

Document Name Introduction • 1

Floating-Point Test-Suite for IEEE

IBM Labs in Haifa

FPgen Team

Version 1.02: January 2008

Notices
First version (June 2004)
For information, contact Merav Aharoni.
International Business Machines Corporation provides this publication “as is” without warranty of any kind, either express or
implied. Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore this statement
may not apply to you.

This publication may contain technical inaccuracies or typographical errors. While every precaution has been taken in the
preparation of this document, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/ or
changes in the product(s) and/or the program(s) described in this publication at any time.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document
does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Commercial
Relations, IBM Corporation.
The following terms, used in this publication, are trademarks or service marks of corporations in the United States or other
countries:

IBM IBM Corporation

Change History

Version Author Date Change Description

0 Merav Aharoni 02/28/04 Initial version for binary floating-point

0.9 Merav Aharoni 06/13/04 1. Added decimal test-suite
2. Removed model “All Exponents”
3. Renumbered the models
4. Added rounding mode “ ^ ”
5. Minor syntax corrections

0.91 Sigal Asaf 07/29/04 Adding details to chapter 4 – Syntax of the Test Cases

0.93 Raviv Nagel 12/6/04 Many changes in the binary models. Some overlapping
models fixed. Some models were reduced to a more
reasonable size. Added Round-To-Integral models

0.94 Merav Aharoni 02/23/05 Renamed model B6 to Tiny Rounding Intermediate
Tasks, and removed the overflow tasks from it.
B20 was simplified to constrain only the intermediate
result.
Updated syntax of examples

1.0 Merav Aharoni

Raviv Nagel

04/20/05

05/03/05

First official version posted to test case web site
B20 – changed name and simplified model
Removed unnecessary chapters at the end

Document Name Introduction • 3

1.01 Merav Aharoni 04/24/05 Updated chapter 4 – Syntax of the Test Cases

1.02 Anatoly Koyfman 01/24/08 Updated chapter 4 – Syntax of the Test Cases

 Copyright IBM Corporation 2004. All rights reserved..

Contents

Introduction 6
Overview... 6

Methodology 7

Terminology Used in Model Descriptions 9

Syntax of the Test Cases 12

Binary Models 15
Operation-general Models .. 16
Models for Add and Subtract .. 19
Models for Fused Multiply Add.. 20
Models for Compare, Min, Max ... 21
Models for Square-Root, Divide, Remainder ... 22
Models for Convert Float to Integer Operations ... 23
Models for Convert Integer to Float Operations ... 24
Models for Conversion between Different FP Formats .. 24
Models for Rounding Float to Integral Value ... 25

Decimal Terminology 26
Decimal Mask... 26
Decimal Floating Point Format .. 26
Adjusted Exponent ... 27
Decimal Encoded Format ... 27
Significant Digits .. 27
Preferred Exponent ... 27
Cancellation Value ... 28

Decimal Floating-Point Types .. 28

Decimal Models 29
Operation-general Models .. 32
Models for Add and Subtract .. 36
Models for Multiply.. 38
Models for Fused Multiply Add.. 38

Multiply-Add: Interesting Events ... 39

Document Name Introduction • 5

Models for Compare, Min, Max ... 40
Models for Square-Root, Divide, Remainder ... 41
DPD Models ... 42

Chapter 1

Introduction

Overview

This document contains a detailed description of a proposed test-suite for floating-point,
conforming to the IEEE 754R standard. This document includes an explanation of the
approach taken, a proposed syntax for the test files, and a detailed list of models for binary
floating-point and decimal floating-point. Finally we will send the test-suites themselves for
both binary and decimal. We welcome all suggestions, as well as comments and questions.

The test-suite will contain tests that target basic formats specified in the IEEE 754R standard.
These include binary32, binary64, binary128, decimal32, decimal64, and decimal128. We
will supply test-cases for the following operations: add, subtract, multiply, divide, fused
multiply-add, square root, remainder, compare, min, max, round to integer, convert float to
float, convert float to integer, convert integer to float, and convert and round float to integral
value.

Regarding the arithmetic operations, we currently plan to support only the operations for
which all operands have the same format.

The structure of this document is as follows: in chapter 2 we explain the methodology used in
constructing the test-suite; in chapter 3 we define terms that will be used in the model
descriptions; the syntax of the test files is described in chapter 4; chapter 5 contains a
description of the binary models; chapters 6 and 7 contain a description of the decimal
models, appendix 8 defines a schedule for completion of the remaining components of the
test-suite; and appendix 9 lists some open issues.

We view this document as a draft version. We still intend to augment and modify the
proposal models. The purpose of this draft is to present a broad impression of the scope of the
test-suite, and to provide an opportunity for feedback.

Chapter 2

Document Name Methodology • 7

Methodology

The approach taken in the construction of this test-suite is to first define a high level test-plan,
and then to generate a suite of test-cases that cover the test plan. The test plan is created by
identifying subspaces that are interesting in terms of verification. These subspaces are defined
as verification tasks. We group together sets of related tasks into coverage models. When we
say ‘related tasks’, we mean that a model is not simply an arbitrary grouping of the tasks, but
rather a set of tasks that target a certain floating-point area, or some particular feature of
floating-point.

Having defined the models, we proceed to provide, for each of these tasks, a test-case that
covers this task; in other words, a test case is a member of the subspace we wish to test. The
test suite comprises a set of files that correspond to coverage models described in this
document. Every test case in these files covers a task of the model. The test cases are
generated by use of a random test generator, FPgen. More information concerning FPgen can
be found in [1] and in
http://www.haifa.il.ibm.com/projects/verification/fpgen/

Note that models will often contain tasks for which no test-case can be generated. Therefore,
in general, the number of test-cases in a test file may be less than the number of defined tasks.
For example, in the model (B1) Floating-point basic types, the addition of two positive Norm
inputs cannot result in a negative Norm result. The reason for leaving these tasks in the
definition of the model is that this allows describing them in a concise and general manner.
Many of the models are defined using the Cartesian product between two or more lists of
constraints. This manner of expression is very clear and compact, but may contain impossible
combinations.

In addition, there are cases where different models have one or more tasks in common. We
prefer not to remove such redundant tasks, in order to maintain the completeness of each
model, and the independence of one model from another.

The models are partitioned into two categories:

§ Operation-general models – These models are not dependent on operation
semantics, and are therefore applicable to all floating-point operations.

§ Operation-specific models – Each of these models is suitable for one or more
specific floating-point operations, and targets special features of the operation
semantics.

Every test case specifies values for the rounding mode, the enable bits, and the operands. The
test cases are given in all the rounding modes specified by the standard. For models in which

the rounding mode is not significant, we provide test-cases in one randomly selected
rounding mode. For models in which we deem the rounding mode significant, test-cases in all
rounding modes will be provided.

The enable bits, as defined in the standard, are: inexact result, underflow, overflow, divide by
zero, and invalid operation. Each enabled flag may take on the values ON and OFF. For
models in which the enable bits are not significant, we provide test-cases in either of the two
values, selected at random for each enable bit.

Document Name Terminology Used in Model Descriptions • 9

Chapter 3

Terminology Used in Model
Descriptions

In this chapter, we define the terms that will be used when describing the coverage models.

Final result. The final result is the output of the operation, following rounding.

