
ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER

PROOF-OF-CONCEPT V

DR. GAVIN WOOD
CO-FOUNDER & CTO, ETHEREUM PROJECT

GAVIN@ETHEREUM.ORG

Abstract. The blockchain paradigm when coupled with cryptographically-secured transactions has demonstrated its
utility through a number of projects, not least Bitcoin. Each such project can be seen as a simple application on
a decentralised, but singleton, compute resource. We can call this paradigm a transactional singleton machine with
shared-state.

Ethereum implements this paradigm in a generalised manner. Furthermore it provides a plurality of such resources,
each with a distinct state and operating code but able to interact through a message-passing framework with others.
We discuss its design, implementation issues, the opportunities it provides and the future hurdles we envisage.

1. Introduction

With ubiquitous internet connections in most places
of the world, global information transmission has become
incredibly cheap. Technology-rooted movements like Bit-
coin have demonstrated, through the power of the default,
consensus mechanisms and voluntary respect of the social
contract that it is possible to use the internet to make
a decentralised value-transfer system, shared across the
world and virtually free to use. This system can be said
to be a very specialised version of a cryptographically se-
cure, transaction-based state machine. Follow-up systems
such as Namecoin adapted this original “currency appli-
cation” of the technology into other applications albeit
rather simplistic ones.

Ethereum is a project which attempts to build the gen-
eralised technology; technology on which all transaction-
based state machine concepts may be built. Moreover it
aims to provide to the end-developer a tightly integrated
end-to-end system for building software on a hitherto un-
explored compute paradigm in the mainstream: a trustful
object messaging compute framework.

1.1. Driving Factors. There are many goals of this
project; one key goal is to facilitate transactions be-
tween consenting individuals who would otherwise have
no means to trust one another. This may be due to
geographical separation, interfacing difficulty, or perhaps
the incompatibility, incompetence, unwillingness, expense,
uncertainty, inconvenience or corruption of existing legal
systems. By specifying a state-change system through a
rich and unambiguous language, and furthermore archi-
tecting a system such that we can reasonably expect that
an agreement will be thus enforced autonomously, we can
provide a means to this end.

Dealings in this proposed system would have several
attributes not often found in the real world. The incor-
ruptibility of judgement, often difficult to find, comes nat-
urally from a disinterested algorithmic interpreter. Trans-
parency, or being able to see exactly how a state or judge-
ment came about through the transaction log and rules
or instructional codes, never happens perfectly in human-
based systems since natural language is necessarily vague,

information is often lacking, and plain old prejudices are
difficult to shake.

Overall, I wish to provide a system such that users can
be guaranteed that no matter with which other individ-
uals, systems or organisations they interact, they can do
so with absolute confidence in the possible outcomes and
how those outcomes might come about.

1.2. Previous Work. Buterin [2013] first proposed the
kernel of this work in late November, 2013. Though now
evolved in many ways, the key functionality of a block-
chain with a Turing-complete language and an effectively
unlimited inter-transaction storage capability remains un-
changed.

Hashcash, introduced by Back [2002] (in a five-year
retrospective), provided the first work into the usage of
a cryptographic proof of computational expenditure as a
means of transmitting a value signal over the Internet.
Though not widely adopted, the work was later utilised
and expanded upon by Nakamoto [2008] in order to de-
vise a cryptographically secure mechanism for coming to a
decentralised social consensus over the order and contents
of a series of cryptographically signed financial transac-
tions. The fruits of this project, Bitcoin, provided a first
glimpse into a decentralised transaction ledger.

Other projects built on Bitcoin’s success; the alt-coins
introduced numerous other currencies through alteration
to the protocol. Some of the best known are Litecoin and
Primecoin, discussed by Sprankel [2013]. Other projects
sought to take the core value content mechanism of the
protocol and repurpose it; Aron [2012] discusses, for ex-
ample, the Namecoin project which aims to provide a de-
centralised name-resolution system.

Other projects still aim to build upon the Bitcoin net-
work itself, leveraging the large amount of value placed in
the system and the vast amount of computation that goes
into the consensus mechanism. The Mastercoin project,
first proposed by Willett [2013], aims to build a richer
protocol involving many additional high-level features on
top of the Bitcoin protocol through utilisation of a num-
ber of auxiliary parts to the core protocol. The Coloured
Coins project, proposed by Rosenfeld [2012], takes a sim-
ilar but more simplified strategy, embellishing the rules

1

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 2

of a transaction in order to break the fungibility of Bit-
coin’s base currency and allow the creation and tracking of
tokens through a special “chroma-wallet”-protocol-aware
piece of software.

Additional work has been done in the area with discard-
ing the decentralisation foundation; Ripple, discussed by
Boutellier and Heinzen [2014], has sought to create a “fed-
erated” system for currency exchange, effectively creating
a new financial clearing system. It has demonstrated that
high efficiency gains can be made if the decentralisation
premise is discarded.

Early work on smart contracts has been done by Szabo
[1997] and Miller [1997]. Around the 1990s it became clear
that algorithmic enforcement of agreements could become
a significant force in human cooperation. Though no spe-
cific system was proposed to implement such a system,
it was proposed that the future of law would be heavily
affected by such systems. In this light, Ethereum may
be seen as a general implementation of such a crypto-law
system.

2. The Blockchain Paradigm

Ethereum, taken as a whole, can be viewed as a
transaction-based state machine: we begin with a gene-
sis state and incrementally execute transactions to morph
it into some final state. It is this final state which we ac-
cept as the canonical “version” of the world of Ethereum.
The state can include such information as account bal-
ances, reputations, trust arrangements, data pertaining
to information of the physical world; in short, anything
that can currently be represented by a computer is admis-
sible. Transactions thus represent a valid arc between two
states; the ‘valid’ part is important—there exist far more
invalid state changes than valid state changes. Invalid
state changes might, e.g. be things such as reducing an
account balance without an equal and opposite increase
elsewhere. A valid state transition is one which comes
about through a transaction. Formally:

(1) σt+1 ≡ Υ(σt, T)

where Υ is the Ethereum state transition function. In
Ethereum, Υ, together with σ are considerably more pow-
erful then any existing comparable system; Υ allows com-
ponents to carry out arbitrary computation, while σ al-
lows components to store arbitrary state between trans-
actions.

Transactions are collated into blocks; blocks are
chained together using a cryptographic hash as a means
of reference. Blocks function as a journal, recording a se-
ries of transactions together with the previous block and
an identifier for the final state (though do not store the
final state itself—that would be far too big). They also
punctuate the transaction series with incentives for nodes
to mine. This incentivisation takes places as a state-
transition function, adding value to a nominated account.

Mining is the process of dedicating effort (working) to
bolster one series of transactions (a block) over any other
potential competitor block. It is achieved thanks to a
cryptographically secure proof. This scheme is known as
a proof-of-work and is discussed in detail in section 11.5.

Formally, we expand to:

σt+1 ≡ Π(σt, B)(2)

B ≡ (..., (T0, T1, ...))(3)

Π(σ, B) ≡ Ω(B,Υ(Υ(σ, T0), T1)...)(4)

Where Ω is the block-finalisation state transition func-
tion (a function that rewards a nominated party); B is
this block, which includes a series of transactions amongst
some other components; and Π is the block-level state-
transition function.

This is the basis of the blockchain paradigm, a model
that forms the backbone of not only Ethereum, but all de-
centralised consensus-based transaction systems to date.

2.1. Value. In order to incentivise computation within
the network, there needs to be an agreed method for trans-
mitting value. To address this issue, Ethereum has an in-
trinsic currency, Ether, known also as ETH and sometimes
referred to by the Old English D̄. The smallest subdenom-
ination of Ether, and thus the one in which all integer val-
ues of the currency are counted, is the Wei. One Ether is
defined as being 1018 Wei. There exist other subdenomi-
nations of Ether:

‘

Multiplier Name

100 Wei
1012 Szabo
1015 Finney
1018 Ether

Throughout the present work, any reference to value,
in the context of Ether, currency, a balance or a payment,
should be assumed to be counted in Wei.

2.2. Which History? Since the system is decentralised
and all parties have an opportunity to create a new block
on some older pre-existing block, the resultant structure is
necessarily a tree of blocks. In order to form a consensus as
to which path, from root (the genesis block) to leaf (the
block containing the most recent transactions) through
this tree structure, known as the blockchain, there must
be an agreed-upon scheme. If there is ever a disagree-
ment between nodes as to which root-to-leaf path down
the block tree is the ‘best’ blockchain, then a fork occurs.

This would mean that past a given point in time
(block), multiple states of the system may coexist: some
nodes believing one block to contain the canonical transac-
tions, other nodes believing some other block to be canoni-
cal, potentially containing radically different or incompat-
ible transactions. This is to be avoided at all costs as the
uncertainty that would ensue would likely kill all confi-
dence in the entire system.

The scheme we use in order to generate consensus is a
simplified version of the GHOST protocol introduced by
Sompolinsky and Zohar [2013]. This process is described
in detail in section 10.

3. Conventions

I use a number of typographical conventions for the
formal notation, some of which are quite particular to the
present work:

The two sets of highly structured, ‘top-level’, state val-
ues, are denoted with bold lowercase Greek letters. They

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 3

fall into those of world-state, which are denoted σ (or a
variant thereupon) and those of machine-state, µ.

Functions operating on highly structured values are
denoted with an upper-case greek letter, e.g. Υ, the
Ethereum state transition function.

For most functions, an uppercase letter is used, e.g.
C, the general cost function. These may be subscripted
to denote specialised variants, e.g. CSSTORE, the cost func-
tion for the SSTORE operation. For specialised and possibly
externally defined functions, I may format as typewriter
text, e.g. the SHA3 hash function is denoted SHA3.

Tuples are typically denoted with an upper-case let-
ter, e.g. T , is used to denote an Ethereum transaction.
This symbol may, if accordingly defined, be subscripted
to refer to an individual component, e.g. Ts, denotes the
timestamp of said transaction. The form of the subscript
is used to denote its type; e.g. uppercase subscripts refer
to tuples with subscriptable components.

Scalars and fixed-size byte sequences (or, synony-
mously, arrays) are denoted with a normal lower-case let-
ter, e.g. n is used in the document to denote a transaction
nonce. Those with a particularly special meaning may be
greek, e.g. δ, the number of items required on the stack
for a given operation.

Arbitrary-length sequences are typically denoted as a
bold lower-case letter, e.g. o is used to denote the byte-
sequence given as the output data of a message call. For
particularly important values, a bold uppercase letter may
be used.

Throughout, we assume scalars are positive integers
and thus belong to the set P. The set of all byte sequences
is B, formally defined in Appendix C. If such a set of se-
quences is restricted to those of a particular length, it is
denoted with a subscript, thus the set of all byte sequences
of length 32 is named B32. This is formally defined in sec-
tion 4.3.

Square brackets are used to index into and reference
individual components or subsequences of sequences, e.g.
µs[0] denotes the first item on the machine’s stack. For
subsequences, ellipses are used to specify the intended
range, to include elements at both limits, e.g. µm[0..31]
denotes the first 32 items of the machine’s memory.

In the case of the global state σ, which is a sequence of
accounts, themselves tuples, the square brackets are used
to reference an individual account.

When considering variants of existing values, I follow
the rule that within a given scope for definition, if we
assume that the unmodified ‘input’ value be denoted by
the placeholder � then the modified and utilisable value
is denoted as �′, and intermediate values would be �∗,
�∗∗ &c. On very particular occasions, in order to max-
imise readability and only if unambiguous in meaning, I
may use alpha-numeric subscripts to denote intermediate
values, especially those of particular note.

When considering the use of existing functions, given
a function f , the function f∗ denotes a similar, element-
wise version of the function mapping instead between se-
quences. It is formally defined in section 4.3.

I define a number of useful functions throughout. One
of the more common is `, which evaluates to the last item
in the given sequence:

(5) `(x) ≡ x[‖x‖ − 1]

4. Blocks, State and Transactions

Having introduced the basic concepts behind
Ethereum, we will discuss the meaning of a transaction, a
block and the state in more detail.

4.1. World State. The world state (state), is a map-
ping between addresses (160-bit identifiers) and account
states (a data structure serialised as RLP, see Appendix
C). Though not stored on the blockchain, it is assumed
that the implementation will maintain this mapping in a
modified Merkle Patricia tree (trie, see Appendix E). The
trie requires a simple database backend that maintains a
mapping of bytearrays to bytearrays; we name this under-
lying database the state database. This has a number of
benefits; firstly the root node of this structure is crypto-
graphically dependent on all internal data and as such its
hash can be used as a secure identity for the entire sys-
tem state. Secondly, being an immutable data structure,
it allows any previous state (whose root hash is known) to
be recalled by simply altering the root hash accordingly.
Since we store all such root hashes in the blockchain, we
are able to trivially revert to old states.

