jQuery Fundamentals

Rebecca Murphey [http://www.rebeccamurphey.com]

http://www.rebeccamurphey.com
http://www.rebeccamurphey.com

JQuery Fundamentals
Rebecca Murphey [http://www.rebeccamurphey.com]
Copyright © 2010

Licensed by RebeccaM urphey under the Creative Commons Attribution-Share Alike 3.0 United States|icense [http://creativecommons.org/licenses/
by-sa/3.0/ug/]. You are free to copy, distribute, transmit, and remix this work, provided you attribute the work to Rebecca Murphey as the original
author and reference the GitHub repository for the work [http://github.com/rmurphey/jgfundamentals]. If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same, similar or acompatible license. Any of the above conditions can be waived if you
get permission from the copyright holder. For any reuse or distribution, you must make clear to others the license terms of this work. The best way
to do thisiswith alink to the license [http://creativecommons.org/licenses/by-sa/3.0/us/].

http://www.rebeccamurphey.com
http://www.rebeccamurphey.com
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://github.com/rmurphey/jqfundamentals
http://github.com/rmurphey/jqfundamentals
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

Table of Contents

L WWEICOME <. ettt enaas 1
GELtiNG the COUEiiieii et eaans 1
SOFIWAIE ...ttt e et e et e e et et ettt e e e e e e r e eene 1
Adding JavaSCript t0 YOUN PaOEieiiiiiieeeii et 1
JAVASCIIPE DEDUGGING . ertueeeetiiee ettt ettt et e et e et e e et e e et eeeaba s 2
(S (o = PP UPPPTTPPPPPI 2
Conventions used iN thiSBOOKo.uiiiiiii e 2
REFEIENCE MELEITAI ..ot 3

N = V7= S] oL O TSP UUP PP PPPPPTTPPPN 4
2. JAVASCIIPE BASICS ...t ettt een 5

OVEIVIBIV .ttt ettt e et e et e e et et e e et et e e e e nba s 5
SYNEBX BASICS ...ttt 5
LO07C 1= 0] £SO PP T PPTTP PP UPPT 5
BaSIC OPEIGLOIS ... eeeeii ettt ettt ettt 5
Operations on NUMDErS & SIHNQGSccvvvvniiiiiiieeiii e 6
LOGIiCal OPEIEIOIS ...cevtueeeitte ettt e ettt e ettt e ettt e e et e e ettt e e e eab e e e eena e eeen 6
COMPAriSON OPEIELOISeeeeiieeeiti ettt e ettt et e et e e e e e ena s 7
CoNAItIONAl COUEceeieiieee ettt 7
Truthy and Falsy ThiNgSooieiiiiiei e e 8
Conditional Variable Assignment with The Ternary Operatorccceveevevennnen. 9
SWILCh SEEIEMENES ...t e e 9
[0 o L PP PP 10
THE TOF 100D ettt 10
The WHIl€ 100Dveiieie e 11
The dO-Whil@ TO0P ...ceeeiieeeee e 11
Breaking and CONLINUINGcoovutuieiiiie et 12
RESEIVED WOIGS ...ttt 12
E N = 7 PP PP 14
L0 o] ol £ TP P PP PUPRT 15
FUNCLIONS ...ttt et e ettt e et e e e e et e e e e ene e eeeees 16
USING FUNCLIONS ...ttt ettt e e 16
Self-Executing AnONYMOUS FUNCHIONScccuuuiiiiiiiieiiiiie e 17
FUNCLIONS 8S ATQUIMENTSiiiiii ettt ettt e e e enens 17
LIS (o T Y o= TP PP TPPPPTTRTPPPPIN 17
SCOPIE .ttt ettt 18
ClOSUIES ...ttt ettt e e e e e e 20

[1. JQUENY: BASIC COMNCEPES ..evvtietieii ettt e ettt ettt ettt ettt e e et e et e e et e a b e e e e ne e e enanns 21

3 JQUENY BESICS ...ttt ettt ettt et e a e e een 22
B(AOCUMENE).FEAAY() - eeeeerrrnin e e et ettt ettt e ettt e e e e e et e e e e e 22
SElECtiNg ETEMENESooeiiei e 22

Does My Selection Contain Any EIemMents?coouviiiiiiiiniiiiiieeeii e, 23
SAVING SEIECLIONSvvuiieiiti ettt e een 24
Refining & Filtering SEIECiONSuuiiiiiieiee e 24
FOrm-Related SEIECIONSvuiieiii e 24
WOrking With SEIECHIONSccuviieiiii e 25
CREINING .. eeeee et 25
GEIEIS & SBLENS ...t 26
CSS, Styling, & DIiMENSIONSccuuiiiiieiiie et et e e eeenns 26
Using CSS Classes fOr StYHNGcoevvuneieiiieieei e 27
DIMENSIONS ...ttt ettt ettt e e b e e eaaans 27
ATITTDULES ..ot r e e e e 27

jQuery Fundamentals

L= Y= £ 1o PN 28
Manipulating EIEMENESccouiiiiieii e e 29
Getting and Setting Information about Elementsccoovviveviiiciiin e 29
Moving, Copying, and Removing Elementscccoovviiiiii i 29
Creating New ElemMeNntSc.ouiiiiiiii e e e e 31
Manipulating AttBULEScovvii 32

| o = PPN 32
S =[x o P 32

L Y= £ 1o P 33

= g TT 10 1] o 33

1@ 0 1= oY o T 34
B VS Bl) toiii ittt e —————————————————————— 34
LT 2\ =1 o Lo RN 34
L0101 o (1 10 T Y 0= TP 35
Data MENOUS e e e 36
Feature & Browser DELECHIONuuieiiiiiieeiii et 37
Avoiding Conflicts with Other Librariesccooooiiiiiiiiiin e 37
L < | £ PP 38
L@ N T PP 38
Connecting Events t0 EIEMENEScovviiiiiii e e e 38
Connecting Events to RUN ONlY ONCEcvvnieiiiciii e ee e eies 38
DiSCONNECHING EVENESovviiiiii e e e e e e aaees 39
NamMESPACING EVENESiiiiiiiii e e e e 39
Inside the Event Handling FUNCLIONcoouiiiiiiii e 39
Triggering Event Handlersco.ui i 40
Increasing Performance with Event Delegationccooveviieiiiiiiin e, 40
Unbinding Delegated EVENtSooviiiiiiiii e 41
EVENE HEIPEIS .o 41
e 0 TR 0 1YY 41

e 0 TR o Yo o | = 42
S o = PPN 42
Create an INPUE HINt ..o e 42

Add Tabbed Navigationcooiuiiiiiiiii e e 42

B, BT OIS et e e 44
L@ T PP 44
BUITE-IN EFFECES vttt 44
Changing the Duration of Built-in EffectScoocoiiiiiiiiii e 44
Doing Something when an Effect iSDONEcocviiiiiiiiiiciie e 45
Custom Effectswith $. fn. ani MBL €ovvviiiiiieiiiicc e 45
=S o N 46
ManNaging EffeClScou i 46
S o = PPN 46
Reveal Hidden TEXEiiiiiiieeii e 46
Create DropdowWn IMENUScouuuiiii e e e e e e e e eanas 47
Create @ SHIESNOWvvuiiii e 47

0 - P 48
L@ N T PP 48
KBY CONCEPLS ..evieiittii et e e e e e e e e e 48
o Y o P 48

(D= = R)Y < T P 48

A IS TOr ASYNCAIONOUSciviiiii e e 49
Same-Origin Policy and JSONPccoviiiiiiiiie e e 49

F Y= 0o B 1= 10 o P 49
jQuery's Ajax-Related MEthodsoeiviiiiiiii e 49

jQuery Fundamentals

B At 50
Convenience MEthOOScoouuiiiiiii e 51

e 0 TR 1o - Yo 53

AJAX NG FOIMS ...ueiiii e e e e et e e e e e e e et e et e e aaeeeanns 53
WoOrking With JSONP ... e e e e 53

AJBX EVENES ..ottt 54

| o = PPN 54

Load EXternal CONLENEooveeeiieieiiie et eeaa e e eaees 54

Load Content USiNG JSONc.uiiiiiiiiiiiiiii e e e e e e e e e aens 55

ST 1001 PN 56
Finding & Evaluating PIUQINSoiiiiiiii e e e e 56
RTAY RN g o T = 10 o 4 56
S o = SRR 59
Make a Table SOrtableuuieiiii e 59

Write a Table-Striping PlUGiNcovuiiiicii e 59
TR0 7 g Tor o oo o= 60
This Section iS @aWOrK iN Progressc.uu.ciei e e e e e e e e e e e eeen 61
9. Performance BESE PraCliCeSuuuiiiiii et e ettt e e e e e eaa e ees 62
Cache length during IO0PSovvuiiii e 62
Append new content outSide Of @l100Pcuuviiiiiiiiiic e 62
(== O 10110 S] = P 62
Beware anonymousS fUNCLIONSccuuiiiiieiii e e e e e 63

(O 0111001 = L= (o PN 64
ID-BaSEU SEIECIOIS . .oevviieiiiii ettt 64

S0 ot ot Y/ 64

AvOid the Universal SEIECIONiviiiiiiieiiiie e 64

USE EVENt DEEGALION . .ovviiiii it e e e e e e e a s 65
Detach Elements to Work With Them ..., 65

Use Stylesheets for Changing CSS on Many Elements..........cocccovvviieiiinieiiin e, 65
Use$.data Instead of $. fN. dat @ ..ooooveeeiiviiiiiiii e 65
Don't Act 0N ABSENt ElEMENESoiiiiiiieeii e 66
Variable DEfINITION ..o et aaans 66

1000] 9o 1 170 07 K-SRI 66
Don't Treat jQUEry as aBlack BOXccuuiiiiiiiiiiieiii e e e e 67

Chapter 1. Welcome

jQuery isfast becoming amust-have skill for front-end developers. The purpose of this book isto provide
an overview of the jQuery JavaScript library; when you're done with the book, you should be able to
complete basic tasks using jQuery, and have asolid basis from which to continue your learning. This book
was designed as material to be used in a classroom setting, but you may find it useful for individual study.
Thisisahands-on class. We will spend a bit of time covering a concept, and then you'll have the chance
to work on an exercise related to the concept. Some of the exercises may seem trivial; others may be
downright daunting. In either case, there is no grade; the goal is simply to get you comfortable working

your way through problems you’ll commonly be called upon to solve using jQuery. Example solutions to
all of the exercises are included in the sample code.

Getting the Code

The code we'll be using in this book is hosted in a repository on Github [http://github.com/rmurphey/
jgfundamentals]. You can download a .zip or .tar file of the code, then uncompress it to use it on your
server. If you're git-inclined, you' re welcome to clone or fork the repository.

Software

You'll want to have the following tools to make the most of the class:
* The Firefox browser

» The Firebug extension for Firefox

* A plain text editor

» For the Ajax portions: A local server (such as MAMP or WAMP), or an FTP or SSH client to access
aremote server.

Adding JavaScript to Your Page

JavaScript can be included inline or by including an external file via a script tag. The order in which you
include JavaScript isimportant: dependencies must be included before the script that depends on them.

For the sake of page performance, JavaScript should be included as close to the end of your HTML asis
practical. Multiple JavaScript files should be combined for production use.

Example 1.1. An example of inline Javascript
<script>

consol e.log(' hello");
</script>

Example 1.2. An example of including external JavaScript

<script src="/js/jquery.js'></script>

http://github.com/rmurphey/jqfundamentals
http://github.com/rmurphey/jqfundamentals
http://github.com/rmurphey/jqfundamentals

Welcome

JavaScript Debugging

A debugging tool is essentia for JavaScript development. Firefox provides a debugger via the Firebug
extension; Safari and Chrome provide built-in consoles.

Each console offers:

 single- and multi-line editors for experimenting with JavaScript

» aninspector for looking at the generated source of your page

» aNetwork or Resources view, to examine network regquests

When you are writing JavaScript code, you can use the following methods to send messagesto the console:
» consol e. | og() for sending genera log messages

» consol e. di r () for logging a browseable object

» consol e. war n() for logging warnings

» consol e. error () forlogging error messages

Other console methods are aso available, though they may differ from one browser to another. The
consoles also provide the ability to set break points and watch expressions in your code for debugging
purposes.

Exercises

Most chaptersin the book conclude with one or more exercises. For some exercises, you' |l be ableto work
directly in Firebug; for others, you will need to include other scripts after the jQuery script tag as directed
inthe individual exercises.

In some cases, you will need to consult the jQuery documentation in order to complete an exercise, aswe
won’'t have covered al of the relevant information in the book. This is by design; the jQuery library is
large, and learning to find answersin the documentation is an important part of the process.

Here are afew suggestions for tackling these problems:
* First, make sure you thoroughly understand the problem you're being asked to solve.

» Next, figure out which elements you'll need to accessin order to solve the problem, and determine how
you'll get those elements. Use Firebug to verify that you're getting the elements you're after.

 Finaly, figure out what you need to do with the elements to solve the problem. It can be helpful to write
comments explaining what you're going to do before you try to write the code to do it.