Intermediate result. The standard requires every operation to be performed “as if it first
produced an intermediate result correct to infinite precision and with unbounded range, and
then rounded that result according to one of the modes”. In order to cope with this
requirement, we use an intermediate result with an extended range for the exponent, and extra
precision for the significand.

For binary, we extend the significand to include one additional regular bit, named the guard
bit, and one sticky bit which is one if and only if there were non-zero bits to the right of the
guard bit.

For decimal, as for binary, we add one additional digit to the significand, named the guard
digit, and the sticky bit, which is one if and only if there were non-zero digits to the right of
the guard digit. Beside these, we add one additional bit, named the rounded bit. This bit is
one if and only if there were any digits (including zeros), to the right of, and including, the
guard bit. Thus, if the guard digit is non-zero, or the sticky bit is one then the rounded bit is
one. But even if both the guard and sticky are zeros, the rounded bit will be one if there was a
zero calculated for any of those positions.

The binary models described in this document assume the intermediate result is in normalized
format. The decimal models assume the decimal point is positioned to the left of the guard
digit.

Extra bits. The Extra Bits for binary floating–point are defined as all the bits that participate
in the calculation of the sticky bit. The length of Extra Bits varies between different formats
and different operations. For some arithmetic operations this number is finite, and for others
it is infinite. For the latter, we use a reasonable number of bits for constraint purposes.

Extra digits. For decimal floating point the definition is similar, the only difference being
that the word “bits” is replaced by “digits.

Ulp or Unit in the last place. Ulp is defined as the value of a 1 in the last place of a number
representation (Boston University, Computer Science Faculty).
For the binary floating-point number b0.b1b2…bk * 2m, ulp = 1 * 2m-k.

For the decimal floating-point number d1d2…dk * 10m, ulp = 1 * 10m .

Shift. Shift is the difference between the unbiased exponents of the input operands in
add/subtract operations. In order to perform the operation, one of the operands is shifted so
that both operands have the same exponent. This term applies also to the fused multiply-add
type operation, with regard to the exponents of the addends.

Cancellation. Cancellation describes a situation that occurs in add/subtract operations,
whereby the exponent of the result is lower than either of the exponents of the inputs. This
occurs when the inputs are relatively close in magnitude. This term applies also to fused
multiply-add operation, with regard to the exponents of the addends.

Binary Mask. A mask is a character representation used to denote a set of binary numbers.
Each character of the mask belongs to the set {0, 1, x}, where x means this bit position may
take on the values 0 or 1.

For example, the mask 0x111x represents the set {001110, 001111, 011110, 011111}.

Decimal Mask. See chapter 6 "Decimal Terminology".

Precision. We will use the definition from the IEEE 754R. We will denote the precision of a
binary or decimal floating-point number by p.

Binary floating-point types

Name Sign Exponent Significand

Zero 0 000…000 000…000

MinSubNorm 0 000…000 000…001

SubNorm 0 000…000 [000…001,
111…111]

MaxSubNorm 0 000…000 111…111

MinNorm 0 000…001 000…000

Norm 0 [000…001,
111…110]

xxx…xxx

MaxNorm 0 111…110 111…111

Infinity 0 111…111 000…000

DefaultNaN 0 111…111 100…000

QNaN X 111…111 1xx…xxx

SNaN X 111…111 [000…001,
011…111]

Document Name Terminology Used in Model Descriptions • 11

011…111]

One 0 011…111 000…000

Table 1: Binary Floating-Point Types

Note that all the basic types are defined to be positive. In the models, we usually have tests
for both the positive and negative basic types.

Decimal floating-point types. See chapter 6 "Decimal Terminology".

Chapter 4

Syntax of the Test Cases

Every coverage model has one or more corresponding test files. The names of the files
correspond to the names of the models, with the suffix .fptest.

Each test case appears on a separate line that contains, in the order given below:

§ The operation: one of the following: + for add, - for subtract, * for multiply, / for
divide, *+ for fused multiply-add, V for square root, % for remainder, rfi for
round float to int, cff for convert between different supported floating-point
format, cfi for convert floating-point to integer, cif for convert integer to floating-
point, cfd for convert to decimal character string, cdf for convert decimal
character string to float, qC for quiet comparison, sC for signaling comparison,
cp for copy, ~ for negate, A for abs, @ for copy sign, S for scalb, L for logb, Na
for nextafter, ? for class, ?- for issigned, ?n for isnormal, ?f for isfinite, ?0 for
iszero, ?s for issubnormal, ?i for is inf, ?N for isnan, ?sN for issignaling, ?N for
isnan, <C for minnum, >C for maxnum, <A for minnummag, >A for
maxnummag, =quant for samequantum, quant for quantize, Nu for next up, Nd
for nextdown, eq for equivalent.

§ The rounding mode: one of the following: > (positive infinity), < (negative
infinity), 0 (zero), =0 (nearest, ties to even), or =^ (nearest, ties away from zero).
The “nearest, ties away from zero” rounding mode exists only for decimal
operations only.

§ Trapped exceptions: x (inexact/XE), u (underflow/UE), o (overflow/OE), z
(division by zero/ZE) and i (invalid/VE).

§ The data for input operands. See Input and Output Operand Representation
below for more information about the data representation.

§ A “->” sign, to separate inputs from results.

§ The data for the outputs. See Input and Output Operand Representation below
for more information about the data representation.
In case no output is written, a # sign will appear in place of the output data. This

Document Name Syntax of the Test Cases • 13

may occur in the case the invalid exception is enabled and an invalid operation
occurred.

§ Exceptions that occur following the operation: x (inexact), u/v/w (underflow), o
(overflow), z (division by zero) and i (invalid). There are three flags for
underflow since the standard permits an implementation to use any one of three
different definitions of underflow: u indicates underflow due to tininess and
"extraordinary" error, v indicates underflow due to tininess and inexactness
where tininess is tested after rounding, and w indicates underflow due to tininess
and inexactness, where tininess is tested before rounding. The enable bits are
concatenated to one string.

Input and Output Operand Representation

The following describes the supported operand types. For each type, we describe its
representation in the test-suite.

Data type Representation

Binary Floating-Point <sign><significand>P<exp>. Where the sign is either + or -, the
significand is a string of hex literals, exp is the value of the unbiased
exponent written as an integer number.

SNaN numbers are represented using the string S.

QNaN numbers are represented using the string Q.

Infinities are represented using the string <sign>Inf.

Zeros are represented using the string <sign>Zero.

Decimal Floating-
Point

<sign><significand>E<exp>. Where the sign is either + or -, the
significand is a string of decimal digits, exp is the value of the unbiased
exponent written as an integer number.

SNaN numbers are represented using the string S.

QNaN numbers are represented using the string Q.

Infinities are represented using the string <sign>Inf.

DPD format Some of the decimal floating-point data are represented using their
DPD encoding as follows: DPD_<hex string>.

Integer <sign><decimal-digits> where sign is either + or -.

