
Envoy fuzzing improvements, April 2021

Envoy fuzzing improvements
presented by

in collaboration with

Authors
David Korczynski <david@adalogics.com>
Adam Korczynski <adam@adalogics.com>
Date: 29th april, 2021

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

Ada Logics
London, United Kingdom

1

mailto:david@adalogics.com
mailto:adam@adalogics.com

Envoy fuzzing improvements, April 2021

Table of Contents
Executive summary 3

1 Envoy fuzzing optimisations 4
1.1 Background on how coverage collection in libFuzzer works. 4

1.1 is it possible to disable certain 8-bit counters? 6
1.2 How does coverage instrumentation impact fuzzer execution speed in Envoy?7

1.2.1 Execution speed of an empty fuzzer. 7
1.2.2 Using Prodfiler to observe the impact. 9
1.2.3 Using fuzzer instrumentation to assess the overall time spent with fuzzing. 10
1.2.4 Counting the number of 8-bit inline counters in each Envoy fuzzer. 11
1.2.5 Conclusions 12

1.3 Improving Envoy fuzzer execution by reducing instrumentation 13
1.3.1 Disabling instrumentation 13
1.3.2 Results from disabling instrumentation 14

Measuring different configurations 14
Deploying on OSS-Fuzz. 15

2 Fuzzing the Envoy UdpListener 16

3 Future advice 18

4 Conclusions 19

5 Appendix 20
A.0 Disassembly of empty fuzzers 20
A.1 Build configurations 22
A.2 Envoy UDP fuzzer coverage 26

Ada Logics
London, United Kingdom

2

Envoy fuzzing improvements, April 2021

Executive summary
In this engagement we performed two tasks. The first was optimising the performance of
end-to-end fuzzers and the second was developing a fuzzer for the UDP listener code of
Envoy.

Regarding optimisation, we find that the cause of performance issues in the end-to-end
fuzzers is due to the large amount of code that is instrumented for coverage-guiding the
Envoy fuzzers. Specifically, the Envoy fuzzers run with a large amount of inline 8-bit
counters which is a counter inserted by SanitizerCoverage on every edge of the target
application. libFuzzer uses the counters by iterating through all of the counters after each
fuzz iteration in order to measure code coverage. Thus, the more counters there are, the
more effort libFuzzer has to spend iterating through all counters on each fuzz iteration. We
show how this impacts Envoy performance in four different ways:

1. The exact same empty fuzzer compiled with fuzzer instrumentation runs 419 times
slower when also compiled with Envoy instrumentation.

2. The h2_capture_persistent_fuzz_test fuzzer spends only 20% of the actual execution
inside LLVMFuzzerTestOneInput.

3. Profilers reveal an excessive amount of time is spent inside coverage-collection
code.

4. The end-to-end fuzzers contain around 1.2 million inline 8-bit counters, which is huge
in comparison to other fuzzers, e.g. Lua fuzzers contain 6000 inline 8-bit counters.

We show how limiting the coverage instrumentation improves fuzzer performance and
observe the same effect on OSS-Fuzz statistics.

Regarding UDP fuzzing, we develop a UDP fuzzer that targets the code requested by the
Envoy team, namely handleReadCallback. We demonstrate code coverage by observing the
target code in OSS-Fuzz reports, and also demonstrates that the fuzzer catches the DOS
issue previously reported.

In this report we go through both of these tasks and spend considerable detail on the
coverage instrumentation part.

Ada Logics
London, United Kingdom

3

Envoy fuzzing improvements, April 2021

1 Envoy fuzzing optimisations
The goal of this task was to improve performance of the end-to-end fuzzers of Envoy. In this
section we go through how we achieved this by first giving background information on how
libFuzzer uses coverage instrumentation, then we proceed to show how this instrumentation
affects the Envoy fuzzers, and finally we show how to improve the performance of the
fuzzers by reducing instrumentation.

Executive summary:
The instrumentation of Envoy has a significant slowdown of fuzzer execution. For example, a
fuzzer with a single branch runs 419 times slower with Envoy instrumentation than without.
Limiting the amount of instrumentation used in the Envoy project shows to increase
performance of the fuzzers. This has been added to the OSS-Fuzz build of Envoy, which has
shown to increase performance on the OSS-Fuzz logs. There is future work for the Envoy
maintainers on refining the instrumentation of the fuzzers.

1.1 Background on how coverage collection in libFuzzer works.
In this section we outline how libFuzzer uses coverage instrumentation to track fuzzer
progress. This is not related to Envoy explicitly, however, the content described in this
section gives an improved understanding as to why the Envoy fuzzers lack performance.

In the LLVM source code, the file llvm-project/compiler-rt/lib/fuzzer/FuzzerTracePC.cpp
contains the logic for tracing coverage. At the bottom of this file you find a set of functions:

void __sanitizer_cov_trace_pc_guard(uint32_t *Guard)

void __sanitizer_cov_trace_pc()

void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop)

void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop)

void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg, const uintptr_t *pcs_end)

void __sanitizer_cov_trace_pc_indir(uintptr_t Callee)

void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2)

void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2)

void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2)

void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2)

void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2)

void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2)

void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2)

void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2)

void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases)

void __sanitizer_cov_trace_div4(uint32_t Val)

void __sanitizer_cov_trace_div8(uint64_t Val)

void __sanitizer_cov_trace_gep(uintptr_t Idx)

These are all callbacks that SanitizerCoverage uses
(https://clang.llvm.org/docs/SanitizerCoverage.html#id2) and from a high level perspective
the callbacks are used to track execution of code, e.g. basic blocks, in the target. One of the

Ada Logics
London, United Kingdom

4

https://clang.llvm.org/docs/SanitizerCoverage.html#id2

Envoy fuzzing improvements, April 2021

important callback functions is __sanitizer_cov_8bit_counters_init which is described
here https://clang.llvm.org/docs/SanitizerCoverage.html#inline-8bit-counters. This callback is
used during fuzzing compilation and instructs the compiler to insert inline counter increments
on every code edge. The idea is then that these counters can be used to track how many
times an edge was hit during execution.

The way libFuzzer uses these 8bit-counters is by iterating through all of them, i.e. iteration
through a sequence of counters corresponding to the number of edges in the target
application, after each fuzz iteration in order to determine if new coverage has been
achieved.

