{ year }}</hl>
{%$ for date in days %}
{$ ifchanged %}<h3>{{ datel|date:"F" }}</h3>{% endifchanged %}

<a href="{{ date|date:"M/d"|lower }}/">{{ date|date:"j" }}</a>
{% endfor %}

2. If given a variable, it checks whether that variable has changed:

% for date in days %}
{% ifchanged date.date %} {{ date.date }} {% endifchanged %}
{% ifchanged date.hour date.date %}
{{ date.hour }}
{% endifchanged %}
% endfor %}

The preceding shows the date every time it changes, but it only shows the hour if both the hour and
the date have changed.

25.1.11 ifequal

Outputs the contents of the block if the two arguments equal each other.

Here’s an example:

% ifequal user.id comment.user_id %}

% eéaifequal %}
Asinthe {$ if %} tag,an {$ else %} clause is optional.
The arguments can be hard-coded strings, so the following is valid:

o)

% ifequal user.username "adrian" %}

o)

% endifequal %}

25.1.9if 320



The Django Book

It is only possible to compare an argument to template variables or strings. You cannot check for equality with
Python objects such as True or False. If you need to test if something is true or false, use the if tag
instead.

25.1.12 ifnotequal

Just like 1 fequal, except it tests that the two arguments are not equal.

25.1.13 include

Loads a template and renders it with the current context. This is a way of “including” other templates within a
template.

The template name can be either a variable or a hard-coded (quoted) string, in either single or double quotes.

This example includes the contents of the template "foo/bar.html":

% include "foo/bar.html" %}

This example includes the contents of the template whose name is contained in the variable
template_name:

{% include template_name %}

25.1.14 load

Loads a custom template library. See Chapter 10 for information about custom template libraries.

25.1.15 now

Displays the date, formatted according to the given string.

This tag was inspired by, and uses the same format as, a PHP’s date () function (http://php.net/date).
Django’s version, however, has some custom extensions.

Table F-2 shows the available format strings.

Table F-2. Available Date Format Strings

Cfl(;r;izr Description Example Output

'a.m."'or 'p.m."'. (Note that this is slightly different from

a PHP’s output, because this includes periods to match Associated 'a.m. '
Press style.)

A 'AM' or 'PM"'. 'AM!

b Month, textual, three letters, lowercase 'jJan'

d Day of the month, two digits with leading zeros. '01'to '31"

D Day of the week, textual, three letters. '"Fri'

¢ Time, in 12-hour hours and minutes, with minutes left off if ‘11 11:30"
they’re zero. ’

F Month, textual, long. 'January'
Hour, 12-hour format without leading zeros. '1'to '12"

25.1.11 ifequal 321


http://php.net/date

T F A

b g B r‘ e [

- o =z

—

=< <

N

Z

Here’s an example:

The Django Book

Hour, 24-hour format without leading zeros.
Hour, 12-hour format.

Hour, 24-hour format.

Minutes.

Day of the month without leading zeros.
Day of the week, textual, long.

Boolean for whether it’s a leap year.
Month, two digits with leading zeros.
Month, textual, three letters.

Month without leading zeros.
Month abbreviation in Associated Press style.
Difference to Greenwich Mean Time in hours.

Time, in 12-hour hours, minutes, and a.m./p.m., with minutes
left off if they’re zero and the special-case strings
'midnight' and 'noon' if appropriate.

RFC 822 formatted date.

Seconds, two digits with leading zeros.
English ordinal suffix for day of the month, two characters.

Number of days in the given month.

Time zone of this machine.
Day of the week, digits without leading zeros.

ISO-8601 week number of year, with weeks starting on
Monday.

Year, two digits.
Year, four digits.
Day of the year.

Time zone offset in seconds. The offset for time zones west of
UTC is always negative, and for those east of UTC it is always
positive.

It is {% now "jS F Y H:i" %

'0"to '23"
'01'to '12"
'00' to '23"
'00"to '59"
'1'to '31"
'Friday'
TrueorFalse
'01l'"to '12"
'Jan'’'
'1'to'12"
'Jan.', 'Feb."',
'March', "May'
'+0200"

'T7 a.m.","1:30
p.m."', 'midnight’,
'noon', '12:30
p.m.'

'Thu, 21 Dec
2000 16:01:07
+0200"

'00'"to '59"

'st', 'nd', 'rd"' or
Tep

28to 31

"EST', '"MDT'

'0' (Sunday)to '6"
(Saturday)

1,23

1991
'1999"
0to 365

-43200to0 43200

Note that you can backslash-escape a format string if you want to use the “raw” value. In this example, “f” is
backslash-escaped, because otherwise “f” is a format string that displays the time. The “0” doesn’t need to be
escaped, because it’s not a format character:

It is the {% now "JS o\f F" %}

This would display as “It is the 4th of September”.

25.1.15 now

322



The Django Book
25.1.16 regroup

Regroups a list of alike objects by a common attribute.

This complex tag is best illustrated by use of an example. Say that people is a list of Person objects that
have first_name, last_name, and gender attributes, and you’d like to display a list that looks like
this:

* Male:
* George Bush
* Bill Clinton
* Female:
* Margaret Thatcher
* Condoleezza Rice
* Unknown:
* Pat Smith

The following snippet of template code would accomplish this dubious task:

% regroup people by gender as grouped %}
<ul>
% for group in grouped %}
<1li>{{ group.grouper }}
<ul>
% for item in group.list %}
<li>{{ item }}</1i>
% endfor %}
</ul>
</1i>
% endfor %}
</ul>

Asyoucansee, {$ regroup %} populates a variable with a list of objects with grouper and 1ist
attributes. grouper contains the item that was grouped by; 11st contains the list of objects that share that
grouper. In this case, grouper would be Male, Female, and Unknown, and 1ist is the list of people
with those genders.

Note that {$ regroup %} does not work when the list to be grouped is not sorted by the key you are
grouping by! This means that if your list of people was not sorted by gender, you’d need to make sure it is
sorted before using it, that is:

{% regroup people|dictsort:"gender" by gender as grouped %}

25.1.17 spaceless
Removes whitespace between HTML tags. This includes tab characters and newlines.

Here’s an example:
% spaceless %}
<p>
<a href="foo/">Foo</a>

</p>
% endspaceless %}

This example would return this HTML.:

<p><a href="foo/">Foo</a></p>

25.1.16 regroup 323



The Django Book

Only space between tags is removed — not space between tags and text. In this example, the space around
Hello won’t be stripped:

o)

% spaceless %}
<strong>
Hello
</strong>
% endspaceless %}

25.1.18 ssi

Outputs the contents of a given file into the page.

Like a simple “include” tag, {$ ssi %} includes the contents of another file — which must be specified
using an absolute path — in the current page:

{% ssi /home/html/ljworld.com/includes/right_generic.html %}

If the optional “parsed” parameter is given, the contents of the included file are evaluated as template code,
within the current context:

o)

% ssi /home/html/ljworld.com/includes/right_generic.html parsed %}

Note that if youuse {$ ssi %}, you'll need to define ALLOWED_INCLUDE_ROOTS in your Django
settings, as a security measure.

Most of the time {$ include %} works better than {$ ssi %}; {%$ ssi %} exists mostly for
backward compatibility.

25.1.19 templatetag
Outputs one of the syntax characters used to compose template tags.

Since the template system has no concept of “escaping,” to display one of the bits used in template tags, you
must use the {$ templatetag %} tag.

The argument tells which template bit to output (see Table F-3).

Table F-3. Valid Arguments to templatetag

Argument Output

openblock {%
closeblock %}

openvariable {{
closevariable }}
openbrace {
closebrace }
opencomment {#

closecomment #}

25.1.17 spaceless 324



The Django Book
25.1.20 url

Returns an absolute URL (i.e., a URL without the domain name) matching a given view function and optional
parameters. This is a way to output links without violating the DRY principle by having to hard-code URLSs in
your templates:

% url path.to.some_view argl,arg2,namel=valuel %}
The first argument is a path to a view function in the format package .package.module. function.
Additional arguments are optional and should be comma-separated values that will be used as positional and

keyword arguments in the URL. All arguments required by the URLconf should be present.

For example, suppose you have a view, app_name . client, whose URLconf takes a client ID. The
URLconf line might look like this:

('"~client/ (\d+)/$', 'app_name.client')

If this application’s URLconf is included into the project’s URLconf under a path such as this:

('“clients/', include ('project_name.app_name.urls'))

then, in a template, you can create a link to this view like this:

% url app_name.client client.id %}

The template tag will output the string /clients/client/123/.

25.1.21 widthratio

For creating bar charts and such, this tag calculates the ratio of a given value to a maximum value, and then
applies that ratio to a constant.

Here’s an example:
<img src="bar.gif" height="10" width="{% widthratio this_value max_value 100 %}" />

If this_valueis 175 and max_value is 200, the image in the preceding example will be 88 pixels wide
(because 175/200 = .875; .875 * 100 = 87.5, which is rounded up to 88).

25.2 Built-in Filter Reference

25.2.1 add

Example:

{{ valueladd:"5" }}

Adds the argument to the value.

25.2.2 addslashes

Example:

{{ stringladdslashes }}

25.1.20 url 325



The Django Book

Adds backslashes before single and double quotes. This is useful for passing strings to JavaScript, for

example.