Boolean 0 for false, 1 for true

External Decimal
format

Decimal string, using the notation <sign> <decimal-digits.decimal-
digits> E <exponent> where sign is either + or -

The return value of
the Class operation

The possible values are: sNaN, qNaN, -Inf, -normal, -subnormal, -0,
+0, +subnormal, +normal, +Inf

Examples

Basic-Types-Inputs.fptest

b32?- =0 i -Inf -> 0x1
The operation here is isSigned with precision 32 bit, rounding mode is nearest, ties to even,
the invalid enable bit is on, the input operand is negative infinity, and the result is 0x1.

b32+ =0 i -1.6E9177P49 -1.7FFFFFP127 -> -1.7FFFFFP127 x
The operation here is addition with precision 32 bit, rounding mode is nearest, ties to even,
the invalid enable bit is on, first input operand is -1.6E9177P49, second input operand is
-1.7FFFFFP127, the result is -1.7FFFFFP127, and the inexact exception flag is raised.

b32V =0 -1.7FFFFFP127 -> Q i
The operation here is square-root with precision 32 bit, rounding mode is nearest, ties to
even, all enable bits are off, the input operand is -1.7FFFFFP127, the result is QNaN and the
invalid operation exception flag is raised.

b32*+ =0 +0.7FFFFFP-126 -1.7FFFFFP127 -Inf -> -Inf
The operation here is fused multiply-add with precision 32 bit, rounding mode is nearest, ties
to even, all enable bits are off, first input operand is +0.7FFFFFP-126, second input operand
is -1.7FFFFFP127, third input operand is negative infinity, and the result is negative infinity.

b32V =0 i -Inf -> # i
The operation here is square-root with precision 32 bit, rounding mode is nearest, ties to
even, the invalid enable bit is on, the input operand is -infinity, there is no result written, and
the invalid operation exception flag is raised.

Document Name Binary Models • 15

Chapter 5

Binary Models

In this chapter, we describe the binary models. We first present a table listing the models in
compact format. For each model we state the operations for which it is applicable, and the
order of magnitude of the total number of test cases it represents.

 Model name Relevant

operations
Number of test
cases

B1 Floating-point basic types all 1 E 4

B2 Near FP Base Values – Hamming distance all 8 E 6

B3 Rounding – sign, LSB, guard bit, sticky bit all 2 E 3

B4 Overflow and Near Overflow all 2 E 5

B5 Underflow and Near Underflow all 2 E 5

B6 Tiny Rounding Intermediate Tasks all 1 E 5

B7 Sticky Bit Calculation all 1 E 6

B8 Vicinity of Rounding Boundaries all 1 E 2

B9 Special Significands on Inputs Multiply, Divide,
Square-root,
Remainder

Up to

1 E 10

B10 Add: Shift Add, subtract 1.5 E 3

B11 Add: Shift combined with special
significands

Add, subtract Up to

1 E 10

B12 Add: Cancellation Add, subtract 4 E 2

B13 Add: Cancellation and SubNorm Result Add, subtract 2.5 E 5

B14 Multiply-Add: Shift Multiply-add 2.5 E 4

B15 Multiply-Add: Shift Combined with
Special Significands

Multiply-add Up to

1 E 10

B16 Multiply-Add: Cancellation Multiply-add 4 E 2

B17 Multiply-Add: Cancellation and SubNorm
Result

Multiply-add 2.5 E 5

B18 Multiply-Add: Special Events Multiply-add 1 E 6

B19 Compare: Different Input Fields Relations compare, min, max 9 E 2

B20 Divide: Trailing Zeros divide, square-root,
remainder

1 E 4

B21 Divide: Divide By Zero Exception Divide, remainder 3E1

B22 CvtFP2Int: Special Input Exponents

Convert float to
integer

2 E 4

B23 CvtFP2Int: Overflow – Convert Float to
Integer

Convert float to
integer

5 E 1

B24 CvtFP2Int: Underflow – Convert Float to
Integer

Convert float to
integer

1 E 2

B25 CvtInt2FP: Special Inputs Convert integer to
float

2 E 1

B26 CvtInt2FP: Number of Significant Bits Convert integer to
float

2 E 2

B27 CvtFP2FP: NaNs Convert float to
float

4E2

B28 RFI: Special Values Convert float to
integral value

1E2

B29 RFI: Rounding Convert float to
integral value

5E2

Table 2: List of Models

The models are divided into two main categories: operation-general models and operation-
specific models. Within the second category, the relevant operations are specified for each
model. For models in which we consider the rounding mode or enable bits irrelevant, these
are not mentioned in the description, and the rounding mode is set to nearest and all the
enable bits are set to "Off". For models in which we would like to test both values of a certain
enable bit, or for the rounding mode, we list it at the bottom of the model description.

Operation-general Models

B1. Floating-point basic types – inputs and intermediate/final result
Test all combinations of floating-point basic types, positive and negative, for
each of the inputs. The basic types are Zero, One, MinSubNorm, SubNorm,
MaxSubNorm, MinNorm, Norm, MaxNorm, Infinity, DefaultNaN, QNaN, and
SNaN. See table 1 for the exact definitions.
Also generate a test for receiving each of the basic types in the result.
Operation: All
Enable Bits: VE

B2. Near FP Base Values – Hamming Distance

This model tests final results that are very close, measured in Hamming

Document Name Binary Models • 17

distance, to the specified boundary values. Each boundary value is taken as a
base value, and the model enumerates over small deviations from the base, by
flipping one bit of the significand. We take all combinations from the table
below. We have a separate test for every bit position in the significand.

Sign Base value

Positive

Negative

Zero

One

MinSubNorm

MaxSubNorm

MinNorm

MaxNorm
 Operation : Random

B3. Rounding – sign, LSB, guard bit, sticky bit

Test all combinations of the sign, the significand’s Least Significant Bit (LSB),
guard-bit, and sticky-bit of the intermediate result.
Operation: All arithmetic and conversions

Rounding Mode: All

Enable Bits: XE

B4. Overflow and Near Overflow
This model creates a test-case for each of the following constraints on the
intermediate results:
i. All the numbers in the range [+MaxNorm – 3 ulp, +MaxNorm + 3 ulp]

ii. All the numbers in the range [-MaxNorm - 3 ulp, -MaxNorm + 3 ulp]

iii. A random number that is larger than +MaxNorm + 3 ulp

iv. A random number that is smaller than -MaxNorm – 3 ulp

v. One number for every exponent in the range [MaxNorm.exp - 3,
MaxNorm.exp + 3] for positive and negative numbers

Operation: All

Rounding Mode: All

Enable Bits: XE, OE (Both On and both Off)

B5. Underflow and Near Underflow
This model creates a test-case for each of the following constraints on the
intermediate results:
i. A random positive SubNorm

ii. A random negative SubNorm

iii. All the numbers in the range [+MinSubNorm – 3 ulp, +MinSubNorm + 3
ulp]

iv. All the numbers in the range [-MinSubNorm - 3 ulp, -MinSubNorm + 3
ulp]

v. All the numbers in the range [MinNorm – 3 ulp, MinNorm + 3 ulp]

vi. All the numbers in the range [-MinNorm - 3 ulp, -MinNorm + 3 ulp]

vii. A random number in the range (0, MinSubNorm)

viii. A random number in the range (-MinSubNorm, -0)

ix. One number for every exponent in the range [MinNorm.exp, MinNorm.exp
+ 5]

Operation: All

Rounding Mode: All

Enable Bits: XE, UE (Both On and both Off)

B6. Tiny Rounding Intermediate Tasks
This model tests intermediate results in the space between –MinSubNorm and
+MinSubNorm. For each of the following ranges, we select 8 random test cases,
one for every combination of the LSB, guard bit, and sticky bit.
i. -MinSubNorm < intermediate < -MinSubNorm / 2

ii. -MinSubNorm / 2 <= intermediate < 0

iii. 0 < intermediate <= +MinSubNorm / 2

iv. +MinSubNorm / 2 < intermediate < +MinSubNorm

Operation: Random

Rounding Mode: All

Enable Bits: XE, UE (both On and both Off)

B7. Sticky Bit Calculation
This model checks that the sticky bit is calculated correctly in each of the
following cases (for every possible combination in the table). The Guard bit
should be always 0, and the sign positive, so that miscalculation of the sticky bit
will alter the final result.