The account state comprises the first two, and poten-
tially the last two, of the following fields:

nonce: A scalar value equal to the number of trans-
actions sent from this address or, in the case
of accounts with associated code, the number of
contract-creations made by this account. For ac-
count of address a in state σ, this would be for-
mally denoted σ[a]n.

balance: A scalar value equal to the number of Wei
owned by this address. Formally denoted σ[a]b.

stateRoot: A 256-bit hash of the root node of a trie
structure that encodes the storage contents of the
account (a mapping between 256-bit integer val-
ues), encoded into the trie as a mapping from a
byte array of size 32 to an RLP-encoded integer.
The hash is formally denoted σ[a]s.

codeHash: The hash of the EVM code of this
account—this is the code that gets executed
should this address receive a message call; it is
immutable and thus, unlike all other fields, can-
not be changed after construction. All such code
fragments are contained in the state database un-
der their corresponding hashes for later retrieval.
This hash is formally denoted σ[a]c, and thus the
code may be denoted as b, given that SHA3(b) =
σ[a]c.

Since I typically wish to refer not to the trie’s root hash
but to the underlying set of key/value pairs stored within,
I define a convenient equivalence:

(6) TRIE
(
L∗I(σ[a]s)

)
≡ σ[a]s

The collapse function for the set of key/value pairs in
the trie, L∗I , is defined as the element-wise transformation
of the base function LI , given as:

(7) LI

(
(k, v)

)
≡
(
k, RLP(v)

)
where:

(8) k ∈ B32 ∧ v ∈ P
It shall be understood that σ[a]s is not a ‘physical’

member of the account and does not contribute to its later
serialisation.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 4

If the codeHash field is the SHA3 hash of the empty
string, i.e. σ[a]c = SHA3

(
()
)
, then the node represents a

simple account, sometimes referred to as a “non-contract”
account.

Thus we may define a world-state collapse function LS :

(9) LS(σ) ≡ {p(a) : σ[a] 6= ∅}

where

(10) p(a) ≡
(
a, RLP

(
(σ[a]n,σ[a]b,σ[a]s,σ[a]c)

))
This function, LS , is used alongside the trie function

to provide a short identity (hash) of the world state. We
assume:

(11) ∀a : σ[a] = ∅ ∨ (a ∈ B20 ∧ v(σ[a]))

where v is the account validity function:

v(x) ≡ xn ∈ P ∧ xb ∈ P ∧ xs ∈ B32 ∧ xc ∈ B32(12)

4.2. The Transaction. A transaction (formally, T) is a
single cryptographically-signed instruction sent by an ac-
tor external to Ethereum. An external actor can be a per-
son (via a mobile device or desktop computer) or could be
from a piece of automated software running on a server.
There are two types of transactions: those which result in
message calls and those which result in the creation of new
accounts with associated code (known informally as ‘con-
tract creation’). Both types specify a number of common
fields:

nonce: A scalar value equal to the number of trans-
actions sent by the sender; formally Tn.

gasPrice: A scalar value equal to the number of
Wei to be paid per unit of gas for all computa-
tion costs incurred as a result of the execution of
this transaction; formally Tp.

gasLimit: A scalar value equal to the maximum
amount of gas that should be used in executing
this transaction. This is paid up-front, before any
computation is done and may not be increased
later; formally Tg.

to: The 160-bit address of the message call’s recip-
ient or the zero address for a contract creation
transaction; formally Tt.

value: A scalar value equal to the number of Wei to
be transferred to the message call’s recipient or,
in the case of contract creation, as an endowment
to the newly created account; formally Tv.

v, r, s: Values corresponding to the signature of the
transaction and used to determine the sender of
the transaction; formally Tw, Tr and Ts. This is
expanded in Appendix F.

Additionally, a contract creation transaction contains:

init: An unlimited size byte array specifying the
EVM-code for the account initialisation proce-
dure, formally Ti.

init is an EVM-code fragment; it returns the body,
a second fragment of code that executes each time the
account receives a message call (either through a trans-
action or due to the internal execution of code). init is
executed only once at account creation and gets discarded
immediately thereafter.

However, a message call transaction contains:

data: An unlimited size byte array specifying the
input data of the message call, formally Td.

Appendix F specifies the function, S, which maps
transactions to the sender, and happens through the
ECDSA of the SECP-256k1 curve, using the hash of the
transaction (excepting the latter three signature fields) as
the datum to sign. For the present we simply assert that
the sender of a given transaction T can be represented
with S(T).

(13)

LT (T) ≡

{
(Tn, Tp, Tg, Tt, Tv, Ti, Tw, Tr, Ts) if Tt = 0

(Tn, Tp, Tg, Tt, Tv, Td, Tw, Tr, Ts) otherwise

Here, we assume all components are interpreted by the
RLP as integer values, with the exception of the arbitrary
length byte arrays Ti and Td and the address hash Tt:

(14) Tn ∈ P ∧ Tv ∈ P ∧ Tp ∈ P ∧
Tg ∈ P ∧ Tw ∈ P ∧ Tr ∈ P ∧
Ts ∈ P ∧ Td ∈ B ∧ Ti ∈ B ∧
Tt ∈ B20

4.3. The Block. The block in Ethereum is the collec-
tion of relevant pieces of information (known as the block
header), H, together with information corresponding to
the comprised transactions, R, and a set of other block
headers U that are known to have a parent equal to the
present block’s parent’s parent (such blocks are known as
uncles). The block header contains several pieces of infor-
mation:

parentHash: The SHA3 256-bit hash of the parent
block, in its entirety; formally Hp.

unclesHash: The SHA3 256-bit hash of the uncles
list portion of this block; formally Hu.

coinbase: The 160-bit address to which all fees col-
lected from the successful mining of this block be
transferred; formally Hb.

stateRoot: The SHA3 256-bit hash of the root
node of the state trie, after all transactions are
executed and finalisations applied; formally Hr.

transactionsTrie: The SHA3 256-bit hash of the
root node of the trie structure populated with
each transaction in the transactions list portion
of the block; formally Ht.

difficulty: A scalar value corresponding to the dif-
ficulty level of this block. This can be calculated
from the previous block’s difficulty level and the
timestamp; formally Hd.

number: A scalar value equal to the number of an-
cestor blocks. The genesis block has a number of
zero; formally Hi.

minGasPrice: A scalar value equal to the mini-
mum price of gas a transaction must have pro-
vided in order to be sufficient for inclusion by this
miner in this block; formally Hm.

gasLimit: A scalar value equal to the current limit
of gas expenditure per block; formally Hl.

gasUsed: A scalar value equal to the total gas used
in transactions in this block; formally Hu.

timestamp: A scalar value equal to the reasonable
output of Unix’s time() at this block’s inception;
formally Hs.

extraData: An arbitrary byte array containing
data relevant to this block. With the exception of

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 5

the genesis block, this must be 32 bytes or fewer;
formally Hx.

nonce: A 256-bit hash which proves that a sufficient
amount of computation has been carried out on
this block; formally Hn.

The other two components in the block are simply a
list of uncle block headers (of the same format as above)
and a series of the transaction receipts. Formally, we can
refer to a block B:

(15) B ≡ (BH , BR, BU)

4.3.1. Transaction Receipt. The transaction receipt is a
tuple of three items comprising the transaction, RT , to-
gether with the post-transaction state, Rσ, and the cu-
mulative gas used in the block containing the transaction
receipt as of immediately after the transaction has hap-
pened, Ru:

(16) R ≡ (RT , Rσ, Ru)

The function LR trivially prepares a transaction receipt
for being transformed into an RLP-serialised byte array:

(17) LR(R) ≡ (LT (RT), TRIE(LS(Rσ)), Ru)

thus the post-transaction state, Rσ is encoded into a trie
structure, the root of which forms the second item.

We assert Ru, the cumulative gas used is a positive
integer:

(18) Ru ∈ P

For convenience, I also name BT the series of transac-
tions encoded by the transaction receipts BR:

(19) BT ≡ (BR[0]T , BR[1]T , ...)

Notably BT does not get serialised into the block by the
block preparation function LB ; it is merely a convenience
equivalence.

4.3.2. Holistic Validity. We can assert its validity if and
only if it satisfies several conditions: It must be internally
consistent with the uncle and transaction block hashes and
the given transactions BT, when executed in order on the
base state σ (derived from the final state of the parent
block), result in a new state of the identity Hr:
(20)
Hu ≡ SHA3(RLP(L∗H(BU))) ∧
Ht ≡ TRIE({∀i < ‖BT‖, i ∈ P : p(i, LR(BR[i])})) ∧
Hr ≡ TRIE(LS(Π(σ, B)))

where p(k, v) is simply the pairwise RLP transforma-
tion, in this case, the first being the index of the trans-
action in the block and the second being the transaction
receipt:

(21) P (k, v) ≡
(
RLP(k), RLP(v)

)
Furthermore:

(22) TRIE(LS(σ)) = P (BH)Hr

Thus TRIE(LS(σ)) is the root node hash of the Merkle
Patricia tree structure containing the key-value pairs of
the state σ with values encoded using RLP, and P (BH)
is the parent block of B, defined directly.

4.3.3. Serialisation. The function LB and LH are the
preparation functions for a block and block header respec-
tively. Much like the transaction receipt preparation func-
tion LR, we assert the types and order of the structure for
when the RLP transformation is required:

LH(H) ≡ (Hp, Hu, Hb, Hr, Ht, Hd,
Hi, Hm, Hl, Hu, Hs, Hx, Hn)

(23)

LB(B) ≡
(
LH(BH), L∗R(BR), L∗H(BU)

)
(24)

With L∗T and L∗H being element-wise sequence trans-
formations, thus:
(25)
f∗
(
(x0, x1, ...)

)
≡
(
f(x0), f(x1), ...

)
for any function f

The component types are defined thus:

(26) Hp ∈ B32 ∧ Hu ∈ B32 ∧ Hb ∈ B20 ∧
Hr ∈ B32 ∧ Ht ∈ B32 ∧ Hd ∈ P ∧
Hi ∈ P ∧ Hm ∈ P ∧ Hl ∈ P ∧
Hu ∈ P ∧ Hs ∈ P ∧ Hx ∈ B ∧
Hn ∈ B32

where

(27) Bn = {B : B ∈ B ∧ ‖B‖ = n}

We now have a rigorous specification for the construc-
tion of a formal block structure. The RLP function RLP

(see Appendix C) provides the canonical method for trans-
forming this structure into a sequence of bytes ready for
transmission over the wire or storage locally.

4.3.4. Block Header Validity. We define P (BH) to be the
parent block of B, formally:

(28) P (H) ≡ B′ : SHA3(RLP(B′)) = Hp

The canonical difficulty of a block of header H is de-
fined as D(H):
(29)

D(H) ≡

222 if Hi = 0

P (H)Hd + bP (H)Hd
1024

c if Hs < P (H)Hs + 42

P (H)Hd − b
P (H)Hd

1024
c otherwise

The canonical gas limit of a block of header H is de-
fined as L(H):

L(H) ≡

106 if Hi = 0

125000 if L′(H) < 125000

L′(H) otherwise

(30)

L′(H) ≡
⌊1023P (H)Hl + b 6

5
P (H)Huc

1024

⌋
(31)

Hs is the timestamp of block H and must fulfil the
relation:

(32) Hs > P (H)Hs

This mechanism enforces a homeostasis in terms of the
time between blocks; a smaller period between the last two
blocks results in an increase in the difficulty level and thus
additional computation required, lengthening the likely
next period. Conversely, if the period is too large, the
difficulty, and expected time to the next block, is reduced.

The nonce, Hn, must satisfy the relation:

(33) PoW(H,Hn) 6
2256

Hd

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 6

Where PoW is the proof-of-work function (see section
11.5): this evaluates to an pseudo-random number cryp-
tographically dependent on the parameters H and Hn.
Given an approximately uniform distribution in the range
[0, 2256), the expected time to find a solution is propor-
tional to the difficulty, Hd.

This is the foundation of the security of the blockchain
and is the fundamental reason why a malicious node can-
not propagate newly created blocks that would otherwise
overwrite (“rewrite”) history. Because the nonce must
satisfy this requirement, and because its satisfaction de-
pends on the contents of the block and in turn its com-
posed transactions, creating new, valid, blocks is difficult
and, over time, requires approximately the total compute
power of the trustworthy portion of the mining peers.