In the RunOne function inside the FuzzerLoop.cpp
(https://github.com/llvm/llvm-project/blob/28ab7ff2d732fb0580486baa02b1383a72cec0cb/co
mpiler-rt/lib/fuzzer/FuzzerLoop.cpp#L506) source we observe the following code:

ExecuteCallback(Data, Size);

auto TimeOfUnit = duration_cast<microseconds>(UnitStopTime - UnitStartTime);

UniqFeatureSetTmp.clear();

size_t FoundUniqFeaturesOfII = 0;

size_t NumUpdatesBefore = Corpus.NumFeatureUpdates();

TPC.CollectFeatures([&](uint32_t Feature) {

if (Corpus.AddFeature(Feature, static_cast<uint32_t>(Size), Options.Shrink))

UniqFeatureSetTmp.push_back(Feature);

if (Options.Entropic)

Corpus.UpdateFeatureFrequency(II, Feature);

if (Options.ReduceInputs && II && !II->NeverReduce)

if (std::binary_search(II->UniqFeatureSet.begin(),

II->UniqFeatureSet.end(), Feature))

FoundUniqFeaturesOfII++;

});

This code snippet has two purposes. First, to run ExecuteCallback which calls into the
fuzzing entry point function (LLVMFuzzerTestOneInput). Second,
to gather the code coverage of the target follow the fuzzer’s single execution, which
is done by TPC.CollectFeatures. The TPC.CollectFeatures code begins as follows:

template <class Callback> // void Callback(uint32_t Feature)

ATTRIBUTE_NO_SANITIZE_ADDRESS ATTRIBUTE_NOINLINE size_t

TracePC::CollectFeatures(Callback HandleFeature) const {

auto Handle8bitCounter = [&](size_t FirstFeature,

size_t Idx, uint8_t Counter) {

if (UseCounters)

HandleFeature(static_cast<uint32_t>(FirstFeature + Idx * 8 +

CounterToFeature(Counter)));

else

HandleFeature(static_cast<uint32_t>(FirstFeature + Idx));

};

Ada Logics
London, United Kingdom

5

https://clang.llvm.org/docs/SanitizerCoverage.html#inline-8bit-counters
https://github.com/llvm/llvm-project/blob/28ab7ff2d732fb0580486baa02b1383a72cec0cb/compiler-rt/lib/fuzzer/FuzzerLoop.cpp#L506
https://github.com/llvm/llvm-project/blob/28ab7ff2d732fb0580486baa02b1383a72cec0cb/compiler-rt/lib/fuzzer/FuzzerLoop.cpp#L506

Envoy fuzzing improvements, April 2021

size_t FirstFeature = 0;

for (size_t i = 0; i < NumModules; i++) {

for (size_t r = 0; r < Modules[i].NumRegions; r++) {

if (!Modules[i].Regions[r].Enabled) continue;

FirstFeature += 8 * ForEachNonZeroByte(Modules[i].Regions[r].Start,

Modules[i].Regions[r].Stop,

FirstFeature, Handle8bitCounter);

}

}

The nested for loop calls into ForEachNonZeroByte with two pointers as the first
two arguments. These arguments point to the areas in the code where a page of
inline 8-bit counters exist, namely, each region in the Modules vector encapsulates
a page of 8bit counters. The implementation of ForEachNonZeroByte is defined here
https://github.com/llvm/llvm-project/blob/e60d6e91e196d91a1b9bfcc93d9f43946ea29299/co
mpiler-rt/lib/fuzzer/FuzzerTracePC.h#L184 and essentially the function will call the callback
(Handle8bitCounter) for each nonzero byte in the memory region. In the case of the
RunOne function the result is to call into the function provided by the call to
TPC.CollectFeatures, which eventually calls into various functions related to the corpus,
e.g. Corpus.AddFeature and Corpus.UpdateFeatureFrequency which will trigger
changes in the Corpus representation if the features indicate that a new piece of code has
been executed.

The main point to get across in the above section is that nested for-loop in
CollectFeatures iterates through the regions with inline 8-bit counters, and what we will
observe in the Envoy fuzzers is that the number of inline 8-bit counters is significantly large.

1.1 is it possible to disable certain 8-bit counters?
A question that is relevant about how libFuzzer uses the instrumentation is whether you can
tell libFuzzer to disable checking of inline counters. Indeed, in the TPC.CollectFeatures

function the loop that is extensive (shown above), namely:

for (size_t i = 0; i < NumModules; i++) {

for (size_t r = 0; r < Modules[i].NumRegions; r++) {

if (!Modules[i].Regions[r].Enabled) continue;

FirstFeature += 8 * ForEachNonZeroByte(Modules[i].Regions[r].Start,

Modules[i].Regions[r].Stop,

FirstFeature, Handle8bitCounter);

}

}

only iterates through the inline 8-bit counters if a given region is “Enabled”. Unfortunately,
the Enabled boolean will always be true for all regions as all regions are initialised to true

Ada Logics
London, United Kingdom

6

https://github.com/llvm/llvm-project/blob/e60d6e91e196d91a1b9bfcc93d9f43946ea29299/compiler-rt/lib/fuzzer/FuzzerTracePC.h#L184
https://github.com/llvm/llvm-project/blob/e60d6e91e196d91a1b9bfcc93d9f43946ea29299/compiler-rt/lib/fuzzer/FuzzerTracePC.h#L184

Envoy fuzzing improvements, April 2021

(https://github.com/llvm/llvm-project/blob/ab5823867c4aee7f3e02ddfaa217905c87471bf9/co
mpiler-rt/lib/fuzzer/FuzzerTracePC.cpp#L59) and never set to false.

1.2 How does coverage instrumentation impact fuzzer
execution speed in Envoy?
In this section we show three different ways of observing the impact of the current
instrumentation set up in Envoy.

1.2.1 Execution speed of an empty fuzzer.
We assess the slowdown of the instrumentation by creating the simplest fuzzer we can. We
do this by having an empty fuzzer and compiling it in two different ways. First, we compile it
without linking it to any Envoy code. Second, we compile it in the exact same way as
h2_capture_fuzz namely by linking it to the exact same code in the Envoy code base,
which corresponds to essentially all of the Envoy code. We define the new fuzzer as follows:

#include "test/integration/h2_fuzz.h"

DEFINE_FUZZER(const uint8_t* buf, size_t len) {

if (len == 1234123412) {

std::cout << "hello " << buf << "\n" ;

}

}

and enable it by extending test/integration/BUILD with the following

envoy_cc_fuzz_test(

name = "h2_empty_fuzz_test",

srcs = ["h2_empty_fuzz_test.cc"],

copts = ["-DPERSISTENT_FUZZER"],

corpus = "h2_corpus",

deps = [":h2_fuzz_persistent_lib"],

)

We then compile and run the fuzzer, and observe the following output:

$ h2_empty_fuzz_test

INFO: Running with entropic power schedule (0xFF, 100).

INFO: Seed: 2391912932

INFO: Loaded 1 modules (1282530 inline 8-bit counters): 1282530 [0xa51f110,

0xa6582f2),

INFO: Loaded 1 PC tables (1282530 PCs): 1282530 [0xa6582f8,0xb9ea118),

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096

bytes

INFO: A corpus is not provided, starting from an empty corpus

#2 INITED cov: 3 ft: 4 corp: 1/1b exec/s: 0 rss: 170Mb

Ada Logics
London, United Kingdom

7

https://github.com/llvm/llvm-project/blob/ab5823867c4aee7f3e02ddfaa217905c87471bf9/compiler-rt/lib/fuzzer/FuzzerTracePC.cpp#L59
https://github.com/llvm/llvm-project/blob/ab5823867c4aee7f3e02ddfaa217905c87471bf9/compiler-rt/lib/fuzzer/FuzzerTracePC.cpp#L59