25.2.3 capfirst

Example:

{{ string|capfirst }}

Capitalizes the first character of the string.

25.2.4 center

Example:

{{ string|center:"50" }}

Centers the string in a field of a given width.

25.2.5 cut

Example:
{{ string|cut:"spam" }}

Removes all values of the argument from the given string.

25.2.6 date

Example:

{{ value|date:"F j, Y" }}

Formats a date according to the given format (same as the now tag).

25.2.7 default

Example:

{{ value|default:" (N/A)" }}

If the value is unavailable, use the given default.

25.2.8 default_if none

Example:

{{ value|default_if_none:" (N/A)" }}

If the value is None, use the given default.

25.2.2 addslashes

326



The Django Book
25.2.9 dictsort

Example:

{{ list|dictsort:"foo" }}

Takes a list of dictionaries and returns that list sorted by the property given in the argument.

25.2.10 dictsortreversed

Example:

{{ list|dictsortreversed:"foo" }}

Takes a list of dictionaries and returns that list sorted in reverse order by the property given in the argument.

25.2.11 divisibleby

Example:

% if value|divisibleby:"2" %}
Even!

% else %}
0dd!

% else %}

Returns True if the value is divisible by the argument.

25.2.12 escape

Example:

{{ stringl|escape }}

Escapes a string’s HTML. Specifically, it makes these replacements:

e "g"to"&amp; "

e Jto"&lt; "

®>to"&gt; "

e ' "' (double quote) to ' squot; '
e "' " (single quote) to '&#39; '

25.2.13 filesizeformat

Example:

{{ value|filesizeformat }}

Formats the value like a “human-readable” file size (i.e., '13 KB', '4.1 MB', '102 bytes',etc).

25.2.14 first

Example:
{{ list|first }}

25.2.9 dictsort

327



The Django Book

Returns the first item in a list.

25.2.15 fix_ampersands

Example:
{{ string|fix_ampersands }}

Replaces ampersands with samp; entities.

25.2.16 floatformat

Examples:

{{ value|floatformat }}
{{ value|floatformat:"2" }}

When used without an argument, rounds a floating-point number to one decimal place — but only if there’s a
decimal part to be displayed, for example:

® 36.123 gets converted to 36. 1.
® 36.15 gets converted to 36. 2.
® 36 gets converted to 36.

If used with a numeric integer argument, £ 1oat format rounds a number to that many decimal places:

® 36.1234 with floatformat:3 gets converted to 36.123.
® 36 with floatformat:4 gets converted to 36.0000.

If the argument passed to f1loat format is negative, it will round a number to that many decimal places —
but only if there’s a decimal part to be displayed:

® 36.1234 with floatformat:-3 gets converted to 36.123.
® 36 with floatformat:-4 gets converted to 36.

Using float format with no argument is equivalent to using f1oat format with an argument of —1.
25.2.17 get_digit

Example:

{{ value|get_digit:"1" }}

Given a whole number, returns the requested digit of it, where 1 is the rightmost digit, 2 is the

second-to-rightmost digit, and so forth. It returns the original value for invalid input (if the input or argument
is not an integer, or if the argument is less than 1). Otherwise, output is always an integer.

25.2.18 join

Example:
{{ list|join:", " }}

Joins a list with a string, like Python’s str. join (list).

25.2.14 first 328



The Django Book
25.2.19 length
Example:
{{ list|length }}

Returns the length of the value.

25.2.20 length_is

Example:
% 1f list|length_is:"3" %}
% endif %}

Returns a Boolean of whether the value’s length is the argument.

25.2.21 linebreaks

Example:

{{ string|linebreaks }}

Converts newlines into <p> and <br /> tags.

25.2.22 linebreaksbr

Example:

{{ string|linebreaksbr }}
Converts newlines into <br /> tags.
25.2.23 linenumbers

Example:

{{ string|linenumbers }}

Displays text with line numbers.

25.2.24 ljust

Example:
{{ string|ljust:"50" }}
Left-aligns the value in a field of a given width.

25.2.25 lower

Example:

25.2.19 length

329



The Django Book

{{ string|lower }}

Converts a string into all lowercase.

25.2.26 make_list

Example:

{% for i in number|make_list %}

(5 endfor %)

Returns the value turned into a list. For an integer, it’s a list of digits. For a string, it’s a list of characters.
25.2.27 phone2numeric

Example:

{{ string|phone2numeric }}

Converts a phone number (possibly containing letters) to its numerical equivalent. For example,
'800-COLLECT " will be converted to '800-2655328".

The input doesn’t have to be a valid phone number. This will happily convert any string.

25.2.28 pluralize

Example:

The list has {{ list|length }} item{{ list|pluralize }}.

Returns a plural suffix if the value is not 1. By default, this suffix is 's'.

Example:

You have {{ num_messages }} message{{ num_messages|pluralize }}.

For words that require a suffix other than 's ', you can provide an alternate suffix as a parameter to the filter.

Example:

You have {{ num_walruses }} walrus{{ num_walrus|pluralize:"es" }}.

For words that don’t pluralize by simple suffix, you can specify both a singular and plural suffix, separated by
a comma.

Example:

You have {{ num_cherries }} cherr{{ num_cherries|pluralize:"y,ies" }}.

25.2.29 pprint

Example:

{{ object|pprint }}

25.2.25 lower 330



The Django Book

A wrapper around Python’s built-in pprint . pprint — for debugging, really.

25.2.30 random

Example:

{{ list|random }}

Returns a random item from the list.

25.2.31 removetags
Example:
{{ string|removetags:"br p div" }}

Removes a space-separated list of [X]HTML tags from the output.

25.2.32 rjust

Example:
{{ string|rjust:"50" }}

Right-aligns the value in a field of a given width.

25.2.33 slice

Example:
{{ some_list|slice:":2" }}
Returns a slice of the list.

Uses the same syntax as Python’s list slicing. See
http://diveintopython.org/native data types/lists.html#odbchelper.list.slice for an introduction.

25.2.34 slugify

Example:
{{ stringl|slugify }}

Converts to lowercase, removes nonword characters (alphanumerics and underscores), and converts spaces to
hyphens. It also strips leading and trailing whitespace.

25.2.35 stringformat

Example:

{{ number|stringformat:"02i" }}

Formats the variable according to the argument, a string formatting specifier. This specifier uses Python
string-formatting syntax, with the exception that the leading “%” is dropped.

25.2.29 pprint 331


http://diveintopython.org/native_data_types/lists.html#odbchelper.list.slice

The Django Book
See http://docs.python.org/lib/typesseq-strings.html for documentation of Python string formatting.

25.2.36 striptags

Example:
{{ string|striptags }}

Strips all [X]HTML tags.

25.2.37 time

Example:
{{ value|time:"P" }}

Formats a time according to the given format (same as the now tag).

25.2.38 timesince

Examples:

{{ datetime|timesince }}
{{ datetime|timesince:"other_datetime" }}

Formats a date as the time since that date (e.g., “4 days, 6 hours”).

Takes an optional argument that is a variable containing the date to use as the comparison point (without the
argument, the comparison point is now). For example, if blog_date is a date instance representing
midnight on 1 June 2006, and comment_date is a date instance for 08:00 on 1 June 2006, then { {
comment_date|timesince:blog_date }} would return “8 hours”.

25.2.39 timeuntil

Examples:

{{ datetime|timeuntil }}
{{ datetime|timeuntil:"other_datetime" }}

Similar to t imesince, except that it measures the time from now until the given date or datetime. For
example, if today is 1 June 2006 and conference_date is a date instance holding 29 June 2006, then { {
conference_date|timeuntil }} will return “28 days”.

Takes an optional argument that is a variable containing the date to use as the comparison point (instead of

now). If from_date contains 22 June 2006, then { { conference_date|timeuntil:from date
} } will return “7 days”.

25.2.40 title

Example:

{{ string|titlecase }}

Converts a string into title case.

25.2.35 stringformat 332


http://docs.python.org/lib/typesseq-strings.html

The Django Book

25.2.41 truncatewords

Example:

{{ string|truncatewords:"15" }}

Truncates a string after a certain number of words.

25.2.42 truncatewords html

Example:

{{ string|truncatewords_html:"15" }}

Similar to t runcatewords, except that it is aware of HTML tags. Any tags that are opened in the string
and not closed before the truncation point are closed immediately after the truncation.

This is less efficient than t runcatewords, so it should be used only when it is being passed HTML text.

25.2.43 unordered list

Example:

<ul>
{{ list|unordered_1list }}
</ul>

Recursively takes a self-nested list and returns an HTML unordered list — without opening and closing <ul>
tags.

The list is assumed to be in the proper format. For example, if var contains [ 'States', [['Kansas',
[['Lawrence', []], ['Topeka', []1]], ['Illinois', []11]],then {{
var|unordered_list }} would return the following:

<li>States
<ul>
<li>Kansas
<ul>
<li>Lawrence</1i>
<li>Topeka</1i>
</ul>
</1i>
<1i>Illinois</1i>
</ul>
</1i>

25.2.44 upper

Example:
{{ string|upper }}

Converts a string into all uppercase.

25.2.41 truncatewords 333



The Django Book
25.2.45 urlencode

Example:

<a href="{{ link|urlencode }}">linkage</a>

Escapes a value for use in a URL.