Mask on Extra Bits

1000…000

0100…000

…

0000…010

0000…001

000000000

Operation: All

Document Name Binary Models • 19

Rounding Mode: Positive Infinity

B8. Vicinity of Rounding Boundaries
This model targets numbers that are on the edge of a rounding boundary. These
boundaries may vary depending on the rounding mode. These numbers include
floating-point numbers and mid-points between floating-point numbers. In order
to target the vicinity of these numbers, we test the following constraints on the
extra bits of the intermediate result:
i. All values of extra-bits in the range [000…00001, 000…00011]

ii. All values of extra-bits in the range [111…11100, 111…11111]

For each value selected above, test all the combinations on the LSB of the
significand, the guard bit, and the sticky bit (if the number of extra bits is not
finite).

Operation: All

Rounding Mode: All

B9. Special Significands on Inputs
This model tests special patterns in the significands of the input operands. Each
of the input operands should contain one of the following patterns (each
sequence can be of length 0 up to the number of bits in the significand – the
more interesting cases will be chosen).
i. A sequence of leading zeroes

ii. A sequence of leading ones

iii. A sequence of trailing zeroes

iv. A sequence of trailing ones

v. A small number of 1s as compared to 0s

vi. A small number of 0s as compared to 1s

vii. A "checkerboard" pattern (for example 00110011… or 011011011…)

viii. Long sequences of 1s

ix. Long sequences of 0s

Operation: Divide, Remainder, Square-root, Multiply

Enable Bits: XE

Models for Add and Subtract

B10. Add: Shift
This model tests every possible value for a shift between the input operands.

The difference between the unbiased input exponents is:

i. A value smaller than -(p + 4)

ii. All the values in the range
[-(p + 4) , (p + 4)]

iii. A value larger than (p + 4)

B11. Add: Shift Combined with Special Significands
In this model we test the combination of different shift values between the
inputs, with special patterns in the significands of the inputs.
Significands of Input1 and Input2: as in model (B9) "Special Significands on
Inputs"

Shift: as in model (B10) "Shift - Add"

We test both effective operations: addition and subtraction.

B12. Add: Cancellation
This model tests every possible value for cancellation.
For the difference between the exponent of the intermediate result and the
maximum between the exponents of the inputs, test all values in the range:

 [-p, +1].

Enable Bits: XE

B13. Add: Cancellation and SubNorm Result
This model tests all combinations of cancellation values as in model (B12), with
all possible unbiased exponent values of subnormal results.
Enable Bits: XE

Models for Fused Multiply Add

B14. Multiply-Add: Shift
This model tests every possible value for a shift between the addends of the
multiply-add operation.
For the difference between the unbiased exponent of the addend and the
unbiased exponent of the result of the multiplication, test the following values:

i. A value smaller than -(2* p + 1)

ii. All the values in the range
[-(2*p +1), (p +1)]

iii. A value larger than (p + 1)

Document Name Binary Models • 21

We test both effective operations: addition and subtraction. The end values
tested are selected to be greater by one than the largest possible shift in which
the smaller addend may affect the result.

B15. Multiply-Add: Shift Combined with Special Significands

In this model we test the combination of different shift values between the
addends, with special patterns in the significands of the addends.
For the significand of the addend and for the multiplication result we take the
cases defined in model (B9) "Special Significands on Inputs"

For the shift we take the cases defined in model (B14) "Shift – multiply-add".

Enable Bits: XE

B16. Multiply-Add: Cancellation
This model tests every possible value for cancellation.
For the difference between the exponent of the intermediate result and the
maximum between the exponents of the addend and the multiplication result,
test all values in the range:

 [-(2 * p + 1), 1].

Enable Bits: XE

B17. Multiply-Add: Cancellation and SubNorm Result
This model tests all combinations of cancellation values as in model (B16), with
all possible unbiased exponent values of subnormal results.].
Enable Bits: XE

B18. Multiply-Add: Special Events

This model checks different cases where the multiplication causes some event
in the product while the addition cancels this event.
i. Product: Enumerate on all options for LSB, Guard and Sticky bit.

Intermediate Result: Exact (Guard and Sticky are zero).

ii. Product: Take overflow values from (B4) "Overflow".
Intermediate Result: No overflow

iii. Product: Take underflow values from model (B5) "Underflow".
Intermediate Result: No underflow

Enable Bits: XE, OE (for second case), UE (for third case)

Models for Compare, Min, Max

B19. Compare: Different Input Fields Relations
This model checks various possible differences between the two inputs.

A test-case will be created for each combination of the following table:

First input Second input Difference
between
exponents

Difference
between
significands

+ Normal

- Normal

+ SubNormal

- SubNormal

0

+ Normal

- Normal

+ SubNormal

- SubNormal

0

> 0

= 0

< 0

> 0

= 0

< 0

Models for Square-Root, Divide, Remainder

B20. Divide: Trailing Zeros
This model will create test-cases such that the significand of the intermediate
results will cover each of the following patterns:

Mask on the intermediate result
significand (excluding the leading "1")

xxx…xxx10

xxx…xx100

xxx…x1000

…

xx1…00000

x10…00000

100…00000

000…00000

The sticky bit of the intermediate result should always be 0.

In case of the remainder operation, we will look at the result of the division in
order to find the interesting test-cases.

Operation: Divide, Remainder, Square-root

B21. Divide : Divide By Zero Exception

This model will test the Divide By Zero exception flag. For the operations
divide and remainder, a test case will be created for each of the possible
combinations from the following table:

Document Name Binary Models • 23

First Operand Second Operand

0

Random non-zero number

Infinity

NaN

0

Random non-zero number

Infinity

NaN

 Enable Bits: ZE, VE
Operation: Divide, Remainder

Models for Convert Float to Integer Operations

B22. CvtFP2Int: Special Input Exponents
This model creates test cases for each of the following exponents (unbiased):
i. Smaller than -3

ii. All the values in the range [-3, integer width+3]

iii. Larger than integer width + 3

For each exponent two cases will be randomly chosen, positive and negative.