Envoy fuzzing improvements, April 2021

#8192 pulse cov: 3 ft: 4 corp: 1/1b lim: 80 exec/s: 4096 rss: 170Mb

#16384 pulse cov: 3 ft: 4 corp: 1/1b lim: 163 exec/s: 4096 rss: 171Mb

#32768 pulse cov: 3 ft: 4 corp: 1/1b lim: 325 exec/s: 4096 rss: 172Mb

#65536 pulse cov: 3 ft: 4 corp: 1/1b lim: 652 exec/s: 3855 rss: 175Mb

If we create the same empty fuzzer but outside the envoy build environment but following the
Envoy fuzzer set up
https://github.com/envoyproxy/envoy/blob/1d1b708c7bf6efa02c41d9ce22cbf1e4a1aeec2c/te
st/fuzz/fuzz_runner.h#L71:

#include <iostream>

#define DEFINE_TEST_ONE_INPUT_IMPL \

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) { \

EnvoyTestOneInput(data, size); \

return 0; \

}

#define DEFINE_FUZZER \

static void EnvoyTestOneInput(const uint8_t* buf, size_t len); \

DEFINE_TEST_ONE_INPUT_IMPL \

static void EnvoyTestOneInput

DEFINE_FUZZER(const uint8_t* buf, size_t len) {

if (len == 1234123412) {

std::cout << "hello " << buf << "\n" ;

}

}

and run the fuzzer, then we observe the output:

$ $CXX $CXXFLAGS $LIB_FUZZING_ENGINE ./empty_fuzzer.cc

$./a.out

INFO: Running with entropic power schedule (0xFF, 100).

INFO: Seed: 1703773772

INFO: Loaded 1 modules (126 inline 8-bit counters): 126 [0x84c0f8, 0x84c176),

INFO: Loaded 1 PC tables (126 PCs): 126 [0x5e6398,0x5e6b78),

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096

bytes

INFO: A corpus is not provided, starting from an empty corpus

#2 INITED cov: 3 ft: 4 corp: 1/1b exec/s: 0 rss: 29Mb

#4194304 pulse cov: 3 ft: 4 corp: 1/1b lim: 4096 exec/s: 2097152 rss: 343Mb

#8388608 pulse cov: 3 ft: 4 corp: 1/1b lim: 4096 exec/s: 1677721 rss: 611Mb

#16777216 pulse cov: 3 ft: 4 corp: 1/1b lim: 4096 exec/s: 1677721 rss: 614Mb

We verify the disassembly of LLVMFuzzerTestOneInput is similar in both of the fuzzers (see
Appendix A.0), specifically that they each execute the same amount of code in the
LLVMFuzzerTestOneInput. We also note here that the coverage achieved by both fuzzers
is equal (namely 3) as shown by the output of libFuzzer.

Ada Logics
London, United Kingdom

8

https://github.com/envoyproxy/envoy/blob/1d1b708c7bf6efa02c41d9ce22cbf1e4a1aeec2c/test/fuzz/fuzz_runner.h#L71
https://github.com/envoyproxy/envoy/blob/1d1b708c7bf6efa02c41d9ce22cbf1e4a1aeec2c/test/fuzz/fuzz_runner.h#L71

Envoy fuzzing improvements, April 2021

The execution speed and the number of inline 8-bit counters are very different in the two
cases. Specifically, we extract two important conclusions from the above observations

1. The fuzzer that is compiled outside of the Envoy fuzzer environment executes with
roughly 1.67 million executions per second, whereas the one in the Envoy
environment executes with roughly 4000 executions per second. The envoy
instrumentation slows down the fuzzer by roughly 419x.

2. The number of inline 8-bit counters in the Envoy fuzzer is 1282530 whereas it is 126
in the empty fuzzer (these numbers can be observed by the output from LibFuzzer
given above). This corresponds to iterating through 126 bytes versus 1282530 bytes
after each fuzz iteration.

1.2.2 Using Prodfiler to observe the impact.
Another way we tried to assess the execution speed of the fuzzers was by using profiling
tools to tell us where execution is spent. To do this, we relied on Prodfiler
https://github.com/optimyze/prodfiler-documentation to profile the entire machine in which we
ran the fuzzer. Prodfiler reported that 25.8% of all function samples observed happened

inside the ForEachNonZeroByte function. In addition to this, looking at the flame graphs
provided by Prodfiler we see that around 19% of the entire machine execution was spent
inside of the CollectFeatures function.

Ada Logics
London, United Kingdom

9

https://github.com/optimyze/prodfiler-documentation

Envoy fuzzing improvements, April 2021

1.2.3 Using fuzzer instrumentation to assess the overall time spent with
fuzzing.
Another thing we were interested in understanding was how much of the fuzzing execution
was actually spent in the target and how much was spent in the fuzzing engine itself. To do
this, we added some simple instrumentation to the h2_capture_fuzz.cc and h2_fuzz.cc files,
such that the h2_capture_fuzz fuzzer will log timestamps as follows:

DEFINE_PROTO_FUZZER(..H2CaptureFuzzTestCase input)

ADD_TIME_STAMP(F1)

H2FuzzIntegrationTest h2_var;

h2_var.replay(input)

--> H2FuzzIntegrationTest::replay(... H2CaptureFuzzTestCase& input,)

...

ADD_TIME_STAMP(R4)

IntegrationTcpClientPtr tcp_client = makeTcpConnection(lookupPort("http"));

...

ADD_TIME_STAMP(R5)

for (int i = 0; i < input.events().size(); ++i) {

if (stop_further_inputs) {

break;

}

INC_GLOBAL(PACKET_COUNT)

// send packet

} // endloop

ADD_TIME_STAMP(R6)

...

<--

ADD_TIME_STAMP(F2)

<--

With these timestamps available we set up an experiment to measure the following metrics:

Ada Logics
London, United Kingdom

10

Envoy fuzzing improvements, April 2021

- Total time spent fuzzing
- Total time spent in code between the following timestamps:

- F1-F2: This is the total time spent in the fuzzer code.
- R4-R6: This is the total time spent in the replay function.
- R5-R6: This is the total time spent in the loop sending fuzz inputs to the client

- Number of total fuzz inputs to the client
- Various proportionate metrics, e.g. inputs sent to the client.

We executed h2_capture_persistent_fuzz with the seeds provided, and observed the
following results:

Metric Result

Total execution time 1200 sec

F1-F2 244 sec

R4-R6 239 sec

R5-R6 226 sec

F1-F2/Total time 20%

R4-R6/Total time 19.9%

R5-R6/Total time 18.8%

Total number of client fuzz inputs 82797

Total fuzz inputs to client / (F1-F2) 339 inputs/sec

Total fuzz inputs to client / (R4-R6) 346 inputs/sec

Total fuzz inputs to client / (R5-R6) 366 inputs/sec

Total number of fuzz iterations 27761

We observe that only 20% of the fuzz time is spent in the actual fuzzing code, and thus 80%
of the time is spent in the libFuzzer engine.