25.2.46 urlize

Example:

{{ stringlurlize }}

Converts URLs in plain text into clickable links.

25.2.47 urlizetrunc

Example:

{{ stringlurlizetrunc:"30" }}

Converts URLs into clickable links, truncating URLSs to the given character limit.

25.2.48 wordcount

Example:

{{ string|wordcount }}

Returns the number of words.

25.2.49 wordwrap

Example:

{{ string|wordwrap:"75" }}

Wraps words at a specified line length.

25.2.50 yesno

Example:

{{ boolean|yesno:"Yes,No,Perhaps" }}

Given a string mapping values for True, False, and (optionally) None, returns one of those strings
according to the value (see Table F-4).

Table F-4. Examples of the yesno Filter

Value Argument Output

True "yeah,no,maybe" yeah

25.2.45 urlencode 334



The Django Book

False "yeah, no,maybe" no
None "yeah,no,maybe" maybe

None "yeah,no" "no" (converts None to False if no mapping for None is given)

25.2.50 yesno 335



26 Appendix G: The django-admin Utility

django—admin.py is Django’s command-line utility for administrative tasks. This appendix explains its
many powers.

You’ll usually access django—-admin . py through a project’s manage . py wrapper. manage . py is
automatically created in each Django project and is a thin wrapper around d jango-admin . py. It takes care
of two things for you before delegating to d jango—admin.py:

e |t puts your project’s package on sys.path.

e |t sets the DJANGO_SETTINGS_MODULE environment variable so that it points to your project’s

settings.py file.

The django-admin . py script should be on your system path if you installed Django via its setup.py
utility. If it’s not on your path, you can find it in site-packages/django/bin within your Python
installation. Consider symlinking it from some place on your path, such as /usr/local/bin.
Windows users, who do not have symlinking functionality available, can copy django—-admin.py toa
location on their existing path or edit the PATH settings (under Settings ~TRA Control Panel ~TRA System
~TRA Advanced ~TRA Environment) to point to its installed location.
Generally, when working on a single Django project, it’s easier to use manage . py. Use
django—admin.py with DJANGO_SETTINGS_MODULE or the ——settings command-line option, if

you need to switch between multiple Django settings files.

The command-line examples throughout this appendix use d jango—admin . py to be consistent, but any
example can use manage . py just as well.

26.1 Usage

The basic usage is:

django-admin.py action [options]
or:

manage.py action [options]

action should be one of the actions listed in this document. opt ions, which is optional, should be zero or
more of the options listed in this document.

Run django-admin.py —-help to display a help message that includes a terse list of all available
actions and options.

Most actions take a list of app names. An app name is the base name of the package containing your models.
For example, if your INSTALLED_APPS contains the string 'mysite.blog’, the app name is blog.

26.2 Available Actions

The following sections cover the actions available to you.

26 Appendix G: The django-admin Utility 336



The Django Book

26.2.1 adminindex [appname appname ...]

Prints the admin-index template snippet for the given application names. Use admin-index template snippets if
you want to customize the look and feel of your admin’s index page.

26.2.2 createcachetable [tablename]

Creates a cache table named tablename for use with the database cache back-end. See Chapter 13 for more
about caching.

26.2.3 dbshell

Runs the command-line client for the database engine specified in your DATABASE_ENGINE setting, with
the connection parameters specified in the settings DATABASE_USER, DATABASE_PASSWORD, and so
forth.

® For PostgreSQL, this runs the psgl command-line client.

e For MySQL, this runs the mysqgl command-line client.

¢ For SQLite, this runs the sglite3 command-line client.
This command assumes the programs are on your PATH so that a simple call to the program name (psql,

mysql, or sglite3) will find the program in the right place. There’s no way to specify the location of the
program manually.

26.2.4 diffsettings

Displays differences between the current settings file and Django’s default settings.

Settings that don’t appear in the defaults are followed by " ###". For example, the default settings don’t
define ROOT_URLCONF, so ROOT_URLCONF is followed by "###" in the output of diffsettings.

Note that Django’s default settings live in django.conf.global_settings, if you're ever curious to
see the full list of defaults.

26.2.5 dumpdata [appname appname ...]

Outputs to standard output all data in the database associated with the named application(s).

By default, the database will be dumped in JSON format. If you want the output to be in another format, use
the ——format option (e.g., format=xml). You may specify any Django serialization back-end (including
any user-specified serialization back-ends named in the SERTALIZATION_MODULES setting). The
—-—1indent option can be used to pretty-print the output.

If no application name is provided, all installed applications will be dumped.

The output of dumpdata can be used as input for Lloaddata.

26.2.6 flush

Returns the database to the state it was in immediately after syncdb was executed. This means that all data
will be removed from the database, any postsynchronization handlers will be re-executed, and the
initial_data fixture will be reinstalled.

26.2.1 adminindex [appname appname ...] 337



The Django Book
26.2.7 inspectdb

Introspects the database tables in the database pointed to by the DATABASE_NAME setting and outputs a
Django model module (a models . py file) to standard output.

Use this if you have a legacy database with which you’d like to use Django. The script will inspect the
database and create a model for each table within it.

As you might expect, the created models will have an attribute for every field in the table. Note that
inspectdb has a few special cases in its field name output:

e If inspectdb cannot map a column’s type to a model field type, it will use TextField and will
insert the Python comment 'This field type is a guess. ' nextto the field in the
generated model.

o If the database column name is a Python reserved word (such as 'pass"', 'class',or 'for"'),
inspectdb will append '_field' to the attribute name. For example, if a table has a column
'for', the generated model will have a field ' for_field"', with the db_column attribute set to
'for'. inspectdb will insert the Python comment 'Field renamed because it was a
Python reserved word. ' nextto the field.

This feature is meant as a shortcut, not as definitive model generation. After you run it, you’ll want to look
over the generated models yourself to make customizations. In particular, you’ll need to rearrange the models

so that models with relationships are ordered properly.

Primary keys are automatically introspected for PostgreSQL, MySQL, and SQLite, in which case Django puts
in the primary_key=True where needed.

inspectdb works with PostgreSQL, MySQL, and SQLite. Foreign key detection only works in PostgreSQL
and with certain types of MySQL tables.

26.2.8 loaddata [fixture fixture ...]

Searches for and loads the contents of the named fixture into the database.
A fixture is a collection of files that contain the serialized contents of the database. Each fixture has a unique
name; however, the files that comprise the fixture can be distributed over multiple directories, in multiple
applications.
Django will search in three locations for fixtures:

¢ In the fixtures directory of every installed application

¢ In any directory named in the FIXTURE_DIRS setting

¢ In the literal path named by the fixture

Django will load any and all fixtures it finds in these locations that match the provided fixture names.

If the named fixture has a file extension, only fixtures of that type will be loaded. For example, the following:

django-admin.py loaddata mydata.json

will only load JSON fixtures called mydata. The fixture extension must correspond to the registered name of
a serializer (e.g., json or xml).

26.2.7 inspectdb 338



The Django Book

If you omit the extension, Django will search all available fixture types for a matching fixture. For example,
the following:

django-admin.py loaddata mydata

will look for any fixture of any fixture type called mydata. If a fixture directory contained mydata. json,
that fixture would be loaded as a JSON fixture. However, if two fixtures with the same name but different
fixture types are discovered (e.g., if mydata. json and mydata .xml were found in the same fixture

directory), fixture installation will be aborted, and any data installed in the call to 1oaddata will be removed
from the database.

The fixtures that are named can include directory components. These directories will be included in the search
path. The following, for example:

django—-admin.py loaddata foo/bar/mydata. json

will search <appname>/fixtures/foo/bar/mydata. json for each installed application,
<dirname>/foo/bar/mydata. json for each directory in FIXTURE_DIRS, and the literal path
foo/bar/mydata. json.

Note that the order in which fixture files are processed is undefined. However, all fixture data is installed as a
single transaction, so data in one fixture can reference data in another fixture. If the database back-end
supports row-level constraints, these constraints will be checked at the end of the transaction.

The dumpdata command can be used to generate input for loaddata.

MySQL and Fixtures

Unfortunately, MySQL isn’t capable of completely supporting all the features of Django fixtures. If you use
MyISAM tables, MySQL doesn’t support transactions or constraints, so you won’t get a rollback if multiple
transaction files are found, or validation of fixture data. If you use InnoDB tables, you won’t be able to have

any forward references in your data files — MySQL doesn’t provide a mechanism to defer checking of row
constraints until a transaction is committed.

26.2.9 reset [appname appname ...]

Executes the equivalent of sqlreset for the given app names.

26.2.10 runfcgi [options]

Starts a set of FastCGI processes suitable for use with any Web server that supports the FastCGI protocol. See
Chapter 20 for more about deploying under FastCGI.

This command requires the Python FastCGI module from f1up (http://www.djangoproject.com/t/flup/).

26.2.11 runserver [optional port number, or ipaddr:port]

Starts a lightweight development Web server on the local machine. By default, the server runs on port 8000 on
the IP address 127.0.0.1. You can pass in an IP address and port number explicitly.

If you run this script as a user with normal privileges (recommended), you might not have access to start a
port on a low port number. Low port numbers are reserved for the superuser (root).

