28-03-13 Tonc : GBA Programming in rot13

i. Tonc v1.4.2 : Table of Contents

i.1. Preface

1 Contents
i Introduction to Tonc

i.2. GBA Basics

GBA Hardware

Setting up a development environment

My First GBA Demo
Video Introduction

The bitmap modes

The GBA keypad

Sprite and tiled background overview
Regular sprites

Regular tiled backgrounds

O 0 3 O L A W N —

i.3. GBA Extended

10 The affine transformation matrix

11 Affine sprites
12 Affine tiled backgrounds

13 Graphic effects
14 Direct Memory Access

15 Timers

16 Hardware interrupts
17 BIOS calls

18 Beep! GBA sound introduction

i.4. Advanced / Applications

19 Text systems
20 Mode 7

21 More Mode7 tricks

22 Tonc's Text Engine

23 Whirlwind tour of ARM assembly
24 The Lab

i.5. Appendixes

Numbers, bits and bit operations

Fixed-point math & LUTs
Vector and matrix math

More on makefiles and compiler options
Make via editors

References
Change log

Q@ oHOOm >

i.6. On revisions

10
21
34
38
56
62
67
78

92
98
109
115
126
133
136
147
155

165
192
209
213
244
276

283
294
304
311
316
322
325

Tonc v1.4 is final. Yeah, I said that about v1.0 as well, but this time [mean it. Really. Honest. Cross my heart and hope to die, etc, etc.

Well ... barring minor errata, this will be final. Honest, cross my heart, yadda yadda yadda.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

1/331

file:///H:/dev/gba/proj/tonc/bak/toc.htm
file:///H:/dev/gba/proj/tonc/bak/intro.htm
file:///H:/dev/gba/proj/tonc/bak/hardware.htm
file:///H:/dev/gba/proj/tonc/bak/setup.htm
file:///H:/dev/gba/proj/tonc/bak/first.htm
file:///H:/dev/gba/proj/tonc/bak/video.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm
file:///H:/dev/gba/proj/tonc/bak/keys.htm
file:///H:/dev/gba/proj/tonc/bak/objbg.htm
file:///H:/dev/gba/proj/tonc/bak/regobj.htm
file:///H:/dev/gba/proj/tonc/bak/regbg.htm
file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/affobj.htm
file:///H:/dev/gba/proj/tonc/bak/affbg.htm
file:///H:/dev/gba/proj/tonc/bak/gfx.htm
file:///H:/dev/gba/proj/tonc/bak/dma.htm
file:///H:/dev/gba/proj/tonc/bak/timers.htm
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm
file:///H:/dev/gba/proj/tonc/bak/swi.htm
file:///H:/dev/gba/proj/tonc/bak/sndsqr.htm
file:///H:/dev/gba/proj/tonc/bak/text.htm
file:///H:/dev/gba/proj/tonc/bak/mode7.htm
file:///H:/dev/gba/proj/tonc/bak/mode7ex.htm
file:///H:/dev/gba/proj/tonc/bak/tte.htm
file:///H:/dev/gba/proj/tonc/bak/asm.htm
file:///H:/dev/gba/proj/tonc/bak/lab.htm
file:///H:/dev/gba/proj/tonc/bak/numbers.htm
file:///H:/dev/gba/proj/tonc/bak/fixed.htm
file:///H:/dev/gba/proj/tonc/bak/matrix.htm
file:///H:/dev/gba/proj/tonc/bak/makefile.htm
file:///H:/dev/gba/proj/tonc/bak/edmake.htm
file:///H:/dev/gba/proj/tonc/bak/refs.htm
file:///H:/dev/gba/proj/tonc/bak/log.htm

28-03-13 Tonc : GBA Programming in rot13

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 2/331

28-03-13 Tonc : GBA Programming in rot13

ii. Introduction to Tonc

Organisation

Terminology and Notation
e Prerequisites

e On errors, suggestions

ii.1. Organisation
TONC consists of three parts: a fext section, the actual tutorial, a code section, which contains all the source
code and makefiles of the various demos, and a bin section that contains binaries of the demo. Though they are | E _1‘

separate zip files, they work best when used together. You can find the zip files further down this page. If you I b
unzip them in one directory, say tonc, you'll get the structure depicted in fig ii.1. = code
I adw
ii.1.1. Tonc text D basc

. I et
The text section covers the principles of GBA programming in detail. The focus here is not so much on how to) lab
get something done, but how things actually work, and why it's done the way it's done. After that the how often) torclb
comes naturally. Every chapter has one of more demonstrations of the covered theory, and a brief discussion of 7] wc
the demo itself. Please, do not make the mistake of only reading the demo discussion: to properly understand B 1) g
how things work you need to read the text in full. While there are optional parts, and whole pages of boring text .7 text

that seem to have little to do with actual GBA coding, they are there for a reason, usually there's extra
conceptual information or gotchas.

At first, the text part had only very little code in it, because I figured the demo code would be at hand and flicking between them
would not be annoying. Well, I've realized that I figured wrong and am in the process of including more of the code into these pages;
maybe not quite enough to copy-paste and get a clean compile, but enough to go with the explanations of the demos.

The main language will be C, and a smidgeon of assembly. These are the two main languages used in GBA programming even
though there are others around. Since the basics of programming are independent of language, it should be possible to adapt them for
your chosen language easily.

GBA programming is done close to the hardware, so I hope you know your pointers, hexadecimal numbers and boolean algebra/bit-
operations. There's also a fair amount of math here, mostly vector and matrix stuff so I hope your linear algebra is up to speed. Lastly,
am assuming your intellectual capacities exceed those of a random lab monkey, so I won't elaborate on what I consider trivial matters
too much.

Aside from the introduction and appendices, the text is divided into 3 parts. First there's ‘basics’, which explains the absolute
essentials for getting anything done. This includes setting up the development environment, basic use of graphics and buttons. It also
contains text on what it means to do low level programming and programming efficiently; items that in my view you'd better learn sooner
rather than later. The second part covers most of the other items of the GBA like special graphic effects, timers and interrupts. The final
section covers more advanced items that uses elements from all chapters. This includes writing text (yes, that's an advanced topic on the
GBA), mode 7 graphics and a chapter on ARM assembly.

Fig ii.1: directories.