Do not be afraid to make mistakes! Do not try to make your code perfect on the first try! Making mistakes
and experimenting with solutions is part of learning the library, and you'll be a better developer for it.
Examples of solutions for these exercises are located in the/ sol ut i ons directory in the sample code.

Conventions used in this book

Methods that can be called on jQuery objects will be referred to as $. f n. net hodNane. Methods
that exist in the jQuery namespace but that cannot be called on jQuery objects will be referred to as

Welcome

$. net hodNan®. If this doesn't mean much to you, don't worry — it should become clearer as you
progress through the book.

Example 1.3. Example of an example
/1 code exanples will appear like this

Remarks will appear like this.

Note

Notes about atopic will appear like this.

Reference Material

There are any number of articles and blog posts out there that address some aspect of jQuery. Some are
phenomenal; some are downright wrong. When you read an article about jQuery, be sureit's talking about
the same version as you're using, and resist the urge to just copy and paste — take the time to understand
the codein the article.

Here are some excellent resources to use during your jQuery learning. The most important of al is the
jQuery sourceitself: it contains, in code form, complete documentation of thelibrary. It is not ablack box
— your understanding of the library will grow exponentially if you spend some time visiting it now and
again — and | highly recommend bookmarking it in your browser and referring to it often.

e ThejQuery source [http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js]

* jQuery documentation [http://api.jquery.com]

jQuery forum [http://forum.jquery.com/]

Delicious bookmarks [http://delicious.com/rdmey/jquery-class|

#query IRC channel on Freenode [http://docs.jquery.com/Discussion#Chat_.2F |IRC_Channel]

http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js
http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js
http://api.jquery.com
http://api.jquery.com
http://forum.jquery.com/
http://forum.jquery.com/
http://delicious.com/rdmey/jquery-class
http://delicious.com/rdmey/jquery-class
http://docs.jquery.com/Discussion#Chat_.2F_IRC_Channel
http://docs.jquery.com/Discussion#Chat_.2F_IRC_Channel

Part |I. JavaScript 101

Chapter 2. JavaScript Basics

Overview

jQuery is built on top of JavaScript, a rich and expressive language in its own right. This section covers
the basic concepts of JavaScript, aswell as some frequent pitfalls for people who have not used JavaScript
before. While it will be of particular value to people with no programming experience, even people who
have used other programming languages may benefit from learning about some of the peculiarities of
JavaScript.

If you'reinterested in learning more about the JavaScript language, | highly recommend JavaScript: The
Good Parts by Douglas Crockford.

Syntax Basics

Understanding statements, variable naming, whitespace, and other basic JavaScript syntax.
Example 2.1. A simple variable declaration

var foo = "hello world';

Example 2.2. Whitespace has no meaning outside of quotation marks
var foo = "hello world';

Example 2.3. Parentheses indicate precedence

2 * 3 + 5 /1 returns 11; multiplication happens first
2 % (

3 +5); [/ returns 16; addition happens first

Example 2.4. Tabs enhance readability, but have no special meaning

var foo = function() {
consol e.log(' hello');

1
Operators

Basic Operators

Basic operators allow you to manipulate values.

Example 2.5. Concatenation

var foo = "hello';
var bar = "world';
console.log(foo + ' ' + bar); // '"hello world

JavaScript Basics

Example 2.6. M ultiplication and division

2 * 3;
21/ 3

Example 2.7. Incrementing and decrementing

var i = 1,
var j = ++i; [/ pre-increnent: | equals 2; i equals 2
var k = i++; // post-increnment: k equals 2; i equals 3

Operations on Numbers & Strings

In JavaScript, numbers and strings will occasionally behave in ways you might not expect.

Example 2.8. Addition vs. concatenation

var foo
var bar

1,
o

consol e.log(foo + bar); // 12. uh oh

Example 2.9. Forcing a string to act as a number

var foo
var bar

1,
Lo

/1l coerce the string to a nunber
consol e.l og(foo + Nunber(bar));

The Number constructor, when called asafunction (like above) will havethe effect of casting its argument
into a number. Y ou could also use the unary plus operator, which does the same thing:

Example 2.10. Forcing a string to act asa number (using the unary-plus operator)

consol e.l og(foo + +bar);

Logical Operators
Logical operators allow you to evaluate a series of operands using AND and OR operations.

Example 2.11. Logical AND and OR operators

var foo = 1;
var bar = 0;
var baz = 2;
foo || bar; /1 returns 1, which is true
bar || foo; /1 returns 1, which is true
foo && bar; // returns 0, which is fal se
foo && baz; /] returns 2, which is true
baz && foo; // returns 1, which is true

JavaScript Basics

Though it may not be clear from the example, the| | operator returns the value of the first truthy operand,
or, in cases where neither operand is truthy, it'll return the last of both operands. The && operator returns
the value of the first false operand, or the value of the last operand if both operands are truthy.

Be sure to consult the section called “ Truthy and Falsy Things’ for more details on which values evaluate
tot r ue and which evaluatetof al se.

Compar

Note

Y ou'll sometimes see devel opers use these logical operators for flow control instead of using i f
statements. For example:

/1 do sonething with foo if foo is truthy
foo && doSonet hi ng(foo0);

/1 set bar to baz if baz is truthy;
/] otherwise, set it to the return
/1 value of createBar()

var bar = baz || createBar();

Thisstyleisquite elegant and pleasantly terse; that said, it can bereally hard to read, especially for

beginners. | bring it up here so you'll recognizeit in code you read, but | don't recommend using
it until you're extremely comfortable with what it means and how you can expect it to behave.

ison Operators

Comparison operators allow you to test whether values are equivalent or whether values are identical.

Example 2.12. Comparison operators

var foo = 1;

var bar = O;

var baz = '1';

var bim= 2;

foo == bar; /1l returns false

foo !'= bar; // returns true

foo == baz; /'l returns true; careful

f oo === baz; /1l returns false

foo ! == baz; // returns true

foo === parselnt(baz); /1 returns true

foo > bim /1l returns false

bi m > baz; // returns true

foo <= baz; // returns true
Conditional Code

Sometimes you only want to run a block of code under certain conditions. Flow control — viai f and
el se blocks — lets you run code only under certain conditions.

JavaScript Basics

Example 2.13. Flow control

var foo = true;
var bar = fal se;
if (bar) {
// this code will never run
consol e.log(' hello!");
}
if (bar) {
// this code won't run
} else {
if (foo) {
// this code will run
} else {
// this code would run if foo and bar were both fal se
}
}
Note

While curly braces aren't strictly required around single-line i f statements, using them
consistently, even when they aren't strictly required, makes for vastly more readable code.

Be mindful not to define functions with the same name multiple times within separatei f /el se blocks,
as doing so may not have the expected result.

Truthy and Falsy Things

In order to use flow control successfully, it's important to understand which kinds of values are "truthy"
and which kinds of values are "falsy." Sometimes, values that seem like they should evaluate one way
actually evaluate another.

Example 2.14. Valuesthat evaluatetot r ue

"0
"any string';

[1: [/ an enpty array

{}; // an enpty object

1, /1 any non-zero numnber

Example 2.15. Valuesthat evaluatetof al se

0;

"5 /] an enpty string

NaN;, // JavaScript's "not-a-nunmber" variable

nul | ;

undefined; [// be careful -- undefined can be redefined!

JavaScript Basics

Conditional Variable Assignment with The Ternary
Operator

Sometimes you want to set avariable to avalue depending on some condition. You could useani f /el se
statement, but in many cases the ternary operator is more convenient. [Definition: The ternary operator
tests a condition; if the condition istrue, it returns a certain value, otherwise it returns a different value.]

Example 2.16. Theternary operator

// set footo 1 if bar is true;
// otherw se, set foo to O
var foo = bar ? 1 : O;

While the ternary operator can be used without assigning the return value to a variable, thisis generally
discouraged.

Switch Statements

Rather than using a series of if/else if/else blocks, sometimes it can be useful to use a switch statement
instead. [Definition: Switch statements look at the value of a variable or expression, and run different
blocks of code depending on the value.]

Example 2.17. A switch statement
switch (foo) {

case 'bar':
alert('the value was bar -- yay!');
br eak;

case 'baz':
alert('boo baz :(');
br eak;

defaul t:
alert('everything else is just ok');
br eak;

}

Switch statements have somewhat fallen out of favor in JavaScript, because often the same behavior can
be accomplished by creating an obect that has more potential for reuse, testing, etc. For example:

var stuffToDo = {
"bar' : function() {
alert('the value was bar -- yay!');

}

"baz' : function() {
alert('boo baz :(');

}

"default' : function() {

JavaScript Basics

alert('everything else is just ok');
b

if (stuffToDo[foo0]) {
st uf f ToDo[f 00] () ;
} else {
stuf f ToDo[' default']();

}
WEe'l look at objectsin greater depth later in this chapter.

Loops

Loops let you run ablock of code a certain number of times.

Example 2.18. L oops

/1 logs "try O, "try 1', ..., "try 4
for (var i=0; i<5; i++) {
console.log('try ' +1i);

}

Notethat in Example 2.18, “ Loops” even though we use the keyword var before the variable namei |, this
does not "scope" the variablei to the loop block. We'll discuss scope in depth later in this chapter.

The for loop

A f or loop is made up of four statements and has the following structure:

for ([initialisation]; [conditional]; [iteration])
[1 oopBody]

The initialisation statement is executed only once, before the loop starts. It gives you an oppurtunity to
prepare or declare any variables.

The conditional statement is executed before each iteration, and its return value decides whether or not
theloop is to continue. If the conditional statement evaluatesto afalsey value then the loop stops.

The iteration statement is executed at the end of each iteration and gives you an oppurtunity to change
the state of important variables. Typically, this will involve incrementing or decrementing a counter and
thus bringing the loop ever closer to its end.

The loopBody statement iswhat runs on every iteration. It can contain anything you want. Y ou'll typically
have multiple statements that need to be executed and so will wrap theminablock ({. . . }).

Here'satypical f or loop:

Example 2.19. A typical f or loop

for (var i =0, limt =100; i < limt; i++) {
/1 This block will be executed 100 tines
console.log('Currently at ' + i);
/!l Note: the last log will be "Currently at 99"

10

JavaScript Basics

The while loop

A whi | e loopissimilartoani f statement, axcept that its body will keep executing until the condition
evaluatesto false.

while ([conditional]) [l oopBody]

Here'satypical whi | e loop:

Example 2.20. A typical whi | e loop

var i = 0;
while (i < 100) {

/1 This block will be executed 100 tines
console.log('Currently at ' + i);

i++; // increnent i

}

You'll notice that we're having to increment the counter within the loop's body. It is possible to combine
the conditional and incrementer, like so:

Example 2.21. A whi | e loop with a combined conditional and incrementer
var i = -1;
while (++i < 100) {

/1 This block will be executed 100 tines
console.log('Currently at ' + i);

}

Notice that we're starting at - 1 and using the prefix incrementer (++i).

The do-while loop

Thisisamost exactly the same as the whi | e loop, except for the fact that the loop's body is executed at
least once before the condition is tested.

do [l oopBody] while ([conditional])

Heresado- whi | e loop:
Example 2.22. A do- whi | e loop
do {

/1 Even though the condition evaluates to fal se
/1 this loop's body will still execute once.

alert('"H there!');

} while (fal se);

11

JavaScript Basics

These types of loops are quite rare since only few situations require a loop that blindly executes at |east
once. Regardless, it's good to be aware of it.

Breaking and continuing

Usually, a loop's termination will result from the conditional statement not evaluating to true, but it is
possible to stop aloop inits tracks from within the loop's body with the br eak statement.

Example 2.23. Stopping a loop
for (var i =0; i < 10; i++) {

if (something) {
br eak;

}
}

You may also want to continue the loop without executing more of the loop's body. This is done using
thecont i nue statement.

Example 2.24. Skipping to the next iteration of a loop
for (var i = 0; i < 10; i++) {

if (sonething) {
conti nue;

}

/1 The follow ng statement will only be executed
/1 if the conditional 'sonething' has not been net
consol e.log('l have been reached');

}
Reserved Words

JavaScript has a number of “reserved words,” or words that have special meaning in the language. You
should avoid using these words in your code except when using them with their intended meaning.

* break

» case

e catch

e continue
o default
» delete

* do

* el se

12

JavaScript Basics

finally
for
function
if

in

i nst anceof
new
return
switch
this

t hr ow
try

t ypeof
var

voi d
whil e
with
abstract
bool ean
byt e
char

cl ass
const
debugger
doubl e
enum
export
ext ends

final

13

JavaScript Basics

» float

» goto

e inpl enents
e inmport

e int
 interface
* long

* native

» package

* private

e protected
* public

* short

e static

* super

* synchroni zed
* throws

* transient

e volatile

Arrays

Arraysare zero-indexed lists of values. They are ahandy way to store aset of related items of the sametype
(such as strings), though in redlity, an array can include multiple types of items, including other arrays.