B23. CvtFP2Int: Overflow – convert float to integer
This model creates boundary cases for the rounding to integer that might cause
Overflow.
A test case will be created with inputs equal to the maximum integer number in
the destination's format (MaxInt), or close to it. In particular, the following FP
numbers will be used:

i. ±MaxInt

ii. ±MaxInt ± 0.01 (¼)

iii. ±MaxInt ± 0.1 (½)

iv. ±MaxInt ± 0.11 (¾)

v. ±MaxInt ± 1

Rounding Mode: All

Enable Bits: XE, OE (Both On and both Off)

B24. CvtFP2Int: Underflow – convert float to integer
This model creates boundary cases for rounding to integer that might cause
major loss of accuracy.
A test-case will be created for each of the following inputs:

i. ±0

ii. ±0 ± 0.01 (¼)

iii. ±0 ± 0.1 (½)

iv. ±0 ± 0.11 (¾)

v. ±1

vi. ±1 + 0.01 (¼)

vii. ±1 + 0.1 (½)

viii. ±1 + 0.11 (¾)

Rounding Mode: All

Enable Bits: XE, UE (Both On and both Off)

Models for Convert Integer to Float Operations

B25. CvtInt2FP: Special Input Exponents
This model creates a test-case for each of the following inputs:
ix. ±MaxInt

x. ±0

xi. ±1

xii. Random number

B26. CvtInt2FP: Number of Significant Bits
This model creates a test-case for each possible value of the number of
significant bits in the input operand (which is an integer). A test is created with
an example from each of the following ranges: [0], [1], [2,3], [4,7], [8,15], …,
[(MaxInt+1)/2, MaxInt]

Models for Conversion between Different FP Formats

B27. CvtFP2FP: NaNs (for wide to narrow conversion)
This model tests the conversion of NaNs from a wider format to a narrow one.
Each combination from the following table will create one test case (N
represents the number of bits in the significand of the destination's format):

Value of the
operand

The N-1 MSB bits of the
significand (excluding the
first)

The rest of
the bits

QNaN All 0 All 0

Document Name Binary Models • 25

SNaN Not all 0 Not all 0

Models for Rounding Float to Integral Value

B28. RFI: Special Values
This model tests the conversion of a floating point number to an integral value,
represented in floating-point format. A test case will be created for each of the
following inputs:
i. +0

ii. A random number in the range (+0, +1)

iii. +1

iv. Every value in the range (1.00, 10.11] (1 to 2.75 in jumps of 0.25)

v. A random number in the range (+1, +1.11..11*2precision)

vi. +1.11..11*2precision

vii. +Infinity

viii. NaN

ix. -0

x. A random number in the range (-1, -0)

xi. -1

xii. Every value in the range [-10.11, -1.00)

xiii. A random number in the range (-1.11..11*2precision, -1)

xiv. -1.11..11*2precision

xv. –Infinity

B29. RFI: Rounding
This model checks different cases of rounding of the floating point number. A
test will be created for each possible combination of the Sign, LSB, Guard bit
and the Sticky bit (16 cases for each operation).
Rounding Mode: All
Enable Bits: XE

Chapter 6

Decimal Terminology

Decimal Mask

A decimal mask is a character representation used to denote a set of decimal integers. Each
character of the mask is a subset of the decimal digits. We will use several shorthand
notations in order to represent subsets of digits:

{d1, d2, …, dn} represents the subset containing digits d1, d2, …, dn.

{d1-d2} represents the subset containing all digits d, such that d1 = d = d2.

X represents the subset containing all digits 0-9.

P represents the subset of all non-zero digits.

Thus, for example, the decimal mask 4{1-3}6666{8,9}

represents the set {4166668, 4266668, 4366668, 4166669, 4266669, 4366669}.

The decimal mask 00PXXXX represents the set of all decimal numbers that lie between
0010000 to 0099999.

We will continue to use the notation x to signify the set {0, 1} in binary masks.

Decimal Floating Point Format

In this format, we specify a decimal floating-point number as a sign (s), an unbiased exponent
(e), and a significand (c) of precision p, such that:

s c {0, 1}

emin-p+1 = e = emax-p+1

c is a decimal integer, 0 = c < 10 p .

Document Name Decimal Terminology • 27

The number is calculated as (-1)s 10e c .

This format will be used in describing most of the models.

When specifying the coefficient, we will include the leading zeros to ensure clarity in terms
of the number of significant digits. When using this format, we will also refer to the unbiased
exponent simply as exponent.

Adjusted Exponent

The adjusted exponent is calculated as:

e + (p – #leading_zeros) – 1

Where #leading_zeros is the number of leading zeros in the significand.

If the significand digits are all zeros, the adjusted exponent is undefined.

The idea behind this definition is to capture the order of magnitude of a decimal floating-
point value, regardless its representation.

For example, the numbers "7E15" and "321E13" both have an adjusted exponent of 15.

In models for which we are interested in testing the relationship between the exponents of
different operands, we will use the adjusted exponent, rather the unbiased exponent.

Decimal Encoded Format

In this format, we specify a decimal floating-point number using a sign, combination field, a
following exponent field, and a trailing significand field, as described in the IEEE standard.

This format will be used in describing models pertaining to the encoding format itself.

Significant Digits

We will use this term to denote the sequence of all the digits that are not leading or trailing
zeros.

Preferred Exponent

We refer to the definition from the IEEE standard, from section 5.12 Decimal Exponent
Calculation.

Cancellation Value

This definition concerns instructions that involve addition or subtraction: Add, Subtract,
Multiply-Add, and Multiply-Subtract. The cancellation value is the difference between the
adjusted exponent of the intermediate result, and the maximum between the adjusted
exponents of the two inputs to the addition (or subtraction) operation.

Decimal Floating-Point Types

Regular numbers – specified in decimal floating-point format

Name Sign Unbiased
Exponent

Significand Comments

ZeroMaxPrec 0 emin-p+1 00…0 Zero with minimum
exponent

Zero 0 [emin-p+1,
emax]

00…0 All representations
of zero

MinSubNorm 0 emin–p+1 00…01

SubNorm 0 emin-p+1 [00…01,
099…9]

MaxSubNorm 0 emin-p+1 099…9

MinNormMaxPrec 0 emin-p+1 100…0 The representation
of MinNorm with
minimum exponent

MinNormCohort All representations of MinNorm

Norm 0 [emin-p+1,
emax-p+1]

[100…0,
99…9]

Including all
numerically
equivalent
representations

MaxNorm 0 Emax-p+1 99…9

 Table 3: Decimal Floating-Point Types – Regular numbers

Special values – specified in decimal encoded format

Name Sign Combination Following
exponent

Trailing
Significand

Infinity 0 11…0 xx…x xx…x

DefaultNaN 0 11…1 000…0 100…000

QNaN 0 11…1 0xx…x xx…x

SNaN 0 11…1 1xx…x xx…x

Table 4: Decimal Floating-Point Types – Special Values

Document Name Decimal Models • 29

Chapter 7

Decimal Models

In this chapter, we describe the decimal models.

We first present a table listing the models in compact format. For each model, we state the
operations for which it is applicable, and the order of magnitude of the total number of test
cases it represents. In the right-most column, we indicate whether this model is particular for
decimal floating-point, or if it has a binary floating-point equivalent model.