Individual html: tonc-text.zip (663 kb)
Compiled html (CHM, v1.4 version): tonc.chm (1.2 MB).
PDF: tonc.pdf (3.1 MB)

ii.1.2. Tonc code
The source code to all the demos mentioned in the text can be found in the code directory. Like the text, the code is divided into 3 main
parts: basic, extended and advanced. The basic projects are (hopefully) pretty newbie friendly. They're completely self-contained so you
can toy with them and not worry about screwing up other parts. The extended projects take their GBA-related code from zonclib, a
library with all my #defines and important functions. The advanced demos also use tonclib liberally and will use some assembly files,
even if it is just for data. There is also a 1ab directory with a few interesting projects, but which might not be quite ready. Still
interesting to look at, though.

Unlike most GBA tutorials, tonc uses makefiles rather than batchfiles to build the projects, because they're just Plain Better than
batchfiles. However, as a lot of you will probably never seen them before, these also come in three stages of difficulty. There is a
master makefile, tonc .mak, in the code root directory that can drive the projects, and the vc 6 directory has a Visual C++ project that
you can use if you're on Windows and have Visual Studio version.

Pretty much all of the general functions used in tonc can be found in tonclib. This includes text writers for all modes, BIOS
routines, a pretty advanced interrupt dispatcher, safe and fast memory copy and fill routines and much more. It's well worth stealing
from.

Download tonc-code.zip (198 kb).

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 3/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-org
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-nota
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-cnd
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-feedback
file:///H:/dev/gba/proj/tonc/bak/numbers.htm#sec-num
file:///H:/dev/gba/proj/tonc/bak/numbers.htm#sec-bitops
file:///H:/dev/gba/proj/tonc/bak/matrix.htm
http://www.coranac.com/files/tonc-text.zip
http://www.coranac.com/files/tonc.chm
http://www.coranac.com/files/tonc.pdf
http://www.coranac.com/files/tonc-code.zip

28-03-13 Tonc : GBA Programming in rot13

ii.1.3. Tonc binaries

The bin directory contains the binaries of the demos. Each of them has been tested on a number of emulators, and on hardware using a
homemade Xboo communication cable (see www.devkitpro.org for instructions on how to make one). In most instances they behave
exactly the same. The readme tonc bins.txt indicates when and where hardware and emulators disagree.

Download tonc-bin.zip (167 kb).

ii.1.4. Statement of Purpose
I wrote Tonc for two reasons. Firstly, as a way to organize my own thoughts. You often see things in a different light when you write
things down and learn from that experience. Secondly, there is a lot of very bad information in other tutorials out there (the only
exceptions I know of are the new PERN and Deku's sound tutorial[bOrked]). Yes, I am aware of how that sounds, but unfortunately it
happens to be true. A number of examples:

¢ Only very basic information given, sometimes even incorrect info.

o Strong focus on bitmap modes, which are hardly ever used for serious GBA programming.

e Bad programming habits. Adding code/data to projects by #including the files, Using ancient toolchains, non-optimal compiler
settings and data-types, and inefficient (sometimes very inefficient) code.

If you are new and have followed the other tutorials, everything will seem to work fine, so what's the problem? Well, that's part of the
problem actually. Everything will seem fine, until you start bigger projects, at which time you'll find hidden errors and that slow code
really bogs things down and you'll have unlearn all the bad habits you picked up and redo everything from the start. The GBA is one of
the few platforms where efficient coding still means something, and sometimes all it takes is a change of datatype or compiler switch.
These things are better done right from the start.

I've tried to go for completeness first, simplicity second. As a certain wild-haired scientist once said: “Make things as simple as possible,
but no simpler.” This means things can seem a little technical at times, but that's only because things are pretty technical at times, and
there's no sense in pretending they're not.

In short, Tonc is not “GBA Programming for Dummies”, never was, never will be. There's far too much of stuff for Dummies
already anyway. If you consider yourself a dummy (and I do mean dummy, not newbie), maybe Tonc isn't the right place. If you're
serious about learning GBA programming, however, accept no substitute.

ii.2. Terminology and Notation

I'm a physicist by training which means that I know my math and its notational conventions. I use both quite often in Tonc, as well as a
number of html-tag conventions. To make sure we're all on the same page here's a list:

Type notation example
bitnina foo|[foo{n} REG DISPCNT{4} (active page bit)
code <code> tag sx
command/file |<tt> tag vid.h
matrix bold, uppercase | P
memory hex + code 0400:002eh
new term bold, italic charblock
variable italics X
vector bold, lowercase |v

I also use some non-ASCII symbols that may not show up properly depending on how old your browser is. These are:

symbol| description

o, B,y |Greek letters

= approximately
% one half

Ya one quarter

Ya three quarters
> greater or equal

double-sided arrow

is in (an interval)
0o ‘bra’ & ‘ket’

— right arrow

N

superscript 2

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 4/331

http://www.devkitpro.org/
http://www.coranac.com/files/tonc-bin.zip
http://www.drunkencoders.com/index.php?system_id=2&page=Tutorials
http://deku.gbadev.org/
file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/first.htm#ssec-notes-bad
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-hdr
file:///H:/dev/gba/proj/tonc/bak/setup.htm#sec-env

28-03-13 Tonc : GBA Programming in rot13

|>< |times

I also make liberal use of shorthand for primitive C types like char and int and such. These are typedefs that better indicate the size
of the variable that's used. Since this is very important in console programming, they're quite common. Anyway, here's a list.

base type |alt name |unsigned|signed| volatile

char |byte ud s8 vu8 / vs8
short [halfword |ul6 s16 vul6/vsl6
int word u32 s32 vu32 / vs32

Finally, there are a number of different notations for hex that I will switch between, depending on the situation. The C notation (‘0x’
prefix, 0x0400) is common for normal numbers, but I'll also use the assembly affix at times (‘h’, 0400:0000h). The colon here is merely
for ease of reading. It's hard to tell the number of zeros without it.

ii.2.1. Register names and descriptions

Getting the GBA to do things often involves the use of the so-called 10 registers. Certain bits at certain addresses of memory can be
used as switches for the various effects that the GBA is capable of. Each register is aliased as a normal variable, and you need to
set/clear bits using bit operations. We'll get to where these registers are and what bit does what later; right now I want to show you how
I will present these, and refer to them in the text.