Example 2.25. A smplearray
var nyArray = ['hello', "world 1];
Example 2.26. Accessing array items by index

var myArray = ['hello', "world, 'foo', '"bar'];
consol e. |l og(nyArray[3]); /1 1ogs 'bar’

Example 2.27. Testing the size of an array

var myArray = ['hello, "world];
consol e. l og(nyArray. | ength); /1 logs 2

14

JavaScript Basics

Example 2.28. Changing the value of an array item

var myArray = ['hello, "world];
nyArray[1] = 'changed';

Whileit's possible to change the value of an array item as shown in Example 2.28, “ Changing the value
of an array item” , it's generally not advised.

Example 2.29. Adding elementsto an array

var myArray = ['hello', "world 1];
nyArray. push(' new);

Example 2.30. Working with arrays

var nyArray = ['h', e, "', '"I', "0];
var nyString = nmyArray.join('"'); /1 'hello
var nmySplit = nmyString.split('"'); // ['"h", "e, "I', "I', "0]

Objects

Objects contain one or more key-value pairs. The key portion can be any string. The value portion can be
any type of value: a number, a string, an array, afunction, or even another object.

[Definition: When one of these values is a function, it's called a method of the object.] Otherwise, they
are called properties.

Asit turns out, nearly everything in JavaScript is an object — arrays, functions, numbers, even strings —
and they all have properties and methods.

Example 2.31. Creating an " object literal"

var nyQoject = {
sayHello : function() {
consol e.log(' hello');

}l
myNanme : ' Rebecca'
b

nmyQbj ect . sayHel | o() ; /1 logs '"hello
consol e. | og(nyQbj ect . myNane) ; /1 1l ogs 'Rebecca'

Note

When creating object literals, you should note that the key portion of each key-value pair can be
written as any valid JavaScript identifier, a string (wrapped in quotes) or a number:

var nmyQbject = {
validldentifier: 123,
'sone string' : 456,
99999: 789

15

JavaScript Basics

Object literals can be extremely useful for code organization; for more information, read Using Objectsto
OrganizeY our Code [http://blog.rebeccamurphey.com/2009/10/15/usi ng-objects-to-organi ze-your-code/]
by Rebecca Murphey.

Functions

Functions contain blocks of code that need to be executed repeatedly. Functions can take zero or more
arguments, and can optionally return avalue.

Functions can be created in avariety of ways:

Example 2.32. Function Declaration

function foo() { /* do sonething */ }

Example 2.33. Named Function Expression
var foo = function() { /* do sonmething */ }

| prefer the named function expression method of setting a function's name, for some rather in-depth and
technical reasons [http://yura.thinkweb2.com/named-function-expressions/]. You are likely to see both
methods used in others JavaScript code.

Using Functions

Example 2.34. A ssimple function

var greet = function(person, greeting) {

var text = greeting + ', + person;
consol e. |l og(text);

b

greet (' Rebecca', 'Hello");

Example 2.35. A function that returnsavalue

var greet = function(person, greeting) {
var text = greeting + ', ' + person;
return text;

b

consol e. |l og(greet (' Rebecca', ' hello'));

Example 2.36. A function that returnsanother function
var greet = function(person, greeting) {

var text = greeting + ', ' + person;
return function() { console.log(text); };

var greeting = greet(' Rebecca', "Hello');
greeting();

16

http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://yura.thinkweb2.com/named-function-expressions/
http://yura.thinkweb2.com/named-function-expressions/
http://yura.thinkweb2.com/named-function-expressions/

JavaScript Basics

Self-Executing Anonymous Functions

A common pattern in JavaScript is the self-executing anonymous function. This pattern creates afunction
expression and then immediately executes the function. This pattern is extremely useful for cases where
you want to avoid polluting the global namespace with your code -- no variables declared inside of the
function are visible outside of it.

Example 2.37. A self-executing anonymous function

(function(){
var foo = "Hello world';

HO;

consol e. | og(foo0); /1 undefi ned!

Functions as Arguments

In JavaScript, functions are "first-class citizens' -- they can be assigned to variables or passed to other
functions as arguments. Passing functions as argumentsis an extremely common idiom in jQuery.

Example 2.38. Passing an anonymous function as an argument

var nyFn = function(fn) {
var result = fn();
consol e.log(result);

}s

nyFn(function() { return "hello world'; }); /1 logs 'hello world'

Example 2.39. Passing a named function as an argument

var nyFn = function(fn) {
var result = fn();
consol e.log(result);

}s

var myQ herFn = function() {
return "hello world';

}s

nyFn(nyQ her Fn) ; /1 logs 'hello world'

Testing Type

JavaScript offersaway to test the"type" of avariable. However, theresult can be confusing -- for example,
the type of an Array is "object".

It'scommon practiceto usethet ypeof operator when trying to determining the type of a specific value.

17

JavaScript Basics

Example 2.40. Testing the type of various variables

var myFunction = function() {
consol e.log(' hello');
b
var myQbject = {
foo : 'bar’
b
var myArray = ['a', 'b', 'c¢'];
var nyString = 'hello';
var myNunber = 3;
typeof myFuncti on; /1 returns 'function'
typeof myQbj ect; /1 returns 'object’
typeof myArray; /1 returns 'object' -- careful!
typeof myString; /1 returns "string';
typeof myNunber; /1 returns 'nunber’
typeof null; /1 returns 'object' -- careful!

if (myArray. push & nyArray.slice & myArray.join) {
/1 probably an array
/1 (this is called "duck typing")

}

if (Cbject.prototype.toString.call (nmyArray)
/1 Definitely an array!
/1 This is widely considered as the nost rebust way
/!l to determine if a specific value is an Array.

"[object Array]') {

}

jQuery offers utility methods to help you determine the type of an arbitrary value. These will be covered
later.

Scope

"Scope" refersto the variablesthat are available to a piece of code at agiventime. A lack of understanding
of scope can lead to frustrating debugging experiences.

When avariableis declared inside of afunction using thevar keyword, it isonly availableto codeinside
of that function -- code outside of that function cannot access the variable. On the other hand, functions
defined inside that function will have access to to the declared variable.

Furthermore, variables that are declared inside a function without the var keyword are not local to the
function -- JavaScript will traverse the scope chain all the way up to the window scope to find where the
variable was previously defined. If the variable wasn't previously defined, it will be defined in the global
scope, which can have extremely unexpected consequences,

18

JavaScript Basics

Example 2.41. Functions have accessto variables defined in the same scope
var foo = '"hello';

var sayHello = function() {
consol e. | og(fo0);

b
sayHel | o(); /1 logs '"hello
consol e. | og(foo0); /1 also logs 'hello

Example 2.42. Code outsidethe scopein which avariable was defined does not have
accessto thevariable

var sayHello = function() {
var foo = 'hello';
consol e. | og(foo0);

b
sayHel | o(); /1 logs '"hello
consol e. | og(foo0); /1 doesn't |og anything

Example 2.43. Variables with the same name can exist in different scopes with
different values

var foo = "worl d'
var sayHello = function() {

var foo = "hello';
consol e. | og(fo0);

b
sayHel | o(); /1 logs '"hello
consol e. | og(foo0); /1 logs "world

Example 2.44. Functions can " see" changesin variable values after the function is
defined

var myFunction = function() {
var foo = 'hello';

var nyFn = function() {
consol e. | og(fo0);

s
foo = "world';

return nyFn;
b

var f = nyFunction();
f(); [// logs "world" -- uh oh

19

JavaScript Basics

Example 2.45. Scope insanity

/1 a self-executing anonynous function
(function() {
var baz = 1;
var bim= function() { alert(baz); };
bar = function() { alert(baz); };

HO;

consol e.l og(baz); // baz is not defined outside of the function

bar(); [// bar is defined outside of the anonynous function
/1 because it wasn't declared with var; furthernore,
/1 because it was defined in the sane scope as baz,
/1 it has access to baz even though ot her code
/1 outside of the function does not

bim(); // bimis not defined outside of the anonynous function,
/1l so this will result in an error

Closures

Closures are an extension of the concept of scope — functions have accessto variablesthat were available
in the scope where the function was created. If that’s confusing, don’t worry: closures are generally best
understood by example.

In Example 2.44, “Functions can "see" changes in variable values after the function is defined” we saw
how functions have access to changing variable values. The same sort of behavior exists with functions
defined within loops -- the function "sees' the change in the variable's value even after the function is
defined, resulting in all clicks alerting 4.

Example 2.46. How to lock in thevalueof i ?

/* this won't behave as we want it to; */
/* every click will alert 5 */
for (var i=0; i<5; i++) {
$(' <p>click ne</p>').appendTo(' body').click(function() {
alert(i);
1)
}

Example 2.47. Locking in thevalueof i with a closure

/* fix: “close” the value of i inside createFunction, so it won't change */
var createFunction = function(i) {
return function() { alert(i); };

b

for (var i=0; i<5; i++) {
$(' p').appendTo(' body").click(createFunction(i));
}

20

Part Il. JQuery: Basic Concepts

Chapter 3. JQuery Basics
$(document).ready()

Y ou cannot safely manipulateapage until the document is*“ready.” jQuery detectsthis state of readinessfor
you; codeincluded inside $(docunent) . r eady() will only run oncethe pageis ready for JavaScript
code to execute.

Example 3.1. A $(document).ready() block

$(docurnent) . ready(function() {
consol e.l og(' ready!"');

1)

Thereisashorthand for $(docunent) . r eady() that you will sometimes see; however, | recommend
against using it if you are writing code that people who aren't experienced with jQuery may see.

Example 3.2. Shorthand for $(document).ready()

$(function() {
consol e. | og(' ready!"');

1),

You can aso pass a named function to $(docunent) . r eady() instead of passing an anonymous
function.

Example 3.3. Passing a named function instead of an anonymous function
function readyFn() {

/1 code to run when the docunent is ready

}

$(docunent) . ready(readyFn);

Selecting Elements

The most basic concept of jQuery is to “select some elements and do something with them.” jQuery
supports most CSS3 selectors, as well as some non-standard selectors. For a complete selector reference,
visit http://api.jquery.com/category/selectors/.

Following are afew examples of common sel ection techniques.

Example 3.4. Selecting elementsby ID

$('#nmyld'); // note IDs must be uni que per page

Example 3.5. Selecting elements by class name

$('div.myd ass'); // performance inproves if you specify elenment type

22

http://api.jquery.com/category/selectors/

jQuery Basics

Example 3.6. Selecting elements by attribute
$('input[name=first_nane]'); // beware, this can be very slow
Example 3.7. Selecting elements by compound CSS selector

$(' #contents ul .people Ii');

Example 3.8. Pseudo-selectors

$('a.external :first');

$('tr:odd);

$(' #myForm :input'); /1 select all input-like elenents in a form
$('div:visible');

$('divigt(2)'); /1 all except the first three divs
$('div:animated'); /1 all currently animted divs

Choosing Selectors

Choosing good selectors is one way to improve the performance of your JavaScript. A little
specificity — for example, including an element type such asdi v when selecting el ements by class
name — can go a long way. Generally, any time you can give jQuery a hint about where it might
expect to find what you're looking for, you should. On the other hand, too much specificity can be
a bad thing. A selector such as#nyTabl e thead tr th.special isoverkill if a selector
such as#nyTabl e th. speci al will get you what you want.

jQuery offers many attribute-based selectors, allowing you to make selections based on the content
of arbitrary attributes using simplified regular expressions.

/1 find all <a>s whose rel attribute
/1l ends with "thinger"
$("a[rel $="thinger']");

While these can be useful in apinch, they can aso be extremely slow — | once wrote an attribute-
based sel ector that locked up my pagefor multiple seconds. Wherever possible, make your selections
using IDs, class names, and tag names.

Want to know more? Paul Irish hasagreat presentation about improving performance in JavaScript
[http://paulirish.com/perf], with several dlides focused specifically on selector performance.

Does My Selection Contain Any Elements?

Once you've made a selection, you'll often want to know whether you have anything to work with. You
may beinclined to try something like:

if ($('div.foo')) { ... }

Thiswon't work. When you make aselection using $() , an object is always returned, and objects always
evaluateto t r ue. Even if your selection doesn't contain any elements, the code inside thei f statement
will still run.

Instead, you need to test the selection'slength property, which tells you how many elementswere selected.
If the answer is O, the length property will evaluate to false when used as a boolean value.

23

http://paulirish.com/perf
http://paulirish.com/perf

jQuery Basics

Example 3.9. Testing whether a selection contains elements

if ($('div.foo').length) { ... }

Saving Selections

Every time you make a selection, alot of code runs, and jQuery doesn't do caching of selections for you.
If you've made a selection that you might need to make again, you should save the selection in avariable
rather than making the selection repeatedly.

Example 3.10. Storing selectionsin a variable
var $divs = $('div');
Note

In Example 3.10, “ Storing selections in a variable”, the variable name begins with adollar sign.
Unlike in other languages, there's nothing special about the dollar sign in JavaScript -- it's just
another character. We use it here to indicate that the variable contains a jQuery object. This
practice -- a sort of Hungarian notation [http://en.wikipedia.org/wiki/Hungarian_notation] -- is
merely convention, and is not mandatory.