Thus we are able to define the block header validity
function V (H):

V (H) ≡ PoW(H,Hn) 6
2256

Hd
∧(34)

Hd = D(H) ∧(35)

Hl = L(H) ∧(36)

Hs > P (H)Hs ∧(37)

‖Hx‖ < 1024(38)

Noting additionally that extraData must be at most
1024 bytes.

5. Gas and Payment

In order to avoid issues of network abuse and to side-
step the inevitable questions stemming from Turing com-
pleteness, all programmable computation in Ethereum is
subject to fees. The fee schedule is specified in units of
gas (see Appendix B for the fees associated with var-
ious computation). Thus any given fragment of pro-
grammable computation (this includes creating contracts,
making message calls, utilising and accessing account stor-
age and executing operations on the virtual machine) has
a universally agreed cost in terms of gas.

Every transaction has a specific amount of gas associ-
ated with it: gasLimit. This is the amount of gas which
is implicitly purchased from the sender’s account balance.
The purchase happens at the according gasPrice, also
specified in the transaction. The transaction is considered
invalid if the account balance cannot support such a pur-
chase. It is named gasLimit since any unused gas at the
end of the transaction is refunded (at the same rate of pur-
chase) to the sender’s account. Gas does not exist outside
of the execution of a transaction. Thus for accounts with
trusted code associated, a relatively high gas limit may be
set and left alone.

In general, Ether used to purchase gas that is not re-
funded is delivered to the coinbase address, the address
of an account typically under the control of the miner.
Transactors are free to specify any gasPrice that they
wish, however miners are free to ignore transactions as
they choose. A higher gas price on a transaction will there-
fore cost the sender more in terms of Ether and deliver a
greater value to the miner and thus will more likely be
selected for inclusion by more miners. Miners, in general,
will choose to advertise the minimum gas price for which
they will execute transactions and transactors will be free
to canvas these prices in determining what gas price to

offer. Since there will be a (weighted) distribution of min-
imum acceptable gas prices, transactors will necessarily
have a trade-off to make between lowering the gas price
and maximising the chance that their transaction will be
mined in a timely manner.

6. Transaction Execution

The execution of a transaction is the most complex part
of the Ethereum protocol: it defines the state transition
function Υ. It is assumed that any transactions executed
first pass the initial tests of intrinsic validity. These in-
clude:

(1) The transaction signature is valid;
(2) the transaction nonce is valid (equivalent to the

sender account’s current nonce);
(3) the gas limit is no smaller than the intrinsic gas,

g0, used by the transaction;
(4) the sender account balance contains at least the

cost, v0, required in up-front payment.

Formally, we consider the function Υ, with T being a
transaction and σ the state:

(39) σ′ = Υ(σ, T)

Thus σ′ is the post-transactional state. We also define
Υg to evaluate to the amount of gas used in the execution
of a transaction, to be defined later.

We define intrinsic gas g0, the amount of gas this trans-
action requires to be paid prior to execution, as follows:

(40) g0 ≡

{
‖Ti‖Gtxdata +Gtransaction if Tt = 0

‖Td‖Gtxdata +Gtransaction otherwise

where ‖Td‖ and ‖Ti‖ are the sizes, in bytes, of the
transaction’s associated data and initialisation EVM-code,
respectively and G is defined in Appendix B.

The up-front cost v0 is calculated as:

(41) v0 ≡ TgTp + Tv

The validity is determined as:

(42) S(T) 6= ∅ ∧
σ[S(T)] 6= ∅ ∧

Tn = σ[S(T)]n ∧
g0 ≤ Tg ∧
v0 ≤ σ[S(T)]b ∧
Tl ≤ BHl − `(BR)u

Note the final condition; the sum of the transaction’s
gas limit, Tl, and the gas utilised in this block prior, given
by `(BR)u, must be no greater than the block’s gasLimit,
BHl:

The execution of a valid transaction begins with an
irrevocable change made to the state: the nonce of the
account of the sender, S(T), is incremented by one and
the balance is reduced by the up-front cost, v0. The gas
available for the proceeding computation, g, is defined as
Tg − g0. The computation, whether contract creation or
a message call, results in an eventual state (which may
legally be equivalent to the current state), the change to
which is deterministic and never invalid: there can be no
invalid transactions from this point.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 7

We define the checkpoint state σ0:

σ0 ≡ σ except:(43)

σ0[S(T)]b ≡ σ[S(T)]b − v0(44)

σ0[S(T)]n ≡ σ[S(T)]n + 1(45)

Evaluating σP from σ0 depends on the transaction
type; either contract creation or message call; we define
the pairing of post-execution provisional state (σP) and
remaining gas (g′):
(46)

(σP , g
′) ≡

{
Λ(σ0, S(T), To, g, Tp, Tv, Ti, Tb) if Tt = 0

Θ0,1(σ0, S(T), To, Tt, g, Tp, Tv, Td) otherwise

where

(47) g ≡ Tg − g0
Note we use Θ0,1 to denote the fact that only the first

two components of the function’s value are taken; the third
represents the message-call’s output value (a byte array)
and is unused in the context of transaction evaluation.

After the message call or contract creation is processed,
the state is finalised by refunding g′, the remaining gas, to
the sender at the original rate. The Ether for the gas that
was actually used is given to the miner, whose address is
specified as the coinbase of the present block B. So we
define the final state σ′ in terms of the provisional state
σP :

σ′ ≡ σP except(48)

σ′[s]b ≡ σP [s]b + g′Tp(49)

σ′[m]b ≡ σP [m]b + (Tg − g′)Tp(50)

m ≡ BHb(51)

And finally specify Υg, the total gas used in this trans-
action:

(52) Υg(σ, T) ≡ g0 + g′

7. Contract Creation

There are number of intrinsic parameters used when
creating an account: sender (s), nonce (n), available gas
(g), gas price (p), endowment (v) together with an arbi-
trary length byte array, i, the initialisation EVM code.

We define the creation function formally as the func-
tion Λ, which evaluates from these values, together with
the state σ0 to the tuple containing the new state, addi-
tional database entries and remaining gas (σP , g

′), as in
section 6:

(53) (σP , g
′) ≡ Λ(σ0, s, n, g, p, v, i)

The address of the new account is defined as being the
rightmost 160 bits of the SHA3 hash of RLP encoding of
the structure containing only the sender and the nonce.
In the unlikely event that the address is already in use, it
is treated as a big-endian integer and incremented by one
until an unused address is arrived at. Thus we define the
creation address function A:

A(s, n) ≡ a where:(54)

a = arg min
x

: x > a′ ∧ σ0[x] = ∅(55)

a′ = B96..255

(
SHA3

(
RLP
(

(s, n)
)))

(56)

where SHA3 is the SHA3 256-bit hash function, RLP is
the RLP encoding function, Ba..b(X) evaluates to binary
value containing the bits of indices in the range [a, b] of the

binary data X and σ0[x] is the address state of x or ∅ if
none exists. Note we use one fewer than the sender’s nonce
value; we assert that we have incremented the sender ac-
count’s nonce prior to this call, and so the value used
is the sender’s nonce at the beginning of the responsible
transaction or VM operation.

The account’s nonce is initially defined as zero, the
balance as the value passed, the storage as empty and the
code hash as the SHA3 256-bit hash of the empty string,
thus the mutated state becomes σ∗:

σ∗ ≡ σ except:(57)

σ∗[a] ≡
(
0, v, TRIE(∅), SHA3

(
()
))

(58)

where a is the address of the new account, as defined
above. It is asserted that the state database will also
change such that it defines the pair (SHA3(b),b).

Finally, the account is initialised through the execution
of the initialising EVM code i according to the execution
model (see section 9). Code execution can effect several
events that are not internal to the execution state: the
account’s storage can be altered, further accounts can be
created and further message calls can be made. As such,
the code execution function Ξ evaluates to a tuple of the
resultant state σ∗∗ and available gas remaining g′.

Code execution depletes gas; thus it may exit before the
code has come to a natural halting state. In this excep-
tional case we say an Out-of-Gas exception has occurred:
The evaluated state is defined as being the empty set ∅
and the entire create operation should have no effect on
the state, effectively leaving it as it was immediately prior
to attempting the creation. The gas remaining should be
zero. If the creation was conducted as the receiptation
of a transaction, then this doesn’t affect payment of the
intrinsic cost: it is paid regardless.

If such an exception does not occur, then the remaining
gas is refunded to the originator and the now-altered state
is allowed to persevere. Thus formally, we may specify the
resultant state and gas as (σP , g

′) where:

(59) (σ∗∗, g′,o) ≡ Ξ(σ∗, g, I)

σP ≡

σ∗∗ if σ∗∗[a] = ∅
σ∗∗ except:

σP [a]b = o otherwise

(60)

Ia ≡ a(61)

Io ≡ s(62)

Ip ≡ p(63)

Id ≡ ()(64)

Is ≡ s(65)

Iv ≡ v(66)

Ib ≡ i(67)

Id evaluates to the empty tuple. IH has no special
treatment and are determined from the blockchain. The
exception in the determination of σP dictates that the
resultant byte sequence from the execution of the initial-
isation code specifies the final body code for the newly-
created account, with σP [A(s,σ[s]n)]b being the newly
created account’s body code and o the output byte se-
quence of the code execution.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 8

7.1. Subtleties. Note that while the initialisation code
is executing, the newly created address exists but with no
intrinsic body code. Thus any message call received by
it during this time causes no code to be executed. If the
initialisation execution ends with a SUICIDE instruction,
no code is set. For a normal STOP code, or if the code
returned is otherwise empty, then the state is left with a
zombie account, and any remaining balance will be locked
into the account forever.

8. Message Call

In the case of executing a message call, several param-
eters are required: sender (s), transaction originator (o),
recipient (r), available gas (g), value (v) and gas price
(p) together with an arbitrary length byte array, d, the
input data of the call. Aside from evaluating to a new
state and additional database entries, message calls also
have an extra component—the output data denoted by the
byte array o. This is ignored when executing transactions,
however message calls can be initiated due to VM-code ex-
ecution and in this case this information is used.

(68) (σP , g
′,o) ≡ Θ(σ, s, o, r, g, p, v,d)

We define σ1, the checkpoint state as the original state
but with the value transferred to the recipient:

σ1 ≡ σ except:(69)

σ1[r]b ≡ σ1[r]b + v(70)

The account’s associated code (identified as the frag-
ment whose SHA3 hash is σ[r]c) is executed according to
the execution model (see section 9). Just as with con-
tract creation, if the execution halts due to an exhausted
gas supply, then no gas is refunded to the caller and the
state is reverted to the point immediately prior to code
execution.

σP ≡

σ1 if σ1[r]c = ∅
σ1 if σ∗∗ = ∅
σ∗∗ otherwise

(71)

(σ∗∗, g′,o) ≡ Ξ(σ1, g, I)(72)

Ia ≡ a(73)

Io ≡ o(74)

Ip ≡ p(75)

Id ≡ d(76)

Is ≡ s(77)

Iv ≡ v(78)

Let SHA3(Ib) = σ[r]c(79)

It is assumed that the client will have stored the pair
(SHA3(Ib), Ib) at some point prior in order to make the
determination of Ib feasible.

9. Execution Model

The execution model specifies how the system state is
altered given a series of bytecode instructions and a small
tuple of environmental data. This is specified through a
formal model of a virtual state machine, known as the
Ethereum Virtual Machine (EVM). It is a quasi-Turing-
complete machine; the quasi qualification comes from the
fact that the computation is intrinsically bounded through
a parameter, gas, which limits the total amount of com-
putation done.

9.1. Basics. The EVM is a simple stack-based architec-
ture. The word size of the machine (and thus size of stack
item) is 256-bit. This was chosen to facilitate the SHA3-
256 hash scheme and elliptic-curve computations. The
memory model is a simple word-addressed byte array. The
stack has an unlimited size. The machine also has an
independent storage model; this is similar in concept to
the memory but rather than a byte array, it is a word-
addressable word array. Unlike memory, which is volatile,
storage is non volatile and is maintained as part of the
system state. All locations in both storage and memory
are well-defined initially as zero.

The machine does not follow the standard von Neu-
mann architecture. Rather than storing program code in
generally-accessible memory or storage, it is stored sepa-
rately in a virtual ROM interactable only through a spe-
cialised instruction.

