
A Bitmapper’s
Geometry

An introduction to basic bitmap
mathematics and algorithms

epilys November 18, 2021

2

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

The source code for this work is available under the GNU GENERAL PUBLIC
LICENSE version 3 or later. You can view it, study it, modify it for your purposes
as long as you respect the license if you choose to distribute your modifications.

The source code is available here

https://github.com/epilys/bitmappers-geometry

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://github.com/epilys/bitmappers-geometry

Contents

1 Introduction 5

1.1 Loading xbm files in Rust . 9

I Points and Lines 12

2 Distance between two points 13

2.1 Drawing a line segment from its two endpoints 14

3 Equations of a line 15

4 The parametric form 16

5 Angle between two lines 17

6 Intersection of two lines 18

7 Line through two points 19

8 Line equidistant from two points 20

9 Normal to a line through a point 21

3

CONTENTS 4

II Points Lines and Circles 22

10 Equations of a Circle 23

III Points line segments and Arcs 24

IV Curves other than circles 25

V Points, lines and planes 26

VI Vectors, matrices and transformations 27

11 Rotation of a bitmap 28

12 Rotation of a bitmap by parallel recusive subdivision 33

13 Magnification 34

VII Flood filling 35

VIII Areas 36

IX Volumes 37

Chapter 1

Introduction

The data structures we’re going to use is Point and Image. Image represents a
bitmap, although we will use full RGB colors for our points therefore the size of a
pixel in memory will be u8 instead of 1 bit.

Wewill work on the cartesian grid representing the framebuffer that will show
us the pixels. The origin of this grid (i.e. the center) is at (0, 0).

(0,0)

5

CHAPTER 1. INTRODUCTION 6

We will represent points as pairs of signed integers. When actually drawing
them though, negative values and values outside the window’s geometry will be
ignored (clipped).

pub type Point = (i64, i64);

pub const fn from_u8_rgb(r: u8, g: u8, b: u8) -> u32 {
let (r, g, b) = (r as u32, g as u32, b as u32);
(r << 16) | (g << 8) | b

}
pub const AZURE_BLUE: u32 = from_u8_rgb(0, 127, 255);
pub const RED: u32 = from_u8_rgb(157, 37, 10);
pub const WHITE: u32 = from_u8_rgb(255, 255, 255);
pub const BLACK: u32 = 0;

pub struct Image {
pub bytes: Vec<u32>,
pub width: usize,
pub height: usize,
pub x_offset: usize,
pub y_offset: usize,

}

impl Image {
pub fn new(width: usize,

height: usize,
x_offset: usize,
y_offset: usize) -> Self;

pub fn draw(&self,
buffer: &mut Vec<u32>,
fg: u32,
bg: Option<u32>,
window_width: usize);

pub fn draw_outline(&mut self);
pub fn clear(&mut self);

CHAPTER 1. INTRODUCTION 7

pub fn plot(&mut self, x: i64, y: i64);
pub fn get(&mut self, x: i64, y: i64) -> u32;
pub fn plot_ellipse(

&mut self,
(xm, ym): (i64, i64),
(a, b): (i64, i64),
quadrants: [bool; 4],
_wd: f64,

);
pub fn plot_line_width(&mut self,

point_a: Point,
point_b: Point,
wd: f64);

pub fn flood_fill(&mut self, mut x: i64, y: i64);
}

A way to display an Image is to use the minifb crate which allows you to
create a window and draw pixels directly on it. Here’s how you could set it up:

use bitmappers_geometry::*;
use minifb::{Key, Window, WindowOptions};

const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;

fn main() {
let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
let mut window = Window::new(

"Test - ESC to exit",
WINDOW_WIDTH,
WINDOW_HEIGHT,
WindowOptions {

title: true,
//borderless: true,

CHAPTER 1. INTRODUCTION 8

//resize: false,
//transparency: true,
..WindowOptions::default()

},
)
.unwrap();

// Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));

let mut image = Image::new(50, 50, 150, 150);
image.draw_outline();
image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);

while window.is_open()
&& !window.is_key_down(Key::Escape)
&& !window.is_key_down(Key::Q) {
window

.update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)

.unwrap();
let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);

}
}

Running this will show you something like this:

CHAPTER 1. INTRODUCTION 9

1.1 Loading xbm files in Rust

xbm files are C source code files that contain the pixel information for an image as
macro definitions for the dimensions and a static char array for the pixels, with
each bit column representing a pixel. If the width dimension doesn’t have 8 as a
factor, the remaining bit columns are left blank/ignored.

CHAPTER 1. INTRODUCTION 10

They used to be a popular way to share user avatars in the old internet and are
also good material for us to work with, since they are small and numerous. The
following is such an image:

First, let’s define a way to convert bit information to a byte vector:

pub fn bits_to_bytes(bits: &[u8], width: usize) -> Vec<u32> {
let mut ret = Vec::with_capacity(bits.len() * 8);
let mut current_row_count = 0;
for byte in bits {

for n in 0..8 {
if byte.rotate_right(n) & 0x01 > 0 {

ret.push(BLACK);
} else {

ret.push(WHITE);
}
current_row_count += 1;
if current_row_count == width {

current_row_count = 0;
break;

}
}

}
ret

}

Then, we can convert the xbm file from C to Rust with the following transfor-
mations:

#define news_width 48
#define news_height 48
static char news_bits[] = {

CHAPTER 1. INTRODUCTION 11

to

const NEWS_WIDTH: usize = 48;
const NEWS_HEIGHT: usize = 48;
const NEWS_BITS: &[u8] = &[

And replace the closing } with].