Each register (or register-like address) is mapped to a dereferenced pointer, usually 16bits long. For example, the display status
register is

#define REG DISPSTAT * (ulé6*)0x04000004 J

Every time I introduce a register I will give an overview of the bits like this:

REG DISPSTAT @ 0400:0004h

FEDCBAGOYS8|76| 5 4 3 2)

VeT - |VeI |HbI |VbI (VeS |HbS |VbS

The table lists the register's name (REG DISPSTAT, its address (0400:0000h) and the individual bits or bitfields. Sometimes, bits or
entire registers are read- or write-only. Read-only is indicated with a red overbar (as used here). Write-only uses a blue underbar.
After it will be a list that describes the various bits, and also gives the #define or #defines I use for that bit:

bits name define description
0 VbS DSTAT IN_VBL VBlank status, read only. Will be set inside VBIlank, clear in VDraw.
other fields

8-F VcT DSTAT VCT# VCount trigger value. If the current scanline is at this value, bit 2 is set and an
nterrupt is fired if requested.

The full list of REG_DISPSTAT can be found here. The #defines are usually specific to tonc, by the way. Each site and API has its
own terminology here. This is possible because it's not the names that are important, but the numbers they stand for. That goes for the
names of the registers themselves too, of course. One last point on the #defines: some of the ones listed have a hash (‘#’) affix. This is
a shorthand notation to indicate that that field has foo SHIFT and foo MASK #defines, and a foo () macro. For example, the display
register has an 8-bit trigger VCount field, which has ‘DSTAT VCT# listed in the define column. This means that the following three
things exist in the tonc headers:

#define DSTAT VCT MASK 0xFF00
#define DSTAT VCT SHIFT 8
#define DSTAT VCT(_ n) ((_n)<<DSTAT VCT SHIFT)

Lastly, as shorthand for a specific bit in a register, I will use accolades. The number will be a hexadecimal number. For example,
REG_DISPCNTY{0} is the VBIlank status bit (VbS above), and REG_DISPCNT{8-F} would be the whole byte for the VCount trigger.

ii.3. Prerequisites

The text and code have been created and found to work under the following conditions. If you find you have a problem, show me yours
and maybe we can find and fix it.

e Programming language. The language we'll be using is C with a dash of assembly (but not C++). I am working under the
assumption that you are familiar with this language. If not, go learn it first because I'm not going to show you; this is not a C
course. | do have some links to C tutorials in the references.

e Compiler. Obviously, you need a compiler that can turn C code into a GBA binary. I'm using the completely free devkitARM
(dkARM) toolchain, which is based on the GNU compiler collection (GCC). Setup instructions and samples can be found on
the site, and in my setup section, of course. dkARM has become the standard over the past year or so; if you are still using the
older DevKit Advance, you might think about switching. I can't say how difficult it would be to get HAMbOrked to accept my

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 5/331

file:///H:/dev/gba/proj/tonc/bak/video.htm#tbl-reg-dispstat
file:///H:/dev/gba/proj/tonc/bak/refs.htm#ssec-tut
http://www.devkitpro.org/
http://www.gnu.org/
file:///H:/dev/gba/proj/tonc/bak/setup.htm
http://www.ngine.de/

28-03-13 Tonc : GBA Programming in rot13
code/makefiles, but it shouldn't be too hard. If you use the official Arm ADS, sorry but you're on your own there.

To write and manage my code I use Visual C++ 6.0, but I am not using its native make tool (NMAKE), because it's not very
portable and seems to be pretty weak as well. Instead, I use GNU make, which usually comes with any of the devkits.

e Binaries. You'll also need something that can run the binaries. On the emu side, I use either VisualBoy Advance (VBA) v1.7
or higher, and no$gba, freeware edition. But as nice as these emulators are, you must be able to test on a real GBA too if
you're serious about this stuff. Get yourself a flash card or, if you're on a budget, you can always build a multiboot cable like
Xboo yourself. If you shop around you should be able to get the components for about $5.

e OS. I use the Windows operation system (Win 98 and WinXP) and when referring to commands or programs I'm more or less
assuming you are too. The GBA and devkits couldn't care less. However, a Linux user, for example, would have little use for
a Visual C project and wouldn't be able to use Usenti (my bitmap editor) or excellut (my Excel LUT builder).

¢ Browser. ['ve tested these pages with MSIE 6 and 7, Firefox, and sometimes Opera too. With one or two exceptions,
(<nobr>), everything is valid HTML 4.01 and CSS 2. However, IE isn't a compliant browser so there are one or two minor
glitches. Firefox on the other hand is oo compliant and pretty much ignores column-based layout in tables (CSS and HTML
standards conflict on this issue). But again, these situations aren't too significant. In case you want a print-out, it'll come out as
if the browser window was roughly 640 pixels wide. Personally, I prefer setting the font to ‘smaller’; I feel that I lose the
perspective in the ‘normal’ font-size. Note that the entire text is roughly 300 pages long, so consider shrinking the pages and
don't forget to fill the tray when you're done.

ii.4. On errors, suggestions

As much as I've tried to weed out things like spelling/grammar errors and broken links, I'm sure some have slipped by. If you find some,
mail me about it. That's right, I'm actually asking for spell-flames. Currently, I'm refitting the pages to fit my HTML auto-numbering tool,
but it's a lot stuff to go through (over 1M in plain text), and I may miss something; if you see things like [[ref:foo]] in unfinished sections,
those probably shouldn't be there. Of course, if things are unclear or *gasp* incorrect, or if you have suggestions, I'd like to know that as
well.

20130324, ADDENDUM. Since it's now been over half a decade since all of this was written, I'm fairly certain many of the links
are dead by now. I'll try to clean them up when I can, but I'm not sure it's worth the trouble. You have been warned.

And, of course:

This distribution is provided as is, without warranty of any kind. I cannot be held liable for any damage arising out of the
use or inability to use this distribution. Code has been tested on emulator and real hardware as well as I could, but I can't
guarantee 100% correctness.

The code may be used and/or modified as you see fit. The text and code were intended to go together; if you have to
separate the text from the code, at least provide a link to where both originated (i.e., this site).

Both text and code can be modified by me at any time. Check in once in a while to see if anything's changed. Time stamps
are at the bottom of every page, and at the top of all source-files. There is also a log in the appendices.