The machine can have exceptional execution for several
reasons, including stack underflows and invalid instruc-
tions. These unambiguously and validly result in imme-
diate halting of the machine with all state changes left
intact. The one piece of exceptional execution that does
not leave state changes intact is the out-of-gas (OOG) ex-
ception. Here, the machine halts immediately and reports
the issue to the execution agent (either the transaction
processor or, recursively, the spawning execution environ-
ment) and which will deal with it separately.

9.2. Fees Overview. Fees (denominated in gas) are
charged under three distinct circumstances, all three as
prerequisite to the execution of an operation. The first
and most common is the fee intrinsic to the computation
of the operation. Most operations require a single gas fee
to be paid for their execution; exceptions include SSTORE,
SLOAD, CALL, CREATE, BALANCE and SHA3. Secondly,
gas may be deducted in order to form the payment for a
subordinate message call or contract creation; this forms
part of the payment for CREATE and CALL. Finally, gas
may be paid due to an increase in the usage of the memory.

Over a account’s execution, the total fee for memory-
usage payable is proportional to smallest multiple of 32
bytes that are required such that all memory indices
(whether for read or write) are included in the range.
This is paid for on a just-in-time basis; as such, refer-
encing an area of memory at least 32 bytes greater than
any previously indexed memory will certainly result in an
additional memory usage fee. Due to this fee it is highly
unlikely addresses will ever go above 32-bit bounds since
at the present price of Ether and default gas price, that
would cost around US$20M for the memory fee alone.

Storage fees have a slightly nuanced behaviour—to in-
centivise minimisation of the use of storage (which corre-
sponds directly to a larger state database on all nodes),
the execution fee for an operation that clears an entry in
the storage is waived; in fact, it is effectively paid up-front
since the initial usage of a storage location costs twice as
much as the normal usage.

More formally, given an instruction, it is possible to
calculate the gas cost of executing it as follows:

• SHA3 costs Gsha3 gas
• SLOAD costs Gsload gas
• BALANCE costs Gbalance gas
• SSTORE costs d.Gsstore gas where:

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 9

– d = 2 if the new value of the storage is non-
zero and the old is zero;

– d = 0 if the new value of the storage is zero
and the old is non-zero;

– d = 1 otherwise.
• CALL costs Gcall, though additional gas may be

taken for the execution of the account’s associated
code, if non-empty.

• CREATE costsGcreate, though additional gas may
be taken for the execution of the account initiali-
sation code.

• STOP costs Gstop gas
• SUICIDE costs Gsuicide gas
• All other operations cost Gstep gas.

Additionally, when memory is accessed with MSTORE,
MSTORE8, MLOAD, CALLDATACOPY, CODECOPY, RE-

TURN, SHA3, CREATE or CALL, the memory should be
enlarged to the smallest multiple of words such that all ad-
dressed bytes now fit in it. See Appendix G for a rigorous
definition of the EVM gas cost.

9.3. Execution Environment. In addition to the sys-
tem state σ, and the remaining gas for computation g,
there are several pieces of important information used in
the execution environment that the execution agent must
provide; these are contained in the tuple I:

• Ia, the address of the account which owns the
code that is executing.

• Io, the sender address of the transaction that orig-
inated this execution.

• Ip, the price of gas in the transaction that origi-
nated this execution.

• Id, the byte array that is the input data to this
execution; if the execution agent is a transaction,
this would be the transaction data.

• Is, the address of the account which caused the
code to be executing; if the execution agent is a
transaction, this would be the transaction sender.

• Iv, the value, in Wei, passed to this account as
part of the same procedure as execution; if the
execution agent is a transaction, this would be
the transaction value.

• Ib, the byte array that is the machine code to be
executed.

• IH , the block header of the present block.

The execution model defines the function Ξ, which can
compute the resultant state σ′ and the remaining gas g′,
given these definitions:

(80) (σ′, g′) ≡ Ξ(σ, g, I)

9.4. Execution Overview. We must now define the Ξ
function. In most practical implementations this will be
modelled as an iterative progression of the pair comprising
the full system state, σ and the machine state, µ. For-
mally, we define it recursively with a function X. This
uses an iterator function O (which defines the result of a
single cycle of the state machine) together with functions
Z which determines if the present state is an exceptional
halting state of the machine and H, specifying the output
data of the instruction if and only if the present state is a
normal halting state of the machine. The empty sequence,

denoted (), is not equal to the empty set, denoted ∅.

Ξ(σ, g, I) ≡ X(σ,µ, I)(81)

µg ≡ g(82)

µpc ≡ 0(83)

µm ≡ (0, 0, ...)(84)

µi ≡ 0(85)

µs ≡ ()(86)

(87) X(σ,µ, I) ≡

(σ,µ, I, ()) if Z(σ,µ, I)

O(σ,µ, I) · o if o 6= ∅
X(O(σ,µ, I)) otherwise

where

o ≡ H(µ, I)(88)

(a, b, c) · d ≡ (a, b, c, d)(89)

The machine state µ is defined as the tuple
(g, pc,m, i, s) which are the gas available, the program
counter, the memory contents, the active number of words
in memory (counting continuously from position 0), and
the stack contents. The memory contents µm are a series
of zeroes of size 2256.

For the ease of reading, the instruction mnemonics,
written in smallcaps (e.g. ADD), should be interpreted as
their numeric equivalents; the full table of instructions and
their specifics is given in Appendix G.

For the purposes of defining Z, H and O, we define w
as the current operation to be executed:

(90) w ≡

{
Ib[µpc] if µpc < ‖Ib‖
STOP otherwise

We also assume the fixed amounts of δ and α, specify-
ing the stack items removed and added, both subscript-
able on the instruction and an instruction cost function C
evaluating to the full cost, in gas, of executing the given
instruction.

9.4.1. Exceptional Halting. The exceptional halting func-
tion Z is defined as:

(91) Z(σ,µ, I) ≡ µg < C(σ,µ, I) ∨
δw = ∅ ∨
‖µs‖ < δw

This states that the execution is in an exceptional halt-
ing state if there is insufficient gas, if the instruction is
invalid (and therefore its δ subscript is undefined) or if
there are insufficient stack items. The astute reader will
realise that this implies that no instruction can, through
its execution, cause an exceptional halt.

9.4.2. Normal Halting. The normal halting function H is
defined:
(92)

H(µ, I) ≡

HRETURN(µ) if w = RETURN

() if w ∈ {STOP, SUICIDE}
∅ otherwise

The data-returning halt operation, RETURN, has a
special function HRETURN, defined in Appendix G.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 10

9.5. The Execution Cycle. Stack items are added or
removed from the left-most, lower-indexed portion of the
series; all other items remain unchanged:

O(σ,µ, I) ≡ (σ′,µ′, I)(93)

∆ ≡ αw − δw(94)

‖µ′s‖ ≡ ‖µs‖+ ∆(95)

∀x ∈ [αw, ‖µ′s‖) : µ′s[x] ≡ µs[x+ ∆](96)

The gas is reduced by the instruction’s gas cost and
for most instructions, the program counter increments on
each cycle, for the three exceptions, we assume a function
J , subscripted by one of two instructions, which evaluates
to the according value:

µ′g ≡ µg − C(σ,µ, I)(97)

µ′pc ≡

JJUMP(µ) if w = JUMP

JJUMPI(µ) if w = JUMPI

µpc + p if w ∈ [PUSH1,PUSH32]

µpc + 1 otherwise

(98)

where p is the byte size of the push instruction, defined
as:

(99) p ≡ w − PUSH1 + 2

In general, we assume the memory and system state
don’t change:

µ′m ≡ µm(100)

µ′i ≡ µi(101)

σ′ ≡ σ(102)

However, instructions do typically alter one or several
components of these values. Altered components listed by
instruction are noted in Appendix G, alongside values for
α and δ and a formal description of the gas requirements.

10. Blocktree to Blockchain

The canonical blockchain is a path from root to leaf
through the entire block tree. In order to have consensus
over which path it is, conceptually we identify the path
that has had the most computation done upon it, or, the
heaviest path. Clearly one factor that helps determine the
heaviest path is the block number of the leaf, equivalent
to the number of blocks, not counting the unmined genesis
block, in the path. The longer the path, the greater the
total mining effort that must have been done in order to
arrive at the leaf. This is akin to existing schemes, such
as that employed in Bitcoin-derived protocols.

This scheme notably ignores so-called stale blocks:
valid, mined blocks, which were propagated too late into
the network and thus were beaten to network consensus by
a sibling block (one with the same parent). Such blocks
become more common as the network propagation time
approaches the ideal inter-block time. However, by count-
ing the computation work of stale block headers, we are
able to do better: we can utilise this otherwise wasted
computation and put it to use in helping to buttress the
more popular blockchain making it a stronger choice over
less popular (though potentially longer) competitors.

This increases overall network security by making it
much harder for an adversary to silently mine a canonical
blockchain (which, it is assumed, would contain different
transactions to the current consensus) and dump it on the

network with the effect of overriding existing blocks and
reversing the transactions within.

In order to validate the extra computation, a given
block B may include the block headers from any known
uncle blocks (i.e. blocks whose parent is equivalent to
the grandparent of B). Since a block header includes the
nonce, a proof-of-work, then the header alone is enough
to validate the computation done. Any such blocks con-
tribute toward the total computation or total difficulty of
a chain that includes them. To incentivise computation
and inclusion, a reward is given both to the miner of the
stale block and the miner of the block that references it.

Thus we define the total difficulty of block B recur-
sively as:

Bt ≡ B′t +Bd +
∑

U∈BU

Ud(103)

B′ ≡ P (BH)(104)

As such given a block B, Bt is its total difficulty, B′

is its parent block, Bd is its difficulty and BU is its set of
uncle blocks.

11. Block Finalisation

The process of finalising a block involves four stages:

(1) Validate (or, if mining, determine) uncles;
(2) validate (or, if mining, determine) transactions;
(3) apply rewards;
(4) verify (or, if mining, compute a valid) state and

nonce.

11.1. Uncle Validation. The validation of uncle headers
means nothing more than verifying that each uncle header
is both a valid header and satisfies the relation of uncle to
the present block. Formally:

(105)
∧

U∈BU

V (U) ∧ P (U) = P (P (BH)) ∧ P (BH) 6= B

11.2. Transaction Validation. The given gasUsed and
minGasPrice must correspond faithfully to the transac-
tions listed. In the case of BHm, the minimum gas price,
all transactions included in the transaction receipt must
have a gas price, T0p, that is at least this value:

(106) ∀ T ∈ BT : Tp ≥ BHm

In the case of BHu, the total gas used in the block, it
must be equal to the accumulated gas used according to
the final transaction:

(107) BHu = `(R)u

11.3. Reward Application. The application of rewards
to a block involves raising the balance of the accounts of
the coinbase address of the block and each uncle by a cer-
tain amount. We raise the block’s coinbase account by Rb,
the block reward, and the coinbase of each uncle by 7

8
of

that. Formally we define the function Ω:

Ω(B,σ) ≡ σ′ : σ′ = σ except:(108)

σ′[BHb]b = σ[BHb]b +Rb(109)

∀U∈BU σ′[Ub]b = σ[Ub]b +
7

8
Rb(110)

We define the block reward as 1500 Finney:

(111) Let Rb = 1.5× 1018

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 11

11.4. State & Nonce Validation. We may now define
the function, Γ, that maps a block B to its initiation state:
(112)

Γ(B) ≡

{
σ0 if P (BH) = ∅
σi : TRIE(LS(σi)) = P (BH)Hr otherwise

Here, TRIE(LS(σi)) means the hash of the root node of
a trie of state σi; it is assumed that implementations will
store this in the state database, trivial and efficient since
the trie is by nature a mutable data structure.

And finally define Φ, the block transition function,
which maps an incomplete block B to a complete block
B′:

Φ(B) ≡ B′ : B′ = B∗ except:(113)

B′n = n : PoW(B∗, n) <
2256

Hd
(114)

B∗ ≡ B except: B′r = r(Π(Γ(B), B))(115)

As specified at the beginning of the present work, Π is
the state-transition function, which is defined in terms of
Ω, the block finalisation function and Υ, the transaction-
evaluation function, both now well-defined.

As previously detailed, R[n]σ and R[n]u are the nth
corresponding states and cumulative gas used after each
transaction. The former is defined simply as the state re-
sulting from applying the corrresponding transaction to
the state resulting from the previous transaction (or the
block’s initial state in the case of the first such transac-
tion):

(116) BR[n]σ =

{
Γ(B) if n < 0

Υ(BR[n− 1]σ, BT[n]) otherwise

In the case of g, we take a similar approach defining
each item as the gas used in evaluating the corresponding
transaction summed with the previous item (or zero, if it
is the first), giving us a running total:

(117) BR[n]u =

0 if n < 0

Υg(BR[n− 1]σ, BT[n])

+BR[n− 1]u otherwise

Finally, we define Π as the new state given the block
reward function Ω applied to the final transaction’s resul-
tant state, `(BR)σ:

(118) Π(σ, B) ≡ Ω(B, `(BR)σ)

Thus the complete block-transition mechanism, less
PoW, the proof-of-work function is defined.