1.2.4 Counting the number of 8-bit inline counters in each Envoy fuzzer.
Finally, we wanted to understand how many 8-bit inline counters are actually used by the
Envoy fuzzers. This number is reported by the fuzzers when they are initiated, so the only
thing we have to do in this case is build the fuzzers, launch them and then count the number
of inline 8-bit counters. We do this using a build with AddressSanitizer, and we see the
following results:

Fuzzer name inline 8-bit counters

h2_capture_persistent_fuzz_test 1281655

h2_capture_fuzz_test 1281649

Ada Logics
London, United Kingdom

11

Envoy fuzzing improvements, April 2021

h1_capture_fuzz_test 1268160

h1_capture_persistent_fuzz_test 1268166

codec_fuzz_test 1030067

hash_fuzz_test 570594

get_sha_256_digest_fuzz_test 579995

evaluator_fuzz_test 1100639

dns_filter_fuzz_test 1139928

For comparison purposes the following table gives examples of 8-bit counters in various
open source projects that we have fuzzed.

Project fuzzer targets Inline 8-bit counters

Lua 6322

PugiXML 4871

LevelDB 5948

RocksDB 137913

It is clear that the number of inline 8-bit counters in Envoy is significantly larger than any of
the other projects. For example, our fuzzer targeted the core library (liblua.a) for the Lua
programming language has a total of 6322 inline 8-bit counters whereas the h2 end-to-end
Envoy fuzzer has a total of 1.2 million.

1.2.5 Conclusions
The instrumentation set up in Envoy is a significant performance bottleneck for the fuzzers.
The main reason for the performance is the post-processing that occurs after each fuzz
execution in terms of collecting coverage features to assess whether the execution
discovered new code execution. An empty fuzzer without Envoy instrumentation runs 419x
faster than an empty fuzzer with Envoy instrumentation.

We want to emphasize here that the fuzzing infrastructure of Envoy is of high quality and the
team behind it has shown high competencies in fuzzing Envoy. In fact, from a certain
perspective it is positive that Envoy builds all code related to Envoy with sanitizers and this
should be considered a great achievement as well as having the right intentions. It is due to
the sheer amount of code in the resulting Envoy binaries, which is due to linking of many
third-party libraries in addition to the large Envoy code base in and of itself, that the
coverage collection ends up having a significant slowdown. In the vast majority of projects
we would not advise limiting the coverage instrumentation across a fuzzing set up.

Ada Logics
London, United Kingdom

12

Envoy fuzzing improvements, April 2021

Furthermore, the observations we made in this section are not common knowledge and it is
not to be expected from non-fuzzing experts to consider this during fuzzer development.

1.3 Improving Envoy fuzzer execution by reducing
instrumentation

1.3.1 Disabling instrumentation
The crucial task for improving fuzzing performance in Envoy is to reduce the amount of
coverage instrumentation in the target application. Specifically, the goal is to reduce the
amount of inline 8-bit counters. The main way to this is by including the compilation flags:

-fsanitize-coverage=0

-fno-sanitize=all

The first flag -fsanitize-coverage=0 disablescoverage instrumentation, whereas the
second flag also disables bug-finding sanitizers, e.g. AddressSanitizer. The first flag should
be removed from code that can avoid being explored or are potentially fuzzed elsewhere.
The second flag, namely disabling bug-finding sanitizers, should be disabled with more care.

In order to disable instrumentation, we tried three things:

Bazel builds: First, we tried controlling instrumentation details inside of the Envoy BUILD
scripts. In particular, adding `copts` definitions to various places in the BUILD scripts of
ENVOY. This works for the majority of bazel rules, however, it does not work for any rule
defined by way of proto_library. This is because proto_library does not allow us to
propagate compilation options to the protobuf compiler, and thus it does not allow us to
include the flags to disable instrumentation on a per-target basis. We reference to issues in
the bazelbuild/rules_proto repository here:
https://github.com/bazelbuild/rules_proto/issues/85
https://github.com/bazelbuild/rules_proto/issues/41

Passing flags to clang: Second, we tried using the `--per_file_copt` command line
option for bazel builds. This option accepts a regular expression that encapsulates a set of
files used during compilation as well as a string that will be passed to the compiler during
compilation of files that match the regular expression. For example, the following line:

--per_file_copt=^.*\.pb\.cc$@-fsanitize-coverage=0,-fno-sanitize=all

will pass the flags -fsanitizer-coverage=0 and -fno-sanitize=all to all files compiled
in the bazel build with .pb.cc extensions. This option worked well.

Ada Logics
London, United Kingdom

13

https://github.com/bazelbuild/rules_proto/issues/85
https://github.com/bazelbuild/rules_proto/issues/41

Envoy fuzzing improvements, April 2021

Using a blocklist for SanitizerCoverage: Third, using the
-fsanitize-coverage-blocklist=/src/block_list.txt also by way of
per_file_copt. This option disables coverage instrumentation based on contents of the file
/src/block_list.txt in which it is possible to disable instrumentation based on file names
or (mangled) function names.

1.3.2 Results from disabling instrumentation

Measuring different configurations
The next was to identify which parts of the code yields best results when disabling coverage
instrumentation. To do this, we set up a set of different build configurations following the
approaches (2 and 3) described above and measured the following data:

1. The number of 8-bit inline counters in the h1 e2e and h2 2e2 fuzzers;
2. The total number of fuzz iterations achieved over a 5 minute run with the seeds from

the OSS-Fuzz repository.

In total, we compiled the Envoy fuzzers with 6 different configurations and the configurations
are shown in Appendix A.1. The following table shows the results.

Fuzzer Setting inline 8-bit
counters

Total execs
(300 sec)

Exec/sec

http2 e2e Configuration 1
(regular build)

1281922 4527 15.1

http1 e2e Configuration 1
(regular build)

1268433 7123 23.7

http2 e2e Configuration 2 271239 7372 24.6

http1 e2e Configuration 2 272107 25370 84.6

http2 e2e Configuration 3 313473 6864 22.9

http1 e2e Configuration 3 314363 17640 58.9

http2 e2e Configuration 4 313545 5291 17.6

http1 e2e Configuration 4 314438 16530 55.1

http2 e2e Configuration 5 258955 6522 21.7

http1 e2e Configuration 5 259216 20639 68.8

http2 e2e Configuration 6
(includes
blocked list of
functions)

273673 8055 26.85

http1 e2e Configuration 6 274564 19932 66.4

Ada Logics
London, United Kingdom

14

Envoy fuzzing improvements, April 2021

(includes
blocked list of
functions)

Finally, we note that the executions per second increases if the fuzzer is run for a longer
period of time. For example, in our experiments we have observed above 100 exec/sec in
the http2 end-to-end fuzzer with seeds in longer fuzz runs. The data of these runs have been
shared with the Envoy team internally.

Deploying on OSS-Fuzz.
We integrated some of the above efforts into the OSS-Fuzz build script of Envoy and the
following figure shows impact.

We can see here that a performance improvement happened on the 16th April 2021.
Inspecting the logs, we notice on the 15th April the amount of inline 8-bit counters was
~600,000
(https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.a
ppspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-
04-15/00:06:53:330737.log) whereas on the 16th April it was ~300,000
(https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.a
ppspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-
04-16/01:54:36:943426.log). This decrease in inline 8-bit counters resulted in a 3x
improvement of the fuzzer execution. We note here that in addition to the decrease in inline
8-bit counters the stability of the fuzzer was also improved on the same day through bug
fixing, which may have impacted the performance as well.