OK that's it. Have fun.

- Jasper Vijn (cearn at coranac dot com)
(Mar 24, 2013)

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 6/331

http://vba.ngemu.com/
http://nocash.emubase.de/gba.htm
http://www.coranac.com/projects/#usenti
http://www.coranac.com/projects/#excellut
mailto:cearn@coranac.com
file:///H:/dev/gba/proj/tonc/bak/log.htm

28-03-13 Tonc : GBA Programming in rot13

1. GBA Hardware

e Meet the GBA.

e GBA Specs and Capabilities.
e Memory Sections.

1.1. Meet the GBA

The Nintendo GameBoy Advance (GBA) is a portable games console. As if you didn't know already. The CPU is a 32-bit ARM7tdmi
chip running at 16.78 MHz. It has a number of distinct memory areas (like work RAM, IO and video memory) which we will look into
shortly. The games are stored on Game Paks, consisting of ROM for code and data, and fairly often some RAM for saving game info.
The GBA has a 240x160 LCD screen capable of displaying 32768 colors (15 bits). Unfortunately, the screen is not back-lit, which made
a lot of people very angry and has generally been regarded as a bad move. So, in 2003 Nintendo launched the GBA SP, a sort of GBA
2.0, which features a fold-up screen reminiscent of the old Game & Watch games (remember those? You do? Boy, you are old! (For
the record, I still have mine too :))). Then in came the final GBA version, the GBA micro, a very, very small GBA which easily fits in
everyone's pockets. The differences the GBA, GBA-SP and Micro are mainly cosmetic, though, they're the same thing from a
programming point of view.

The original GameBoy which took the world by storm in 1989. Not bad for a monochrome handheld console, eh? Later the GameBoy
Color was released which finally put some color on the aging machine, but it was still very much a simple GameBoy. The true successor
was the GBA, released in 2002. The GBA is backward compatible with the GameBoy, so you can play all the old GB games as well.

In terms of capabilities the GBA is a lot like the Super NES (SNES): 15bit color, multiple background layers and hardware rotation
and scaling. And shoulder buttons, of course. A cynic might look at the enormous amount of SNES ports and say that the GBA is a
SNES, only portable. This is true, but you can hardly call that a bad thing.

Fig 1.1: original GBA.

:: e®

LA]

LT Ak

D)

Fig 1.2: GBA-SP.

1.2. GBA specs and capabilities

Below is a list of the specifications and capabilities of the GBA. This not a full list, but these are the most important things you need to
know.

e Video

o 240x160 pixel, 15bit color LCD screen. The original GBA screen was not backlit, but the SP's and Micro's are.
o 3 bitmap modes and 3 tilemap modes and sprites.

o 4 individual tilemap layers (backgrounds) and 128 sprites (objects).

o Affine transformations (rotate/scale/shear) on 2 backgrounds and 32 objects.

o Special graphic effects: mosaic, additive blend, fade to white/black.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 7/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-specs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-memory
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm
file:///H:/dev/gba/proj/tonc/bak/regbg.htm
file:///H:/dev/gba/proj/tonc/bak/regobj.htm
file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/gfx.htm

28-03-13 Tonc : GBA Programming in rot13
e Sound

o 6 channels total
o 4 tone generators from the original GameBoy: 2 square wave, 1 general wave and one noise generator.
o 2 'DirectSound' channels for playing samples and music.

e Miscellaneous

o 10 buttons (or keys): 4-way directional pad, Select/Start, fire buttons A/B, shoulder buttons L/R.

o 14 hardware interrupts.

o 4-player multiplayer mode via a multiboot cable.

o Optional infrared, solar and gyroscopic interfaces. Other interfaces have also been made by some.

o Main programming platforms: C/C++ and assembly, though there are tools for Pascal, Forth, LUA and others as
well. Easy to start with, yet hard to truly master.

From a programming point of view, the GBA (or any other console for that matter) is totally different from a PC. There is no operating
system, no messing with drivers and hardware incompatibilities; it's bits as far as the eye can see. Well, PCs are also just bits, but that's
several layers down; on consoles it's just you, the CPU and memory. Basically, it's the Real Programmer's dream.

To get anything done, you use memory-mapped 10. Specific areas of memory are mapped directly to hardware functions. In the
first demo, for example, we will write the number 0x04 03 to memory address 0400 : 0000h. This tells the GBA to enable
background 2 and set the graphics mode to 3. What this actually means is, of course, what this tutorial is for :).

1.2.1.CPU

As said, the GBA runs on a ARM7tdmi RISC chip at 16.78 MHz (22* cycles/second). It is a 32bit chip that can run on two different
instruction sets. First, there's is ARM code, which is a set of 32bit instructions. Then there's THUMB, which uses 16bit instructions.
THUMB instructions are a subset of the ARM instruction set; since the instructions are shorter, the code can be smaller, but their power
is also reduced. It is recommended that normal code be THUMB code in ROM, and for time-critical code to be ARM code and put in
IWRAM. Since all tonc-demos are still rather simple, most (but not all) code is THUMB code.

For more information on the CPU, go to www.arm.com or to the assembly chapter

1.3. Memory Sections
This section lists the various memory areas. It's basically a summary of the GBATek section on memory.

port-

area start end length|".
size

description

System

ROM 0000:0000h|0000:3FFFh|16kb |32 bit|BIOS memory. You can execute it, but not read it (i.o.w, touch, don't look).

External work RAM. Is available for your code and data. If you're using a
multiboot cable, this is where the downloaded code goes and execution
starts (normally execution starts at ROM). Due to the 16bit port, you want
this section's code to be THUMB code.

This is also available for code and data. The 32-bit bus and the fact that it's
embedded in the CPU make this the fastest memory section. The 32bit bus
means that ARM instructions can be loaded at once, so put your ARM code
here.

EWRAM|0200:0000h|0203:FFFFh|256kb |16 bit

IWRAM |0300:0000h|0300:7FFFh|32kb |32 bit

Memory-mapped 1O registers. These have nothing to do with the CPU
registers you use in assembly so the name can be a bit confusing. Don't
blame me for that. This section is where you control graphics, sound, buttons
and other features.