11.5. Mining Proof-of-Work. The mining proof-of-
work (PoW) exists as a cryptographically secure nonce
that proves beyond reasonable doubt that a particular
amount of computation has been expended in the deter-
mination of some token value n. It is utilised to enforce
the blockchain security by giving meaning and credence
to the notion of difficulty (and, by extension, total dif-
ficulty). However, since mining new blocks comes with
an attached reward, the proof-of-work not only functions
as a method of securing confidence that the blockchain
will remain canonical into the future, but also as a wealth
distribution mechanism.

For both reasons, there are two important goals of the
proof-of-work function; firstly, it should be as accessible as
possible to as many people as possible. The requirement

of, or reward from, specialised and uncommon hardware
should be minimised. This makes the distribution model
as open as possible, and, ideally, makes the act of mining a
simple swap from electricity to Ether at roughly the same
rate for anyone around the world.

Secondly, it should not be possible to make super-linear
profits, and especially not so with a high initial barrier.
Such a mechanism allows a well-funded adversary to gain
a troublesome amount of the network’s total mining power
and as such gives them a super-linear reward (thus skew-
ing distribution in their favour) as well as reducing the
network security.

One plague of the Bitcoin world is ASICs. These are
specialised pieces of compute hardware that exist only to
do a single task. In Bitcoin’s case the task is the SHA256
hash function. While ASICs exist for a proof-of-work func-
tion, both goals are placed in jeopardy. Because of this,
a proof-of-work function that is ASIC-resistant (i.e. diffi-
cult or economically inefficient to implement in specialised
compute hardware) has been identified as the proverbial
silver bullet.

Two directions exist for ASIC resistance; firstly make
it sequential memory-hard, i.e. engineer the function such
that the determination of the nonce requires a lot of mem-
ory and that the memory cannot be used in parallel to
discover multiple nonces simultaneously. The second is
to make the type of computation it would need to do
general-purpose; the meaning of “specialised hardware”
for a general-purpose task set is, naturally, general pur-
pose hardware and as such commodity desktop computers
are likely to be pretty close to “specialised hardware” for
the task.

More formally, the proof-of-work function takes the
form of PoW:

(119) PoW(Hn, n) <
2256

Hd

Where Hn is the new block’s header H, but without the
nonce component; Hd is the new block’s difficulty value
(i.e. the block difficulty from section 10).

As of the proof-of-concept (PoC) series of the Ethereum
software, the proof-of-work function is simplistic and does
not attempt to secure these goals. It will be described
here for completeness.

11.5.1. PoC Series. For the PoC series, we use a simpli-
fied proof-of-work. This is not ASIC resistant and is meant
merely as a placeholder. It utilises the bare SHA3 hash
function to secure the block chain by requiring the SHA3
hash of the concatenation of the nonce and the header’s
SHA3 hash to be sufficiently low.

It is formally defined as PoW:

(120) PoW(H,n) ≡ BE(SHA3(SHA3(RLP(Hn)) ◦ n))

where: RLP(Hn) is the RLP encoding of the block
header H, not including the final nonce component; SHA3
is the SHA3 hash function accepting an arbitrary length
series of bytes and evaluating to a series of 32 bytes (i.e.
256-bit); n is the nonce, a series of 32 bytes; ◦ is the se-
ries concatenation operator; BE(X) evaluates to the value
equal to X when interpreted as a big-endian-encoded in-
teger.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 12

11.5.2. Release Series. For the release series, we use a
more complex proof-of-work. This has yet to be formally
defined, but involves two components; firstly that it con-
cerns the evaluation of programs on the EVM. Secondly
that it concerns the utilisation of either the blockchain or
the full state trie.

As an overview, the output of the function is based
upon the system state, defined as the hash of the root node
of the state trie. A set of transactions, pseudo-randomly
determined from the nonce value and selected from the last
N blocks is taken. N is large enough and the selection cri-
teria are such that execution of the transactions requires
some non-negligible amount of processing by the EVM.
Whenever code is executed on the EVM, it is pseudo-
randomly (seeded again by the nonce) corrupted before
alteration. Corruption could involve switching addresses
with other transactions or rotating them through in the
state trie (perhaps to the next address with the same order
of magnitude of funds), rotating through instructions that
have equivalent stack behaviour (e.g. swapping ADD for
SUB or GT for EQ), or more destructive techniques such
as randomly changing opcodes. This results in a problem
that both require generalised computation hardware and
is sequentially memory (and perhaps even disk) hard.

Any specialised hardware to perform this task could
also be leveraged to speed up (and thus drive down costs)
of general Ethereum transaction processing.

12. Implementing Contracts

There are several patterns of contracts engineering that
allow particular useful behaviours; two of these that I will
briefly discuss are data feeds and random numbers.

12.1. Data Feeds. A data feed contract is one which pro-
vides a single service: it gives access to information from
the external world within Ethereum. The accuracy and
timeliness of this information is not guaranteed and it is
the task of a secondary contract author—the contract that
utilises the data feed—to determine how much trust can
be placed in any single data feed.

The general pattern involves a single contract within
Ethereum which, when given a message call, replies with
some timely information concerning an external phenom-
enon. An example might be the local temperature of
New York City. This would be implemented as a contract
that returned that value of some known point in storage.
Of course this point in storage must be maintained with
the correct such temperature, and thus the second part
of the pattern would be for an external server to run an
Ethereum node, and immediately on discovery of a new
block, creates a new valid transaction, sent to the contract,
updating said value in storage. The contract’s code would
accept such updates only from the identity contained on
said server.

12.2. Random Numbers. Providing random numbers
within a deterministic system is, naturally, an impossible
task. However, we can approximate with pseudo-random
numbers by utilising data which is generally unknowable
at the time of transacting. Such data might include the
block’s hash, the block’s timestamp and the block’s coin-
base address. For a series of such numbers, a trivial solu-
tion would be to work from the previous pseudo-random

number, adding some constant amount and hashing the
result.

This strategy does have a downside: a miner with suf-
ficient power could alter any of the above values in or-
der to deliver a seed in order to alter the outcome of
the pseudorandom-based executions. For a more secure
pseudo-random offering, all involved parties could agree on
a number of data feed contracts; these could be combined
along with the block timestamp and hashed to produce
the first number in the series. By spreading the inputs
and thus the trust between numerous parties the likeli-
hood of a malicious miner altering the outcome becomes
increasingly less likely.

13. Future Directions

The state database won’t be forced to maintain all past
state trie structures into the future. It should maintain an
age for each node and eventually discard nodes that are
neither recent enough nor checkpoints; checkpoints, or a
set of nodes in the database that allow a particular block’s
state trie to be traversed, could be used to place a maxi-
mum limit on the amount of computation needed in order
to retrieve any state throughout the blockchain.

Blockchain consolidation could be used in order to re-
duce the amount of blocks a client would need to download
to act as a full, mining, node. A compressed archive of the
trie structure at given points in time (perhaps one in every
10000th block) could be maintained by the peer network,
effectively recasting the genesis block. This would reduce
the amount to be downloaded to a single archive plus a
hard maximum limit of blocks.

Finally, blockchain compression could perhaps be con-
ducted: nodes in state trie that haven’t sent/received a
transaction in some constant amount of blocks could be
thrown out, reducing both Ether-leakage and the growth
of the state database.

13.1. Scalability. Scalability remains an eternal con-
cern. With a generalised state transition function, it be-
comes difficult to partition and parallelise transactions
to apply the divide-and-conquer strategy. Unaddressed,
the dynamic value-range of the system remains essentially
fixed and as the average transaction value increases, the
less valuable of them become ignored, being economically
pointless to include in the main ledger. However, several
strategies exist that may potentially be exploited to pro-
vide a considerably more scalable protocol.

Some form of hierarchical structure, achieved by ei-
ther consolidating smaller lighter-weight chains into the
main block or building the main block through the in-
cremental combination and adhesion (through proof-of-
work) of smaller transaction sets may allow parallelisa-
tion of transaction combination and block-building. Par-
allelism could also come from a prioritised set of parallel
blockchains, consolidated each block and with duplicate
or invalid transactions thrown out accordingly.

Finally, verifiable computation, if made generally avail-
able and efficient enough, may provide a route to allow the
proof-of-work to be the verification of final state.

14. Conclusion

I have introduced, discussed and formally defined the
protocol of Ethereum. Through this protocol the reader

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 13

may implement a node on the Ethereum network and join
others in a decentralised secure social operating system.
Contracts may be authored in order to algorithmically
specify and autonomously enforce rules of interaction.

15. Acknowledgements

Useful corrections and suggestions were provided by a
number of others from the Ethereum community includ-
ing Aeron Buchanan, Nick Savers, Viktor Trón, Marko
Simovic and, of course, Vitalik Buterin.

References

Jacob Aron. BitCoin software finds new life. New Scien-
tist, 213(2847):20, 2012.

Adam Back. Hashcash - Amortizable Publicly Auditable
Cost-Functions. 2002. URL {http://www.hashcash.

org/papers/amortizable.pdf}.
Roman Boutellier and Mareike Heinzen. Pirates, Pioneers,

Innovators and Imitators. In Growth Through Innova-
tion, pages 85–96. Springer, 2014.

Vitalik Buterin. Ethereum: A Next-Generation Smart
Contract and Decentralized Application Platform. 2013.
URL {http://ethereum.org/ethereum.html}.

Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle,
and Sheueling Chang Shantz. Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In Crypto-
graphic Hardware and Embedded Systems-CHES 2004,
pages 119–132. Springer, 2004.

Mark Miller. The Future of Law. In paper delivered at the
Extro 3 Conference (August 9), 1997.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Consulted, 1:2012, 2008.

Meni Rosenfeld. Overview of Colored Coins. 2012. URL
{https://bitcoil.co.il/BitcoinX.pdf}.

Yonatan Sompolinsky and Aviv Zohar. Accel-
erating Bitcoin’s Transaction Processing. Fast
Money Grows on Trees, Not Chains, 2013. URL
{CryptologyePrintArchive,Report2013/881}.
http://eprint.iacr.org/.

Simon Sprankel. Technical Basis of Digital Currencies,
2013.

Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

J. R. Willett. MasterCoin Complete Specification. 2013.
URL {https://github.com/mastercoin-MSC/spec}.

Appendix A. Terminology

External Actor: A person or other entity able to interface to an Ethereum node, but external to the world of
Ethereum. It can interact with Ethereum through depositing signed Transactions and inspecting the blockchain
and associated state. Has one (or more) intrinsic Accounts.

Address: A 160-bit code used for identifying Accounts.
Account: Accounts have an intrinsic balance and transaction count maintained as part of the Ethereum state.

They also have some (possibly empty) EVM Code and a (possibly empty) Storage State associated with them.
Though homogenous, it makes sense to distinguish between two practical types of account: those with empty
associated EVM Code (thus the account balance is controlled, if at all, by some external entity) and those with
non-empty associated EVM Code (thus the account represents an Autonomous Object). Each Account has a
single Address that identifies it.

Transaction: A piece of data, signed by an External Actor. It represents either a Message or a new Autonomous
Object. Transactions are recorded into each block of the blockchain.

Autonomous Object: A notional object existent only within the hypothetical state of Ethereum. Has an intrinsic
address and thus an associated account; the account will have non-empty associated EVM Code. Incorporated
only as the Storage State of that account.

Storage State: The information particular to a given Account that is maintained between the times that the
Account’s associated EVM Code runs.

Message: Data (as a set of bytes) and Value (specified as Ether) that is passed between two Accounts, either
through the deterministic operation of an Autonomous Object or the cryptographically secure signature of the
Transaction.

Message Call: The act of passing a message from one Account to another. If the destination account is associated
with non-empty EVM Code, then the VM will be started with the state of said Object and the Message acted
upon. If the message sender is an Autonomous Object, then the Call passes any data returned from the VM
operation.

Gas: The fundamental network cost unit. Paid for exclusively by Ether (as of PoC-4), which is converted freely
to and from Gas as required. Gas does not exist outside of the internal Ethereum computation engine; its price
is set by the Transaction and miners are free to ignore Transactions whose Gas price is too low.