Ada Logics
London, United Kingdom

15

https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.appspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-04-15/00:06:53:330737.log
https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.appspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-04-15/00:06:53:330737.log
https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.appspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-04-15/00:06:53:330737.log
https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.appspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-04-16/01:54:36:943426.log
https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.appspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-04-16/01:54:36:943426.log
https://console.cloud.google.com/storage/browser/_details/envoy-logs.clusterfuzz-external.appspot.com/libFuzzer_envoy_h2_capture_persistent_fuzz_test/libfuzzer_asan_envoy/2021-04-16/01:54:36:943426.log

Envoy fuzzing improvements, April 2021

2 Fuzzing the Envoy UdpListener
The second task of the Engagement was to create a new fuzzer that targets the UDP
listener of Envoy. The goal of this fuzzer was to enable catching the bug described in this
Github issue https://github.com/envoyproxy/envoy/issues/14113. The fuzzer we created was
merged into Envoy and is available at this location in the repository:
https://github.com/envoyproxy/envoy/blob/main/test/common/network/udp_fuzz.cc

The goal of the fuzzer is to send an arbitrary number of arbitrary packets to the Envoy UDP
listener. To do this we rely on the primitives provided by Network::Test::UdpSyncPeer and
the core of the fuzzer is encapsulated by the following loop
(https://github.com/envoyproxy/envoy/blob/58a13570f3f4dea9bad8b8fa5e1221d7ed5056de/t
est/common/network/udp_fuzz.cc#L92):

// Now do all of the fuzzing

static const int MaxPackets = 15;

total_packets_ = provider.ConsumeIntegralInRange<uint16_t>(1, MaxPackets);

Network::Test::UdpSyncPeer client_(ip_version_);

for (uint16_t i = 0; i < total_packets_; i++) {

std::string packet_ =

provider.ConsumeBytesAsString(provider.ConsumeIntegralInRange<uint32_t>(1,

3000));

if (packet_.empty()) {

packet_ = "EMPTY_PACKET";

}

client_.write(packet_, *send_to_addr_);

}

dispatcher_->run(Event::Dispatcher::RunType::Block);

The fuzzer supports communicating by way of GRO, MMSG as well as regular recvmsg, which
is controlled by the following code
(https://github.com/envoyproxy/envoy/blob/58a13570f3f4dea9bad8b8fa5e1221d7ed5056de/t
est/common/network/udp_fuzz.cc#L73):

FuzzedDataProvider provider(buf, len);

uint16_t SocketType = provider.ConsumeIntegralInRange<uint16_t>(0, 2);

if (SocketType == 0) {

config.mutable_prefer_gro()->set_value(true);

ON_CALL(override_syscall_, supportsUdpGro()).WillByDefault(Return(true));

} else if (SocketType == 1) {

ON_CALL(override_syscall_, supportsMmsg()).WillByDefault(Return(true));

} else {

ON_CALL(override_syscall_, supportsMmsg()).WillByDefault(Return(false));

ON_CALL(override_syscall_, supportsUdpGro()).WillByDefault(Return(false));

}

In order to verify the fuzzer finds the original crash of the code we ran the fuzzer

Ada Logics
London, United Kingdom

16

https://github.com/envoyproxy/envoy/issues/14113
https://github.com/envoyproxy/envoy/blob/main/test/common/network/udp_fuzz.cc
https://github.com/envoyproxy/envoy/blob/58a13570f3f4dea9bad8b8fa5e1221d7ed5056de/test/common/network/udp_fuzz.cc#L92
https://github.com/envoyproxy/envoy/blob/58a13570f3f4dea9bad8b8fa5e1221d7ed5056de/test/common/network/udp_fuzz.cc#L92
https://github.com/envoyproxy/envoy/blob/58a13570f3f4dea9bad8b8fa5e1221d7ed5056de/test/common/network/udp_fuzz.cc#L73
https://github.com/envoyproxy/envoy/blob/58a13570f3f4dea9bad8b8fa5e1221d7ed5056de/test/common/network/udp_fuzz.cc#L73

Envoy fuzzing improvements, April 2021

against the Envoy codebase with the changes applied by the commit that fixed the
UDP bug (https://github.com/envoyproxy/envoy/pull/14122/files). More specifically,
if we avoid the use of the condition

if (output.msg_[i].truncated_and_dropped_) {

continue;

}

in this commit
https://github.com/envoyproxy/envoy/pull/14122/files#diff-c9702469f313c70572e261f4af736
87873ab8247264eb47fd05300098067c5abR632 then we get the following result:

$ /out/udp_fuzz ./seeds/

INFO: Running with entropic power schedule (0xFF, 100).

INFO: Seed: 185475315

INFO: Loaded 1 modules (1087563 inline 8-bit counters): 1087563 [0x861fcb0,

0x87294fb),

INFO: Loaded 1 PC tables (1087563 PCs): 1087563 [0x8729500,0x97c19b0),

INFO: 55 files found in ./seeds/

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096

bytes

INFO: seed corpus: files: 55 min: 1b max: 2251b total: 4519b rss: 150Mb

AddressSanitizer:DEADLYSIGNAL

===

==28367==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc

0x000005872691 bp 0x7fff415ade70 sp 0x7fff415ad980 T0)

==28367==The signal is caused by a READ memory access.

==28367==Hint: address points to the zero page.

#0 0x5872691 in Envoy::Network::passPayloadToProcessor(unsigned long,

std::__1::unique_ptr<Envoy::Buffer::Instance,

std::__1::default_delete<Envoy::Buffer::Instance> >,

std::__1::shared_ptr<Envoy::Network::Address::Instance const>,

std::__1::shared_ptr<Envoy::Network::Address::Instance const>,

Envoy::Network::UdpPacketProcessor&,

std::__1::chrono::time_point<std::__1::chrono::steady_clock,

std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > >)

/proc/self/cwd/source/common/network/utility.cc:562:3

#1 0x587501e in Envoy::Network::Utility::readFromSocket(Envoy::Network::IoHandle&,

Envoy::Network::Address::Instance const&, Envoy::Network::UdpPacketProcessor&,

std::__1::chrono::time_point<std::__1::chrono::steady_clock,

std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > >, bool,

unsigned int*) /proc/self/cwd/source/common/network/utility.cc:669:7

#2 0x5877d3a in

Envoy::Network::Utility::readPacketsFromSocket(Envoy::Network::IoHandle&,

Envoy::Network::Address::Instance const&, Envoy::Network::UdpPacketProcessor&,

Envoy::TimeSource&, bool, unsigned int&)

/proc/self/cwd/source/common/network/utility.cc:702:38

#3 0x552b14d in Envoy::Network::UdpListenerImpl::handleReadCallback()

/proc/self/cwd/source/common/network/udp_listener_impl.cc:75:34

#4 0x552a15f in Envoy::Network::UdpListenerImpl::onSocketEvent(short)

/proc/self/cwd/source/common/network/udp_listener_impl.cc:64:5

Ada Logics
London, United Kingdom

17

https://github.com/envoyproxy/envoy/pull/14122/files
https://github.com/envoyproxy/envoy/pull/14122/files#diff-c9702469f313c70572e261f4af73687873ab8247264eb47fd05300098067c5abR632
https://github.com/envoyproxy/envoy/pull/14122/files#diff-c9702469f313c70572e261f4af73687873ab8247264eb47fd05300098067c5abR632

Envoy fuzzing improvements, April 2021

#5 0x5531e26 in

Envoy::Network::UdpListenerImpl::UdpListenerImpl(Envoy::Event::DispatcherImpl&,

std::__1::shared_ptr<Envoy::Network::Socket>, Envoy::Network::UdpListenerCallbacks&,

Envoy::TimeSource&, envoy::config::core::v3::UdpSocketConfig

const&)::$_0::operator()(unsigned int) const

/proc/self/cwd/source/common/network/udp_listener_impl.cc:38:53

….