10 RAM |0400:0000h|0400: 03FFh|1kb 16 bit

PAL |Memory for two palettes containing 256 entries of 15-bit colors each. The
RAM 0500:0000n{0500:03FFh kb 116 bi first is for backgrounds, the second for sprites.

Video RAM. This is where the data used for backgrounds and sprites are
VRAM |0600:0000h[{0601:7FFFh|96kb |16 bit|stored. The interpretation of this data depends on a number of things,
including video mode and background and sprite settings.

OAM 0700:0000h|0700:03FFh|1lkb |32 bit|Object Attribute Memory. This is where you control the sprites.

Game Pak ROM. This is where the game is located and execution starts,
PAK except when you're running from a multiboot cable. The size is variable, but

ROM 0800:0000h|var var 16 bit the limit is 32 MB. It's a 16bit bus, so THUMB code is preferable over
ARM code here.

Cart This is where saved data is stored. Cart RAM can be in the form of SRAM,

RZM OE00:0000h|var var 8 bit |Flash ROM or EEPROM. Programmatically they all do the same thing:

store data. The total size is variable, but 64kb is a good indication.

The various RAM sections (apart from Cart RAM) are zeroed at start-up by BIOS. The areas you will deal with them most are 1O,

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 8/331

file:///H:/dev/gba/proj/tonc/bak/keys.htm
http://www.catb.org/~esr/jargon/html/R/Real-Programmer.html
http://www.arm.com/
file:///H:/dev/gba/proj/tonc/bak/asm.htm
http://nocash.emubase.de/gbatek.htm

28-03-13 Tonc : GBA Programming in rot13

PAL, VRAM and OAM. For simple games and demos it will usually suffice to load your graphics data into PAL and VRAM at the start
use 10 and OAM to take care of the actual interaction. The layout of these two sections is quite complex and almost impossible to figure
out on your own (almost, because emulator builders obviously have done just that). With this in mind, reference sheets like the GBATek
and the CowBite Spec are unmissable documents. In theory this is all you need to get you started, but in practice using one or more
tutorials (such as this one) with example code will save a lot of headaches.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 9/331

http://nocash.emubase.de/gbatek.htm
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm

28-03-13 Tonc : GBA Programming in rot13

2. Setting up a development environment

Introduction

devkitPro and devkitARM

Alternative development environments
Command line details and legacy topics

2.1. Introduction

Unless you want to punch in the instructions in binary in a hex editor (“Luxury! When we were young we had to toggle each bit
individually with magnets!”), you'll need a development environment to turn human readable code into machine language. There are
several options here, but the main one in GBA homebrew is devkitPro and the ARM cross-compiler devkitARM. This chapter will show
you how to set-up the necessary components and how to get it running and how to compile tonc's code with it. I'll also show where you
can find some other development packages currently available, but the focus in this and other chapters will be devkitPro/ARM.

The last section explains some of the details about using the command-line and makefiles. It is essentially optional, but for historical
reasons I have to cover it before the rest of the chapters instead of putting it in an appendix.

2.2. devkitPro and devkitARM

2.2.1. Installation
In the last few years, devkitPro (DKP) has become the standard toolchain for GBA homebrew

and is available for Windows, Mac and Linux platforms. DevkitPro is actually a package, =l work [E)
.. =) dew
containing, compilers for a number of systems (including GBA), library and example code and an .

. . . =l) dewkitPro
editor. You can find the actual downloads in the download section of the sourceforge page: B) devkitAM
http://sourceforge.net/projects/devkitpro/.) bin

For the GBA, you will need: [[Irnarel]
¢ devkitARM (DKA). The ARM cross-compiler, based on the GCC toolchain.) devkitPSP

e MSys. A shell with basic Unix commands like make and rm. Probably only needed for) doc

Windows platforms, which usually lack these tools. D examples
) I insight
Other recommended items are: = instal
¢ Programmer's Notepad 2: an advanced plain text editor with code highlighters, code- 2 '?bgba
folding capabilities and shell execution commands. I suppose you could call it a mini-IDE. D libnds
Even if you had your own editor, it is recommended that you get this one as well because B2 msps
both DKP's and Tonc's examples contain PN2 project files, which makes it easier to build 2 bin
. |20 [frmare]]
GBA projects.

| Programmers Motepad

¢ libgba: a set of basic types, macros and functions for use in GBA development. While I Fig 2.1: devkitPro dir tree

won't be using it here, it is still worth a look. Currently 1ibgba and tonc's own code library
libtonc are pretty much incompatible (multiple definitions and such), I am trying to make sure that there won't be any
conflicts.

e GBA examples: a set of example projects using libgba.

For Windows, there is an installer that downloads and installs the components automatically. For Mac and Linux, you'll have to install
things yourself. The installation process also creates a number of environment variables for directories to devkitPro and devkitARM, and
adds msys/bin to the PATH.

When instaling DKP on Windows, there's one thing you must be aware of. GCC-based tools have their origins in Unix, and Unix doesn't
take kindly to spaces in paths. Therefore do not install into a directory with spaces (like c: \Program Files) and don't put your
projects in a folder with spaces in the name either (like My Documents, which is actually ‘short’ for c: \Documents And
Settings\UserName\Blah Blah Blah More Ridiculously Long Directory Names That Never Fit
In Textboxes\My Documents)\). Basically, don't use the standard Windows directories. My own installation tree looks like

fig 2.1, but it's customary to put devkitPro in c: \devkitPro.

Do not use spaces in paths
GCC makes use of the GCC toolchain, which doesn't cope well with spaces in paths (think My Documents). Spaces are
used as a separator between command-line options and when you have them in paths the tools will interpret that as new
options. While there are ways to use them anyway, you can save yourself a lot of headaches by simply staying clear of them.