 Model name Relevant operations Number of test
cases

Special for
Decimal FP

D1 Floating-Point
Basic Types

All 1E4 Binary
equivalent

D2 Near Decimal FP
base values –
Numeric Value

All 1E3 Binary
equivalent

D3 Rounding LGSR All 1E3 Binary based

D4 Overflow and
Near Overflow

All 1E2 Binary
equivalent

D5 Underflow and
Near Underflow

All 1E2 Binary
equivalent

D6 Corner Rounding
Intermediate
Tasks

All 1E4 Binary
equivalent

D7 Sticky Bit
Calculation

All 1E4 Binary
equivalent

D8 Vicinity of
Rounding
Boundary

All 1E5 Binary based

D9 Special Rounding
Cases (Norm)

All 1E5 Binary based

D10 Special Rounding
Cases (SubNorm)

All 1E4 Binary based

D11 Trailing and
Leading Zeros -
Input

All 1E6 Decimal
specific

D12 Trailing and
Leading Zeros –
Result

All 1E6 Decimal
specific

D13 Zero with all
Exponents -
Inputs

All 1E4 Decimal
specific

D14 Exact Zero with
all Exponents –
Intermediate
Result

All 1E4 Decimal
specific

D15 Clamping All 1E4 Decimal
specific

D16 Add: Shift Add, subtract 1E2 Binary based

D17 Add: Shift
Combined with
Special Fractions

Add, subtract 1E7 Binary based

D18 Add: Cancellation Add, subtract 10 Binary based

D19 Add: Cancellation
and Subnormal
Result

Add, subtract 1E2 Binary based

D20 Add: Shift and
Cancellation I

Add, subtract 1E3 Binary based

D21 Add: Shift
Combined with
Cancellation II

Add, subtract 1E3 Binary based

D22 Add: Shift
Combined with
Different Number
of Trailing Zeros

Add, subtract 1E6 Decimal
specific

D23 Add: Different
Number of
Trailing Zeros
with Carry

Add, subtract 1E2 Decimal
specific

D24 Mul: Different
Number of
Trailing Zeros
with Carry

Mul 1E3 Decimal
specific

D25 Multiply-Add:
Shift

multiply-add 1E2 Binary based

D26 Multiply-Add:
Shift Combined
with Special
Significands

multiply-add 1E8 Binary based

D27 Multiply-Add:
Cancellation

multiply-add 1E2 Binary based

Document Name Decimal Models • 31

D28 Multiply-Add:
Cancellation and
Subnormal Result

multiply-add 1E3 Binary based

D29 Multiply-Add:
Shift Combined
with Cancellation
I

multiply-add 1E3 Binary based

D30 Multiply-Add:
Shift Combined
with Cancellation
II

multiply-add 1E4 Binary based

D31 Multiply-Add:
Inexact Product
and Exact Result

multiply-add 1E2 Binary
equivalent

D32 Multiply-Add:
Basic Types for
Product

multiply-add 1E2 Binary
equivalent

D33 Multiply-Add:
Overflow for
Product

multiply-add 1E2 Binary
equivalent

D34 Multiply-Add:
Underflow for
Product

multiply-add 1E2 Binary
equivalent

D35 Multiply-Add:
Shift Combined
with Different
Number of
Trailing Zeros

multiply-add 1E5 Decimal
specific

D36 Multiply-Add:
Different Number
of Trailing Zeros
with Carry

multiply-add 10E4 Decimal
specific

D37 Compare: Input
Field Relations

compare,min,max 1E2 Binary based

D38 Compare: Input
Field Relations –
Close Numbers

compare,min,max 1E2 Binary based

D39 Compare: Equal
Value, Different
Representation

compare,min,max 1E5 Decimal
specific

D40 Divide: Special
Results

sqrt, divide, rem 1E2 Binary based

D41 Divide: Different
Number of
Trailing Zeros
with Borrow–
Inputs and Output

Divide 1E4 Decimal
specific

D42 Trailing
Significand

DPD model 1E4 Decimal
specific

Significand specific

D43 Combination
Field Bits

DPD model 1E1 Decimal
specific

Table 5: List of Models

The models are divided into three main categories: operation-general models, operation-
specific models, and models on the encoded format. Within the second category, the relevant
operations are specified for each model. For models in which we consider the rounding mode
or enable bits irrelevant, these are not mentioned, and are chosen randomly for each test-case.
For models in which we would like to test both values of a certain enable bit, or for the
rounding mode, we indicate this at the bottom of the model description.

For each model, we indicate its applicability to binary floating-point, as one of the three
cases:

§ Binary equivalent. There exists an equivalent model for binary floating-point, in
which case, we will point to the equivalent binary model.

§ Binary based. There exists an equivalent model for binary floating-point;
however, there are significant differences between the binary and decimal
models.

§ Special for decimal. This model is suitable only for decimal floating-point.

If the model has a binary equivalent or base, the rounding modes and enable bits will be
assumed to be the same as in the binary model. In addition to the four binary rounding modes,
for decimal, in models that enumerate all rounding modes, we include the mode: nearest, ties
away from zero.

Operation-general Models

D1. Decimal Floating-Point Basic Types – Inputs and Intermediate/Final Result
(binary equivalent)
This model is equivalent to the binary model B1 “Floating-Point Basic Types –
Inputs and Intermediate/Final Result”. The basic types are taken from tables 1
and 2.

D2. Near Decimal FP Base Values – Numeric Distance (binary equivalent)

This model is equivalent to the binary model B2 “Near FP Base Values –
Numeric Distance”, using the decimal basic types that are single values, as
defined in table 1. The deviation is taken to enumerate all values up to 20 ulp.

Document Name Decimal Models • 33

D3. Rounding LGSR (Sign, LSD, Guard, Sticky, Rounded) (binary based)

This model is based on the binary model B4 “Rounding – Sign, LSB, Guard bit,
Sticky Bit”. We will fully describe the model here, because it differs from the
binary model. The model takes all combinations from the table below:

Sign LSD Guard Sticky Rounded

0

1

Even: {0,2,4,6,8}

Odd: {1, 3, 5, 7,
9}

0

1-4

5

6-9

0

1

0

1

Of course, when the Guard digit or Sticky bit are non-zero, then the Rounded bit
must be 1.

D4. Overflow and Near Overflow (binary equivalent)
This model is equivalent to model B5 “Overflow and Near Overflow”. Whereas
in the binary model, we tested values that differed by up to 5 ulp from
MaxNorm, here we will take a difference of up to 20 ulp in order to test
modifications of up to 2 digits, relative to maxNorm.

D5. Underflow and Near Underflow (binary equivalent)
This model is equivalent to model B6 “Underflow and Near Underflow”. Note
that the equivalent value to the binary MinNorm is the decimal
MinNormMaxPrec as defined in table 1. We test values that differ by up to 20
ulp.

D6. Corner Rounding Intermediate Tasks (binary equivalent)
This model is equivalent to model B7 “Corner Rounding Intermediate Tasks”.

D7. Sticky Bit Calculation (binary equivalent)
This model is equivalent to model B8 “Sticky Bit Calculation”. Every bit that is
biased to be 0 in the binary model should be biased to be P in the decimal
model.

D8. Vicinity of Rounding Boundaries (binary based)
This model is based on the model B9 “Vicinity of Rounding Boundaries”. We
specify the exact constraints on the intermediate result as all combinations in the
table below:

D9. Special Rounding Cases – Normal (binary based)

In this model we test interesting input significands. It is based on the binary
model B10 “Special Rounding Cases (Normal)”; however here we are interested
only in a subset of the cases described in the binary model.
We test each combination from the table below:

Fields of the intermediate result
Sign Exponent Significand LSD Guard digit Sticky bit

0
1

0
emin-p+1
emax-p+1

random
value

999…99
{0-8}99…99
X{0-8}99…9

…
XX…X{0-8}9

Even: {0, 2, 4, 6, 8}
Odd: {1, 3, 5, 7, 9}

0
1-4
5

6-9

0
1

D10. Special Rounding Cases – SubNormal (binary based)
This model is based on the binary model B12 “Special Rounding Cases
(SubNormal)”. It is similar to the previous model (D9), however, for the values
of the exponent, we enumerate all possible adjusted subnormal exponents, that
is all adjusted exponents between emin-p+1 to emin-1.