We can then include the new file in our source code:

include!("news.xbm.rs");

load the image:

let mut image = Image::new(NEWS_WIDTH, NEWS_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(NEWS_BITS, NEWS_WIDTH);

and finally run it:

Part I

Points and Lines

12

Chapter 2

Distance between two points

K

L

r

Given two points, 𝐾 and 𝐿, an elementary application of Pythagoras’ Theorem
gives the distance between them as

𝑟 = √(𝑥𝐿 − 𝑥𝐾)2 + (𝑦𝐿 − 𝑦𝐾)2 (2.1)

which is simply coded:

pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x_k;
let ylk = y_l - y_k;
f64::sqrt((xlk*xlk + ylk*ylk) as f64)

}

13

CHAPTER 2. DISTANCE BETWEEN TWO POINTS 14

2.1 Drawing a line segment from its two end-
points

For any line segment with any slope, pixels must be matched with the infinite
amount of points contained in the segment. As shown in the following figure, a
segment touches some pixels; we could fill them using an algorithm and get a
bitmap of the line segment.

K

L

The algorithm presented here was first derived by Bresenham. In the Image
implementation, it is used in the plot_line_width method.

Chapter 3

Equations of a line

15

Chapter 4

The parametric form

16

Chapter 5

Angle between two lines

17

Chapter 6

Intersection of two lines

18

Chapter 7

Line through two points

19

Chapter 8

Line equidistant from two points

20

Chapter 9

Normal to a line through a point

21

Part II

Points Lines and Circles

22

Chapter 10

Equations of a Circle

23

Part III

Points line segments and Arcs

24

Part IV

Curves other than circles

25

Part V

Points, lines and planes

26

Part VI

Vectors, matrices and
transformations

27

Chapter 11

Rotation of a bitmap

𝑝′ = ⎡⎢
⎣

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑝

𝑦𝑝

⎤⎥
⎦

𝑐 = 𝑐𝑜𝑠𝜃, 𝑠 = 𝑠𝑖𝑛𝜃, 𝑥𝑝′ = 𝑥𝑝𝑐 − 𝑦𝑝𝑠, 𝑦𝑝′ = 𝑥𝑝𝑠 + 𝑦𝑝𝑐.

Let’s load an xface. We will use bits_to_bytes (See Introduction).

include!("dmr.rs");

const WINDOW_WIDTH: usize = 100;
const WINDOW_HEIGHT: usize = 100;

let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);

28

CHAPTER 11. ROTATION OF A BITMAP 29

This is the xface of dmr. Instead of displaying the bitmap, this time we will
rotate it 0.5 radians. Setup our image first:

let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.draw_outline();
let dmr = bits_to_bytes(DMR_BITS, DMR_WIDTH);

And then, loop for each byte in dmr’s face and apply the rotation transforma-
tion.

let angle = 0.5;

let c = f64::cos(angle);
let s = f64::sin(angle);

for y in 0..DMR_HEIGHT {
for x in 0..DMR_WIDTH {

if dmr[y * DMR_WIDTH + x] == BLACK {
let x = x as f64;
let y = y as f64;
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64, yr as i64);

}
}

}

CHAPTER 11. ROTATION OF A BITMAP 30

The result:

We didn’t mention in the beginning that the rotation has to be relative to a
point and the given transformation is relative to the origin, in this case the upper
left corner (0, 0). So dmr was rotated relative to the origin:

(0,0) (0,0)

�

Usually, wewant to rotate something relative to itself. The right point to choose
is the centroid of the object.

If we have a list of 𝑛 points, the centroid is calculated as:

𝑥𝑐 = 1
𝑛

𝑛
∑
𝑖=0

𝑥𝑖

𝑦𝑐 = 1
𝑛

𝑛
∑
𝑖=0

𝑦𝑖

CHAPTER 11. ROTATION OF A BITMAP 31

Since in this case we have a rectangle, the centroid has coordinates of half the
width and half the height.

By subtracting the centroid from each point before we apply the transforma-
tion and then adding it back after we get what we want:

Here’s it visually: First subtract the center point.

(0,0)

Then, rotate.

(0,0)

�

xcrotated

And subtract back to the original position.

CHAPTER 11. ROTATION OF A BITMAP 32

(0,0)

�

xc
+ centroid

In code:

let center_point = ((DMR_WIDTH/2) as i64, (DMR_HEIGHT/2) as i64);
for y in 0..DMR_HEIGHT {

for x in 0..DMR_WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {

let x = (x as i64 -center_point.0) as f64;
let y = (y as i64 -center_point.1) as f64;
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64+center_point.0,

yr as i64 + center_point.1);
}

}
}

The result:

Chapter 12

Rotation of a bitmap by parallel re-
cusive subdivision

33

Chapter 13

Magnification

34

Part VII

Flood filling

35

Part VIII

Areas

36

Part IX

Volumes

37

38

1

39

	Introduction
	Loading xbm files in Rust

	I Points and Lines
	Distance between two points
	Drawing a line segment from its two endpoints

	Equations of a line
	The parametric form
	Angle between two lines
	Intersection of two lines
	Line through two points
	Line equidistant from two points
	Normal to a line through a point

	II Points Lines and Circles
	Equations of a Circle

	III Points line segments and Arcs
	IV Curves other than circles
	V Points, lines and planes
	VI Vectors, matrices and transformations
	Rotation of a bitmap
	Rotation of a bitmap by parallel recusive subdivision
	Magnification

	VII Flood filling
	VIII Areas
	IX Volumes