Contract: Informal term used to mean both a piece of EVM Code that may be associated with an Account or an
Autonomous Object.

Object: Synonym for Autonomous Object.
App: An end-user-visible application hosted in the Ethereum Browser.
Ethereum Browser: (aka Ethereum Reference Client) A cross-platform GUI of an interface similar to a simplified

browser (a la Chrome) that is able to host sandboxed applications whose backend is purely on the Ethereum
protocol.

Ethereum Virtual Machine: (aka EVM) The virtual machine that forms the key part of the execution model
for an Account’s associated EVM Code.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 14

Ethereum Runtime Environment: (aka ERE) The environment which is provided to an Autonomous Object
executing in the EVM. Includes the EVM but also the structure of the world state on which the EVM relies for
certain I/O instructions including CALL & CREATE.

EVM Code: The bytecode that the EVM can natively execute. Used to formally specify the meaning and rami-
fications of a message to an Account.

EVM Assembly: The human-readable form of EVM-code.
LLL: The Lisp-like Low-level Language, a human-writable language used for authoring simple contracts and general

low-level language toolkit for trans-piling to.

Appendix B. Fee Schedule

The fee schedule G is a tuple of 10 scalar values corresponding to the relative costs, in gas, of a number of abstract
operations that a transaction may effect.

Name Value Description*

Gstep 1 Default amount of gas to pay for execution cycle.
Gstop 0 Nothing paid for the STOP operation.
Gsuicide 0 Nothing paid for the SUICIDE operation.
Gsha3 20 Paid for a SHA3 operation.
Gsload 20 Paid for a SLOAD operation.
Gsstore 100 Paid for a normal SSTORE operation (doubled or waived sometimes).
Gbalance 20 Paid for a BALANCE operation.
Gcreate 100 Paid for a CREATE operation.
Gcall 20 Paid for a CALL operation.
Gmemory 1 Paid for every additional word when expanding memory.
Gtxdata 5 Paid for every byte of data or code for a transaction.
Gtransaction 500 Paid for every transaction.

Appendix C. Recursive Length Prefix

This is a serialisation method for encoding arbitrarily structured binary data (byte arrays).
We define the set of possible structures T:

T ≡ L ∪ B(121)

L ≡ {t : t = (t[0], t[1], ...) ∧ ∀n<‖t‖ t[n] ∈ T}(122)

B ≡ {b : b = (b[0],b[1], ...) ∧ ∀n<‖b‖ b[n] ∈ Y}(123)

Where Y is the set of bytes. Thus B is the set of all sequences of bytes (otherwise known as byte-arrays, and a leaf if
imagined as a tree), L is the set of all tree-like (sub-)structures that are not a single leaf (a branch node if imagined as
a tree) and T is the set of all byte-arrays and such structural sequences.

We define the RLP function as RLP through two sub-functions, the first handling the instance when the value is a
byte array, the second when it is a sequence of further values:

(124) RLP(x) ≡

{
Rb(x) if x ∈ B
Rl(x) otherwise

If the value to be serialised is a byte-array, the RLP serialisation takes one of three forms:

• If the byte-array contains solely a single byte and that single byte is less than 128, then the input is exactly
equal to the output.

• If the byte-array contains fewer than 56 bytes, then the output is equal to the input prefixed by the byte equal
to the length of the byte array plus 128.

• Otherwise, the output is equal to the input prefixed by the minimal-length byte-array which when interpreted
as a big-endian integer is equal to the length of the input byte array, which is itself prefixed by the number of
bytes required to faithfully encode this length value plus 183.

Formally, we define Rb:

Rb(x) ≡

x if ‖x‖ = 1 ∧ x[0] < 128

(128 + ‖x‖) · x else if ‖x‖ < 56(
183 +

∥∥BE(‖x‖)
∥∥) · BE(‖x‖) · x otherwise

(125)

BE(x) ≡ (b0, b1, ...) : b0 6= 0 ∧
n=0∑

n<‖b‖

bn256‖b‖−1−n(126)

(a) · (b, c) · (d, e) = (a, b, c, d, e)(127)

Thus BE is the function that expands a positive integer value to a big-endian byte array of minimal length and the
dot operator performs sequence concatenation.

If instead, the value to be serialised is a sequence of other items then the RLP serialisation takes one of two forms:

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 15

• If the concatenated serialisations of each contained item is less than 56 bytes in length, then the output is equal
to that concatenation prefixed by the byte equal to the length of this byte array plus 192.

• Otherwise, the output is equal to the concatenated serialisations prefixed by the minimal-length byte-array
which when interpreted as a big-endian integer is equal to the length of the concatenated serialisations byte
array, which is itself prefixed by the number of bytes required to faithfully encode this length value plus 247.

Thus we finish by formally defining Rl:

Rl(x) ≡

{
(192 + ‖s(x)‖) · s(x) if ‖s(x)‖ < 56(
247 +

∥∥BE(‖s(x)‖)
∥∥) · BE(‖s(x)‖) · s(x) otherwise

(128)

s(x) ≡ RLP(x0) · RLP(x1)...(129)

If RLP is used to encode a scalar, defined only as a positive integer, it must be specified as the shortest byte array
such that the big-endian interpretation of it is equal. Thus the RLP of some positive integer i is defined as:

(130) RLP(i : i ∈ P) ≡ RLP(BE(i))

When interpreting RLP data, if an expected fragment is decoded as a scalar and leading zeroes are found in the byte
sequence, clients are required to consider it non-canonical and treat it in the same manner as otherwise invalid RLP
data, dismissing it completely.

There is no specific canonical encoding format for signed or floating-point values.

Appendix D. Hex-Prefix Encoding

Hex-prefix encoding is an efficient method of encoding an arbitrary number of nibbles as a byte array. It is able to
store an additional flag which, when used in the context of the trie (the only context in which it is used), disambiguates
between node types.

It is defined as the function HP which maps from a sequence of nibbles (represented by the set Y) together with a
boolean value to a sequence of bytes (represented by the set B):

HP(x, t) : x ∈ Y ≡

{
(16f(t), 16x[0] + x[1], 16x[2] + x[3], ...) if ‖x‖ is even

(16(f(t) + 1) + x[0], 16x[1] + x[2], 16x[3] + x[4], ...) otherwise
(131)

f(t) ≡

{
2 if t

0 otherwise
(132)

Thus the high nibble of the first byte contains two flags; the lowest bit encoding the oddness of the length and the
second-lowest encoding the flag t. The low nibble of the first byte is zero in the case of an even number of nibbles and the
first nibble in the case of an odd number. All remaining nibbles (now an even number) fit properly into the remaining
bytes.

Appendix E. Modified Merkle Patricia Tree

The modified Merkle Patricia tree (trie) provides a persistent data structure to map between arbitrary-length binary
data (byte arrays). It is defined in terms of a mutable data structure to map between 256-bit binary fragments and
arbitrary-length binary data, typically implemented as a database. The core of the trie, and its sole requirement in terms
of the protocol specification is to provide a single value that identifies a given set of key-value pairs, which may either
a 32 byte sequence or the empty byte sequence. It is left as an implementation consideration to store and maintain the
structure of the trie in a manner the allows effective and efficient realisation of the protocol.

Formally, we assume the input value I, a set containing pairs of byte sequences:

(133) I = {(k0 ∈ B,v0 ∈ B), (k1 ∈ B,v1 ∈ B), ...}

When considering such a sequence, we use the common numeric subscript notation to refer to a tuple’s key or value,
thus:

(134) ∀I:∈II ≡ (I0, I1)

Any series of bytes may also trivially be viewed as a series of nibbles, given an endian-specific notation; here we
assume big-endian. Thus:

y(I) = {(k′0 ∈ Y,v0 ∈ B), (k′1 ∈ Y,v1 ∈ B), ...}(135)

∀n ∀i:i<2‖kn‖ k′n[i] ≡

{
bkn[bi÷ 2c]÷ 16c if i is even

kn[bi÷ 2c] mod 16 otherwise
(136)

We define the function TRIE, which evaluates to the root of the trie that represents this set when encoded in this
structure. The empty trie is defined as being a the empty byte sequence, ():

(137) TRIE(I) ≡

{
() if I = ∅
SHA3(c(I, 0)) otherwise

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 16

We also assume a function n, the trie’s node cap function. When composing a node, we use RLP to encode the
structure. As a means of reducing storage complexity, for nodes whose composed RLP is fewer than 32 bytes, we store
the RLP directly; for those larger we assert prescience of the byte array whose SHA3 hash evaluates to our reference.
Thus we define in terms of c, the node composition function:

(138) n(I, i) ≡

() if I = ∅
c(I, i) if ‖c(I, i)‖ < 32

SHA3(c(I, i)) otherwise

In a manner similar to a radix tree, when the trie is traversed from root to leaf, one may build a single key-value
pair. The key is accumulated through the traversal, acquiring a single nibble from each branch node (just as with a
radix tree). Unlike a radix tree, in the case of multiple keys shared the same prefix or in the case of a single key having
a unique suffix, two optimising nodes are provided. Thus while traversing, one may potentially acquire multiple nibbles
from each of the other two node types, extension and leaf. There are three kinds of nodes in the trie:

Leaf: A two-item structure whose first item corresponds to the nibbles in the key not already accounted for by the
accumulation of keys and branches traversed from the root. The hex-prefix encoding method is used and the
second parameter to the function is required to be true.

Extension: A two-item structure whose first item corresponds to a series of nibbles of size greater than one that
are shared by at least two distinct keys past the accumulation of nibbles keys and branches as traversed from
the root. The hex-prefix encoding method is used and the second parameter to the function is required to be
false.

Branch: A 17-item structure whose first sixteen items correspond to each of the sixteen possible nibble values for
the keys at this point in their traversal. The 17th item is used in the case of this being a terminator node and
thus a key being ended at this point in its traversal.

A branch is then only used when necessary; no branch nodes may exist that contain only a single non-zero entry. We
may formally define this structure with the structural composition function c:
(139)

c(I, i) ≡

RLP

((
HP(I0[i..(‖I0‖ − 1)], true), I1

))
if ‖I‖ = 1 where ∃I : I ∈ I

RLP

((
HP(I0[i..(j − 1)], false), n(I, j)

))
if i 6= j where j = arg maxx : ∃l : ‖l‖ = x : ∀I∈I : I0[0..(x− 1)] = l

RLP

(
(u(0), u(1), ..., u(15), v)

)
otherwise where u(j) ≡ n({I : I ∈ I ∧ I0[i] = j}, i+ 1)

v =

{
I1 if ∃I : I ∈ I ∧ ‖I0‖ = i

() otherwise

E.1. Trie Database. Thus no explicit assumptions are made concerning what data is stored and what is not, since
that is an implementation-specific consideration; we simply define the identity function mapping the key-value set I
to a 32-byte hash and assert that only a single such hash exists for any I, which though not strictly true is accurate
within acceptable precision given the SHA3 hash’s collision resistance. In reality, a sensible implementation will not fully
recompute the trie root hash for each set.

A reasonable implementation will maintain a database of nodes determined from the computation of various tries
or, more formally, it will memoise the function c. This strategy uses the nature of the trie to both easily recall the
contents of any previous key-value set and to store multiple such sets in a very efficient manner. Due to the dependency
relationship, Merkle-proofs may be constructed with an O(logN) space requirement that can demonstrate a particular
leaf must exist within a trie of a given root hash.

Appendix F. Signing Transactions

The method of signing transactions is similar to the ‘Electrum style signatures’; it utilises the SECP-256k1 curve as
described by Gura et al. [2004].

It is assumed that the sender has a valid private key pr, a randomly selected positive integer in the range (0, 2256)
represented as a byte array of length 32 in big-endian form.

We assert the functions ECDSASIGN, ECDSARESTORE and ECDSAPUBKEY. These are formally defined in the literature.

ECDSAPUBKEY(pr ∈ B32) ≡ pu ∈ B64(140)

ECDSASIGN(e ∈ B32, pr ∈ B32) ≡ (v ∈ B2, r ∈ B32, s ∈ B32)(141)

ECDSARESTORE(e ∈ B32, v ∈ B2, r ∈ B32, s ∈ B32) ≡ pu ∈ B64(142)

Where pu is the public key, assumed to be a byte array of size 64 (formed from the concatenation of two positive
integers each < 2256) and pr is the private key, a byte array of size 32 (or a single positive integer < 2256). It is assumed
that v is the ‘recovery id’, a 2-bit value specifying the sign and finiteness of the curve point; unlike some implementations
which keep this value in the range of [27, 30], we subtract the lower bound thus reducing it to a pure 2-bit value in the
range [0, 3].