D11. Trailing and Leading Zeros – Inputs (Special for Decimal)
For each of the inputs, iterate over all possible numbers of leading and trailing
zeros, as follows:
One significant digit, along with each possible number of leading zeros:
 P00…0, 0P00…0, 00P00…0, …, 00…0P0, 00…P
Two significant digits, along with each possible number of leading zeros:
 PP00…0, 0PP00…0, …, 00…0PP0,…, 00…0PP
Three significant digits, along with each possible number of leading zeros:
 PXP00…0, 0PXP00…0, …, 00…0PXP0, 00…0PXP
…
p-1 significant digits, along with each possible number of leading zeros:

Fields of the intermediate result
Extra digits LSD Guard digit Sticky bit

000…0001
000…0002

…
000…0099

999…99900
999…99901

…
999…99999

Even: {0, 2, 4, 6, 8}
Odd: {1, 3, 5, 7, 9}

0
1-4
5

6-9

0
1

Document Name Decimal Models • 35

 PXX…XP0, 0PXX…XP
p significant digits, along with each possible number of leading zeros:
 PXX…XP

This model is fairly large; we will consider using a reduced version

D12. Trailing and Leading Zeros – Result Combined with Exponent Relation
(Special for Decimal)
This model tests the correct calculation of the number trailing zeros, and the
exponent of the final result. We enumerate all combinations from the table
below.

Final result Intermediate Final exponent –

preferred exponent

 Guard
digit

Sticky bit Rounded
bit

All values
specified in
model D11

0

P

0

1

0

1

p+1

p

…

1

0

-1

-2

…

-p+1

D13. Zero with all Exponents - Inputs (Special for Decimal)
For input 1 take a significand of 0 and enumerate over all exponents. For each
such exponent, select input 2 with a random significand, once with an exponent
greater than that of input 1, and once with an exponent less than that of input 1.
Then switch inputs 1 and 2.

D14. Exact Zero with all Exponents – Intermediate Result (Special for Decimal)
Generate an exact result of 0. Enumerate over all values for the exponent.

D15. Clamping (Special for Decimal)
Generate all intermediate results of the following form:

Exponent Significand Sticky bit

emax – p

emax – p + 1

emax – p + 2

…

0PXX…X

00PX…X

…

00…0PX

0

emax

emax + 1

00…0P

00…0 Guard = P

Models for Add and Subtract
D16. Add: Shift (binary based)

This model is based on the binary model B13 “Add: Shift”. The only difference
for decimal floating-point is that here we refer to the adjusted exponents.

D17. Add: Shift Combined with Special Significands (binary based)

This model is based on the binary model B14 “Add: Shift Combined with
Special Significands”.
The adjusted exponent difference and sign difference are defined as in model
D16 “Add: Shift”. In addition, the significand of each input enumerates over all
options from model D11 "Trailing and Leading Zeros – Inputs".

D18. Add: Cancellation (binary based)

This model is based on the binary model B15 “Add: Cancellation”.
The cancellation value enumerates over all values in the range: [-p , +1].

D19. Add: Cancellation and Subnormal Result (binary based)

This model is based on the binary model B16 “Add: Cancellation and SubNorm
Result”.
The cancellation value is as defined in model D18 "Add: Cancellation". In
addition, the final result's adjusted exponent enumerates over all values in the
range [emin–p+1, emin-1], which are the adjusted exponents corresponding to
subnormal numbers.

D20. Add: Shift Combined with Cancellation I (binary based)

This model is based on the binary model B17 "Add: Shift Combined with
Cancellation 1".
The adjusted exponent difference between the two inputs enumerates over the
values {-1, 0, 1}. The cancellation value is as defined in model D18 "Add:
Cancellation". In addition, the unbiased exponent of the result enumerates over
the values:

• emin-p+1

• A value in the range (emin-p+1 , emin)

• emin

• A value in the range (emin , emax)

• emax

Document Name Decimal Models • 37

For each case, we test both values of the sticky bit.

D21. Add: Shift Combined with Cancellation II (binary based)
This model is based on the binary model B18 "Add: Shift Combined with
Cancellation 2".
The adjusted exponent difference between the two inputs is as defined in model
D16 "Add: Shift". The cancellation value enumerates over the values {-1, 0, 1}.
In addition, the unbiased exponent of the result enumerates over the values:

• emin-p+1

• A value in the range (emin-p+1 , emin)

• emin

• A value in the range (emin , emax)

• emax

For each case, we test both values of the sticky bit.

D22. Add: Shift Combined with Different Number of Trailing Zeros (Special for
decimal)
This model is a refinement of model D16 “Add: Shift”. The relationship
between the input adjusted exponents is defined by model D16. In addition, for
each of the inputs we enumerate the number of trailing zeros. To summarize, we
get the following table:

Shift between adjusted exponents Input 1 significand Input 2
significand

random value < – (p+1)

– (p+1)

–p

…

0

…

+p

+p+1

random value > p+1

PXX …XP

PX … XP0

PX…XP00

…

PP00 … 00

P00 … 000

PXX …XP

PX … XP0

PX…XP00

…

PP00 … 00

P00 … 000

D23. Add: Different Number of Trailing Zeros with Carry (Special for decimal)

The significand of the result takes on all the forms described in model D12
“Trailing and Leading Zeros – Result Combined with Exponent Relation”. For
each such case we generate one test-case with carry and one without carry. By
carry, we refer to the state in which the adjusted exponent of the intermediate
result is larger by one than the larger between the adjusted exponents of the
addends.

Models for Multiply
D24. Different Number of Trailing Zeros with Carry (special for decimal)

The significand of the result takes on all the forms described in model D12
“Trailing and Leading Zeros – Result Combined with Exponent Relation”. For
each such case we generate one test-case with carry and one without carry. By
carry, we refer to the state in which the adjusted exponent of the intermediate
result is larger by one than the sum of the adjusted exponents of the
multiplicands.

Models for Fused Multiply Add

D25. Multiply-Add: Shift (binary based)
This model is based on the binary model B19 “Multiply-Add: Shift”.
The difference in adjusted exponents between addend and the product (the
result of the multiplication phase) enumerates over the following values:

• a value smaller than –(2*p+1)

• All values in the range [– (2*p+1) , p+1]

• a value greater than p+1

For each difference, a task is created in which the signs of the addend and
product are equal, and another in which the signs are different.

D26. Multiply-Add: Shift Combined with Special Significands (binary based)

This model is based on the binary model B20 “Multiply-Add: Shift Combined
with Special Significands”.
The adjusted exponent difference and sign difference are defined as in model
D25 “Multiply-Add: Shift”. In addition, the significands of the product and
addend enumerate all options from model D11 "Trailing and Leading Zeros –
Inputs". For this purpose, the precision of the product is taken as 2*p.

D27. Multiply-Add: Cancellation (binary based)

This model is based on the binary model B21 “Multiply-Add: Cancellation”.
The cancellation value enumerates over all values in the range: [-(2*p-1) , +1].