Warning

26.2.8 loaddata [fixture fixture ...] 339


http://www.djangoproject.com/r/flup/

The Django Book

Do not use this server in a production setting. It has not gone through security audits or performance tests,
and there are no plans to change that fact. Django’s developers are in the business of making Web
frameworks, not Web servers, so improving this server to be able to handle a production environment is
outside the scope of Django.

The development server automatically reloads Python code for each request, as needed. You don’t need to
restart the server for code changes to take effect.

When you start the server, and each time you change Python code while the server is running, the server will
validate all of your installed models. (See the upcoming section on the validate command.) If the validator

finds errors, it will print them to standard output, but it won’t stop the server.

You can run as many servers as you want, as long as they’re on separate ports. Just execute
django—-admin.py runserver more than once.

Note that the default IP address, 127.0.0.1, is not accessible from other machines on your network. To make
your development server viewable to other machines on the network, use its own IP address (e.g.,
192.168.2.1) or 0.0.0.0.

For example, to run the server on port 7000 on IP address 127.0.0.1, use this:

django-admin.py runserver 7000

Or to run the server on port 7000 on IP address 1.2.3.4, use this:

django—-admin.py runserver 1.2.3.4:7000

26.2.11.1 Serving Static Files with the Development Server

By default, the development server doesn’t serve any static files for your site (such as CSS files, images,
things under MEDIA_ROOT_URL, etc.). If you want to configure Django to serve static media, read about

serving static media at http://www.djangoproject.com/documentation/0.96/static files/.

26.2.11.2 Turning Off Autoreload

To disable autoreloading of code while the development server is running, use the ——noreload option, like
SO:

django-admin.py runserver —--noreload
26.2.12 shell

Starts the Python interactive interpreter.

Django will use IPython (http://ipython.scipy.org/) if it’s installed. If you have IPython installed and want to
force use of the “plain” Python interpreter, use the ——plain option, like so:

django-admin.py shell --plain
26.2.13 sql [appname appname ...]

Prints the CREATE TABLE SQL statements for the given app names.

26.2.11 runserver [optional port number, or ipaddr:port] 340


http://www.djangoproject.com/documentation/0.96/static_files/
http://ipython.scipy.org/

The Django Book
26.2.14 sqlall [appname appname ...]

Prints the CREATE TABLE and initial-data SQL statements for the given app names.

Refer to the description of sglcustom for an explanation of how to specify initial data.

26.2.15 sqlclear [appname appname ...]

Prints the DROP TABLE SQL statements for the given app names.

26.2.16 sglcustom [appname appname ...]

Prints the custom SQL statements for the given app names.

For each model in each specified app, this command looks for the file
<appname>/sqgl/<modelname>.sqgl, where <appname> is the given app name and <mode lname>
is the model’s name in lowercase. For example, if you have an app news that includes a St ory model,
sglcustom will attempt to read a file news/sqgl/story.sqgl and append it to the output of this
command.

Each of the SQL files, if given, is expected to contain valid SQL. The SQL files are piped directly into the
database after all of the models’ table-creation statements have been executed. Use this SQL hook to make

any table modifications, or insert any SQL functions into the database.

Note that the order in which the SQL files are processed is undefined.

26.2.17 sglindexes [appname apphame ...]

Prints the CREATE INDEX SQL statements for the given app names.

26.2.18 sqlreset [appname appname ...]

Prints the DROP TABLE SQL, and then the CREATE TABLE SQL, for the given app names.
26.2.19 sglsequencereset [appname appname ...]

Prints the SQL statements for resetting sequences for the given app names.

You’ll need this SQL only if you’re using PostgreSQL and have inserted data by hand. When you do that,
PostgreSQL’s primary key sequences can get out of sync from what’s in the database, and the SQL emitted by
this command will clear it up.

26.2.20 startapp [appname]

Creates a Django application directory structure for the given app name in the current directory.

26.2.21 startproject [projectname]

Creates a Django project directory structure for the given project name in the current directory.

26.2.14 sqglall [appname appname ...] 341



The Django Book
26.2.22 syncdb

Creates the database tables for all applications in INSTALLED_APPS whose tables have not already been
created.

Use this command when you’ve added new applications to your project and want to install them in the
database. This includes any applications shipped with Django that might be in INSTALLED_APPS by
default. When you start a new project, run this command to install the default applications.

If you’re installing the d jango.contrib.auth application, syncdb will give you the option of creating

a superuser immediately. syncdb will also search for and install any fixture named initial_data. See
the documentation for 1oaddata for details on the specification of fixture data files.

26.2.23 test

Discovers and runs tests for all installed models. Testing was still under development when this book was
being written, so to learn more you’ll need to read the documentation online at

http://www.djangoproject.com/documentation/0.96/testing/.

26.2.24 validate

Validates all installed models (according to the INSTALLED_APPS setting) and prints validation errors to
standard output.

26.3 Available Options

The sections that follow outline the options that d jango—admin . py can take.

26.3.1 —settings

Example usage:

django-admin.py syncdb —-settings=mysite.settings

Explicitly specifies the settings module to use. The settings module should be in Python package syntax (e.g.,
mysite.settings). If this isn’t provided, d jango—-admin.py will use the

DJANGO_SETTINGS_MODULE environment variable.

Note that this option is unnecessary in manage . py, because it takes care of setting
DJANGO_SETTINGS_MODULE1bry0u

26.3.2 —pythonpath

Example usage:
django-admin.py syncdb —--pythonpath='/home/djangoprojects/myproject'

Adds the given filesystem path to the Python import search path. If this isn’t provided, d jango—admin.py
will use the PYTHONPATH environment variable.

Note that this option is unnecessary in manage . py, because it takes care of setting the Python path for you.

26.2.22 syncdb 342


http://www.djangoproject.com/documentation/0.96/testing/

The Django Book
26.3.3 —format

Example usage:

django-admin.py dumpdata —--format=xml

Specifies the output format that will be used. The name provided must be the name of a registered serializer.

26.3.4 —help

Displays a help message that includes a terse list of all available actions and options.

26.3.5 —indent

Example usage:
django—-admin.py dumpdata —--indent=4

Specifies the number of spaces that will be used for indentation when pretty-printing output. By default,
output will not be pretty-printed. Pretty-printing will only be enabled if the indent option is provided.

26.3.6 —noinput

Indicates you will not be prompted for any input. This is useful if the d jango—admin script will be
executed as an unattended, automated script.

26.3.7 —noreload

Disables the use of the autoreloader when running the development server.

26.3.8 —version
Displays the current Django version.

Example output:

26.3.9 —verbosity

Example usage:
django—-admin.py syncdb —--verbosity=2

Determines the amount of notification and debug information that will be printed to the console. 0 is no
output, 1 is normal output, and 2 is verbose output.

26.3.10 —adminmedia

Example usage:

django—-admin.py —--adminmedia=/tmp/new-admin-style/

26.3.3 —format

343



The Django Book

Tells Django where to find the various CSS and JavaScript files for the admin interface when running the
development server. Normally these files are served out of the Django source tree, but because some designers
customize these files for their site, this option allows you to test against custom versions.

26.3.10 —adminmedia 344



27 Appendix H: Request and Response Objects

Django uses request and response objects to pass state through the system.
When a page is requested, Django creates an Ht tpRequest object that contains metadata about the request.
Then Django loads the appropriate view, passing the Htt pRequest as the first argument to the view

function. Each view is responsible for returning an Ht t pResponse object.

We’ve used these objects often throughout the book; this appendix explains the complete APIs for
HttpRequest and HttpResponse objects.

27.1 HttpRequest

HttpRequest represents a single HTTP request from some user-agent.

Much of the important information about the request is available as attributes on the Ht t pRequest instance
(see Table H-1). All attributes except session should be considered read-only.

Table H-1. Attributes of HttpRequest Objects

Attribute Description
A string representing the full path to the requested page, not including the domain — for
path .
example, " /music/bands/the_beatles/".
A string representing the HTTP method used in the request. This is guaranteed to be
uppercase. For example:
method if request.method == 'GET':
do_something ()
elif request.method == 'POST':
do_something_else()
GET A dictionary-like object containing all given HTTP GET parameters. See the upcoming
QueryDict documentation.
A dictionary-like object containing all given HTTP POST parameters. See the upcoming
QueryDict documentation.
It’s possible that a request can come in via POST with an empty POST dictionary — if,
bOST say, a form is requested via the POST HTTP method but does not include form data.
Therefore, you shouldn’tuse if request.POST to check for use of the POST
method; instead, use 1f request.method == "POST" (see the method entry in
this table).
Note: POST does not include file-upload information. See FILES.
For convenience, a dictionary-like object that searches POST first, and then GET.
Inspired by PHP’s $_ REQUEST.
REQUEST For example, if GET = {"name": "john"} and POST = {"age": '34'},
REQUEST ["name"] would be " john", and REQUEST ["age" ] would be "34".
It’s strongly suggested that you use GET and POST instead of REQUEST, because the
former are more explicit.
COOKIES A standard Python dictionary containing all cookies. Keys and values are strings. See

Chapter 12 for more on using cookies.

27 Appendix H: Request and Response Objects 345



FILES

META

user

session

The Django Book

A dictionary-like object containing all uploaded files. Each key in FILES is the name
from the <input type="file" name="" />.Each valuein FILES is a standard
Python dictionary with the following three keys:

e filename: The name of the uploaded file, as a Python string
® content—type: The content type of the uploaded file.
e content: The raw content of the uploaded file.