….

To confirm the fuzzer targets the code that was asked for by the Envoy team we observe
coverage of the fuzzer in OSS-Fuzz. Consider the following links showing the UDP Listener
code is being analysed:

● Envoy::Network::UdpListenerImpl::handleReadCallback

https://storage.googleapis.com/oss-fuzz-coverage/envoy/report
s/20210423/linux/proc/self/cwd/source/common/network/udp_list
ener_impl.cc.html#L72

● Envoy::Network::Utility::readFromSocket

https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc
/self/cwd/source/common/network/utility.cc.html#L576

In addition to this, consider the figures in Appendix A.2 showing the coverage is being
achieved.

3 Future advice
We consider there to be three problems that need solving for the Envoy team.

First, enable the ability to disable instrumentation of protobuf code included in header files,
which in themselves can have a huge amount of code. This is because a lot of protobuf code
is included by way of header files in the Envoy source code:

envoy/source/common$ grep -rn "pb.h" ./ | wc -l

388

The unfortunate consequence of this is that the code in the header file could avoid being
instrumented but because it is included by important code that has to be instrumented, the
protobuf code consequently will also be instrumented. Some refactoring that makes it easy
to control the instrumentation parameters of the protobuf code would likely have a large
impact on the execution speed.

An option for solving the protobuf problems above is to disable instrumentation on a
namespace or function level. We can do this by performing partial instrumentation with
SanitizerCoverage as described here:
https://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation

Ada Logics
London, United Kingdom

18

https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/udp_listener_impl.cc.html#L72
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/udp_listener_impl.cc.html#L72
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/udp_listener_impl.cc.html#L72
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/utility.cc.html#L576
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/utility.cc.html#L576
https://clang.llvm.org/docs/SanitizerCoverage.html#partially-disabling-instrumentation

Envoy fuzzing improvements, April 2021

Specifically, consider the file block_list.txt with the following contents:

fun:*nocoveragepls*

This will disable coverage instrumentation for any function that contains nocoveragepls in
its function name, which includes the namespace name. As such, a way to disable
instrumentation in a smart manner is to include a file blocked_list.txt in the Envoy repository,
which we will then use during Envoy fuzzing compilation as follows:
--per_file_copt="-fsanitize-coverage-blocklist=envoy_code/block_list.txt"

We did an initial experimentation of this by way of configuration #6 discussed in section
1.3.2.

Second, add the ability to do per-target instrumentation. It is clear that the fuzz targets in the
Envoy code target separate parts of the code base. Ideally instrumentation should be made
on a target-specific basis. The goal should be to have less than 100,000 inline 8-bit counters
per fuzzer. Notice that the number of counters is shown in the libFuzzer logs (as shown
above section 1.2.1) which are also available on OSS-Fuzz for each of the OSS-Fuzz runs.

We leave the following instrumentation-specific advice:
● It can be beneficial to reduce coverage instrumentation also from a perspective of

letting the fuzzer focus on code that matters, since the fuzzer will be guided by
improvements in relevant code and not get “lost” in irrelevant code.

● Large chunks of sequential code does not need to be instrumented with coverage,
including Envoy critical code. We advise to keep bug-finding sanitizers on
nonetheless.

Third, during the engagement we observed that several of the fuzzers had a high crashing
percentage (above 90%) for several months. In fact, the http2 end-to-end fuzzer had an
input in its corpus that caused the fuzzer to crash. Effectively, the fuzzer had not explored
new code for months because this input blocked the fuzzer from continuing. We think it is
crucial for the Envoy team to ensure the fuzzers of Envoy are running properly and this
should be considered higher priority than ensuring the fuzzers run fast.

4 Conclusions
In this engagement we improved Envoy fuzzing by identifying the performance bottleneck in
the Envoy fuzzing set up and creating a new UDP fuzzer that targets previously buggy code.
Our findings identify that the performance bottleneck in Envoy is due to large amounts of
code instrumentation which causes LibFuzzer to spend significant effort in determining if
each fuzz iteration caused new code to execute. We show how this affects the Envoy
fuzzers, for example by highlighting an empty fuzzer runs 419 times slower with Envoy’s
instrumentation approach. We show how to limit the amount of instrumentation in Envoy and
how it improves performance.

Ada Logics
London, United Kingdom

19

Envoy fuzzing improvements, April 2021

5 Appendix

A.0 Disassembly of empty fuzzers
Appendix showing the disassembly of LLVMFuzzerTestOneInput in the two empty fuzzers is
similar.
Disassembly of h2_empty_fuzz_test, namely the empty fuzzer compiled with Envoy
instrumentation.
$ gdb /out/h2_empty_fuzz_test

Reading symbols from /out/h2_empty_fuzz_test...done.

(gdb) set disassembly-flavor intel

(gdb) disass LLVMFuzzerTestOneInput

Dump of assembler code for function LLVMFuzzerTestOneInput:

0x0000000003235e90 <+0>: push rbp

0x0000000003235e91 <+1>: mov rbp,rsp

0x0000000003235e94 <+4>: add BYTE PTR [rip+0x72d9dfc],0x1 # 0xa50fc97

0x0000000003235e9b <+11>: mov rax,0xffffffffffffedc8

0x0000000003235ea2 <+18>: cmp rbp,QWORD PTR fs:[rax]

0x0000000003235ea6 <+22>: jae 0x3235eac <LLVMFuzzerTestOneInput+28>

0x0000000003235ea8 <+24>: mov QWORD PTR fs:[rax],rbp

0x0000000003235eac <+28>: call 0x3235ec0 <_ZL17EnvoyTestOneInputPKhm>

0x0000000003235eb1 <+33>: xor eax,eax

0x0000000003235eb3 <+35>: pop rbp

0x0000000003235eb4 <+36>: ret

End of assembler dump.