Once you've stored your selection, you can call jQuery methods on the variable you stored it in just like
you would have called them on the original selection.

Note
A selection only fetches the elements that are on the page when you make the selection. If you

add elements to the page later, you'll have to repeat the selection or otherwise add them to the
selection stored in the variable. Stored selections don't magically update when the DOM changes.

Refining & Filtering Selections

Sometimes you have a selection that contains more than what you're after; in this case, you may want to
refine your selection. jQuery offers several methods for zeroing in on exactly what you're after.

Example 3.11. Refining selections

$('div.foo').has('p'); /1 div.foo elements that contain <p>'s
$('h1l").not('.bar'); /1 hl elements that don't have a class of bar
$('ul Ti").filter('.current'); // unordered list itens with class of current
$('ul i) . first(); /1 just the first unordered list item

$('ul 1i").eq(b5); /] the sixth

Form-Related Selectors

jQuery offers several pseudo-selectors that help you find elements in your forms; these are especially
helpful because it can be difficult to distinguish between form elements based on their state or type using
standard CSS selectors.

:button Selects<but t on> elements and elementswitht ype="but t on"

:checkbox Selectsinputswitht ype="checkbox"

24

http://en.wikipedia.org/wiki/Hungarian_notation
http://en.wikipedia.org/wiki/Hungarian_notation

jQuery Basics

:checked Selects checked inputs
.disabled Selects disabled form elements

‘enabled Selects enabled form elements

file Selectsinputswitht ype="fil e"

:image Selectsinputswitht ype="1i nage"

:input Selects<i nput >, <t ext ar ea>, and <sel ect > elements
‘password Selectsinputs with t ype="passwor d"

:radio Selectsinputswith t ype="r adi 0"

‘reset Selectsinputswitht ype="r eset "

:selected Selects options that are selected

:submit Selectsinputswitht ype="subm t "

‘text Selectsinputswitht ype="t ext "

Example 3.12. Using form-related pseduo-selectors

$("#myForm :input'); // get all elements that accept input

Working with Selections

Once you have a selection, you can call methods on the selection. Methods generally comein two different
flavors. getters and setters. Getters return a property of the first selected element; setters set a property
on all selected elements.

Chaining

If you call amethod on aselection and that method returns ajQuery object, you can continueto call jQuery
methods on the object without pausing for a semicolon.

Example 3.13. Chaining
$('#content').find('h3").eq(2).htm (' new text for the third h3!");

If you are writing a chain that includes several steps, you (and the person who comes after you) may find
your code more readable if you break the chain over several lines.

Example 3.14. Formatting chained code

$(' #content')
.find('h3")
.eq(2)
.html ("new text for the third h3!");

If you change your selection in the midst of a chain, jQuery providesthe $. f n. end method to get you
back to your original selection.

25

jQuery Basics

Example 3.15. Restoring your original selection using $. f n. end
$(' #content')
.find('h3")
. eq(2)
.htm (" new text for the third h3!")
.end() // restores the selection to all h3's in #content

.eq(0)
.htm (" new text for the first h3!");

Note
Chaining is extraordinarily powerful, and it's a feature that many libraries have adapted since it
was made popular by jQuery. However, it must be used with care. Extensive chaining can make

code extremely difficult to modify or debug. There is no hard-and-fast rule to how long a chain
should be -- just know that it is easy to get carried away.

Getters & Setters

jQuery “overloads’ its methods, so the method used to set a value generally has the same name as the
method used to get a value. When amethod is used to set avalue, it is called a setter. When a method is
used to get (or read) avalue, it is called a getter. Setters affect all elements in a selection; getters get the
requested value only for the first element in the selection.

Example 3.16. The $. f n. ht M method used as a setter

$("h1").htnl (" hello world');

Example 3.17. The html method used as a getter

$("h1").htm ();

Setters return a jQuery object, allowing you to continue to call jQuery methods on your selection; getters

return whatever they were asked to get, meaning you cannot continue to call jQuery methods on the value
returned by the getter.

CSS, Styling, & Dimensions
jQuery includes a handy way to get and set CSS properties of elements.

Note

CSSpropertiesthat normally include ahyphen need to be camel cased in JavaScript. For example,
the CSS property f ont - si ze isexpressed asf ont Si ze in JavaScript.

Example 3.18. Getting CSS properties
$('hl').css('fontSize'); // returns a string such as "19px"

Example 3.19. Setting CSS properties

$('hl').css('fontSize', '100px'); // setting an individual property
$('hl').css({ 'fontSize' : '100px', 'color' : 'red" }); // setting multiple proper

26

jQuery Basics

Note the style of the argument we use on the second line -- it is an object that contains multiple properties.
Thisis a common way to pass multiple arguments to a function, and many jQuery setter methods accept
objectsto set mulitple values at once.

Using CSS Classes for Styling

As a getter, the $. f n. css method is valuable; however, it should generally be avoided as a setter in
production-ready code, because you don't want presentational information in your JavaScript. Instead,
write CSSrules for classes that describe the various visual states, and then simply change the class on the
element you want to affect.

Example 3.20. Working with classes
var $hl = $(' h1');
$h1l. addd ass(' big');

$hil. renmoved ass(' big');
$hl.toggl ed ass(' big');

if ($hl.hasCass('big')) { ... }
Classes can a so be useful for storing state information about an el ement, such asindicating that an element
is selected.

Dimensions

jQuery offersavariety of methods for obtaining and modifying dimension and position information about
an element.

The code in Example 3.21, “Basic dimensions methods’ is just a very brief overview of the dimensions

functionality in jQuery; for complete details about jQuery dimension methods, visit http://api.jquery.com/
category/dimensions/.

Example 3.21. Basic dimensions methods

$('h1").w dth(' 50px'); /1 sets the width of all Hl elenents

$('hl").width(); /1 gets the width of the first Hl
$('h1l').height('50px'); [/ sets the height of all Hl el ements
$('hl"). height(); /1 gets the height of the first Hl
$('h1').position(); /1 returns an object containing position

/] information for the first HlL relative to
/1 its "offset (positioned) parent”

Attributes

An element's attributes can contain useful information for your application, so it's important to be able
to get and set them.

The$. f n. at t r method acts as both agetter and asetter. Aswiththe$. f n. css method, $. fn. attr
as a setter can accept either akey and avalue, or an object containing one or more key/value pairs.

27

http://api.jquery.com/category/dimensions/
http://api.jquery.com/category/dimensions/

jQuery Basics

Example 3.22. Setting attributes

$('a').attr('href', "all MyHref sAreTheSameNow. ht ml ') ;
$(ra).attr({

"title' : 'all titles are the sanme too!',

"href' : 'sonethi ngNew. ht m"’

1)

Thistime, we broke the object up into multiple lines. Remember, whitespace doesn't matter in JavaScript,
so you should fedl freeto useit liberally to make your code more legible! You can use a minification tool
later to strip out unnecessary whitespace for production.

Example 3.23. Getting attributes

$('a').attr('href'); // returns the href for the first a elenment in the docunent

Traversing

Once you have ajQuery selection, you can find other elements using your selection as a starting point.

For compl ete documentation of jQuery traversal methods, visit http://api.jquery.com/category/traversing/.

Note

Be cautious with traversing long distances in your documents -- complex traversal makes it
imperative that your document's structure remain the same, something that's difficult to guarantee
even if you're the one creating the whole application from server to client. One- or two-step
traversal isfine, but you generally want to avoid traversals that take you from one container to
another.

Example 3.24. Moving around the DOM using traver sal methods

$('h1l').next('p');
$('div:visible').parent();
$('input[name=first_nane]').closest('form);
$(" #nyList').children();

$('li.selected).siblings();

You can also iterate over aselection using $. f n. each. This method iterates over all of the elementsin
a selection, and runs a function for each one. The function receives the index of the current element and
the DOM element itself as arguments. Inside the function, the DOM element is also available ast hi s
by default.

Example 3.25. Iterating over a selection

$(' #nyList li').each(function(idx, el) {
consol e. | og(
"Element ' + idx +
"has the following htm: ' +
$(el).htm ()

1)

28

http://api.jquery.com/category/traversing/

jQuery Basics

Manipulating Elements

Once you've made a selection, the fun begins. Y ou can change, move, remove, and clone elements. You
can also create new elements viaa simple syntax.

For complete documentation of jQuery manipulation methods, visit http://api.jquery.com/category/
manipulation/.

Getting and Setting Information about Elements

There are any number of ways you can change an existing element. Among the most common tasks you'll
perform is changing the inner HTML or attribute of an element. jQuery offers simple, cross-browser
methods for these sorts of manipulations. You can also get information about elements using many of
the same methods in their getter incarnations. We'll see examples of these throughout this section, but
specificaly, here are afew methods you can use to get and set information about elements.

Note

Changing things about elementsistrivial, but remember that the change will affect all elements
inthe selection, soif you just want to change one element, be sure to specify that in your selection
before calling a setter method.

Note

When methods act as getters, they generally only work on the first element in the selection, and
they do not return a jQuery object, so you can't chain additional methods to them. One notable
exceptionis$. f n. t ext ; asmentioned below, it getsthe text for all elementsin the selection.

$.fn.html Get or set the html contents.

$.fn.text Get or set the text contents; HTML will be stripped.

$.fn.attr Get or set the value of the provided attribute.

$.fn.width Get or set the width in pixels of the first element in the selection as an integer.
$.fn.height Get or set the height in pixels of the first element in the selection as an integer.
$.fn.position Get an object with position information for the first element in the selection, relative

toitsfirst positioned ancestor. Thisis a getter only.

$.fn.va Get or set the value of form elements.

Example 3.26. Changing the HTML of an element

$(' #nmyDiv p:first')
.htm (" New first paragraph!');

Moving, Copying, and Removing Elements
There are avariety of ways to move elements around the DOM; generally, there are two approaches:
» Place the selected element(s) relative to another element

 Place an element relative to the selected element(s)

29

http://api.jquery.com/category/manipulation/
http://api.jquery.com/category/manipulation/

jQuery Basics

For example, jQuery provides$. fn. i nsert After and$.fn.after. The$.fn.insertAfter
method places the selected element(s) after the element that you provide as an argument; the
$. fn. af t er method places the element provided as an argument after the selected element. Several
other methodsfollow thispattern: $. f n. i nsert Bef oreand$. f n. bef ore;$. f n. appendTo and
$. fn. append;and $. f n. prependTo and $. f n. pr epend.

The method that makes the most sense for you will depend on what elements you already have selected,
and whether you will need to store a reference to the elements you're adding to the page. If you need to
store areference, you will always want to take the first approach -- placing the selected elements relative
to another element -- as it returns the element(s) you're placing. In this case, $. f n. i nsert After,
$.fn.insertBefore,$.fn. appendTo,and$. f n. prependTo will be your tools of choice.

Example 3.27. Moving elements using different approaches

/1 make the first list itemthe last list item
var $li = $('#nyList li:first').appendTo(' #nyList');

/1 anot her approach to the sane problem
$(' #nyList').append($("' #nmyList li:first'));

/1 note that there's no way to access the
/1 list itemthat we noved, as this returns
/1 the list itself

Cloning Elements

When you use methods such as $.fn.appendTo, you are moving the element; sometimes you want to make
acopy of the element instead. In this case, you'll need to use $.fn.clonefirst.

Example 3.28. M aking a copy of an element

/1 copy the first list itemto the end of the list
$(' #nyList li:first').clone().appendTo("' #myList');

Note

If you need to copy related data and events, be sure to pass t rue as an argument to
$. fn. cl one.

Removing Elements

There are two ways to remove elements from the page: $. f n. renove and $. f n. det ach. You'll use
$. f n. remobve when you want to permanently remove the selection from the page; while the method
doesreturn the removed element(s), those elements will not have their associated data and events attached
to them if you return them to the page.

If you need thedataand eventsto persist, you'll wanttouse$. f n. det achinstead. Like$. f n. r enove,
it returns the selection, but it also maintains the data and events associated with the selection, so you can
restore the selection to the page at alater time.

Note

The $. f n. det ach method is extremely valuable if you are doing heavy manipulation to an
element. In that case, it's beneficial to $. f n. det ach the element from the page, work on it

30

jQuery Basics

in your code, and then restore it to the page when you're done. This saves you from expensive
"DOM touches" while maintaining the element's data and events.

If you want to leave the element on the page but simply want to remove its contents, you can use
$. f n. enpt y to dispose of the element'sinner HTML.

Creating New Elements

jQuery offers atrivial and elegant way to create new elements using the same $() method you use to
make selections.

Example 3.29. Creating new elements

$(' <p>This is a new paragraph</p>');
$('<li class="new'>new list itenx/li>");

Example 3.30. Creating a new element with an attribute object

$('<al >, {
html : 'This is a new |ink',
‘class' : 'new,

href : "foo.htm"
1),

Note that in the attributes object we included as the second argument, the property name class is quoted,
while the property names text and href are not. Property names generally do not need to be quoted unless
they are reserved words (as classisin this case).

When you create a new element, it is not immediately added to the page. There are several ways to add
an element to the page once it's been created.