For a given private key, pr, the Ethereum address A(pr) (a 160-bit value) to which it corresponds is defined as the
right most 160-bits of the SHA3 hash of the corresponding ECDSA public key:

(143) A(pr) = B96..255

(
SHA3

(
ECDSAPUBKEY(pr)

))

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 17

The message hash, h(T), to be signed is the SHA3 hash of the transaction without the latter three signature compo-
nents, formally described as Tr, Ts and Tw:

LS(T) ≡

{
(Tn, Tp, Tg, Tt, Tv, Ti) if Tt = 0

(Tn, Tp, Tg, Tt, Tv, Td) otherwise
(144)

h(T) ≡ SHA3(LS(T))(145)

The signed transaction G(T, pr) is defined as:

G(T, pr) ≡ T except(146)

(Tw, Tr, Ts) = ECDSASIGN(h(T), pr)(147)

gc We may then define the sender function S of the transaction as:

(148) S(T) ≡ B96..255

(
SHA3

(
ECDSARESTORE(h(T), Tw, Tr, Ts)

))
The assertion that the sender of the a signed transaction equals the address of the signer should be self-evident:

(149) ∀T : ∀pr : S(G(T, pr)) ≡ A(pr)

Appendix G. Virtual Machine Specification

When interpreting 256-bit binary values as integers, the representation is big-endian.
When a 256-bit machine datum is converted to and from a 160-bit address or hash, the rightwards (low-order for BE)

20 bytes are used and the left most 12 are discarded or filled with zeroes, thus the integer values (when the bytes are
interpreted as big-endian) are equivalent.

G.1. Gas Cost. The general gas cost function, C, is defined as:

C(σ,µ, I) ≡ Gmemory(µ′i − µi) +

CSSTORE(σ,µ) if w = SSTORE

Gcall + µs[0] if w = CALL

Gcreate if w = CREATE

Gsha3 if w = SHA3

Gsload if w = SLOAD

Gbalance if w = BALANCE

Gstop if w = STOP

Gsuicide if w = SUICIDE

Gstep otherwise

(150)

w ≡

{
Ib[µpc] if µpc < ‖Ib‖
STOP otherwise

(151)

where CSSTORE is specified in the appropriate section below. Note the memory cost component, given as the product
of Gmemory and the maximum of 0 and the ceiling of the number of words in size that the memory must be over the
current number of words, µi in order that all accesses reference valid memory whether for read or write; µ′i is defined as
this new maximum number of words of active memory; special-cases are given where these two are not equal.

G.2. Instruction Set. As previously specified in section 9, these definitions take place in the final context there. In
particular we assume O is the EVM state-progression function and define the terms pertaining to the next cycle’s state
(σ′,µ′) such that:

(152) O(σ,µ, I) ≡ (σ′,µ′, I) with exceptions, as noted

Here given are the various exceptions to the state transition rules given in section 9 specified for each instruction,
together with the additional instruction-specific definitions of J and C. For each instruction, also specified is α, the
additional items placed on the stack and δ, the items removed from stack, as defined in section 9.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 18

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256.

Value Mnemonic δ α Description

0x00 STOP 0 0 Halts execution.
µ′R = []

0x01 ADD 2 1 Addition operation.
µ′s[0] ≡ µs[0] + µs[1]

0x02 MUL 2 1 Multiplication operation.
µ′s[0] ≡ µs[0]× µs[1]

0x03 SUB 2 1 Subtraction operation.
µ′s[0] ≡ µs[0]− µs[1]

0x04 DIV 2 1 Integer division operation.

µ′s[0] ≡

{
0 if µs[1] = 0

bµs[0]÷ µs[1]c otherwise

0x05 SDIV 2 1 Signed integer division operation.

µ′s[0] ≡

{
0 if µs[1] = 0

bµs[0]÷ µs[1]c otherwise

Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x06 MOD 2 1 Modulo remainder operation.

µ′s[0] ≡

{
0 if µs[1] = 0

µs[0] mod µs[1] otherwise

0x07 SMOD 2 1 Signed modulo remainder operation.

µ′s[0] ≡

{
0 if µs[1] = 0

µs[0] mod µs[1] otherwise

Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x08 EXP 2 1 Exponential operation.

µ′s[0] ≡ µs[0]µs[1]

0x09 NEG 1 1 Negation operation.
µ′s[0] ≡ −µs[0]
Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x0a LT 2 1 Less-than comparision.

µ′s[0] ≡

{
1 if µs[0] < µs[1]

0 otherwise

0x0b GT 2 1 Greater-than comparision.

µ′s[0] ≡

{
1 if µs[0] > µs[1]

0 otherwise

0x0c SLT 2 1 Signed less-than comparision.

µ′s[0] ≡

{
1 if µs[0] < µs[1]

0 otherwise

Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x0d SGT 2 1 Signed greater-than comparision.

µ′s[0] ≡

{
1 if µs[0] > µs[1]

0 otherwise

Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x0e EQ 2 1 Equality comparision.

µ′s[0] ≡

{
1 if µs[0] = µs[1]

0 otherwise

0x0f NOT 1 1 Simple not operator.

µ′s[0] ≡

{
1 if µs[0] = 0

0 otherwise

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 19

10s: Bitwise Logic Operations
µs[0]i gives the ith bit (counting from zero) of µs[0]

Value Mnemonic δ α Description

0x10 AND 2 1 Bitwise AND operation.
∀i ∈ [0..255] : µ′s[0]i ≡ µs[0]i ∧ µs[1]i

0x11 OR 2 1 Bitwise OR operation.
∀i ∈ [0..255] : µ′s[0]i ≡ µs[0]i ∨ µs[1]i

0x12 XOR 2 1 Bitwise XOR operation.
∀i ∈ [0..255] : µ′s[0]i ≡ µs[0]i ⊕ µs[1]i

0x13 BYTE 2 1 Retrieve single byte from word.

∀i ∈ [0..7] : µ′s[0]i ≡

{
µs[1](i+8µs[0])

if µs[0] < 32

0 otherwise

For Nth byte, we count from the left (i.e. N=0 would be the most significant in big endian).

20s: SHA3

Value Mnemonic δ α Description

0x20 SHA3 2 1 Compute SHA3-256 hash.
µ′s[0] ≡ SHA3(µm[µs[0] . . . (µs[0] + µs[1]− 1)])
µ′i ≡ max(µi, d(µs[0] + µs[1])÷ 32e)

30s: Environmental Information

Value Mnemonic δ α Description

0x30 ADDRESS 0 1 Get address of currently executing account.
µ′s[0] ≡ Ia

0x31 BALANCE 1 1 Get balance of the given account.

µ′s[0] ≡

{
σ[µs[0]]b when σ[µs[0]] 6= ∅
0 otherwise

0x32 ORIGIN 0 1 Get execution origination address.
µ′s[0] ≡ Io
This is the sender of original transaction; it is never an account with non-empty associated code.

0x33 CALLER 0 1 Get caller address.
µ′s[0] ≡ Ic
This is the address of the account that is directly responsible for this execution.

0x34 CALLVALUE 0 1 Get deposited value by the instruction/transaction responsible for this execution.
µ′s[0] ≡ Iv

0x35 CALLDATALOAD 1 1 Get input data of current environment.
µ′s[0] ≡ Id[µs[0] . . . (µs[0] + 31)]
This pertains to the input data passed with the message call instruction or transaction.

0x36 CALLDATASIZE 0 1 Get size of input data in current environment.
µ′s[0] ≡ ‖Id‖
This pertains to the input data passed with the message call instruction or transaction.

0x37 CALLDATACOPY 3 0 Copy input data in current environment to memory.

∀i∈{0...µs[2]−1}µ
′
m[µs[0] + i] ≡

{
Id[µs[1] + i] if i < ‖Id‖
0 otherwise

This pertains to the input data passed with the message call instruction or transaction.

0x38 CODESIZE 0 1 Get size of code running in current environment.
µ′s[0] ≡ ‖Ib‖

0x39 CODECOPY 3 0 Copy code running in current environment to memory.

∀i∈{0...µs[2]−1}µ
′
m[µs[0] + i] ≡

{
Ib[µs[1] + i] if i < ‖Ib‖
STOP otherwise

0x3a GASPRICE 0 1 Get price of gas in current environment.
µ′s[0] ≡ Ip
This is gas price specified by the originating transaction.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 20

40s: Block Information

Value Mnemonic δ α Description

0x40 PREVHASH 0 1 Get hash of most recent complete block.
µ′s[0] ≡ IHp

IHp is the previous block’s hash.

0x41 COINBASE 0 1 Get the block’s coinbase address.
µ′s[0] ≡ IHb

0x42 TIMESTAMP 0 1 Get the block’s timestamp.
µ′s[0] ≡ IHt

0x43 NUMBER 0 1 Get the block’s number.
µ′s[0] ≡ IHi

0x44 DIFFICULTY 0 1 Get the block’s difficulty.
µ′s[0] ≡ IHd

0x45 GASLIMIT 0 1 Get the block’s gas limit.
µ′s[0] ≡ IHl

50s: Stack, Memory, Storage and Flow Operations

Value Mnemonic δ α Description

0x50 POP 1 0 Remove item from stack.

0x51 DUP 1 2 Duplicate stack item.
µ′s[0] ≡ µs[0]

0x52 SWAP 2 2 Exchange stack items.
µ′s[0] ≡ µs[1]
µ′s[1] ≡ µs[0]

0x53 MLOAD 1 1 Load word from memory.
µ′s[0] ≡ µm[µs[0] . . . (µs[0] + 31)]
µ′i ≡ max(µi, d(µs[0] + 32)÷ 32e)

0x54 MSTORE 2 0 Save word to memory.
µ′m[µs[0] . . . (µs[0] + 31)] ≡ µs[1]
µ′i ≡ max(µi, d(µs[0] + 32)÷ 32e)

0x55 MSTORE8 2 0 Save byte to memory.
µ′m[µs[0]] ≡ (µs[1] mod 256)
µ′i ≡ max(µi, d(µs[0] + 1)÷ 32e)

0x56 SLOAD 1 1 Load word from storage.
µ′s[0] ≡ σ[Ia]s[µs[0]]

0x57 SSTORE 2 0 Save word to storage.
σ′[Ia]s[µs[0]] ≡ µs[1]

CSSTORE(σ,µ) ≡

2Gsstore if µs[1] 6= 0 ∧ σ[Ia]s[µs[0]] = 0

0 if µs[1] = 0 ∧ σ[Ia]s[µs[0]] 6= 0

Gsstore otherwise

0x58 JUMP 1 0 Alter the program counter.
JJUMP(µ) ≡ µs[0]
This has the effect of writing said value to µpc. See section 9.

0x59 JUMPI 2 0 Conditionally alter the program counter.

JJUMPI(µ) ≡

{
µs[0] if µs[1] 6= 0

µpc + 1 otherwise

This has the effect of writing said value to µpc. See section 9.

0x5a PC 0 1 Get the program counter.
µ′s[0] ≡ µpc

0x5b MSIZE 0 1 Get the size of active memory.
µ′s[0] ≡ µi

0x5c GAS 0 1 Get the amount of available gas.
µ′s[0] ≡ µg

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 21

60s & 70s: Push Operations

Value Mnemonic δ α Description

0x60 PUSH1 0 1 Place 1 byte item on stack.
µ′s[0] ≡ Ib[µpc + 1]
The byte is right-aligned (takes the lowest significant place in big endian).

0x61 PUSH2 0 1 Place 2-byte item on stack.
µ′s[0] ≡ Ib[(µpc + 1) . . . (µpc + 2)]
The bytes are right-aligned (takes the lowest significant place in big endian).

...
...

...
...

...

0x7f PUSH32 0 1 Place 32-byte (full word) item on stack.
µ′s[0] ≡ Ib[(µpc + 1) . . . (µpc + 32)]

f0s: System operations

Value Mnemonic δ α Description

0xf0 CREATE 3 1 Create a new account with associated code.
i ≡ µm[µs[1] . . . (µs[1] + µs[2]− 1)]

(σ′,µ′g) ≡

{
Λ(σ∗, Ia, Io,µg, Ip,µs[0], i,b) when µs[0] 6 σ[Ia]b

(σ,µg) otherwise

σ∗ ≡ σ except σ∗[Ia]n = σ[Ia]n + 1 ∧ σ∗[Ia]b = σ[Ia]b − µs[0]
µ′s[0] ≡ x
where x = 0 if the code execution for this operation failed due to lack of gas or
µs[0] > σ[Ia]b; x = A(Ia,σ[Ia]n), the address of the newly created account, otherwise.
µ′i ≡ max(µi, d(µs[1] + µs[2])÷ 32e)
Thus the operand order is: value, input offset, input size.