Note that FILES will contain data only if the request method was POST and the
<form> that posted to the request had enctype="multipart/form-data".
Otherwise, FILES will be a blank dictionary-like object.

A standard Python dictionary containing all available HTTP headers. Available headers
depend on the client and server, but here are some examples:

® CONTENT_LENGTH

® CONTENT_TYPE

® QUERY_ STRING: The raw unparsed query string
¢ REMOTE_ADDR: The IP address of the client

® REMOTE_HOST: The hostname of the client

® SERVER_NAME: The hostname of the server.

® SERVER_PORT: The port of the server

Any HTTP headers are available in META as keys prefixed with HTTP_, for example:

e HTTP_ACCEPT_ENCODING

e HTTP_ACCEPT_LANGUAGE

e HTTP_HOST: The HTTP Host header sent by the client

® HTTP_REFERER: The referring page, if any

® HTTP_USER_AGENT: The client’s user-agent string

e HTTP_X_ BENDER: The value of the X-Bender header, if set

A django.contrib.auth.models.User object representing the currently
logged-in user. If the user isn’t currently logged in, user will be set to an instance of
django.contrib.auth.models.AnonymousUser. You can tell them apart
with is_authenticated (), like so:

if request.user.is_authenticated() :

# Do something for logged-in users.
else:

# Do something for anonymous users.

user is available only if your Django installation has the
AuthenticationMiddleware activated.

For the complete details of authentication and users, see Chapter 12.

A readable and writable, dictionary-like object that represents the current session. This is
available only if your Django installation has session support activated. See Chapter 12.

raw_post_data The raw HTTP POST data. This is useful for advanced processing.
Request objects also have a few useful methods, as shown in Table H-2.

Table H-2. HttpRequest Methods

Method

Description

__getitem__ (key) Returns the GET/POST value for the given key, checking POST first, and then GET.

27.1 HitpRequest

Raises KeyError if the key doesn’t exist.

346



The Django Book

This lets you use dictionary-accessing syntax on an Ht t pRequest instance.

For example, request ["foo"] is the same as checking
request .POST["foo"] and then request .GET["foo"].

Returns True or False, designating whether request .GET or request .POST

has_key () has the given key.

Returns the path, plus an appended query string, if applicable. For example,

t_full th
get_full path() "/music/bands/the_beatles/?print=true"

is_secure () Returns True if the request is secure; that is, if it was made with HTTPS.

27.1.1 QueryDict Objects

In an Ht tpRequest object, the GET and POST attributes are instances of django.http.QueryDict.
QueryDict is a dictionary-like class customized to deal with multiple values for the same key. This is
necessary because some HTML form elements, notably <select multiple="multiple">, pass
multiple values for the same key.

QueryDict instances are immutable, unless you create a copy () of them. That means you can’t change
attributes of request .POST and request . GET directly.

QueryDict implements the all standard dictionary methods, because it’s a subclass of dictionary.
Exceptions are outlined in Table H-3.

Table H-3. How QueryDicts Differ from Standard Dictionaries.

Method Differences from Standard dict Implementation

otitem Works just like a dictionary. However, if the key has more than one value,

—9 — __getitem__ () returns the last value.

Sets the given key to [value] (a Python list whose single element is value). Note that

__setitem__this, as other dictionary functions that have side effects, can be called only on a mutable
QueryDict (one that was created via copy () ).

get () If the key has more than one value, get () returns the last value just like __getitem__ .

Takes either a QueryDict or standard dictionary. Unlike the standard dictionary’s

update method, this method appends to the current dictionary items rather than replacing

them:
>>> g = QueryDict('a=1")
update () >>> g = g.copy() # to make it mutable
>>> g.update({'a': '2'})
>>> g.getlist('a')
[ L} l A} , Al 2 Al ]
>>> g['a']l # returns the last
['2"]
Just like the standard dictionary items () method, except this uses the same last-value
logicas __getitem()__:
items ()
>>> g = QueryDict ('a=l&a=2&a=3")
>>> g.items ()
[(ra', '"3")]
values () Just like the standard dictionary values () method, except this uses the same last-value

logicas __getitem()
In addition, QueryDict has the methods shown in Table H-4.

H-4. Extra (Nondictionary) QueryDict Methods

27.1.1 QueryDict Objects 347



The Django Book

Method Description

Returns a copy of the object, using copy .deepcopy ()
copy () from the Python standard library. The copy will be mutable
— that is, you can change its values.

Returns the data with the requested key, as a Python list.
getlist (key) Returns an empty list if the key doesn’t exist. It’s
guaranteed to return a list of some sort.
setlist (key, list_) Sets the given key to 1ist_ (unlike __setitem__ ()).
appendlist (key, item) Appends an item to the internal list associated with key.

Just like setdefault, except it takes a list of values

tlistdefault (key, 1 . .
setlistdefault (key ) instead of a single value.

Like items (), except it includes all values, as a list, for
each member of the dictionary. For example:

lists ()

>>> g = QueryDict ('a=l&a=2&a=3")

>>> g.lists()

[('a', ['1', '2', '3'])]

Returns a string of the data in query-string format (e.g.,
urlencode () g query g (e.g

"a=2&b=3&b=5").
27.1.2 A Complete Example

For example, given this HTML form:

<form action="/foo/bar/" method="post">

<input type="text" name="your_name" />

<select multiple="multiple" name="bands">
<option value="beatles">The Beatles</option>
<option value="who">The Who</option>
<option value="zombies">The Zombies</option>

</select>

<input type="submit" />

</form>

if the user enters "John Smith" inthe your_name field and selects both “The Beatles™ and “The
Zombies” in the multiple select box, here’s what Django’s request object would have:

>>> request.GET

{1}
>>> request.POST

{'your_name': ['John Smith'], 'bands': ['beatles', 'zombies']}
>>> request.POST['your_name']

'John Smith'

>>> request.POST['bands']

'zombies'

>>> request.POST.getlist ('bands')

['beatles', 'zombies']

>>> request.POST.get ('your_name', 'Adrian')

'John Smith'

>>> request.POST.get ('nonexistent_field', 'Nowhere Man')

'Nowhere Man'
Implementation Note:
The GET, POST, COOKIES, FILES, META, REQUEST, raw_post_data, and user attributes are all

lazily loaded. That means Django doesn’t spend resources calculating the values of those attributes until your
code requests them.

27.1.2 A Complete Example 348



The Django Book
27.2 HttpResponse

In contrast to Ht tpRequest objects, which are created automatically by Django, Ht t pResponse objects
are your responsibility. Each view you write is responsible for instantiating, populating, and returning an
HttpResponse.

The HttpResponse class lives at django.http.HttpResponse.

27.2.1 Construction HttpResponses

Typically, you’ll construct an Ht tpResponse to pass the contents of the page, as a string, to the
HttpResponse constructor:

>>> response = HttpResponse ("Here's the text of the Web page.")
>>> response = HttpResponse ("Text only, please.", mimetype="text/plain")

But if you want to add content incrementally, you can use response as a filelike object:

>>> response = HttpResponse ()
>>> response.write ("<p>Here's the text of the Web page.</p>")
>>> response.write ("<p>Here's another paragraph.</p>")

You can pass Ht t pResponse an iterator rather than passing it hard-coded strings. If you use this technique,
follow these guidelines:

® The iterator should return strings.
¢ [f an Ht t pResponse has been initialized with an iterator as its content, you can’t use the

HttpResponse instance as a filelike object. Doing so will raise Exception.

Finally, note that Ht tpResponse implements a write () method, which makes is suitable for use
anywhere that Python expects a filelike object. See Chapter 11 for some examples of using this technique.

27.2.2 Setting Headers

You can add and delete headers using dictionary syntax:

>>> response = HttpResponse ()

>>> response['X-DJANGO'] = "It's the best."
>>> del response['X-PHP']

>>> response['X-DJANGO']

"It's the best."

You can also use has_header (header) to check for the existence of a header.

Avoid setting Cookie headers by hand; instead, see Chapter 12 for instructions on how cookies work in
Django.

27.2.3 HttpResponse Subclasses

Django includes a number of Ht t pResponse subclasses that handle different types of HTTP responses (see
Table H-5). Like Ht t pResponse, these subclasses live in d jango . http.

Table H-5. HttpResponse Subclasses
Class Description

27.2 HitpResponse 349



The Django Book

The constructor takes a single argument: the path to redirect to.
This can be a fully qualified URL (e.g.,

HttpResponseRedirect 'http://search.yahoo.com/") or an absolute URL with
no domain (e.g., ' /search/"). Note that this returns an HTTP
status code 302.

Like Ht tpResponseRedirect, but it returns a permanent
HttpResponsePermanentRedirect redirect (HTTP status code 301) instead of a “found” redirect

(status code 302).
The constructor doesn’t take any arguments. Use this to
HttpResponseNotModified designate that a page hasn’t been modified since the user’s last
request.
HttpResponseBadRequest Acts just like Ht t pResponse but uses a 400 status code.
HttpResponseNotFound Acts just like Ht t pResponse but uses a 404 status code.
HttpResponseForbidden Acts just like Ht t pResponse but uses a 403 status code.
Like Ht tpResponse, but uses a 405 status code. It takes a
HttpResponseNotAllowed single, required argument: a list of permitted methods (e.g.,
['GET', 'POST']).
HttpResponseGone Acts just like Ht t pResponse but uses a 410 status code.
HttpResponseServerError Acts just like Ht t pResponse but uses a 500 status code.