Example 3.31. Getting a new element on to the page

var $myNewEl ement = $(' <p>New el ement </ p>');
$nyNewEl enent . appendTo(' #content');

$nyNewEl enent.insertAfter('ul:last'); // this will renpve the p from #content!
$('ul').last().after($myNewEl enent.clone()); // clone the p so now we have 2

Strictly speaking, you don't haveto storethe created element in a variable -- you could just call the method
to add the element to the page directly after the $(). However, most of the time you will want a reference
to the element you added, so you don't need to select it later.

Y ou can even create an element as you're adding it to the page, but note that in this case you don't get a
reference to the newly created element.

Example 3.32. Creating and adding an element to the page at the same time
$('ul').append('list iten</1i>");

Note

The syntax for adding new elements to the page is so easy, it's tempting to forget that there's a

huge performance cost for adding to the DOM repeatedly. If you are adding many elements to
the same container, you'll want to concatenate all the html into a single string, and then append

31

jQuery Basics

that string to the container instead of appending the elements one at atime. Y ou can use an array
to gather all the pieces together, then j oi n them into a single string for appending.

var nmyltems = [], $nmyList = $(' #nyList');

for (var i=0; i<100; i++) {
nyltenms. push('item' + i + '");

}

$myLi st. append(nyltens.join('"));

Manipulating Attributes

jQuery's attribute manipulation capabilities are extensive. Basic changes are simple, but the $.fn.attr
method also allows for more complex manipulations.

Example 3.33. Manipulating a single attribute

$("#nmyDiv a:first').attr(' href', 'newDestination.htm");
Example 3.34. Manipulating multiple attributes

$('#nmyDiv a:first').attr({
href : 'newDestination.htm"',
rel : 'super-special'

1)
Example 3.35. Using a function to determine an attribute's new value

$('#nmyDiv a:first').attr({
rel : 'super-special',
href : function() {
return '/new' + $(this).attr(' href');
}
1)

$('#nyDiv a:first').attr('href', function() {
return '/new' + $(this).attr(' href');
1)

Exercises

Selecting

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/j s/
sandbox. j s or work in Firebug to accomplish the following:

1. Select al of the div elements that have a class of "module”.

2. Come up with three selectors that you could use to get the third item in the #myList unordered list.
Which isthe best to use? Why?

3. Select the labdl for the search input using an attribute selector.

32

jQuery Basics

4. Figure out how many elements on the page are hidden (hint; .length).
5. Figure out how many image elements on the page have an alt attribute.

6. Select all of the odd table rows in the table body.

Traversing

Open the file / exerci ses/i ndex. htm in your browser. Use the file / exerci ses/j s/
sandbox. j s or work in Firebug to accomplish the following:

1. Select dl of the image elements on the page; |og each image's alt attribute.
2. Select the search input text box, then traverse up to the form and add a class to the form.

3. Select the list item inside #myL.ist that has a class of "current” and remove that class from it; add a
class of "current” to the next list item.

4. Select the select element inside #specials; traverse your way to the submit button.

5. Select the first list item in the #dlideshow element; add the class "current” to it, and then add a class
of "disabled" to its sibling elements.

Manipulating

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/j s/
sandbox. j s or work in Firebug to accomplish the following:

1. Add five new list itemsto the end of the unordered list #myL.ist. Hint:
for (var i =0; i<5; i++) { ... }
2. Remove the odd list items
3. Add another h2 and another paragraph to the last div.module
4. Add another option to the select element; give the option the value "Wednesday"

5. Add anew div.moduleto the page after the last one; put acopy of one of the existing imagesinside of it.

33

Chapter 4. JQuery Core
$vs $()

Until now, we' ve been dealing entirely with methods that are called on ajQuery object. For example:
$(' h1l').renove();

Most jQuery methods are called on jQuery objects as shown above; these methods are said to be part of
the $. f n namespace, or the “jQuery prototype,” and are best thought of as jQuery object methods.

However, there are several methods that do not act on a selection; these methods are said to be part of the
jQuery namespace, and are best thought of as core jQuery methods.

This distinction can be incredibly confusing to new jQuery users. Here' s what you need to remember:

» Methods called on jQuery selections arein the $. f n namespace, and automatically receive and return
the selection asthis.

» Methodsin the $ namespace are generally utility-type methods, and do not work with selections; they
are not automatically passed any arguments, and their return value will vary.

There are afew cases where object methods and core methods have the same names, such as$. each and

$. f n. each. Inthese cases, be extremely careful when reading the documentation that you are exploring
the correct method.

Utility Methods

jQuery offers severa utility methods in the $ namespace. These methods are helpful for accomplishing
routine programming tasks. Below are examples of afew of the utility methods; for a complete reference
on jQuery utility methods, visit http://api.jquery.com/category/utilities/.

$.trim Removes leading and trailing whitespace.

$.trin(’ | ots of extra whitespace ");
/1 returns 'lots of extra whitespace'

$.each Iterates over arrays and objects.

$.each(]['foo', '"bar', '"baz'], function(idx, val) {
console.log('element ' + idx +'is ' + val);

1)

$.each({ foo : "bar', baz : "bim }, function(k, v) {
console.log(k + "' @ ' + v);

1)
Note

Thereisasoamethod $. f n. each, whichisused for iterating over a selection
of elements.

http://api.jquery.com/category/utilities/

jQuery Core

$.inArray Returns avalue'sindex in an array, or -1 if the valueis not in the array.

var myArray = [1, 2, 3, 51];

if ($.inArray(4, myArray) == -1) {
console.log('found it!");
}
$.extend Changes the properties of the first object using the properties of subsegquent objects.
var firstoject = { foo : '"bar', a: 'b" };
var secondbject = { foo : 'baz' };

var newlbj ect = $.extend(firstObject, secondObject);
consol e.log(firstObject.foo); // 'baz
consol e. | og(newbj ect . f 00) ; /1 *'baz’

If you don't want to change any of the objects you pass to $. ext end, pass an empty
object as the first argument.

var firstoject = { foo : '"bar', a: 'b" };
var secondbject = { foo : 'baz' };

var newthj ect = $.extend({}, firstCbject, secondbject);
consol e.log(firstObject.foo); // 'bar’
consol e. | og(newbj ect . f 00) ; /1 *'baz’

$.proxy Returns afunction that will aways run in the provided scope — that is, sets the meaning
of t hi s inside the passed function to the second argument.

var myFunction = function() { console.log(this); };
var myQbject = { foo : 'bar' };

myFunction(); // |ogs w ndow object

var nyProxyFunction = $. proxy(myFunction, myCbject);
myProxyFunction(); // logs nyQhject object

If you have an object with methods, you can pass the object and the name of a method to
return a function that will always run in the scope of the object.

var myQbject = {
myFn @ function() {
consol e.l og(this);
}
H

$('#foo').click(myObject.nyFn); // |1ogs DOM el enent #f oo
$(' #fo0').click($. proxy(myCbject, 'nyFn')); // logs nyQhject

Checking types

Asmentioned in the "JavaScript basics' section, jQuery offersafew basic utility methods for determining
the type of a specific value.

35

jQuery Core

Example 4.1. Checking thetype of an arbitrary value
var nmyvValue = [1, 2, 3];

/1 Using JavaScript's typeof operator to test for prinmative types

typeof nyValue == 'string'; // false
typeof nyValue == 'nunber'; // false
typeof nyValue == 'undefined'; // false
typeof nyVal ue == 'boolean'; // false

/1 Using strict equality operator to check for null
nyVal ue === null; // false

/1 Using jQuery's nethods to check for non-prinmative types
j Query.isFunction(nyvalue); // false

j Query.isPlai nCbj ect(myValue); // false

j Query.isArray(nyValue); // true

Data Methods

Asyour work with jQuery progresses, you'll find that there's often data about an element that you want to
store with the element. In plain JavaScript, you might do this by adding a property to the DOM element,
but you'd have to deal with memory leaks in some browsers. jQuery offers a straightforward way to store
data related to an el ement, and it manages the memory issues for you.

Example 4.2. Storing and retrieving data related to an element

$(' #nyDiv').data(' keyNane', { foo : 'bar' });
$(' #nyDiv').data(' keyNanme'); // { foo : 'bar' }

You can store any kind of data on an element, and it's hard to overstate the importance of this when you
get into complex application development. For the purposes of this class, well mostly use $. f n. dat a
to store references to other elements.

For example, we may want to establish a relationship between alist item and a div that's inside of it. We
could establish this relationship every singletime we interact with thelist item, but a better solution would
be to establish the relationship once, and then store apointer tothediv onthelistitemusing $. f n. dat a:

Example 4.3. Storing a relationship between elementsusing $. f n. dat a

$(' #nyList 1i').each(function() {
var $li = $(this), $div = $li.find(' div.content');
$li.data(' contentDiv', $div);

1)

/1 later, we don't have to find the div again;
/1 we can just read it fromthe list items data
var $firstLi = $(' #nyList li:first');
$firstLi.data(' contentDiv').htnl (' new content');

In addition to passing $. f n. dat a a single key-value pair to store data, you can aso pass an object
containing one or more pairs.

36

jQuery Core

Feature & Browser Detection

Although jQuery eliminates most JavaScript browser quirks, there are still occasionswhen your code needs
to know about the browser environment.

jQuery offersthe $. support object, as well as the deprecated $. br owser object, for this purpose.
For complete documentation on these objects, visit http://api.jquery.com/jQuery.support/ and http://
api.jquery.com/jQuery.browser/.

The$. support object isdedicated to determining what features a browser supports; it is recommended
as amore “future-proof” method of customizing your JavaScript for different browser environments.

The $. br owser object was deprecated in favor of the $. support object, but it will not be removed
from jQuery anytime soon. It provides direct detection of the browser brand and version.

Avoiding Conflicts with Other Libraries

If you are using another JavaScript library that usesthe $ variable, you can run into conflicts with jQuery.
In order to avoid these conflicts, you need to put jQuery in no-conflict mode immediately after it isloaded
onto the page and before you attempt to use jQuery in your page.

When you put jQuery into no-conflict mode, you have the option of assigning avariable nameto replace $.

Example 4.4. Putting jQuery into no-conflict mode

<script src="prototype.js"></script>
<script src="jquery.js"></script>
<script>var $ = jQuery.noConflict();</script>

Y ou can continue to use the standard $ by wrapping your code in a self-executing anonymous function;
thisis a standard pattern for plugin authoring, where the author cannot know whether another library will
have taken over the $.

Example 4.5. Using the $ inside a self-executing anonymous function

<script src="prototype.js"></script>
<script src="jquery.js"></script>
<scri pt>

j Query. noConflict();

(function($) {
/1 your code here, using the $

}) (j Query);

</script>

37

http://api.jquery.com/jQuery.support/
http://api.jquery.com/jQuery.browser/
http://api.jquery.com/jQuery.browser/

Chapter 5. Events

Overview

jQuery provides simple methods for attaching event handlers to selections. When an event occurs, the
provided function is executed. Inside the function, this refers to the element that was clicked.

For details on jQuery events, visit http://api.jquery.com/category/events.

The event handling function can receive an event object. This object can be used to determine the nature
of the event, and to prevent the event’ s default behavior.

For details on the event object, visit http://api.jquery.com/category/events/event-object/.

Connecting Events to Elements

jQuery offers convenience methods for most common events, and these are the methods you will see used
most often. These methods -- including $. fn. cl i ck, $. fn. focus, $. fn. bl ur, $. f n. change,
etc. -- are shorthand for jQuery's $. f n. bi nd method. The bind method is useful for binding the same
hadler function to multiple events, and is also used when you want to provide data to the event hander,
or when you are working with custom events.

Example5.1. Event binding using a convenience method

$('p').click(function() {
consol e.log('click');

1)
Example 5.2. Event biding using the $. f n. bi nd method
$('p').bind('click', function() {

consol e.log('click');
1)
Example 5.3. Event binding using the $. f n. bi nd method with data
$(' i nput'). bi nd(

"click change', // bind to multiple events

{ foo: '"bar' }, // pass in data

function(event Obj ect) {

consol e. |l og(event Obj ect.type, event Object. data);
/1 logs event type, then { foo : 'bar' }

)
Connecting Events to Run Only Once

Sometimes you need a particular handler to run only once -- after that, you may want no handler to run,
or you may want a different handler to run. jQuery providesthe $. f n. one method for this purpose.

38

http://api.jquery.com/category/events/
http://api.jquery.com/category/events/event-object/

Events

Example 5.4. Switching handlersusing the $. f n. one method

$('p').one(click', function() {
$(this).click(function() { console.log('You clicked this before!'); });

1),

The $. f n. one method is especially useful if you need to do some complicated setup the first time an
element is clicked, but not subsequent times.

Disconnecting Events

To disconnect an event handler, you usethe $. f n. unbi nd method and passin the event type to unbind.
If you attached a named function to the event, then you can isolate the unbinding to that named function
by passing it as the second argument.