0xf1 CALL 7 1 Message-call into an account.
i ≡ µm[µs[3] . . . (µs[3] + µs[4]− 1)]
o ≡ µm[µs[5] . . . (µs[5] + µs[6]− 1)]

(σ′, g′,o) ≡

{
Θ(σ∗, Ia, Io,µs[1],µs[0], Ip,µs[2], i) when µs[2] 6 σ[Ia]b

(σ, g,o) otherwise

σ∗ ≡ σ except σ∗[Ia]b = σ[Ia]b − µs[2]
µ′g ≡ µg + g′

µ′s[0] ≡ x
where x = 0 if the code execution for this operation failed due to lack of gas or if
µs[2] > σ[Ia]b; x = 1 otherwise.
µ′i ≡ max(µi, dmax(µs[3] + µs[4],µs[5] + µs[6])÷ 32e)
Thus the operand order is: gas, to, value, in offset, in size, out offset, out size.

0xf2 RETURN 2 0 Halt execution returning output data.
HRETURN(µ) ≡ µm[µs[0] . . . (µs[0] + µs[1]− 1)]
This has the effect of halting the execution at this point with output defined.
See section 9.
µ′i ≡ max(µi, d(µs[0] + µs[1])÷ 32e)

0xff SUICIDE 1 0 Halt execution and obliterate account.
σ′[µs[0]]b ≡ σ[µs[0]]b + σ[Ia]b
σ′[Ia] ≡ ∅

Appendix H. Wire Protocol

The wire-protocol specifies a network-level protocol for how two peers can communicate. It includes handshake pro-
cedures and the means for transferring information such as peers, blocks and transactions. Peer-to-peer communications
between nodes running Ethereum clients are designed to be governed by a simple wire-protocol making use of existing
Ethereum technologies and standards such as RLP wherever practical.

Ethereum nodes may connect to each other over TCP only. Peers are free to advertise and accept connections on any
port(s) they wish, however, a default port on which the connection may be listened and made will be 30303.

Though TCP provides a connection-oriented medium, Ethereum nodes communicate in terms of packets. These
packets are formed as a 4-byte synchronisation token (0x22400891), a 4-byte ”payload size”, to be interpreted as a
big-endian integer and finally an N-byte RLP-serialised data structure, where N is the aforementioned ”payload size”.
To be clear, the payload size specifies the number of bytes in the packet ”following” the first 8.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 22

There are a number of different types of message that may be sent. This “type” is always determined by the first
entry of the structure, represented as a scalar. The structure of each message type is described below.

00s: Session control

Value Mnemonic Expected Reply Packet Format

0x00 Hello (0x00, v ∈ P, n ∈ P, i ∈ B, c ∈ P, p ∈ P, u ∈ B64)
This is the first packet sent over the connection, and sent once by both sides. No other messages
may be sent until a Hello is received.

• v is the Protocol Version. See the latest documentation for which version is current.
• n is the Network Id should be 0.
• i is the Client Id and specifies the client software identity as a human-readable string

(e.g. “Ethereum(++)/1.0.0”).
• c is the client’s Capabilities and specifies the capabilities of the client as a set of flags;

presently three bits are used:
0x01: Client provides peer discovery service;
0x02: Client provides transaction relaying service;
0x04: Client provides block-chain querying service.

• p is the Listen Port and specifies the port that the client is listening on (on the interface
that the present connection traverses). If 0 it indicates the client is not listening.

• u is the Unique Identity of the node and specifies a 512-bit hash that identifies this node.

0x01 Disconnect (0x01, r ∈ P)
Inform the peer that a disconnection is imminent; if received, a peer should disconnect immedi-
ately. When sending, well-behaved hosts give their peers a fighting chance (read: wait 2 seconds)
to disconnect to before disconnecting themselves.

• r is an integer specifying one of a number of reasons for disconnect:
0x00: Disconnect requested;
0x01: TCP sub-system error;
0x02: Bad protocol;
0x03: Useless peer;
0x04: Too many peers;
0x05: Already connected;
0x06: Wrong genesis block;
0x07: Incompatible network protocols;
0x08: Client quitting.

0x02 Ping Pong (0x02)
Requests an immediate reply of Pong from the peer.

0x03 Pong (0x03)
Reply to peer’s Ping packet.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 23

10s: Information

Value Mnemonic Expected Reply Packet Format

0x10 GetPeers Peers (0x10)
Request the peer to enumerate some known peers for us to connect to. This should include the
peer itself.

0x11 Peers (0x11, (a0 ∈ B4, p0 ∈ P, i0 ∈ B64), (a1 ∈ B4, p1 ∈ P, i1 ∈ B64), ...)
Specifies a number of known peers.

• a0, a1, ... is the node’s IPv4 address, a 4-byte array that should be interpreted as the
IP address a0[0].a0[1].a0[2].a0[3].

• p0, p1, ... is the node’s Port and is an integer.
• i0, i1, ... is the node’s Unique Identifier and is the 512-bit hash that serves to identify

the node.

0x12 Transactions (0x12, LT (T0), LT (T1), ...)
where LT is the transaction preparation function, as specified in section 4.3.
Specify a transaction or transactions that the peer should make sure is included on its transaction
queue. The items in the list (following the first item 0x12) are transactions in the format described
in the main Ethereum specification.

• T0, T1, ... are the transactions that should be assimilated.

0x13 Blocks (0x13, LB(b0), LB(b1), ...)
Where LB is the block preparation function, as specified in section 4.3.
Specify a block or blocks that the peer should know about. The items in the list (following the
first item, 0x13) are blocks as described in the format described in the main specification.

• b0, b1, ... are the blocks that should be assimilated.

0x14 GetChain Blocks or NotInChain (0x14, p0 ∈ B32, p1 ∈ B32, ..., c ∈ P)
Request the peer to send c blocks in the current canonical block chain that are children of one
of a number of given blocks, according to a preferential order with p0 being the most prefered.
If the designated parent is the present block chain head, an empty reply should be sent. If none
of the parents are in the current canonical block chain, then a NotInChain message should be
sent along with pn, the least preferential parent. If no parents are passed, then a reply need not
be made.

• p0, p1, ... are the SHA3 hashes of the parents of blocks that we should be informed of
with a Blocks reply. Typically, these will be specified in increasing age (or decreasing
block number).

• c is the number of children blocks of the most preferred parent that we should be informed
of through the corresponding Blocks reply.

0x15 NotInChain (0x15, p ∈ B32)
Inform the peer that a particular block was not found in its block chain.

• p is the SHA3 hash of the block that was not found in the block chain. Typically, this
will be the least preferential (oldest) block hash given in a previous GetChain message.

0x16 GetTransactions Transactions (0x16)
Request the peer to send all transactions currently in the queue. See Transactions.

Appendix I. Genesis Block

The genesis block is 13 items, and is specified thus:

(153)
((

0256, SHA3
(
RLP
(
()
))
, 0160, stateRoot, 0, 2

22, 0, 0, 1000000, 0, 0, 0, SHA3
(
(42)

))
, (), ()

)
Where 0256 refers to the parent hash, a 256-bit hash which is all zeroes; 0160 refers to the coinbase address, a 160-bit

hash which is all zeroes; 222 refers to the difficulty; 0 refers to the timestamp (the Unix epoch); the transaction trie root
and extradata are both 0, being equivalent to the empty byte array. The sequences of both uncles and transactions are
empty and represented by (). SHA3

(
(42)

)
refers to the SHA3 hash of a byte array of length one whose first and only byte

is of value 42. SHA3
(
RLP
(
()
))

value refers to the hash of the uncle lists in RLP, both empty lists.
The proof-of-concept series include a development premine, making the state root hash some value stateRoot. The

latest documentation should be consulted for the value of the state root.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 24

Appendix J. Javascript API

The JavaScript API provides a consistent API across multiple scenarios including each of the clients’ web-based
in-process D̄App frameworks and the out-of-process RPC-based infrastructure. All key access takes places though the
special eth object, part of the global namespace.

J.1. Values. There are no special object types in the API; all values are strings. As strings, values may be of several
forms, and are interpreted by the API according to a series of rules:

(1) If the string contains only digits from 0-9, then it is interpreted as a decimal integer;
(2) if the string begins with the characters 0x, then it is interpreted as a hexadecimal integer;
(3) it is interpreted as a binary string otherwise.

The only exception to this are for parameters that expect a binary string; in this case the string is always interpreted
as such.

Values are implicitly converted between integers and hashes/byte-arrays; when this happens, integers are interpreted
as big-endian as is standard for Ethereum. The following forms are allowed; they are all interpreted in the same way:

(1) "4276803"

(2) "0x414243"

(3) "ABC"

In each case, they are interpreted as the number 4276803. The first two values may be alternated between with the
additional String methods bin() and unbin().

As byte arrays, values may be concatenated with the + operator as is normal for strings.
Strings also have a number of additional methods to help with conversion and alignment when switching between

addresses, 256-bit integers and free-form byte-arrays for transaction data:

• bin(): Converts the string to binary format.
• pad(l): Converts the string to binary format (ready for data parameters) and pads with zeroes until it is of

width l. Will pad to the left if the original string is numeric, or to the right if binary. If l is less than the width
of the string, it is resized accordingly.

• pad(a, b): Converts the string to binary format (ready for data parameters) and pads with zeroes on the left
size until it is of width a. Then pads with zeroes on the right side until it has grown to size b. If b is less hat
the width of the string, it is resized accordingly.

• unbin(): Converts the string from binary format to hex format.
• unpad(): Converts the string from binary format to hex format, first removing any zeroes from the right side.
• dec(): Converts the string to decimal format (typically from hex).

J.2. The eth object.

J.2.1. Properties. For each such item, there is also an asynchronous method, taking a parameter of the callback function,
itself taking a single parameter of the property’s return value and of the same name but prefixed with get and recapitalised,
e.g. getCoinbase(fn).

• coinbase Returns the coinbase address of the client.
• isListening Returns true if and only if the client is actively listening for network connections.
• isMining Returns true if and only if the client is actively mining new blocks.
• gasPrice Returns the client’s present price of gas.
• key Returns the special key-pair object corresponding to the preferred account owned by the client.
• keys Returns a list of the special key-pair objects corresponding to all accounts owned by the client.
• peerCount Returns the number of peers currently connected to the client.

J.2.2. Synchronous Getters. For each such item, there is also an asynchronous method, taking an additional parameter
of the callback function, itself taking a single parameter of the synchronous method’s return value and of the same name
but prefixed with get and recapitalised, e.g. getBalanceAt(a, fn).

• balanceAt(a) Returns the balance of the account of address given by the address a.
• storageAt(a, x) Returns the value in storage at position given by the number x of the account of address given

by the address a.
• txCountAt(a) Returns the number of transactions send from the account of address given by a.
• isContractAt(a) Returns true if the account of address given by a has associated code.

J.2.3. Transactions.

• create(sec, xEndowment, bCode, xGas, xGasPrice, fn) Creates a new contract-creation transaction, given
parameters:

– sec, the secret-key for the sender;
– xEndowment, the number equal to the account’s endowment;
– bCode, the binary string (byte array) of EVM-bytecode for the initialisation of the account;
– xGas, the number equal to the amount of gas to purchase for the transaction (unused gas is refunded);
– xGasPrice, the number equal to the price of gas for this transaction. Returns the special address object

representing the new account; and

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER PROOF-OF-CONCEPT V 25

– fn, the callback function, called on completion of the transaction.
• transact(sec, xValue, aDest, bData, xGas, xGasPrice, fn) Creates a new message-call transaction, given

parameters:
– sec, the secret-key for the sender;
– xValue, the value transferred for the transaction (in Wei);
– aDest, the address representing the destination address of the message;
– bData, the binary string (byte array), containing the associated data of the message;
– xGas, the amount of gas to purchase for the transaction (unused gas is refunded);
– xGasPrice, the price of gas for this transaction; and
– fn, the callback function, called on completion of the transaction.

J.2.4. Events.

• watch(a, fn): Registers fn as a callback for whenever anything about the state of the account at address a

changes, and also on the initial load.
• watch(a, x, fn): Registers fn as a callback for whenever the storage location x of the account at address a

changes, and also on the initial load.
• newBlock(fn): Registers fn as a callback for whenever the state changes, and also on the initial load.

J.2.5. Misc.

• secretToAddress(a): Determines the address from the secret key a.