(gdb) disass _ZL17EnvoyTestOneInputPKhm

Dump of assembler code for function _ZL17EnvoyTestOneInputPKhm:

0x0000000003235ec0 <+0>: push rbp

0x0000000003235ec1 <+1>: mov rbp,rsp

0x0000000003235ec4 <+4>: push r14

0x0000000003235ec6 <+6>: push rbx

0x0000000003235ec7 <+7>: add BYTE PTR [rip+0x72d9dca],0x1 # 0xa50fc98

0x0000000003235ece <+14>: mov rbx,rsi

0x0000000003235ed1 <+17>: mov r14,rdi

0x0000000003235ed4 <+20>: mov rax,0xffffffffffffedc8

0x0000000003235edb <+27>: cmp rbp,QWORD PTR fs:[rax]

0x0000000003235edf <+31>: jae 0x3235ee5 <_ZL17EnvoyTestOneInputPKhm+37>

0x0000000003235ee1 <+33>: mov QWORD PTR fs:[rax],rbp

0x0000000003235ee5 <+37>: mov edi,0x498f3a94

0x0000000003235eea <+42>: mov rsi,rbx

0x0000000003235eed <+45>: call 0x3153860 <__sanitizer_cov_trace_const_cmp8()>

0x0000000003235ef2 <+50>: cmp rbx,0x498f3a94

0x0000000003235ef9 <+57>: jne 0x3235f31 <_ZL17EnvoyTestOneInputPKhm+113>

0x0000000003235efb <+59>: add BYTE PTR [rip+0x72d9d98],0x1 # 0xa50fc9a

0x0000000003235f02 <+66>: lea rdi,[rip+0x908047f] # 0xc2b6388 <_ZNSt3__14coutE>

0x0000000003235f09 <+73>: lea rsi,[rip+0xfffffffffd3ba150] # 0x5f0060 <.str.4>

0x0000000003235f10 <+80>: call 0x3235f40

<_ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_ostreamIcT_EES6_PKc>

0x0000000003235f15 <+85>: mov rdi,rax

0x0000000003235f18 <+88>: mov rsi,r14

0x0000000003235f1b <+91>: call 0x3235f80

<_ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_ostreamIcT_EES6_PKh>

0x0000000003235f20 <+96>: lea rsi,[rip+0xfffffffffd3ba179] # 0x5f00a0 <.str.5>

0x0000000003235f27 <+103>: mov rdi,rax

0x0000000003235f2a <+106>: call 0x3235f40

<_ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_ostreamIcT_EES6_PKc>

Ada Logics
London, United Kingdom

20

Envoy fuzzing improvements, April 2021

0x0000000003235f2f <+111>: jmp 0x3235f38 <_ZL17EnvoyTestOneInputPKhm+120>

0x0000000003235f31 <+113>: add BYTE PTR [rip+0x72d9d61],0x1 # 0xa50fc99

0x0000000003235f38 <+120>: pop rbx

0x0000000003235f39 <+121>: pop r14

0x0000000003235f3b <+123>: pop rbp

0x0000000003235f3c <+124>: ret

End of assembler dump.

(gdb)

Disassembly of empty fuzz test compiled without instrumentation:

gdb -q ./a.out

Reading symbols from ./a.out...done.

(gdb) set disassembly-flavor intel

(gdb) disass LLVMFuzzerTestOneInput

Dump of assembler code for function LLVMFuzzerTestOneInput:

0x0000000000557d40 <+0>: push rbp

0x0000000000557d41 <+1>: mov rbp,rsp

0x0000000000557d44 <+4>: add BYTE PTR [rip+0x2f43ad],0x1 # 0x84c0f8

0x0000000000557d4b <+11>: mov rax,QWORD PTR [rip+0x2f1246] # 0x848f98

0x0000000000557d52 <+18>: cmp rbp,QWORD PTR fs:[rax]

0x0000000000557d56 <+22>: jae 0x557d5c <LLVMFuzzerTestOneInput+28>

0x0000000000557d58 <+24>: mov QWORD PTR fs:[rax],rbp

0x0000000000557d5c <+28>: call 0x557d70 <_ZL17EnvoyTestOneInputPKhm>

0x0000000000557d61 <+33>: xor eax,eax

0x0000000000557d63 <+35>: pop rbp

0x0000000000557d64 <+36>: ret

End of assembler dump.

(gdb) disass _ZL17EnvoyTestOneInputPKhm

Dump of assembler code for function _ZL17EnvoyTestOneInputPKhm:

0x0000000000557d70 <+0>: push rbp

0x0000000000557d71 <+1>: mov rbp,rsp

0x0000000000557d74 <+4>: push r14

0x0000000000557d76 <+6>: push rbx

0x0000000000557d77 <+7>: add BYTE PTR [rip+0x2f437b],0x1 # 0x84c0f9

0x0000000000557d7e <+14>: mov rbx,rsi

0x0000000000557d81 <+17>: mov r14,rdi

0x0000000000557d84 <+20>: mov rax,QWORD PTR [rip+0x2f120d] # 0x848f98

0x0000000000557d8b <+27>: cmp rbp,QWORD PTR fs:[rax]

0x0000000000557d8f <+31>: jae 0x557d95 <_ZL17EnvoyTestOneInputPKhm+37>

0x0000000000557d91 <+33>: mov QWORD PTR fs:[rax],rbp

0x0000000000557d95 <+37>: mov edi,0x498f3a94

0x0000000000557d9a <+42>: mov rsi,rbx

0x0000000000557d9d <+45>: call 0x473370 <__sanitizer_cov_trace_const_cmp8()>

0x0000000000557da2 <+50>: cmp rbx,0x498f3a94

0x0000000000557da9 <+57>: jne 0x557ddb <_ZL17EnvoyTestOneInputPKhm+107>

0x0000000000557dab <+59>: add BYTE PTR [rip+0x2f4349],0x1 # 0x84c0fb

0x0000000000557db2 <+66>: mov edi,0x11a77e0

0x0000000000557db7 <+71>: mov esi,0x5e03a0

0x0000000000557dbc <+76>: call 0x557df0

<_ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_ostreamIcT_EES6_PKc>

0x0000000000557dc1 <+81>: mov rdi,rax

0x0000000000557dc4 <+84>: mov rsi,r14

0x0000000000557dc7 <+87>: call 0x557e30

<_ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_ostreamIcT_EES6_PKh>

0x0000000000557dcc <+92>: mov esi,0x5e03e0

0x0000000000557dd1 <+97>: mov rdi,rax

0x0000000000557dd4 <+100>: call 0x557df0

Ada Logics
London, United Kingdom

21

Envoy fuzzing improvements, April 2021

<_ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_ostreamIcT_EES6_PKc>

0x0000000000557dd9 <+105>: jmp 0x557de2 <_ZL17EnvoyTestOneInputPKhm+114>

0x0000000000557ddb <+107>: add BYTE PTR [rip+0x2f4318],0x1 # 0x84c0fa

0x0000000000557de2 <+114>: pop rbx

0x0000000000557de3 <+115>: pop r14

0x0000000000557de5 <+117>: pop rbp

0x0000000000557de6 <+118>: ret

End of assembler dump.

A.1 Build configurations
Configuration 1. Regular build
This is simply a regular build.

