CHINESE WORD
SEGMENTATION

Unstacked Bi-LSTM Model

Abstract
Our task is to implement a Chinese word segmenter, reproducing the SOTA using Bi-LSTM
network

Ahmed El Sheikh - 1873337

Elsheikh.1873337 @student.uniromal.it

Models

Both Bi-LSTM and Stacked Bi-LSTM networks were implemented, and most of the variables were
replicated from the paper. Nesterov momentum (0.95) SGD optimizer, with categorical cross
entropy for loss function 5 epochs for unstacked Bi-LSTM model, with batch size of 64

Datasets

Working on the All datasets concatenated, first, | had to simplify traditional datasets using ‘hanzi-
convert’, reading dataset, producing input files (no spaces) and labels file. Sentences as per
dataset are not of consistent length, thus | had to pad the sentences as per batch max length.
And produce from it training samples of unigrams and bigrams, so our input data were composed
of [train_x_unigrams, train_x_bigrams]. And, for our labels, train_y was padded as well, and
converted to one hot encoded.

This padding needed to be masked during the training period, which was done using
‘mask_zeros attribute in keras, as well as, masking layer, and tf.sequence_mask.

In preparation for using the 4 datasets, | concatenated the 4 datasets in one huge file, vocab_size
=1,047,644.

My Approach

| started with using ‘GloVe’ Pre-trained Embeddings for both uni & bigrams instead of learning my
own embedding layers.

Model had Early Stopping to avoid overfitting, as well as, ‘ReduceLROnPlateau’, so model don't
get stuck on shoulder/saddle point.

As trail of improvisation, | tried to add kernel and bias regularizers as per LSTM layer in order to
avoid overfitting, so | added L2 Regularizer with coeff = 0.01 for both.

GridSearch CV

Grid search algorithm supplied from Sklearn, could not be used with multiple input models, so |
did the tuning manually, | only tried varying the learning rate And from graphs 2 & 3 it can be
noted that lower learning rate basically requires more time to learn, which is not news.

Acc per epoch

mput_1: InputLayer mput_2: InputLayer

/ /

embedding: Embedding embedding 1: Embedding

NS

concatenate: Concatenate

i
bidirectional(lstm): Bidirectional(LSTM)

I
time_distributed(dense): TimeDistributed(Dense)

Figure 1: Unstacked Bi LSTM model

Loss per epoch

—HCC — loss
e 038
0.36
0.89 -
034 4
5 o881 E 0.32
0587 030 4
0.28 -
0.86 -
026
1 3 2 5 1 3 5
epochs epochs
Figure 2:Acc & Loss as per 5 epochs of unstacked model training no regularizer
Acc per epoch with reg loss per epoch with reg
0.845 13
- acc S 0SS
12
0.840 11
0.835 | 104
Y w 091
E =)
0.830 - ~ 08
0825 | 0%
06 -
0.820 - 05 4
1 3 3 5 1 3 5
epochs epochs

Figure 3:Acc & Loss as per 5 epochs of unstacked model training regularizer

batch_loss batch_weighted_acc
1.00
0.860
0.800
0.820
0600 0.780
0400 0.740
0200 0700
0.00 J 0.660
0000 600.0 1200k 1.800k 0000 6000 1200k 1.800k
epoch_loss epoch_weighted_acc
0.840
0.750
0.800
0.650
0550 0:260;
0.450 - 0.720
0000 1000 2000 3000 4.000 0000 1000 2000 3000 4000
epoch_val_loss epoch_val_weighted_acc
0.845 |
0600 0835 |
|
0.560 0825 |
|
e 0815 |
0.805 |
0.480 1
0.795
0.440 0785 |
0000 1000 2000 3000 4.000 0000 1000 2000 3000 4.000
Figure 4: ACC & Loss using Learning Rate 4e-3
batch_loss batch_weighted_acc
1.00
0.840
0.800
%00 0.800
0.400 0.760
0.200 0.720
0.00 T 0.680
0000 6000 1200k 1.800k 0000 6000 1200k 1.800k
epoch_loss epoch_val_weighted_acc
0.850
0.830
0.750
0.810
0.650
0.550 0.790
0.450 0.770
0000 1000 2000 3000 4.000 0000 1000 2000 3000 4.000
epoch_val_loss epoch_weighted_acc
0640
0.820
0.600
0.560 0.780
20 0.740
0.480
0.440 0.700

3000 4.000

1.000

0.000 1000 2000 3000 4.000 0.000 2.000

Figure 5:ACC & Loss using Learning Rate 3e-3