You can, of course, define your own Ht t pResponse subclass to support different types of responses not
supported out of the box.

27.2.4 Returning Errors

Returning HTTP error codes in Django is easy. We’ve already mentioned the Ht t pResponseNotFound,
HttpResponseForbidden, HttpResponseServerError, and other subclasses. Just return an
instance of one of those subclasses instead of a normal Ht t pResponse in order to signify an error, for
example:

def my_view (request) :
# ...
if foo:
return HttpResponseNotFound('<hl>Page not found</hl>")
else:
return HttpResponse ('<hl>Page was found</hl>")

Because a 404 error is by far the most common HTTP error, there’s an easier way to handle it.

When you return an error such as Ht t pResponseNotFound, you're responsible for defining the HTML of
the resulting error page:

return HttpResponseNotFound('<hl>Page not found</hl>")

For convenience, and because it’s a good idea to have a consistent 404 error page across your site, Django
provides an Ht tp404 exception. If you raise Ht t p404 at any point in a view function, Django will catch it
and return the standard error page for your application, along with an HTTP error code 404.

Here’s an example:

from django.http import Http404

def detail (request, poll_id):
try:
p = Poll.objects.get (pk=poll_id)
except Poll.DoesNotExist:

27.2.3 HitpResponse Subclasses 350



The Django Book

raise Http404
return render_to_response ('polls/detail.html', {'poll': p})

In order to use the Ht tp4 04 exception to its fullest, you should create a template that is displayed when a
404 error is raised. This template should be called 404 . htm1, and it should be located in the top level of
your template tree.

27.2.5 Customizing the 404 (Not Found) View

When you raise an Ht t p4 04 exception, Django loads a special view devoted to handling 404 errors. By
default, it’s the view d jango.views.defaults.page_not_found, which loads and renders the
template 404 . html.

This means you need to define a 404 . html template in your root template directory. This template will be
used for all 404 errors.

This page_not_found view should suffice for 99% of Web applications, but if you want to override the
404 view, you can specify handler404 in your URLconf, like so:

from django.conf.urls.defaults import *
urlpatterns = patterns('',

)

handler404 = 'mysite.views.my_custom_404_view'

Behind the scenes, Django determines the 404 view by looking for handler404. By default, URLconfs
contain the following line:

from django.conf.urls.defaults import *

That takes care of setting handler404 in the current module. As you can see in
django/conf/urls/defaults.py, handler404 is set to
'django.views.defaults.page_not_found' by default.

There are three things to note about 404 views:

® The 404 view is also called if Django doesn’t find a match after checking every regular expression in
the URLconf.

¢ If you don’t define your own 404 view — and simply use the default, which is recommended — you
still have one obligation: to create a 404 . htm1 template in the root of your template directory. The
default 404 view will use that template for all 404 errors.

¢ [f DEBUG is set to True (in your settings module), then your 404 view will never be used, and the
traceback will be displayed instead.

27.2.6 Customizing the 500 (Server Error) View

Similarly, Django executes special-case behavior in the case of runtime errors in view code. If a view results
in an exception, Django will, by default, call the view d jango.views.defaults.server_error,
which loads and renders the template 500 . htm1.

This means you need to define a 500 . html template in your root template directory. This template will be
used for all server errors.

27.2.4 Returning Errors 351



The Django Book

This server_error view should suffice for 99% of Web applications, but if you want to override the view,
you can specify handler500 in your URLconf, like so:

from django.conf.urls.defaults import *
urlpatterns = patterns('',
)

handler500 = 'mysite.views.my_custom_error_view'

27.2.6 Customizing the 500 (Server Error) View 352



28 License & Copyright
28.1 Layout and design

Copyright 2006 by Adrian Holovaty and Jacob Kaplan-Moss

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

28.2 Content

Copyright 2006 by Adrian Holovaty and Jacob Kaplan-Moss

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

28.3 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein.
The "Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring

28 License & Copyright 353



The Django Book

permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or
"History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

28.3 GNU Free Documentation License 354



The Django Book
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

® A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

¢ B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

¢ C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

¢ D. Preserve all the copyright notices of the Document.

28.3 GNU Free Documentation License 355



The Django Book

¢ E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

¢ F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

¢ G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

¢ H. Include an unaltered copy of this License.

e I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

e J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

¢ K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

® M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

¢ N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

® O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined

work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may

28.3 GNU Free Documentation License 356



The Django Book

be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any
sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

28.3 GNU Free Documentation License 357



The Django Book
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

28.4 How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with
this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in

parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

28.4 How to use this License for your documents 358



	Table of Contents
	1 Introduction to Django
	1.1 What Is a Web Framework?
	1.2 The MVC Design Pattern
	1.3 Django’s History
	1.4 How to Read This Book
	1.4.1 Required Programming Knowledge
	1.4.2 Required Python Knowledge
	1.4.3 New Django Features
	1.4.4 Getting Help
	1.4.5 What’s Next


	2 Getting Started
	2.1 Installing Python
	2.2 Installing Django
	2.2.1 Installing an Official Release
	2.2.2 Installing Django from Subversion

	2.3 Setting Up a Database
	2.3.1 Using Django with PostgreSQL
	2.3.2 Using Django with SQLite 3
	2.3.3 Using Django with MySQL
	2.3.4 Using Django Without a Database

	2.4 Starting a Project
	2.4.1 The Development Server

	2.5 What’s Next?

	3 The Basics of Dynamic Web Pages
	3.1 Your First View: Dynamic Content
	3.2 Mapping URLs to Views
	3.3 How Django Processes a Request
	3.3.1 How Django Processes a Request: Complete Details

	3.4 URLconfs and Loose Coupling
	3.5 404 Errors
	3.6 Your Second View: Dynamic URLs
	3.6.1 A Word About Pretty URLs
	3.6.2 Wildcard URLpatterns

	3.7 Django’s Pretty Error Pages
	3.8 What’s next?

	4 The Django Template System
	4.1 Template System Basics
	4.2 Using the Template System
	4.2.1 Creating Template Objects
	4.2.2 Rendering a Template
	4.2.3 Multiple Contexts, Same Template
	4.2.4 Context Variable Lookup
	4.2.5 Playing with Context Objects

	4.3 Basic Template Tags and Filters
	4.3.1 Tags
	4.3.2 Filters

	4.4 Philosophies and Limitations
	4.5 Using Templates in Views
	4.6 Template Loading
	4.6.1 render_to_response()
	4.6.2 The locals() Trick
	4.6.3 Subdirectories in get_template()
	4.6.4 The include Template Tag

	4.7 Template Inheritance
	4.8 What’s next?

	5 Interacting with a Database: Models
	5.1 The “Dumb” Way to Do Database Queries in Views
	5.2 The MTV Development Pattern
	5.3 Configuring the Database
	5.4 Your First App
	5.5 Defining Models in Python
	5.6 Your First Model
	5.7 Installing the Model
	5.8 Basic Data Access
	5.9 Adding Model String Representations
	5.10 Inserting and Updating Data
	5.11 Selecting Objects
	5.11.1 Filtering Data
	5.11.2 Retrieving Single Objects
	5.11.3 Ordering Data
	5.11.4 Chaining Lookups
	5.11.5 Slicing Data

	5.12 Deleting Objects
	5.13 Making Changes to a Database Schema
	5.13.1 Adding Fields
	5.13.2 Removing Fields
	5.13.3 Removing Many-to-Many Fields
	5.13.4 Removing Models

	5.14 What’s Next?

	6 The Django Administration Site
	6.1 Activating the Admin Interface
	6.2 Using the Admin Interface
	6.2.1 Users, Groups, and Permissions

	6.3 Customizing the Admin Interface
	6.4 Customizing the Admin Interface’s Look and Feel
	6.5 Customizing the Admin Index Page
	6.6 When and Why to Use the Admin Interface
	6.7 What’s Next?

	7 Form Processing
	7.1 Search
	7.2 The “Perfect Form”
	7.3 Creating a Feedback Form
	7.4 Processing the Submission
	7.5 Custom Validation Rules
	7.6 A Custom Look and Feel
	7.7 Creating Forms from Models
	7.8 What’s Next?