2.2.2. Building projects with DevkitARM

There are several ways of building GBA projects, but the recommended process it to use makefiles. In particular, devkitPro's template

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 10/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-dkp
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-env
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-cli
http://www.devkitpro.org/
http://www.devkitpro.org/
http://sourceforge.net/project/showfiles.php?group_id=114505
http://sourceforge.net/projects/devkitpro/

28-03-13 Tonc : GBA Programming in rot13

makefiles. The GBA template makefiles can be found in $ (DEVKITPRO) /examples/gba/template. When creating a new
project of your own, base it on this one. You can see the basic structure of the template project in fig 2.2. The
build directory is where all the intermediate files go. You'd rarely have to look there. The source directory is () build

where you put the source code: the C, C++ and perhaps assembly files. If you have header files, put those in (Dincluds
include.) source
= ﬂ template.c

Note that the build and include directories don't actually exist in the template project yet; build is ;
created by the build process itself, and since there are no headers to include, the include folder isn't necessary in templa_te'pnpm'
this case and has been removed, but if you do have headers, you'd put them there.) Makefii

The template directory itself has two files: the PN2 project files, template.pnpro and the Makefile. |Fig22: Template
Once you've opened the project in PN2, you can build the project with A1t +1, and clean the project with A1t +2. project
If all is well, you should get something like this:

> "make"

template.c

arm-none-eabi-gcc -MMD -MP -MF /e/dev/devkitPro/examples/gba/template/build/template.d
-g -Wall -03 -mcpu=arm7tdmi -mtune=arm7tdmi -fomit-frame-pointer -ffast-math
-mthumb -mthumb-interwork -I/e/dev/devkitPro/libgba/include
-I/e/dev/devkitPro/examples/gba/template/build
-c /e/dev/devkitPro/examples/gba/template/source/template.c -o template.o

linking multiboot

built ... template mb.gba

ROM fixed!

> Process Exit Code: 0
> Time Taken: 00:02

The output consists of 6 lines:

1. ‘make'. Invokes make to run the makefile.

2. 'template.c'. The file we're compiling.

3. 'arm-none-eabi-gcc -MMD ...' This very long line, split over multiple lines here, invokes the compiler. gcc is front-
end of the compiler, and arm-none-eabi is the prefix that devkitARM uses to set it apart from all the other versions of
gcc. The rest are the compiler options. Basically, this whole thing turns the source file template. c into an object file called
template.o.

4. 'linking multiboot'. After compilation, all object files have to be linked together into the final binary. The actual
calling of the linker is hidden here, but it is another call to arm-none-eabi-gcc with a different set of options. I'll cover
what “multiboot” means later in the section.

5. built ... template mb.gba' Indicated everything worked, and we now have a GBA binary called
template_mb.gba.

6. ROM fixed!'. Each GBA ROM starts with a header that the GBA checks to see if it's a valid GBA program. If the header
check fails, the GBA will reject the program (even though emulators will still accept it). There is a tool called gbafix that
patches the ROM with a valid header, which is what this line is about.

Hello Horld!

288888

Fig 2.3: template(_mb).gba.

The 'ROM fixed!' line means the build has succeeded. You should end up with a template mb.gba. When you open it in VBA
or no$gba you should see something like fig 2.3. If you don't see a .gba file or it shows a white screen, something beyond your contol
went wrong. But before we get to what could be amiss, I want you to take a look inside the Makefile itself first.

{ N
Using other editors to manage projects

Programmer's Notepad 2 is just one of the many editors you can work with. In principle, all you need is an editor capable of
running external tools like make. DevkitPro's FAQ has a nice overview of some of the other options.

Even if you do use another editor, it's a good idea to add a pnpro7 file if you want others to build your project since they
may not have the same editor. Even an empty one will suffice.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 11/331

http://www.devkitpro.org/faq/

28-03-13 Tonc : GBA Programming in rot13
()
Prefix changes in devkitARM r41
In devkitARM r41, the common prefix for GCC's tools changed from arm-eabi to arm-none-eabi. This mean that all
older makefiles won't work anymore (including tonc's). To fix this, just replace the old prefix with the new one.
I could have avoided this by using the standard makefiles, but they didn't exist when I started, and now it's just too late to
switch : (.

\

2.2.3. DKP's makefile

A makefile is a script used to manage the files of a project and the steps necessary to build, clean or install a program. They consist of
rules that describe the dependencies between the various files of the project and which commands to use. The devkitPro template
makefiles are almost completely automated: all the relevant rules are already in place and all you have to do to add source files to a
project is tell the makefile which directories the sources are in. Basically, they're pretty fucking awesome. They're also pretty fucking
mystifying for first-time users. If you stick to the standard procedure everything should work right out of the box, but if you want tweak
how things are done, here are the most important parts from a user's perspective.

The Makefile begins like this:

ifeq ($(strip $(DEVKITARM)),)
$(error "Please set DEVKITARM in your environment. export DEVKITARM=<path to>devkitARM)
endif

include $ (DEVKITARM) /gba rules

o
TARGET is the name of the output, if this ends with mb a multiboot image is generated
BUILD is the directory where object files & intermediate files will be placed

SOURCES is a list of directories containing source code

DATA is a list of directories containing data files

INCLUDES is a list of directories containing header files

TARGET := $(shell basename $ (CURDIR))

BUILD := Dbuild

SOURCES 1= source

DATA =

INCLUDES =

o

options for code generation

ARCH := -mthumb -mthumb-interwork

CFLAGS := -g -Wall -03\

-mcpu=arm7tdmi -mtune=arm7tdmi\
-fomit-frame-pointer\
-ffast-math \

$ (ARCH)

CFLAGS += $(INCLUDE)

CXXFLAGS := $(CFLAGS) -fno-rtti -fno-exceptions

ASFLAGS := $(ARCH)

LDFLAGS = -g $(ARCH) -Wl,-Map,$ (notdir $@) .map

path to tools - this can be deleted if you set the path to the toolchain in windows

export PATH := $(DEVKITARM) /bin:$ (PATH)

any extra libraries we wish to link with the project

LIBS = -lgba

list of directories containing libraries, this must be the top level containing

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 12/331

28-03-13 Tonc : GBA Programming in rot13
include and 1lib

LIBDIRS := $(LIBGBA)

more

This part of the makefile sets up certain variables that are used later. The various -FLAGS variables are compiler, assembly and linker
flags. You don't really have to touch those, though you may want to use —02 instead of —~03 because —03 tends to bloat code pretty
severely. The really important part is this:

e
TARGET is the name of the output, if this ends with mb a multiboot image is generated
BUILD is the directory where object files & intermediate files will be placed

SOURCES 1is a list of directories containing source code

DATA is a list of directories containing data files

INCLUDES is a list of directories containing header files
e
TARGET := S (shell basename $(CURDIR)) mb

BUILD := build

SOURCES 1= source

DATA =

INCLUDES :=

Like the comments say, the SOURCES variable lists the directories where your code is. In this case, all the code is in source. If you
have code in other directories as well, add them here separated by spaces. Yes, spaces; that's what make uses to tell tokens apart (and
this is also why you shouldn't put spaces in paths). If you have sub-directories as well, use forward slashes ('/'), not backward slashes
("W).