Example 5.5. Unbinding all click handlerson a selection
$('p').unbind(' click');
Example 5.6. Unbinding a particular click handler

function() { console.log('foo"); };
function() { console.log('bar'); };

var foo
var bar

$('p').bind('click', foo).bind('click', bar);
$('p').unbind('click', bar); // foo is still bound to the click event

Namespacing Events

For complex applications and for plugins you share with others, it can be useful to namespace your events
so you don't unintentionally disconnect events that you didn't or couldn't know aboui.

Example 5.7. Namespacing events

$('p').bind('click.myNanmespace', function() { /* ... */ });
$(' p').unbind('click. myNanespace');
$('p').unbind('.nmyNanespace'); // unbind all events in the namespace

Inside the Event Handling Function

As mentioned in the overview, the event handling function receives an event object, which contains many
properties and methods. The event object is most commonly used to prevent the default action of the event
via the preventDefault method. However, the event object contains a number of other useful properties
and methods, including:

pageX, pageY The mouse position at the time the event occurred, relative to the top left of
the page.

type The type of the event (e.g. "click™).

which The button or key that was pressed.

data Any data that was passed in when the event was bound.

target The DOM element that initiated the event.

39

Events

preventDefault() Prevent the default action of the event (e.g. following alink).
stopPropagation() Stop the event from bubbling up to other elements.

In addition to the event object, the event handling function also has access to the DOM element that the
handler was bound to viathe keyword t hi s. To turn the DOM element into ajQuery object that we can
use jQuery methods on, we simply do $(t hi s) , often following thisidiom:

var $this = $(this);
Example 5.8. Preventing a link from being followed

$("a').click(function(e) {
var $this = $(this);
if ($this.attr(' href').match('evil')) {
e.prevent Defaul t ();
$this.addd ass('evil');

1)
Triggering Event Handlers

jQuery provides a way to trigger the event handlers bound to an element without any user interaction
viathe $. f n. t ri gger method. While this method has its uses, it should not be used simply to call
a function that was bound as a click handler. Instead, you should store the function you want to call in
avariable, and pass the variable name when you do your binding. Then, you can call the function itself
whenever you want, without the need for $. f n. t ri gger.

Example5.9. Triggering an event handler theright way

var foo = function(e) {
it (e) {
consol e.l og(e);
} else {
console.log('this didn\'t conme froman event!');

}

$('p').click(foo);

foo(); // instead of $('p').trigger('click')

Increasing Performance with Event Delegation

You'll frequently use jQuery to add new elements to the page, and when you do, you may need to bind
events to those new elements -- events you aready bound to similar elements that were on the page
originally. Instead of repeating your event binding every time you add elements to the page, you can use
event delegation. With event delegation, you bind your event to a container element, and then when the
event occurs, you look to see which contained element it occurred on. If this sounds complicated, luckily
jQuery makesit easy withits$. fn. | i ve and $. f n. del egat e methods.

While most people discover event delegation while dealing with elements added to the page later, it has
some performance benefits even if you never add more elements to the page. The time required to bind

40

Events

event handlers to hundreds of individual elements is non-trivial; if you have alarge set of elements, you
should consider delegating related events to a container element.

Note

The $. fn. I i ve method was introduced in jQuery 1.3, and at that time only certain event
types were supported. Asof jQuery 1.4.2, the $. f n. del egat e method isavailable, and isthe
preferred method.

Example 5.10. Event delegation using $. f n. del egat e

$(' #nyUnorderedList').delegate('li', 'click', function(e) {
var $myListlitem = $(this);
/1

1)

Example 5.11. Event delegation using$. fn. | i ve

$(' #nyUnorderedList li").live('click', function(e) {
var $myListltem = $(this);
/1

1)

Unbinding Delegated Events
If you need to remove delegated events, you can't simply unbind them. Instead, use $. f n. undel egat e

for events connected with $. f n. del egat e, and $. f n. di e for events connected with $. f n. | i ve.
As with bind, you can optionally passin the name of the bound function.

Example 5.12. Unbinding delegated events

$("' #myUnor deredLi st').undel egate('li', "click');
$(' #myUnorderedList li').die('click');

Event Helpers

jQuery offers two event-related hel per functions that save you afew keystrokes.

$. fn. hover

The $. f n. hover method lets you pass one or two functions to be run when the nouseent er and
nousel eave events occur on an element. If you pass one function, it will be run for both events; if you
pass two functions, the first will run for rouseent er, and the second will run for nousel eave.

Note

Prior to jQuery 1.4, the $. f n. hover method required two functions.

Example 5.13. The hover helper function

$("#menu 1i'). hover(function() {
$(this).toggl ed ass(' hover');

1)

41

Events

$.fn. toggle

Muchlike$. f n. hover ,the$. f n. t oggl e method receivestwo or morefunctions; each timethe event
occurs, the next function in the list is called. Generally, $. f n. t oggl e is used with just two functions,
but technically you can use as many as you'd like.

Example 5.14. Thetoggle helper function
$(' p. expander') .t oggl e(
function() {
$(this).prev().addd ass(' open');
1

function() {
$(this).prev().renoved ass(' open');
}

)
Exercises

Create an Input Hint

Open the file / exerci ses/index. htd in your browser. Use the file / exercises/|j s/
i nput Hi nt. j s orwork inFirebug. Your task isto use thetext of the label for the search input to create
"hint" text for the search input. The steps are as follows:

1. Set the value of the search input to the text of the label element

2. Add aclass of "hint" to the search input

3. Removethe label element

4. Bind afocus event to the search input that removes the hint text and the "hint" class

5. Bind a blur event to the search input that restores the hint text and "hint" class if no search text was
entered

What other considerations might there be if you were creating this functionality for areal site?

Add Tabbed Navigation

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/j s/
t abs. j s. Your task isto create tabbed navigation for the two div.module elements. To accomplish this:

1. Hidedl of the modules.
2. Create an unordered list element before the first module.

3. lterate over the modules using $. f n. each. For each module, use the text of the h2 element as the
text for alist item that you add to the unordered list element.

4, Bind aclick even to thelist item that:

» Showsthe related module, and hides any other modules

42

Events

» Addsaclass of "current” to the clicked list item
* Removesthe class "current” from the other list item

5. Finaly, show thefirst tab.

43

Chapter 6. Effects

Overview

jQuery makesit trivial to add simple effects to your page. Effects can use the built-in settings, or provide
a customized duration. Y ou can a so create custom animations of arbitrary CSS properties.

For complete details on jQuery effects, visit http://api.jquery.com/category/effects.

Built-in Effects

Frequently used effects are built into jQuery as methods:

$.fn.show Show the selected element.

$.fn.hide Hide the selected elements.

$.fn.fadeln Animate the opacity of the selected elements to 100%.

$.fn.fadeOut Animate the opacity of the selected elements to 0%.

$.fn.dideDown Display the selected elements with avertical sliding motion.

$.fn.dideUp Hide the selected elements with avertical sliding motion.

$.fn.dideToggle Show or hide the selected elements with a vertical sliding motion, depending

on whether the elements are currently visible.

Example 6.1. A basic use of a built-in effect

$(' h1'). show();

Changing the Duration of Built-in Effects

With the exception of $. f n. showand $. f n. hi de, al of the built-in methods are animated over the
course of 400ms by default. Changing the duration of an effect issimple.

Example 6.2. Setting the duration of an effect

$(' hl').fadel n(300); /1 fade in over 300mns
$('hl').fadeQut ('slow); // using a built-in speed definition

jQuery.fx.speeds

jQuery has an object at j Query. f X. speeds that contains the default speed, as well as settings for
"slow' and"fast".

speeds: {
sl ow. 600,
fast: 200,
/1 Default speed
_default: 400

http://api.jquery.com/category/effects/

Effects

It is possible to override or add to this object. For example, you may want to change the default duration
of effects, or you may want to create your own effects speed.

Example 6.3. Augmentingj Query. f x. speeds with custom speed definitions

j Query. fx. speeds. bl azi ng = 100;
j Query. fx.speeds.turtle = 2000;

Doing Something when an Effect is Done

Often, you'll want to run some code once an animation is done -- if you run it before the animation is
done, it may affect the quality of the animation, or it may remove elements that are part of the animation.
[Definition: Callback functions provide a way to register your interest in an event that will happen in the
future] In this case, the event welll be responding to is the conclusion of the animation. Inside of the
callback function, the keyword t hi s refersto the element that the effect was called on; aswe did inside
of event handler functions, we can turn it into ajQuery object via$(t hi s) .

Example 6.4. Running code when an animation is complete
$('div.old).fadeCQut (300, function() { $(this).renmove(); });

Note that if your selection doesn't return any elements, your callback will never run! Y ou can solve this
problem by testing whether your selection returned any elements; if not, you can just run the callback
immediately.

Example 6.5. Run a callback even if there were no elementsto animate

var $thing = $(' #nonexi stent');

var cb = function() {
consol e. | og(' done!");

b

if ($thing.length) {

$t hi ng. fadel n(300, ch);
} else {

cb();
}

Custom Effects with $. f n. ani mat e

jQuery makes it possible to animate arbitrary CSS properties via the $. f n. ani mat e method. The
$. f n. ani mat e method lets you animate to a set value, or to avalue relative to the current value.

Example 6.6. Custom effectswith $. f n. ani mat e

$("div.funtinmes').ani mat e(
{
left : "+=50",
opacity : 0.25
}l
300, // duration
function() { console.log('done!"); // cal back

1)

45

Effects

Note

Color-related properties cannot be animated with $. f n. ani mat e using jQuery out of the
box. Color animations can easily be accomplished by including the color plugin [http://
plugins.jquery.com/files/jquery.color.js.txt]. We'l discuss using plugins later in the book.

Easing
[Definition: Easing describes the manner in which an effect occurs -- whether the rate of changeis steady,
or varies over the duration of the animation.] jQuery includes only two methods of easing: swing and
linear. If you want more natural transitions in your animations, various easing plugins are available.
Asof jQuery 1.4, it is possible to do per-property easing when using the $.fn.animate method.

Example 6.7. Per-property easing

$(' div.funtines').ani mate(

{
left : ["+=50", "swing],
opacity : [0.25, "linear"]
}l
300

)

For more details on easing options, see http://api.jquery.com/animate/.

Managing Effects

jQuery provides several tools for managing animations.

$.fn.stop Stop currently running animations on the selected elements.

$.fn.delay Wait the specified number of milliseconds before running the next animation.
$(' h1'). show 300) . del ay(1000) . hi de(300);

jQuery.fx.off If this value is true, there will be no transition for animations; elements will
immediately be set to thetarget final stateinstead. Thiscan be especially useful when
dealing with older browsers; you also may want to provide the option to your users.

Exercises
Reveal Hidden Text

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/|j s/
bl 0g. j s. Your task isto add some interactivity to the blog section of the page. The spec for the feature
isasfollows:

* Clicking on a headline in the #blog div should slide down the excerpt paragraph

* Clicking on another headline should slide down its excerpt paragraph, and slide up any other currently
showing excerpt paragraphs.

46

http://plugins.jquery.com/files/jquery.color.js.txt
http://plugins.jquery.com/files/jquery.color.js.txt
http://plugins.jquery.com/files/jquery.color.js.txt
http://api.jquery.com/animate/

Effects

Hint: don't forget about the : vi si bl e selector!

Create Dropdown Menus

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/|j s/
navi gati on.j s. Your task isto add dropdowns to the main navigation at the top of the page.

» Hovering over an item in the main menu should show that item's submenu items, if any.
» Exiting an item should hide any submenu items.

To accomplish this, usethe $. f n. hover method to add and remove a class from the submenu items to
control whether they're visible or hidden. (Thefile at / exer ci ses/ css/ styl es. css includes the
"hover" class for this purpose.)

Create a Slideshow

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/j s/
sl i deshow. js. Your task is to take a plain semantic HTML page and enhance it with JavaScript by
adding a slideshow.

1. Move the #slideshow element to the top of the body.

2. Write code to cycle through the list items inside the element; fade onein, display it for afew seconds,
then fade it out and fade in the next one.

3. When you get to the end of thelist, start again at the beginning.

For an extra challenge, create a navigation area under the slideshow that shows how many images there
are and which image you're currently viewing. (Hint: $.fn.prevAll will come in handy for this.)

47

Chapter 7. Ajax

Overview

The XMLHttpRequest method (XHR) allows browsers to communicate with the server without requiring
a page reload. This method, also known as Ajax (Asynchronous JavaScript and XML), allows for web
pages that provide rich, interactive experiences.

Ajax requests are triggered by JavaScript code; your code sends arequest to aURL, and when it receivesa
response, acallback function can be triggered to handl e the response. Because the request is asynchronous,
the rest of your code continues to execute while the request is being processed, so it's imperative that a
callback be used to handle the response.

jQuery provides Ajax support that abstracts away painful browser differences. It offers both a full-
featured $. aj ax() method, and simple convenience methods such as $. get (), $. get Scri pt (),
$. get JSON() , $. post (),and$() . | oad() .

Most jQuery applications don’t in fact use XML, despite the name “Ajax”; instead, they transport data as
plain HTML or JSON (JavaScript Object Notation).

