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Unstacked Bi-LSTM Model

Abstract
Our task is to implement a Chinese word segmenter, reproducing the SOTA using Bi-LSTM
network
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Models

Both Bi-LSTM and Stacked Bi-LSTM networks were implemented, and most of the variables were
replicated from the paper. Nesterov momentum (0.95) SGD optimizer, with categorical cross
entropy for loss function 5 epochs for unstacked Bi-LSTM model, with batch size of 64

Datasets

Working on the All datasets concatenated, first, | had to simplify traditional datasets using ‘hanzi-
convert’, reading dataset, producing input files (no spaces) and labels file. Sentences as per
dataset are not of consistent length, thus | had to pad the sentences as per batch max length.
And produce from it training samples of unigrams and bigrams, so our input data were composed
of [train_x_unigrams, train_x_bigrams]. And, for our labels, train_y was padded as well, and
converted to one hot encoded.

This padding needed to be masked during the training period, which was done using
‘mask_zeros attribute in keras, as well as, masking layer, and tf.sequence_mask.

In preparation for using the 4 datasets, | concatenated the 4 datasets in one huge file, vocab_size
=1,047,644.

My Approach

| started with using ‘GloVe’ Pre-trained Embeddings for both uni & bigrams instead of learning my
own embedding layers.

Model had Early Stopping to avoid overfitting, as well as, ‘ReduceLROnPlateau’, so model don't
get stuck on shoulder/saddle point.

As trail of improvisation, | tried to add kernel and bias regularizers as per LSTM layer in order to
avoid overfitting, so | added L2 Regularizer with coeff = 0.01 for both.

GridSearch CV

Grid search algorithm supplied from Sklearn, could not be used with multiple input models, so |
did the tuning manually, | only tried varying the learning rate And from graphs 2 & 3 it can be
noted that lower learning rate basically requires more time to learn, which is not news.
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Figure 1: Unstacked Bi LSTM model
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Figure 2:Acc & Loss as per 5 epochs of unstacked model training no regularizer
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Figure 3:Acc & Loss as per 5 epochs of unstacked model training regularizer
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Figure 4: ACC & Loss using Learning Rate 4e-3
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Figure 5:ACC & Loss using Learning Rate 3e-3