Similarly, DATA and INCLUDES are the lists for binary data and header files. In this case they're empty because there's no extra
data or headers. The directories are relative to the location of the makefile; to indicate source is in that directory, use a period ('.").

The TARGET line is also interesting. It is the name of the output file, without an extension. *$ (shell basename $ (CURDIR))'
gives the last part of the current directory, which in this case would be template. In other words, it automatically uses the name of
the project's directory for the ROM name as well.

The extra* mb' here indicates this should be built as a multiboot game. There are two kinds of GBA builds: cartridge and multiboot.
The main difference is where the code and constant data resides. In a cartridge game it's in ROM (32MB); in multiboot it's in EWRAM
(256kb). Technically, cartidge is the normal kind binary, but multiboot can be run over a multiboot cable.

{ N

Cart vs multiboot builds

There are two different kinds of gba builds: ‘cart’ builds and ‘multiboot’ builds. A cart build puts the main code and data in
the 32MB ROM (0800 :0000h) of a cart. A multiboot build puts that stuff in the 256kB EWRAM (0200:0000).
Commercial games are obviously cart builds, but make use of multiboot builds to make single-cart multiplayer possible.

Other than the maximum size, there is little difference in gameplay between both. For homebrew, multiboot does have one
advantage, namely that you can load a game up to hardware without the need of an expensive flashcart; you can build your
own PC-GBA cable for peanuts.

Choosing the kind of build is done at link-time through linker specs. For cart-builds use —specs=gba. specs and for
multiboot builds use ~specs=gba mb.specs. If the TARGET ends with mb, the template makefile will link it as a
multiboot game.

\\

2.2.4. When compilers attack

In most cases, the steps given thus far will ‘Just Work’. However, it is possible that the installation or the build didn't quite go the way it
should. Here is a short list of potential errors you may come across when building the template project.

“make not found'
Also known as "Failed to create process: The system cannot find the file specified.' or ‘make: unknown command or filename' or any of
the other variants. This means that it can't find the make command. This should be in $ (DEVKITPRO) /msys/bin, and this path
should have been added to the system path by the installation. Look in the right directory if make . exe is there. If it is there, check the
system path in ' My Computer/Advanced/Environment Variables/System Variables'. As you can probably tell,
this should mostly be a Windows issue.

‘arm-none-eabi-gcc: no such file or directory’
make works, but it can't find the compiler. The compiler and other tools are in $ (DEVKITARM) /bin and the makefile already adds
that to the path via ‘'export PATH := $ (DEVKITARM) /bin:$ (PATH)'. so this error shouldn't happen. DEVKITARM is one of
the system variables the installation creates; if you've moved the directories without updating these variables, this error could happen. It
is also possible you have an older version of devkitARM; before r19 the prefix was arm-elf, not arm-none-eabi.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 13/331

file:///H:/dev/gba/proj/tonc/bak/first.htm#ssec-testing-hw

28-03-13 Tonc : GBA Programming in rot13

“This application has requested the Runtime to terminate it in an unusual way.'
This is an error I sometimes get when compiling from the Visual C++ IDE. This is not a DKA error, but more a Windows/MSVC one.
The next compilation always works.

Windows Vista
This was a problem before devkitARM r21. Vista and GCC didn't really get along before that.

Build works; ROM shows white screen.
By default, the GBA screen is white and if you have an empty main (), this would be the result. However, if you're sure that
something should have shown, it is likely that something went wrong even before your code was ever called. Before main () the
ROM's boot code is called ($ (DEVKITARM) /arm-none-eabi/lib/gba crt0.s,if you're curious), which takes care of some
house-keeping. Wintermute (the devkitPro maintainer) sometimes tinkers with the bootcode or linkscripts to improve the process, but
sometimes things go wrong (sorry, Dave, you know it's true).

Case in point: if you build the template project under devkitARM 121 exactly as shown before you'll get a white screen because
there is an bug in the linkscript for multiboot builds. The easiest way out of this is to simply not build as multiboot with r21. Alternative
solutions can be found at forum:14493.

If you ever get a white screen after upgrading devkitARM even though it worked fine before, this is a likely suspect. There is usually
an announcement thread in the gbadev forum and chances are that if it is a bootcode/linkscript error you're not the first to notice.

2.2.5. Building Tonc's examples with devkitARM
All of Tonc's demos and the code library tonclib have PN2 projects, so it's mainly a matter of opening those in Programmer's
Notepad 2 and hitting Alt+1.

There are also project files for use on Visual C++ 6 and higher. These make use of a master makefile, tonc . mak. This makefile
serves as a hub for building and cleaning individual or all projects. For individual projects, set the DEMO the name of the demo you want
to build. From within MSVC, choose the proper build configuration and build as usual. Table 2.1 has an overview of the options.

to ... run ... MSVC config
build 1ibtonc.a|make libtonc Build libtonc
build foo demo |make DEMO=foo Build Single
clean foo demo |make DEMO=foo clean|Clean Single
build all demos make build all Build All

clean all demos make clean_all Clean All

Table 2.1: building tonc projects.

2.3. Alternative development environments
DevkitARM is the standard toolchain for GBA homebrew right now and almost the only one still being actively maintained. Developing
with DKA means C, C++ or assembly and building up everything from scratch (or at least nearly scratch). If you'd like another language
or a richer API, these alternatives may be worth a try.

devkit Advance
I only mention this here because it is still technically an alternative, and most tutorials still refer to it. devkit Advance is another GCC-
based toolchain and can be considered the spiritual predecessor to devkitARM. Nowadays, I can't think of any reason to use devkit
Advance instead of devkitARM aside perhaps from compatibility with very old projects. If you're still using it, consider switching.

DKA vs DKA
Both devkitARM and devkit Advance are abbreviated as “DKA”, which might cause some confusion. There is no real way
to know which one one is referred to except perhaps by date: documents prior to 2004/2005 will refer to devkit Advance;
more recent texts will probably mean devkitARM.