In general, Ajax does not work across domains. Exceptions are services that provide JSONP (JSON with
Padding) support, which allow limited cross-domain functionality.

Key Concepts

Proper use of Ajax-related jQuery methods requires understanding some key concepts first.

GET vs. Post

The two most common “methods’ for sending a request to a server are GET and POST. It’'simportant to
understand the proper application of each.

The GET method should be used for non-destructive operations — that is, operations where you are only
“getting” data from the server, not changing data on the server. For example, a query to a search service
might be a GET request. GET requests may be cached by the browser, which can lead to unpredictable
behavior if you are not expecting it. GET requests generally send all of their datain a query string.

The POST method should be used for destructive operations — that is, operations where you are changing
data on the server. For example, a user saving a blog post should be a POST request. POST requests are
generally not cached by the browser; a query string can be part of the URL, but the data tends to be sent
separately as post data.

Data Types

jQuery generally requires some instruction as to the type of data you expect to get back from an Ajax
reguest; in some cases the data type is specified by the method name, and in other casesit is provided as
part of a configuration object. There are several options:

text For transporting simple strings
html For transporting blocks of HTML to be placed on the page

script For adding a new script to the page

48

Ajax

json For transporting JSON-formatted data, which can include strings, arrays, and objects

Note

As of jQuery 1.4, if the JISON data sent by your server isn't properly formatted, the
regquest may fail silently. See http://json.org for details on properly formatting JSON,
but asageneral rule, use built-in language methods for generating JSON on the server
to avoid syntax issues.

jsonp For transporting JSON data from another domain
xml For transporting datain a custom XML schema

| am a strong proponent of using the JSON format in most cases, as it provides the most flexibility. It is
especially useful for sending both HTML and data at the same time.

A is for Asynchronous

Theasynchronicity of Ajax catchesmany new jQuery usersoff guard. Because Ajax callsare asynchronous
by default, the responseis not immediately available. Responses can only be handled using a callback. So,
for example, the following code will not work:

$. get (' f0o. php');
consol e. | og(response);

Instead, we need to passacallback function to our request; thiscallback will run when the request succeeds,
at which point we can access the data that it returned, if any.

$.get (' foo.php', function(response) { consol e.log(response); });

Same-Origin Policy and JSONP

In general, Ajax requests are limited to the same protocol (http or https), the same port, and the same
domain asthe page making the request. Thislimitation does not apply to scriptsthat areloaded viajQuery's
Ajax methods.

The other exception is requests targeted at a JSONP service on another domain. In the case of JSONP,
the provider of the service has agreed to respond to your request with a script that can be loaded into the
page using a<scri pt > tag, thus avoiding the same-origin limitation; that script will include the data
you requested, wrapped in a callback function you provide.

Ajax and Firebug

Firebug (or the Webkit Inspector in Chrome or Safari) isan invaluabletool for working with Ajax requests.
You can see Ajax requests as they happen in the Console tab of Firebug (and in the Resources > XHR
panel of Webkit Inspector), and you can click on arequest to expand it and see details such as the request
headers, response headers, response content, and more. If something isn't going as expected with an Ajax
request, thisisthe first place to look to track down what's wrong.

jQuery's Ajax-Related Methods

While jQuery does offer many Ajax-related convenience methods, the core $. aj ax method is at the
heart of al of them, and understanding it isimperative. We'll review it first, and then touch briefly on the
convenience methods.

49

http://json.org

Ajax

| generally use the $.ajax method and do not use convenience methods. Asyou'll see, it offers featuresthat
the convenience methods do not, and its syntax is more easily under standable, in my opinion.

$.ajax

jQuery’score$. aj ax method isapowerful and straightforward way of creating Ajax requests. It takesa
configuration object that containsall theinstructionsjQuery requiresto completetherequest. The$. aj ax
method is particularly valuable because it offers the ability to specify both success and failure callbacks.
Also, itsability to takeaconfiguration object that can be defined separately makesit easier to writereusable
code. For complete documentation of the configuration options, visit http://api.jquery.com/jQuery.gjax/.

Example 7.1. Using the cor e $.ajax method

$. aj ax({
/1 the URL for the request
url : 'post.php',

/1 the data to send
/1 (will be converted to a query string)
data : { id : 123},

/1 whether this is a POST or GET request
nmet hod : ' GET',

/1 the type of data we expect back
dat aType : 'json',

/1 code to run if the request succeeds;
/1 the response is passed to the function
success : function(json) {
$('<hl/>").text(json.title).appendTo(' body');
$(' <div class="content"/>")
.htm (json. htm).appendTo(' body');
1

/1 code to run if the request fails;

/1 the raw request and status codes are

/1 passed to the function

error : function(xhr, status) {
alert('Sorry, there was a problem"');

}

/1 code to run regardl ess of success or failure
conplete : function(xhr, status) {

alert (' The request is conplete!');
}

1),
Note

A note about the dat aType setting: if the server sends back data that is in a different format
than you specify, your code may fail, and the reason will not always be clear, because the HTTP
response code will not show an error. When working with Ajax requests, make sure your server is
sending back thedatatypeyou're asking for, and verify that the Content-type header isaccuratefor

50

http://api.jquery.com/jQuery.ajax/

Ajax

the data type. For example, for JSON data, the Content-type header should be appl i cat i on/

j son.

$. aj ax Options

There are many, many options for the $.gjax method, which is part of its power. For a complete list of
options, visit http://api.jquery.com/jQuery.ajax/; here are several that you will use frequently:

async

cache

complete

context

data

dataType

error

jsonp

SUCCEsSs

timeout

traditional

type

url

Settof al se if therequest should be sent synchronously. Defaultstot r ue. Note that
if you set this option to false, your request will block execution of other code until the
response is received.

Whether to use a cached response if available. Defaults to t r ue for all dataTypes
except "script” and "jsonp". When set to fal se, the URL will simply have acachebusting
parameter appended to it.

A callback function to run when therequest iscomplete, regardless of successor failure.
The function receives the raw request object and the text status of the request.

The scope in which the callback function(s) should run (i.e. what t hi s will mean
inside the callback function(s)). By default, t hi s inside the callback function(s) refers
to the object originally passedto $. aj ax.

The data to be sent to the server. This can either be an object or a query string, such
asf oo=bar &az=bi m

The type of data you expect back from the server. By default, jQuery will look at the
MIME type of the response if no dataType is specified.

A callback function to run if the request results in an error. The function receives the
raw request object and the text status of the request.

The callback name to send in a query string when making a JSONP request. Defaults
to "callback".

A callback function to run if the request succeeds. The function receives the response
data (converted to a JavaScript object if the dataType was JSON), as well as the text
status of the request and the raw reguest object.

The time in milliseconds to wait before considering the request afailure.

Set to true to use the param seriaization style in use prior to jQuery 1.4. For details,
see http://api.jquery.com/jQuery.param/.

The type of the request, "POST" or "GET". Defaults to "GET". Other request types,
such as "PUT" and "DELETE" can be used, but they may not be supported by all
browsers.

The URL for the request.

The ur | option is the only required property of the $. aj ax configuration object; all other properties

are optional.

Convenience Methods

If you don't need the extensive configurability of $. aj ax, and you don't care about handling errors, the
Ajax convenience functions provided by jQuery can be useful, terse ways to accomplish Ajax requests.

51

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.param/

Ajax

These methods are just "wrappers' around the core $. aj ax method, and simply pre-set some of the
optionson the $. aj ax method.

The convenience methods provided by jQuery are:

$.get Perform a GET request to the provided URL.

$.post Perform a POST request to the provided URL.
$.getScript Add ascript to the page.

$.getJSON Perform a GET request, and expect JSON to be returned.

In each case, the methods take the following arguments, in order:
url The URL for the request. Required.

data The data to be sent to the server. Optional. This can either be an object or a
query string, such asf oo=bar &az=bi m

Note

Thisoptionisnot valid for $. get Scri pt .

success callback A callback function to run if the request succeeds. Optional. The function
receives the response data (converted to a JavaScript object if the datatype was
JSON), aswell asthe text status of the request and the raw request object.

data type The type of data you expect back from the server. Optional.

Note

This option is only applicable for methods that don't already specify
the data type in their name.

Example 7.2. Using jQuery's Ajax convenience methods

/1 get plain text or htm
$.get('/users.php', { userld : 1234 }, function(resp) {
consol e. |l og(resp);

1)

/! add a script to the page, then run a function defined in it

$.getScript('/static/js/myScript.js', function() {
functionFromWScri pt ();

1)

/1 get JSON-formatted data fromthe server
$.getIJSON(' /details.php', function(resp) {
$. each(resp, function(k, v) {
console.log(k + ' : " + v);
1)
1)

52

Ajax

$.fn. | oad

The$. f n. | oad method is unique among jQuery’s Ajax methods in that it is called on a selection. The
$. f n. | oad method fetches HTML from a URL, and uses the returned HTML to popul ate the selected
element(s). In addition to providing a URL to the method, you can optionally provide a selector; jQuery
will fetch only the matching content from the returned HTML.

Example 7.3. Using $. f n. | oad to populate an element

$(' #newContent').l oad('/foo.htm");

Example 7.4. Using $. f n. | oad to populate an element based on a selector

$(' #newContent').load('/foo. htm #myDiv hl:first', function(htm) {
alert (' Content updated!');

1),

Ajax and Forms

jQuery’s gjax capabilities can be especialy useful when dealing with forms. The jQuery Form Plugin
[http://jquery.malsup.com/form/] is a well-tested tool for adding Ajax capabilities to forms, and you
should generaly use it for handling forms with Ajax rather than trying to roll your own solution for
anything remotely complex. That said, there are atwo jQuery methods you should know that relateto form
processinginjQuery: $. fn. serializeand$.fn.serializeArray.

Example 7.5. Turning form datainto a query string

$(' #nmyForm). serialize();

Example 7.6. Creating an array of objects containing form data
$(' #nmyForm). serializeArray();

/1 creates a structure like this:
[
{ name : 'fieldl', value : 123 },
{ name : 'field2', value : "hello world }

]

Working with JSONP

The advent of JSONP -- essentially a consensual cross-site scripting hack -- has opened the door to
powerful mashups of content. Many prominent sites provide JSONP services, allowing you accessto their
content via a predefined API. A particularly great source of JSONP-formatted data is the Y ahoo! Query
Language [http://devel oper.yahoo.com/ygl/console/], which we'll use in the following example to fetch
news about cats.

53

http://jquery.malsup.com/form/
http://jquery.malsup.com/form/
http://developer.yahoo.com/yql/console/
http://developer.yahoo.com/yql/console/
http://developer.yahoo.com/yql/console/

Ajax

Example 7.7. Using YQL and JSONP

$. aj ax({
url : "http://query.yahooapis.con vl/public/yqgl",

/1 the nane of the callback paraneter,
/1 as specified by the YQ service
jsonp : 'callback',

/1 tell jQuery we're expecting JSONP

dat aType : 'jsonp',

/1 tell YQL what we want and that we want JSON

data : {
g : 'select title,abstract,url from search. news where query="cat"',
format : 'json'

}1

/1 work with the response
success : function(response) {
consol e. | og(response);
}
1)

jQuery handles al the complex aspects of JSONP behind-the-scenes -- al we have to do is tell jQuery
the name of the JISONP callback parameter specified by Y QL ("callback" in this case), and otherwise the
whole process looks and feels like anormal Ajax request.

Ajax Events

Often, you'll want to perform an operation whenever an Ajax requests starts or stops, such as showing
or hiding aloading indicator. Rather than defining this behavior inside every Ajax request, you can bind
Ajax events to elements just like you'd bind other events. For a complete list of Ajax events, visit http://
docs.jguery.com/Ajax_Events.

Example 7.8. Setting up a loading indicator using Ajax Events

$(' #l oadi ng_indicator')
.ajaxStart(function() { $(this).show(); })
.ajaxStop(function() { $(this).hide(); });

Exercises

Load External Content

Open the file / exerci ses/index. htmd in your browser. Use the file / exercises/| s/
| oad. j s. Your task isto load the content of a blog item when a user clicks on the title of the item.

1. Createatarget div after the headlinefor each blog post and store areferencetoit on the headline element
using $. f n. dat a.

2. Bind aclick event to the headline that will usethe $. f n. | oad method to load the appropriate content
from/ exer ci ses/ dat a/ bl og. ht m intothetarget div. Don't forget to prevent the default action
of theclick event.

http://docs.jquery.com/Ajax_Events
http://docs.jquery.com/Ajax_Events

Ajax

Note that each blog headline in index.html includes a link to the post. You'll need to leverage the href of
that link to get the proper content from blog.html. Once you have the href, here's one way to process it
into an ID that you can use asaselector in $. f n. | oad:

var href = 'blog. htnl #postl';
var tenpArray = href.split('#);
var id ="# + tenpArray[1];

Remember to make liberal use of consol e. | og to make sure you're on the right path!

Load Content Using JSON

Open the file / exerci ses/i ndex. htm in your browser. Use the file / exerci ses/j s/
speci al s.j s. Your task is to show the user details about the special for a given day when the user
selects aday from the select dropdown.