Configuration 2.
This configuration disables:

● Coverage and bug-finding sanitizers in many of the external libraries
● Coverage instrumentation of various folders under source/common and

source/extensions
● Coverage instrumentation of code in test/ directory.
● Coverage instrumentation of all .pb.cc files and all (.cc) files in the bazel-out directory

declare -r DI="$(

if ["$SANITIZER" != "coverage"]

then

Envoy code. Disable coverage instrumentation

echo " --per_file_copt=^.*source/extensions/access_loggers/.*\.cc\$@-fsanitize-coverage=0"

echo " --per_file_copt=^.*source/extensions/filters/.*\.cc\$@-fsanitize-coverage=0"

echo " --per_file_copt=^.*source/extensions/.*\.cc\$@-fsanitize-coverage=0"

echo " --per_file_copt=^.*source/common/protobuf/.*\.cc\$@-fsanitize-coverage=0"

echo " --per_file_copt=^.*source/common/network.*\.cc\$@-fsanitize-coverage=0"

echo " --per_file_copt=^.*source/common/runtime.*\.cc\$@-fsanitize-coverage=0"

Envoy test code. Disable coverage instrumentation

echo " --per_file_copt=^.*test/.*\.cc\$@-fsanitize-coverage=0"

Disable external libraries.

echo " --per_file_copt=^.*antlr4_runtimes.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_alibaba_hessian2_codec.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*io_opencensus_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_protobuf.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_absl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*googletest.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_code_re2.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*upb.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_jbeder_yaml_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*proxy_wasm_cpp_host/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_google_libprotobuf_mutator/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

Ada Logics
London, United Kingdom

22

Envoy fuzzing improvements, April 2021

echo " --per_file_copt=^.*com_googlesource_googleurl/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_datadog_dd_opentracing_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

All protobuf code and code in bazel-out

echo " --per_file_copt=^.*\.pb\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*bazel-out/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

fi

)"

Configuration 3.
This configuration disables everything that configuration 2 disables except:

● Code under source/common and source/extensions.
declare -r DI="$(

if ["$SANITIZER" != "coverage"]

then

Envoy code. Disable coverage instrumentation

Envoy test code. Disable coverage instrumentation

echo " --per_file_copt=^.*test/.*\.cc\$@-fsanitize-coverage=0"

Disable celcpp and grpc correctly.

echo " --per_file_copt=^.*antlr4_runtimes.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_alibaba_hessian2_codec.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*io_opencensus_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_protobuf.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_absl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*googletest.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_code_re2.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*upb.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_jbeder_yaml_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*proxy_wasm_cpp_host/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_google_libprotobuf_mutator/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_googleurl/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_datadog_dd_opentracing_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_envoyproxy_sqlparser.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

All protobuf code and code in bazel-out

echo " --per_file_copt=^.*\.pb\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*bazel-out/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

fi

)"

Configuration 4
This configuration disables everything that configuration 3 disables and also:

● Disabling bug-finding instrumentation in files under the test/ directory.

Ada Logics
London, United Kingdom

23

Envoy fuzzing improvements, April 2021

declare -r DI="$(

if ["$SANITIZER" != "coverage"]

then

Envoy code. Disable coverage instrumentation

Envoy test code. Disable coverage instrumentation

echo " --per_file_copt=^.*test/.*\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

Disable celcpp and grpc correctly.

echo " --per_file_copt=^.*antlr4_runtimes.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_alibaba_hessian2_codec.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*io_opencensus_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_protobuf.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_absl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*googletest.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_code_re2.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*upb.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_jbeder_yaml_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*proxy_wasm_cpp_host/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_google_libprotobuf_mutator/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_googleurl/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_datadog_dd_opentracing_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_envoyproxy_sqlparser.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

All protobuf code and code in bazel-out

echo " --per_file_copt=^.*\.pb\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*bazel-out/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

fi

)"

Configuration 5
This configuration disables everything that configuration 4 disables and also:

● Disabling coverage instrumentation of all .cc files in source/server folder.
declare -r DI="$(

if ["$SANITIZER" != "coverage"]

then

Envoy code. Disable coverage instrumentation

echo " --per_file_copt=^.*source/server.*\.cc\$@-fsanitize-coverage=0"

Envoy test code. Disable coverage instrumentation

echo " --per_file_copt=^.*test/.*\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

Disable celcpp and grpc correctly.

echo " --per_file_copt=^.*antlr4_runtimes.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_alibaba_hessian2_codec.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*io_opencensus_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_protobuf.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_absl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*googletest.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

Ada Logics
London, United Kingdom

24

Envoy fuzzing improvements, April 2021

echo " --per_file_copt=^.*com_googlesource_code_re2.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*upb.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_jbeder_yaml_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*proxy_wasm_cpp_host/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_google_libprotobuf_mutator/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_googleurl/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_datadog_dd_opentracing_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_envoyproxy_sqlparser.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

All protobuf code and code in bazel-out

echo " --per_file_copt=^.*\.pb\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*bazel-out/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

fi

)"

Configuration 6
This configuration is similar to configuration #4, however, it also includes the use of a file
with a function name regex on the path /src/blog_list.txt. This file is used by
SanitizerCoverage to disable coverage instrumentation in functions that match the regular
expression, the contents of this file is:

fun:*envoy*

The important part of the build.sh script is as follows:

declare -r DI="$(

if ["$SANITIZER" != "coverage"]

then

Envoy code. Disable coverage instrumentation

Envoy test code. Disable coverage instrumentation

echo " --per_file_copt=^.*test/.*\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

Disable celcpp and grpc correctly.

echo " --per_file_copt=^.*antlr4_runtimes.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_alibaba_hessian2_codec.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*io_opencensus_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_protobuf.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_absl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*googletest.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_grpc_grpc.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*boringssl.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_googlesource_code_re2.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*upb.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*org_brotli.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_google_cel_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_jbeder_yaml_cpp.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*proxy_wasm_cpp_host/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_google_libprotobuf_mutator/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

Ada Logics
London, United Kingdom

25

Envoy fuzzing improvements, April 2021

echo " --per_file_copt=^.*com_googlesource_googleurl/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_lightstep_tracer_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_datadog_dd_opentracing_cpp/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*com_github_envoyproxy_sqlparser.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*grpc_httpjson_transcoding.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

All protobuf code and code in bazel-out

echo " --per_file_copt=^.*\.pb\.cc\$@-fsanitize-coverage=0,-fno-sanitize=all"

echo " --per_file_copt=^.*bazel-out/.*\$@-fsanitize-coverage=0,-fno-sanitize=all"

fi

)"

Benchmark about 3 GB per CPU (10 threads for 28.8 GB RAM)

TODO(asraa): Remove deprecation warnings when Envoy and deps moves to C++17

bazel build -s --verbose_failures --dynamic_mode=off ${DI} \

--per_file_copt="^.*\$"@"-Wno-error=unused-command-line-argument" \

--per_file_copt="^.*\$"@"-fsanitize-coverage-blocklist=/src/block_list.txt" \

A.2 Envoy UDP fuzzer coverage
Envoy::Network::UdpListenerImpl::handleReadCallback :
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/202
10423/linux/proc/self/cwd/source/common/network/udp_listener_impl.
cc.html#L72

Ada Logics
London, United Kingdom

26

https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/udp_listener_impl.cc.html#L72
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/udp_listener_impl.cc.html#L72
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/udp_listener_impl.cc.html#L72

Envoy fuzzing improvements, April 2021

Envoy::Network::Utility::readFromSockethttps://storage.googleapis.com/oss-fu
zz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/utility.cc.ht
ml#L576

Ada Logics
London, United Kingdom

27

https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/utility.cc.html#L576
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/utility.cc.html#L576
https://storage.googleapis.com/oss-fuzz-coverage/envoy/reports/20210423/linux/proc/self/cwd/source/common/network/utility.cc.html#L576

Envoy fuzzing improvements, April 2021

Ada Logics
London, United Kingdom

28