	8 Advanced Views and URLconfs
	8.1 URLconf Tricks
	8.1.1 Streamlining Function Imports
	8.1.2 Using Multiple View Prefixes
	8.1.3 Special-Casing URLs in Debug Mode
	8.1.4 Using Named Groups
	8.1.5 Understanding the Matching/Grouping Algorithm
	8.1.6 Passing Extra Options to View Functions
	8.1.7 Using Default View Arguments
	8.1.8 Special-Casing Views
	8.1.9 Capturing Text in URLs
	8.1.10 Determining What the URLconf Searches Against

	8.2 Including Other URLconfs
	8.2.1 How Captured Parameters Work with include()
	8.2.2 How Extra URLconf Options Work with include()

	8.3 What’s Next?

	9 Generic Views
	9.1 Using Generic Views
	9.2 Generic Views of Objects
	9.3 Extending Generic Views
	9.3.1 Making “Friendly” Template Contexts
	9.3.2 Adding Extra Context
	9.3.3 Viewing Subsets of Objects
	9.3.4 Complex Filtering with Wrapper Functions
	9.3.5 Performing Extra Work

	9.4 What’s Next?

	10 Extending the Template Engine
	10.1 Template Language Review
	10.2 RequestContext and Context Processors
	10.2.1 django.core.context_processors.auth
	10.2.2 django.core.context_processors.debug
	10.2.3 django.core.context_processors.i18n
	10.2.4 django.core.context_processors.request
	10.2.5 Guidelines for Writing Your Own Context Processors

	10.3 Inside Template Loading
	10.4 Extending the Template System
	10.4.1 Creating a Template Library
	10.4.2 Writing Custom Template Filters
	10.4.3 Writing Custom Template Tags
	10.4.4 Shortcut for Simple Tags
	10.4.5 Inclusion Tags

	10.5 Writing Custom Template Loaders
	10.6 Using the Built-in Template Reference
	10.7 Configuring the Template System in Standalone Mode
	10.8 What’s Next

	11 Generating Non-HTML Content
	11.1 The basics: views and MIME-types
	11.2 Producing CSV
	11.3 Generating PDFs
	11.3.1 Installing ReportLab
	11.3.2 Writing Your View
	11.3.3 Complex PDFs

	11.4 Other Possibilities
	11.5 The Syndication Feed Framework
	11.5.1 Initialization
	11.5.2 A Simple Feed
	11.5.3 A More Complex Feed
	11.5.4 Specifying the Type of Feed
	11.5.5 Enclosures
	11.5.6 Language
	11.5.7 URLs
	11.5.8 Publishing Atom and RSS Feeds in Tandem

	11.6 The Sitemap Framework
	11.6.1 Installation
	11.6.2 Initialization
	11.6.3 Sitemap Classes
	11.6.4 Shortcuts
	11.6.5 Creating a Sitemap Index
	11.6.6 Pinging Google

	11.7 What’s Next?

	12 Sessions, Users, and Registration
	12.1 Cookies
	12.1.1 Getting and Setting Cookies
	12.1.2 The Mixed Blessing of Cookies

	12.2 Django’s Session Framework
	12.2.1 Enabling Sessions
	12.2.2 Using Sessions in Views
	12.2.3 Setting Test Cookies
	12.2.4 Using Sessions Outside of Views
	12.2.5 When Sessions Are Saved
	12.2.6 Browser-Length Sessions vs. Persistent Sessions
	12.2.7 Other Session Settings

	12.3 Users and Authentication
	12.3.1 Enabling Authentication Support
	12.3.2 Using Users
	12.3.3 Logging In and Out
	12.3.4 Limiting Access to Logged-in Users
	12.3.5 Limiting Access to Users Who Pass a Test
	12.3.6 Managing Users, Permissions, and Groups
	12.3.7 Using Authentication Data in Templates

	12.4 The Other Bits: Permissions, Groups, Messages, and Profiles
	12.4.1 Permissions
	12.4.2 Groups
	12.4.3 Messages
	12.4.4 Profiles

	12.5 What’s Next

	13 Caching
	13.1 Setting Up the Cache
	13.1.1 Memcached
	13.1.2 Database Caching
	13.1.3 Filesystem Caching
	13.1.4 Local-Memory Caching
	13.1.5 Simple Caching (for Development)
	13.1.6 Dummy Caching (for Development)
	13.1.7 CACHE_BACKEND Arguments

	13.2 The Per-Site Cache
	13.3 The Per-View Cache
	13.3.1 Specifying Per-View Cache in the URLconf

	13.4 The Low-Level Cache API
	13.5 Upstream Caches
	13.5.1 Using Vary Headers
	13.5.2 Other Cache Headers

	13.6 Other Optimizations
	13.7 Order of MIDDLEWARE_CLASSES
	13.8 What’s Next?

	14 Other Contributed Subframeworks
	14.1 The Django Standard Library
	14.2 Sites
	14.2.1 Scenario 1: Reusing Data on Multiple Sites
	14.2.2 Scenario 2: Storing Your Site Name/Domain in One Place
	14.2.3 How to Use the Sites Framework
	14.2.4 The Sites Framework’s Capabilities
	14.2.5 CurrentSiteManager
	14.2.6 How Django Uses the Sites Framework

	14.3 Flatpages
	14.3.1 Using Flatpages
	14.3.2 Adding, Changing, and Deleting Flatpages
	14.3.3 Using Flatpage Templates

	14.4 Redirects
	14.4.1 Using the Redirects Framework
	14.4.2 Adding, Changing, and Deleting Redirects

	14.5 CSRF Protection
	14.5.1 A Simple CSRF Example
	14.5.2 A More Complex CSRF Example
	14.5.3 Preventing CSRF

	14.6 Humanizing Data
	14.6.1 apnumber
	14.6.2 intcomma
	14.6.3 intword
	14.6.4 ordinal

	14.7 Markup Filters
	14.8 What’s Next?

	15 Middleware
	15.1 What’s Middleware?
	15.2 Middleware Installation
	15.3 Middleware Methods
	15.3.1 Initializer: __init__(self)
	15.3.2 Request Preprocessor: process_request(self, request)
	15.3.3 View Preprocessor: process_view(self, request, view, args, kwargs)
	15.3.4 Response Postprocessor: process_response(self, request, response)
	15.3.5 Exception Postprocessor: process_exception(self, request, exception)

	15.4 Built-in Middleware
	15.4.1 Authentication Support Middleware
	15.4.2 “Common” Middleware
	15.4.3 Compression Middleware
	15.4.4 Conditional GET Middleware
	15.4.5 Reverse Proxy Support (X-Forwarded-For Middleware)
	15.4.6 Session Support Middleware
	15.4.7 Sitewide Cache Middleware
	15.4.8 Transaction Middleware
	15.4.9 “X-View” Middleware

	15.5 What’s Next?

	16 Integrating with Legacy Databases and Applications
	16.1 Integrating with a Legacy Database
	16.1.1 Using inspectdb
	16.1.2 Cleaning Up Generated Models

	16.2 Integrating with an Authentication System
	16.2.1 Specifying Authentication Back-ends
	16.2.2 Writing an Authentication Back-end

	16.3 Integrating with Legacy Web Applications
	16.4 What’s Next?

	17 Extending Django’s Admin Interface
	17.1 The Zen of Admin
	17.1.1 “Trusted users …”
	17.1.2 “… editing …”
	17.1.3 “… structured content”
	17.1.4 Full Stop

	17.2 Customizing Admin Templates
	17.2.1 Custom Model Templates
	17.2.2 Custom JavaScript

	17.3 Creating Custom Admin Views
	17.4 Overriding Built-in Views
	17.5 What’s Next?

	18 Internationalization
	18.1 Specifying Translation Strings in Python Code
	18.1.1 Standard Translation Functions
	18.1.2 Marking Strings As No-op
	18.1.3 Lazy Translation
	18.1.4 Pluralization

	18.2 Specifying Translation Strings in Template Code
	18.3 Creating Language Files
	18.3.1 Creating Message Files
	18.3.2 Compiling Message Files

	18.4 How Django Discovers Language Preference
	18.5 The set_language Redirect View
	18.6 Using Translations in Your Own Projects
	18.7 Translations and JavaScript
	18.7.1 The javascript_catalog View
	18.7.2 Using the JavaScript Translation Catalog
	18.7.3 Creating JavaScript Translation Catalogs

	18.8 Notes for Users Familiar with gettext
	18.9 What’s Next?

	19 Security
	19.1 The Theme of Web Security
	19.2 SQL Injection
	19.2.1 The Solution

	19.3 Cross-Site Scripting (XSS)
	19.3.1 The Solution

	19.4 Cross-Site Request Forgery
	19.5 Session Forging/Hijacking
	19.5.1 The Solution

	19.6 Email Header Injection
	19.6.1 The Solution

	19.7 Directory Traversal
	19.7.1 The Solution

	19.8 Exposed Error Messages
	19.8.1 The Solution

	19.9 A Final Word on Security
	19.10 What’s Next

	20 Deploying Django
	20.1 Shared Nothing
	20.2 A Note on Personal Preferences
	20.3 Using Django with Apache and mod_python
	20.3.1 Basic Configuration
	20.3.2 Running Multiple Django Installations on the Same Apache Instance
	20.3.3 Running a Development Server with mod_python
	20.3.4 Serving Django and Media Files from the Same Apache Instance
	20.3.5 Error Handling
	20.3.6 Handling a Segmentation Fault

	20.4 Using Django with FastCGI
	20.4.1 FastCGI Overview
	20.4.2 Running Your FastCGI Server
	20.4.3 Using Django with Apache and FastCGI
	20.4.4 FastCGI and lighttpd
	20.4.5 Running Django on a Shared-Hosting Provider with Apache

	20.5 Scaling
	20.5.1 Running on a Single Server
	20.5.2 Separating Out the Database Server
	20.5.3 Running a Separate Media Server
	20.5.4 Implementing Load Balancing and Redundancy
	20.5.5 Going Big

	20.6 Performance Tuning
	20.6.1 There’s No Such Thing As Too Much RAM
	20.6.2 Turn Off Keep-Alive
	20.6.3 Use memcached
	20.6.4 Use memcached Often
	20.6.5 Join the Conversation