1. Append a target div after the form that's inside the #specials element; this will be where you put
information about the special once you receiveit.

2. Bind to the change event of the select element; when the user changes the selection, send an Ajax
request to/ exer ci ses/ dat a/ speci al s. j son.

3. When the request returns a response, use the value the user selected in the select (hint: $. f n. val) to
look up information about the special in the JSON response.

4. Add some HTML about the special to the target div you created.
5. Finally, because the form is now Ajax-enabled, remove the submit button from the form.
Note that we're loading the JSON every time the user changes their selection. How could we change the

code so we only make the request once, and then use a cached response when the user changestheir choice
in the select?

55

Chapter 8. Plugins
Finding & Evaluating Plugins

Plugins extend the basic jQuery functionality, and one of the most celebrated aspects of the library isits
extensive plugin ecosystem. From table sorting to form validation to autocompletion ... if there's a need
for it, chances are good that someone has written a plugin for it.

The quality of jQuery pluginsvarieswidely. Many plugins are extensively tested and well-maintained, but
others are hastily created and then ignored. More than a few fail to follow best practices.

Googleisyour best initial resourcefor locating plugins, though the jQuery team isworking on animproved
plugin repository. Once you' ve identified some options via a Google search, you may want to consult the
jQuery mailing list or the #query IRC channel to get input from others.

When looking for a plugin to fill aneed, do your homework. Ensure that the plugin is well-documented,
and look for the author to provide lots of examples of its use. Be wary of plugins that do far more than
you heed; they can end up adding substantial overhead to your page. For more tips on spotting a subpar
plugin, read Signs of apoorly written jQuery plugin [http://remysharp.com/2010/06/03/signs-of-a-poorly-
written-jquery-plugin/] by Remy Sharp.

Once you choose a plugin, you'll need to add it to your page. Download the plugin, unzip it if necessary,
placeit your application’ s directory structure, then include the plugin in your page using a script tag (after
you include jQuery).

Writing Plugins

Sometimesyou want to make a piece of functionality avail able throughout your code; for example, perhaps
you want a single method you can call on a jQuery selection that performs a series of operations on the
selection. In this case, you may want to write a plugin.

Most plugins are simply methods created in the $. f n namespace. jQuery guarantees that a method
called on ajQuery object will be able to access that jQuery object ast hi s inside the method. In return,
your plugin needs to guarantee that it returns the same object it received, unless explicitly documented
otherwise.

Here is an example of asimple plugin:
Example 8.1. Creating a plugin to add and remove a class on hover

/1 defining the plugin
(function($){
$.fn. hoverd ass = function(c) {
return this. hover (
function() { $(this).toggledass(c); }

)
b
}(j Query);

/1 using the plugin
$('1'i").hoverd ass(' hover');

For more on plugin development, read Mike Alsup's essential post, A Plugin Development Pattern
[http://www.learningjquery.com/2007/10/a-plugin-devel opment-pattern]. In it, he creates a plugin called

56

http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://www.learningjquery.com/2007/10/a-plugin-development-pattern
http://www.learningjquery.com/2007/10/a-plugin-development-pattern

Plugins

$. fn. hi |'i ght,which providessupport for the metadata pluginif it's present, and providesacentralized
method for setting global and instance options for the plugin.

57

Plugins

Example 8.2. The Mike Alsup jQuery Plugin Development Pattern

/1
/] create closure
/1
(function($) {
/1
/1 plugin definition
/1
$.fn. hilight = function(options) {
debug(this);
/1 build main options before elenent iteration
var opts = $.extend({}, $.fn.hilight.defaults, options);
/1 iterate and reformat each matched el enent
return this.each(function() {
$this = $(this);
/1 build element specific options
var o = $.meta ? $.extend({}, opts, $this.data()) : opts;
/1 update el enent styles
$t his. css({
backgroundCol or: o. background,
color: o.foreground
1)
var markup = $this. htm();
/1 call our format function
mar kup = $.fn. hilight.fornmat(markup);
$this. htm (markup);
1)
I
/1
/1 private function for debuggi ng
/1
function debug($obj) {
i f (wi ndow. consol e & w ndow. consol e. | og)

wi ndow. consol e. 1 og(' hilight selection count: ' + $obj.size());
b
/1
/1 define and expose our format function
/1

$.fn.hilight.format = function(txt) {
return ' + txt + ''

I

/1

/1 plugin defaults

/1

$.fn.hilight.defaults

foreground: 'red

background: 'yell ow
b

/1

/1 end of closure

/1

}) (j Query);

11
—~~

58

Plugins

Exercises
Make a Table Sortable

For thisexercise, your task isto identify, download, and implement atabl e sorting plugin on theindex.html
page. When you're done, al columnsin the table on the page should be sortable.

Write a Table-Striping Plugin

Open the file / exerci ses/index. htm in your browser. Use the file / exercises/js/
stripe.js.Yourtask istowriteaplugin caled "stripe" that you can call on any table element. When
the plugin is called on atable element, it should change the color of odd rows in the table body to a user-
specified color.

$(' #nyTabl e'). stripe(' #ccceec');

Don't forget to return the table so other methods can be chained after the plugin!

59

Part Ill. Advanced Topics

This Section is a Work in Progress

Please visit http://github.com/rmurphey/jgfundamentals to contribute!

61

http://github.com/rmurphey/jqfundamentals

Chapter 9. Performance Best Practices

This chapter covers a number of jQuery and JavaScript best practices, in no particular order. Many of the
best practicesin this chapter are based on the jQuery Anti-Patterns for Performance [http://paulirish.com/
perf] presentation by Paul Irish.

Cache length during loops

In afor loop, don't access the length property of an array every time; cache it beforehand.
var nmyLength = nyArray. | ength;

for (var i = 0; i < nmyLength; i++) {
/1 do stuff
}

Append new content outside of a loop

Touching the DOM comes at a cost; if you're adding a lot of elementsto the DOM, do it al at once, not
one at atime.

/1 this is bad

$. each(nyArray, function(i, iten {
var newListltem= " + item+ "</|i>";
$(' #bal l ers') . append(newlLi stltemn;

1)

/1 better: do this
var frag = docunent. creat eDocunent Fragment () ;

$. each(nyArray, function(i, iten {
var newListltem= " + item+ "</|i>";
frag. appendChi | d(newLi stlteny;

1)
$(' #bal l ers')[0] . appendChil d(frag);

// or do this
var nyHm ="'

$. each(nyArray, function(i, iten {
htm += " + item+ '"</]i>";

1)
$('#ballers').htmd (myHm);

Keep things DRY

Don't repeat yourself; if you're repeating yourself, you're doing it wrong.

/1 BAD
if ($eventfade.data(' currently') !'="'"showing') {
$event f ade. st op() ;

62

http://paulirish.com/perf
http://paulirish.com/perf
http://paulirish.com/perf

Performance Best Practices

}

if ($eventhover.data(' currently') != "showing') {
$event hover. stop();

}

if ($spans.data(' currently') !'="'showing') {
$spans. stop();

}

/1 GOOoD!!

var $el ems = [$eventfade, $eventhover, $spans];
$. each($el ens, function(i,elem {
if (elemdata(’' currently') !'="showing) {
el em stop();
}
1)

Beware anonymous functions

Anonymous functions bound everywhere are a pain. They're difficult to debug, maintain, test, or reuse.
Instead, use an object literal to organize and name your handlers and callbacks.

/1 BAD
$(docurnent) . ready(function() {
$("#magic').click(function(e) {
$(' #yayeffects').slideUp(function() {

/1
1)
1)
$(' #happi ness').load(url + ' #unicorns', function() {
1.,
1)
1)
/] BETTER
var Pl = {
onReady : function() {
$('#magic').click(Pl.candyMn);
$(' #happi ness').load(Pl.url + ' #unicorns', Pl.unicornCb);
}l
candyMn : function(e) {
$(' #yayeffects').slideUp(Pl.slideCh);
}l
slideCb : function() { ... },
uni cornCb : function() { ... }
b

$(docunent) . ready(Pl . onReady) ;

63

Performance Best Practices

Optimize Selectors

Selector optimization is less important than it used to be, as more browser implement
docunent . querySel ect or Al | () and the burden of selection shifts from jQuery to the browser.
However, there are still sometips to keep in midn.

ID-Based Selectors

Beginning your selector with an ID is always best.

/1l fast
$(' #contai ner div.robotarm);

/1 super-fast
$(' #container').find('div.robotarm);

The$. f n. fi nd approach isfaster because thefirst selection is handled without going through the Sizzle

selector engine — ID-only selections are handled using docunent . get El enent Byl d(), which is
extremely fast because it is native to the browser.

Specificity
Be specific on the right-hand side of your selector, and less specific on the | eft.

/1 unoptim zed
$(' div.data .gonzalez');

/1 optimzed
$('.data td.gonzalez');

Uset ag. cl ass if possible on your right-most selector, and justt ag or just. cl ass on the left.
Avoid excessive specificity.
$('.data table.attendees td. gonzal ez');

/] better: drop the niddle if possible
$('.data td.gonzalez');

A "flatter DOM also helps improve selector performance, as the selector engine has fewer layers to
traverse when looking for an element.

Avoid the Universal Selector

Selections that specify or imply that a match could be found anywhere can be very slow.

$('.buttons > *'); [/ extrenmely expensive
$('.buttons').children(); // nuch better

$('.gender :radio'); [// inplied universal selection
$('.gender *:radio'); // same thing, explicit now
$('.gender input:radio'); // much better

Performance Best Practices

Use Event Delegation

Event delegation allows you to bind an event handler to one container element (for example, an unordered
list) instead of multiple contained elements (for example, list items). jQuery makes this easy with $.fn.live
and $.fn.delegate. Where possible, you should use $. f n. del egat e instead of $. fn.live, asit
eliminates the need for an unnecessary selection, and its explicit context (vs. $. f n. | i ve's context of
docunent) reduces overhead by approximately 80%.

In addition to performance benefits, event delegation also allows you to add new contained elements to
your page without having to re-bind the event handlers for them as they're added.

/1 bad (if there are lots of list itens)
$('li.trigger').click(handl erFn);

/1 better: event delegation with $.fn.live
$('li.trigger').live('click', handlerFn);

/1 best: event delegation with $.fn.del egate
/1 allows you to specify a context easily
$(" #nmyList').delegate('li.trigger', 'click', handlerFn);

Detach Elements to Work With Them

The DOM is slow; you want to avoid manipulating it as much as possible. jQuery introduced
$. fn. det ach in version 1.4 to help address this issue, allowing you to remove an element from the
DOM while you work with it.

var $table = $(' #nyTable');
var $parent = table.parent();

$t abl e. det ach();
/1 ... add lots and lots of rows to table
$par ent . append(tabl e);

Use Stylesheets for Changing CSS on Many
Elements

If you're changing the CSS of more than 20 elements using $.fn.css, consider adding a style tag to the page
instead for a nearly 60% increase in speed.

/1 fine for up to 20 elenents, slow after that

$(' a. swedberg').css('color', '#asdl123');

$(' <style type="text/css">a.swedberg { color : #asdl123 }</style>")
. appendTo(' head');

Use $. dat a Instead of $. f n. dat a

Using $.data on a DOM element instead of calling $.fn.data on ajQuery selection can be up to 10 times
faster. Be sure you understand the difference between aDOM element and ajQuery selection before doing
this, though.

/1 regular

65

Performance Best Practices

$(el em . dat a(key, val ue) ; ##

/1 10x faster
#$. dat a(el em key, val ue);

Don't Act on Absent Elements

jQuery won't tell you if you're trying to run awhole lot of code on an empty selection — it will proceed
as though nothing's wrong. It's up to you to verify that your selection contains some elements.

/1 BAD:. this runs three functions

/1 before it realizes there's nothing
/1 in the selection

$(' #nosuchthing').slideUp();

/] Better
var $mySel ection = $(' #nosucht hing');
if ($nmySelection.length) { nySel ection.slideUp(); }

/1 BEST: add a doOnce plugin

j Query. fn.doOnce = function(func){
this.length & func. appl y(this);
return this;

#}

#$('li.cartitens').doOnce(function(){#
/1 make it ajax! \o/#

1)

Thisguidanceis especialy applicable for jQuery Ul widgets, which have alot of overhead even when the
selection doesn't contain elements.

Variable Definition

Variables can be defined in one statement instead of several.

/1 old & busted
var test = 1;
var test2 = function() { ... };
var test3 = test2(test);
/'l new hot ness
var test = 1,
test?2 function() { ... },
test3 test2(test);

In self-executing functions, variable definition can be skipped al together.

(function(foo, bar) { ... })(1, 2);

Conditionals

/1 old way

66

Performance Best Practices

if (type == '"foo' || type == "bar') { ... }
/1 better
if (/~(foo|bar)$/.test(type)) { ... }

/1 object literal |ookup
if (({ foo: 1, bar : 1 })[type]) { ... }

Don't Treat jQuery as a Black Box

Use the source as your documentation — bookmark http://bit.ly/jgsource and refer to it often.

67

http://bit.ly/jqsource