Note that for the Multiply-add instruction, 'cancellation value' is defined as the
difference between the adjusted exponent of the intermediate result, and the
maximum between the adjusted exponents of the product and addend.

D28. Multiply-Add: Cancellation and Subnormal Result (binary based)

This model is based on the binary model B22 “Multiply-Add: Cancellation and
SubNorm Result”.

Document Name Decimal Models • 39

The cancellation value is as defined in model D27 "Multiply-Add:
Cancellation". In addition, The final result's adjusted exponent enumerates over
all values in the range [emin–p+1, emin-1], which are the adjusted exponents
corresponding to subnormal numbers.

D29. Multiply-Add: Shift Combined with Cancellation I (binary based)
This model is based on the binary model B23 "Multiply-Add: Shift Combined
with Cancellation 1".
The adjusted exponent difference between the two inputs enumerates over the
values {-1, 0, 1}. The cancellation value is as defined in model D27 "Multiply-
Add: Cancellation". In addition, the unbiased exponent of the result enumerates
over the values:

• emin-p+1

• A value in the range (emin-p+1 , emin)

• emin

• A value in the range (emin , emax)

• emax

For each case, we test both values of the sticky bit.

D30. Multiply-Add: Shift Combined with Cancellation II (binary based)
This model is based on the binary model B24 "Multiply-Add: Shift Combined
with Cancellation 2".
The adjusted exponent difference between the two inputs is as defined in model
D25 "Multiply-Add: Shift". The cancellation value enumerates over the values
{-1, 0, 1}. In addition, the unbiased exponent of the result enumerates over the
values:

• emin-p+1

• A value in the range (emin-p+1 , emin)

• emin

• A value in the range (emin , emax)

• emax

For each case, we test both values of the sticky bit.

Multiply-Add: Interesting Events

These models check cases where the product causes an event while the addition cancels that
event.

D31. Multiply-Add: Inexact Product and Exact Result (binary equivalent)

This model is equivalent to the binary model B25 “Multiply-Add: Inexact

Product and Exact Result”. It uses model D7 "Sticky Bit Calculation" as its
main building block.

D32. Multiply-Add: Basic Types for Product (binary equivalent)

This model is equivalent to the binary model B26 “Multiply-Add: Basic Types
for Product”. The basic types are taken from tables 1 and 2.

D33. Multiply-Add: Overflow for Product (binary equivalent)

This model is equivalent to the binary model B27 “Multiply-Add: Overflow for
Product”. It uses model D4 "Overflow and Near Overflow" as its main building
block.

D34. Multiply-Add: Underflow for Product (binary equivalent)
This model is equivalent to the binary model B28 “Multiply-Add: Underflow
for Product”. It uses model D5 "Underflow and Near Underflow" as its main
building block.

D35. Multiply-Add: Shift Combined with Different Number of Trailing Zeros
(Special for decimal)
 This model is a combination between model D25 “Add: Shift” and model D11
“Trailing and Leading Zeros – Inputs”. The significands of the inputs take on all
the values from model D11, while the relationship between input adjusted
exponents is defined by model D25.

D36. Multiply-Add: Different Number of Trailing Zeros with Carry (Special for
decimal)
The significand of the result takes on all the forms described in model D13
“Trailing and Leading Zeros – Result Combined with Exponent Relation”. For
each such case we generate one test-case with carry and one without carry.

Models for Compare, Min, Max
D37. Compare: Input Field Relations – Normal Numbers (binary based)

This model is based on model B29 "Compare: Different Input Fields Relations".
A test-case will be created for each combination in the following table:

"
D
i
f
f
e
r
e
n
c

First input Second input Difference
between
exponents

Difference
between
significands

Difference in
magnitudes

+ Normal

- Normal

+
SubNormal

- SubNormal

0

+Infinity

-Infinity

NaN

+ Normal

- Normal

+ SubNormal

- SubNormal

0

+Infinity

-Infinity

NaN

> 0

= 0

< 0

> 0

= 0

< 0

> 0

= 0

< 0

Document Name Decimal Models • 41

e in magnitude" refers to the relation between the absolute values of the two
inputs. It is only relevant when both inputs are normal (or both subnormal),
when the exponent difference is "<" and the significand difference is ">" or vice
versa.

D38. Compare: Input Field Relations – Close Numbers (binary based)

This model is based on tasks from model B29 "Compare: Different Input Fields
Relations", which are not covered by model D39 above.
A test-case will be created for each combination in the following table:

First input Second
input

Difference
between
adjusted
exponents

Difference in
magnitudes

number of
identical digits
(adjusted)

+ Norm

- Norm

+ SubNorm

- SubNorm

+ Norm

- Norm

+ SubNorm

- SubNorm

= 0

> 0

< 0

0

1

...

p

"Number of identical digits (adjusted)" is the length of the common prefix of the
two significands, when the most significant nonzero digits are aligned. It is a
measure of how close the input magnitudes are to each other. For example, the
numbers 1234e0 and 12e2 have two identical digits.

D39. Equal Value, Different Representation (special for decimal)

This model aims to test the comparison between numbers of the same cohort.
For each of the types +Norm, -Norm, +SubNorm, -SubNorm, do the following:
For each possible number of leading zeros, select a random number whose
significand has this number of zeros. For each representation of the selected
number, compare it with all other representations in this cohort.
The inputs should have their positions switched in about half of the tasks.
Tasks For the Normal and Subnormal basic types, the chosen value should be
one that has several different representations.

Models for Square-Root, Divide, Remainder
D40. Divide: Special Results (binary based)

This model is based on the model B29 "Divide: Special Results". The
intermediate result enumerates over all combinations from the following table:

Borrow Mask on the intermediate result significand

Borrow does / does not occur PXXX…XXX

0PXX…XXX

00PX…XXX

000PX...XXX

…

00000...0PXX

00000...00PX

00000...000P

00000...0000

The sticky bit of the intermediate result should always be 0.
In case of the remainder operation, we look at the result of the division in order
to find the interesting test cases.
We say that borrow has occurred when the adjusted exponent of the
intermediate result is strictly less than:
For Division/Remainder: input1.adjusted_exponent - input2.adjusted_exponent
For Square Root: input.adjusted_exponent / 2
When borrow does not occur, the result's adjusted exponent is equal to the
respective value above.

D41. Divide: Different Number of Trailing Zeros – Inputs and Output (Special

for Decimal)
The inputs and the final result of Divide take on all the following values:
The significands take on all the forms XX…X, XX…X0, XX…X00, …,
X0…0, 00…0.
By adding the constraint on the result, we test also those cases in which trailing
zeros expected to appear in the result disappear, due to division by a power of 2
or of 5.

DPD Models
D42. Encoding of Significand (special for decimal)

In this model, we wish to test all possible significand encodings.
For input1, divide the trailing significand field of the encoded format into
declets, which are blocks of 10 consecutive bits that are decoded into a decimal
triplet. For each declet enumerate over all its bit combinations, while selecting
random values for the remaining bits. In addition, generate a different test case
for every value of the combination field that is not infinity (11110) or NaN
(11111). While generating test cases for input1, leave the other input(s) random.
Then do the same for the other input(s).

D43. Combination Field Bits (special for decimal)
Enumerate all values for the combination field of the encoded format, while
leaving the remaining bits random.

Document Name • 43