	20.7 What’s Next?

	21 Appendix A: Case Studies
	21.1 Cast of Characters
	21.2 Why Django?
	21.3 Getting Started
	21.4 Porting Existing Code
	21.5 How Did It Go?
	21.6 Team Structure
	21.7 Deployment

	22 Appendix B: Model Definition Reference
	22.1 Fields
	22.1.1 AutoField
	22.1.2 BooleanField
	22.1.3 CharField
	22.1.4 CommaSeparatedIntegerField
	22.1.5 DateField
	22.1.6 DateTimeField
	22.1.7 EmailField
	22.1.8 FileField
	22.1.9 FilePathField
	22.1.10 FloatField
	22.1.11 ImageField
	22.1.12 IntegerField
	22.1.13 IPAddressField
	22.1.14 NullBooleanField
	22.1.15 PhoneNumberField
	22.1.16 PositiveIntegerField
	22.1.17 PositiveSmallIntegerField
	22.1.18 SlugField
	22.1.19 SmallIntegerField
	22.1.20 TextField
	22.1.21 TimeField
	22.1.22 URLField
	22.1.23 USStateField
	22.1.24 XMLField

	22.2 Universal Field Options
	22.2.1 null
	22.2.2 blank
	22.2.3 choices
	22.2.4 db_column
	22.2.5 db_index
	22.2.6 editable
	22.2.7 help_text
	22.2.8 primary_key
	22.2.9 radio_admin
	22.2.10 unique
	22.2.11 unique_for_date
	22.2.12 unique_for_month
	22.2.13 unique_for_year
	22.2.14 verbose_name

	22.3 Relationships
	22.3.1 Many-to-One Relationships
	22.3.2 Many-to-Many Relationships

	22.4 Model Metadata Options
	22.4.1 db_table
	22.4.2 get_latest_by
	22.4.3 order_with_respect_to
	22.4.4 ordering
	22.4.5 permissions
	22.4.6 unique_together
	22.4.7 verbose_name
	22.4.8 verbose_name_plural

	22.5 Managers
	22.5.1 Manager Names
	22.5.2 Custom Managers

	22.6 Model Methods
	22.6.1 __str__
	22.6.2 get_absolute_url
	22.6.3 Executing Custom SQL
	22.6.4 Overriding Default Model Methods

	22.7 Admin Options
	22.7.1 date_hierarchy
	22.7.2 fields
	22.7.3 js
	22.7.4 list_display
	22.7.5 list_display_links
	22.7.6 list_filter
	22.7.7 list_per_page
	22.7.8 list_select_related
	22.7.9 ordering
	22.7.10 save_as
	22.7.11 save_on_top
	22.7.12 search_fields


	23 Appendix C: Database API Reference
	23.1 Creating Objects
	23.1.1 What Happens When You Save?
	23.1.2 Autoincrementing Primary Keys

	23.2 Saving Changes to Objects
	23.3 Retrieving Objects
	23.4 Caching and QuerySets
	23.5 Filtering Objects
	23.5.1 Chaining Filters
	23.5.2 Limiting QuerySets
	23.5.3 Query Methods That Return New QuerySets
	23.5.4 QuerySet Methods That Do Not Return QuerySets

	23.6 Field Lookups
	23.6.1 exact
	23.6.2 iexact
	23.6.3 contains
	23.6.4 icontains
	23.6.5 gt, gte, lt, and lte
	23.6.6 in
	23.6.7 startswith
	23.6.8 istartswith
	23.6.9 endswith and iendswith
	23.6.10 range
	23.6.11 year, month, and day
	23.6.12 isnull
	23.6.13 search
	23.6.14 The pk Lookup Shortcut

	23.7 Complex Lookups with Q Objects
	23.8 Related Objects
	23.8.1 Lookups That Span Relationships
	23.8.2 Foreign Key Relationships
	23.8.3 “Reverse” Foreign Key Relationships
	23.8.4 Many-to-Many Relationships
	23.8.5 Queries Over Related Objects

	23.9 Deleting Objects
	23.10 Extra Instance Methods
	23.10.1 get_FOO_display()
	23.10.2 get_next_by_FOO(**kwargs) and get_previous_by_FOO(**kwargs)
	23.10.3 get_FOO_filename()
	23.10.4 get_FOO_url()
	23.10.5 get_FOO_size()
	23.10.6 save_FOO_file(filename, raw_contents)
	23.10.7 get_FOO_height() and get_FOO_width()

	23.11 Shortcuts
	23.11.1 get_object_or_404()
	23.11.2 get_list_or_404()

	23.12 Falling Back to Raw SQL

	24 Appendix D: Generic View Reference
	24.1 Common Arguments to Generic Views
	24.2 “Simple” Generic Views
	24.2.1 Rendering a Template
	24.2.2 Redirecting to Another URL

	24.3 List/Detail Generic Views
	24.3.1 Lists of Objects
	24.3.2 Detail Views

	24.4 Date-Based Generic Views
	24.4.1 Archive Index
	24.4.2 Year Archives
	24.4.3 Month Archives
	24.4.4 Week Archives
	24.4.5 Day Archives
	24.4.6 Archive for Today
	24.4.7 Date-Based Detail Pages

	24.5 Create/Update/Delete Generic Views
	24.5.1 Create Object View
	24.5.2 Update Object View
	24.5.3 Delete Object View


	25 Appendix F: Built-in Template Tags and Filters
	25.1 Built-in Tag Reference
	25.1.1 block
	25.1.2 comment
	25.1.3 cycle
	25.1.4 debug
	25.1.5 extends
	25.1.6 filter
	25.1.7 firstof
	25.1.8 for
	25.1.9 if
	25.1.10 ifchanged
	25.1.11 ifequal
	25.1.12 ifnotequal
	25.1.13 include
	25.1.14 load
	25.1.15 now
	25.1.16 regroup
	25.1.17 spaceless
	25.1.18 ssi
	25.1.19 templatetag
	25.1.20 url
	25.1.21 widthratio

	25.2 Built-in Filter Reference
	25.2.1 add
	25.2.2 addslashes
	25.2.3 capfirst
	25.2.4 center
	25.2.5 cut
	25.2.6 date
	25.2.7 default
	25.2.8 default_if_none
	25.2.9 dictsort
	25.2.10 dictsortreversed
	25.2.11 divisibleby
	25.2.12 escape
	25.2.13 filesizeformat
	25.2.14 first
	25.2.15 fix_ampersands
	25.2.16 floatformat
	25.2.17 get_digit
	25.2.18 join
	25.2.19 length
	25.2.20 length_is
	25.2.21 linebreaks
	25.2.22 linebreaksbr
	25.2.23 linenumbers
	25.2.24 ljust
	25.2.25 lower
	25.2.26 make_list
	25.2.27 phone2numeric
	25.2.28 pluralize
	25.2.29 pprint
	25.2.30 random
	25.2.31 removetags
	25.2.32 rjust
	25.2.33 slice
	25.2.34 slugify
	25.2.35 stringformat
	25.2.36 striptags
	25.2.37 time
	25.2.38 timesince
	25.2.39 timeuntil
	25.2.40 title
	25.2.41 truncatewords
	25.2.42 truncatewords_html
	25.2.43 unordered_list
	25.2.44 upper
	25.2.45 urlencode
	25.2.46 urlize
	25.2.47 urlizetrunc
	25.2.48 wordcount
	25.2.49 wordwrap
	25.2.50 yesno


	26 Appendix G: The django-admin Utility
	26.1 Usage
	26.2 Available Actions
	26.2.1 adminindex [appname appname …]
	26.2.2 createcachetable [tablename]
	26.2.3 dbshell
	26.2.4 diffsettings
	26.2.5 dumpdata [appname appname …]
	26.2.6 flush
	26.2.7 inspectdb
	26.2.8 loaddata [fixture fixture …]
	26.2.9 reset [appname appname …]
	26.2.10 runfcgi [options]
	26.2.11 runserver [optional port number, or ipaddr:port]
	26.2.12 shell
	26.2.13 sql [appname appname …]
	26.2.14 sqlall [appname appname …]
	26.2.15 sqlclear [appname appname …]
	26.2.16 sqlcustom [appname appname …]
	26.2.17 sqlindexes [appname appname …]
	26.2.18 sqlreset [appname appname …]
	26.2.19 sqlsequencereset [appname appname …]
	26.2.20 startapp [appname]
	26.2.21 startproject [projectname]
	26.2.22 syncdb
	26.2.23 test
	26.2.24 validate

	26.3 Available Options
	26.3.1 —settings
	26.3.2 —pythonpath
	26.3.3 —format
	26.3.4 —help
	26.3.5 —indent
	26.3.6 —noinput
	26.3.7 —noreload
	26.3.8 —version
	26.3.9 —verbosity
	26.3.10 —adminmedia


	27 Appendix H: Request and Response Objects
	27.1 HttpRequest
	27.1.1 QueryDict Objects
	27.1.2 A Complete Example

	27.2 HttpResponse
	27.2.1 Construction HttpResponses
	27.2.2 Setting Headers
	27.2.3 HttpResponse Subclasses
	27.2.4 Returning Errors
	27.2.5 Customizing the 404 (Not Found) View
	27.2.6 Customizing the 500 (Server Error) View


	28 License & Copyright
	28.1 Layout and design
	28.2 Content
	28.3 GNU Free Documentation License
	28.4 How to use this License for your documents