HAM, visualHAM and HEL
HAM is another GCC-based toolchain, but it also comes with HAMlIib, an API for managing backgrounds, sprites and sound. The
windows installation also contains an IDE called visualHAM.

Setting up HAM is easy: simply download the freeware version from www.ngine.de and install. And then install again because it's
only the installer that you've just installed : P. After the second install everything will be ready, but you'll actually have two copies of
each, one of them can safely be removed. As with DKA, don't use spaces in paths.

HAM is useful if you don't want to have to involve yourself with the guts of GBA programming, but you s#i// need to some idea of
now the GBA functions to make use of HAM properly. Hiding the lower levels can be dangerous on systems where resources are
sparse, and the GBA certainly qualifies. I should also point out that HAMIib isn't exactly efficient when it comes to speed. If you're
using HAM, also get the add-on library called HEL by Perter Schraut from www.console-dev.de. Unlike many of HAM's functions,
HEL's code has been optimized to make the most of the GBA's capabilities. HEL is also still being maintained.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 14/331

http://forum.gbadev.org/viewtopic.php?t=14493
http://www.ngine.de/
http://www.console-dev.de/

28-03-13 Tonc : GBA Programming in rot13

HAM vs HELL

VisualHAM's creator, Peter Schraut has also written an add-on library called HEL. Unlike HAM, some time has been spent
on optimizing HEL's code, or at the very least to make it not slow. If you're using HAM, consider using HEL as well.

Other languages
There are some non-C/asm environments for GBA out there, but as far as I know these projects have mostly been abandoned by their
original authors. Note that my knowledge of these packages is extremely limited, so I can't do much more than link to the sites where
you can find them.

There is dragonBASIC, which provides a BASIC-like syntax. This should be suitable for small projects, but I'm not sure it can be
used for full games like a Mario clone. You can find a FreePascal for GBA/NDS at itaprogaming. free.fr, and instructions for using Forth
or Lua at www.torlus.com. Finally, there is (or at least was) something called Catalpult at www.nocturnal-central.com. This is a very
complete environment with an emulator and I think I've seen a debugger there as well. I think this could be compared to GameMaker,
but then again I may be wrong.

2.4. Command line details and legacy topics

This section serves two purposes: to give those used to dealing solely with GUIs some background information on how to work with
command-line tools (and how not to work with them). Now, this would be a subject for an appendix if it weren't for how Tonc's earlier
chapters and its examples are structured.

2.4.1. Working with command-line tools.

For most people nowadays, working with programs means double-clicking on a desktop shortcut or double-clicking on a file in Explorer
(I'm focussing on Windows here. Sorry, other 10%). For office work this is usually enough, and that'll be the end of it. For development
work (particularly console dev), it really pays to have a deeper understanding of what's going on.

Most of this subsection will have a high du//-factor. Feel free to skip it if it gets a little too familiar.

Like any other files, program files (executables) are stored somewhere in the file hierarchy. For example, the main executable of Office
Word is called winword. exe and may be foundat C: /Program Files/ (... More Directories
...)/winword.exe. The pathname is also the command to run the program: simply pass the pathname to the shell the OS will
execute the program. Usually you will do this via shortcuts of some sort: double-clicking on a shortcut tells the GUI to run the associated
target. You can also invoke it via the command line. In the Start Menu, you can find Run. . .. Entering winword there will also
launch Word, just as a double click did.

Fig 2.4: Start->Run window.

Programs often allow command-line options as well, separated by spaces. The types of options available depends on the program in
question, of course. For word, the main option is to pass a filename to open. For example,

winword "C:\foo\bar.doc"]

will open C: \ foo\bar.doc (see fig 2.4). The same thing happens when you double-click a Word document: Windows picks up the
filename, looks up which application it's associated to and calls that application with the filename as an option.

The value of the command-line
Of course, using the command-line to open a Word document may seem slightly silly considering you can do the same thing by just
double-clicking the file itself, but there are instances where the reverse is true. For example, you can use it to open multiple documents
atonce (winword C:\a.doc C:\b.doc'") or make it print them, or whatever the program allows. GUIs may be easier
sometimes, but using the command-line allows for more control.

A second great thing about the command-line is that you can automate processes. This is particularly important in programming,
because that generally involves taking multiple steps for each file in the project. Doing all of that manually for each file in the project and
each time you rebuild is simply beyond any rational consideration; you'll want a script for that. Batch-files and makefiles are examples of
such scripts.

Basic steps for building a GBA project

file://H:/devig ba/proj/tonc/bak/tonc-chrome.htm 15/331

http://www.console-dev.de/
http://db.zhilaware.starfusion.org/
http://itaprogaming.free.fr/
http://www.torlus.com/index.php?Gba
http://www.nocturnal-central.com/
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Shell_%28computing%29

28-03-13 Tonc : GBA Programming in rot13
Converting your C/C++/asm sources into a valid GBA binary requires the following four steps:

1. Compile/assemble the sources. The first step is turning the human readable C or C++ files (. ¢/. cpp) or assembly files
(.s/.asm) to a binary format known as object files (. o). There is one object file for each source file.
The tool for this is called arm-none-eabi-gcc. Actually, this is just a front-end for the real compiler, but that's just
details. The arm-none-eabi- here is just a prefix specific to devkitARM,; other toolchains or platforms have different
prefixes. Note that C++ uses g++ instead of gcc.

2. Link the object files. After that, you need to link the separate object files into a single executable ELF file. Any precompiled
code libraries (. a) you may have are linked at this stage too.
You can actually compile and link at the same time, but it is good practice that you keep them separate: serious projects
usually contain multiple files and you don't want to have to wait for the whole world to recompile when you only changed one.
This becomes even more important when you start adding data (graphics, music, etc).
Again, arm-none-eabi-gcc is used for invoking the linker, although the actual linker is called arm-none-eabi-1d.

3. Translate/strip to pure executable. The ELF file still contains debug data and can't actually be read by the GBA (though
most emulators will accept it). arm-none-eabi-objcopy strips the debug data and makes sure the GBA will accept it.
Well, almost.

4. Validate header. Each GBA game has a header with a checksum to make sure it's a valid GBA binary. Normally,
compilation doesn't supply one, so we have to use a tool like DarkFader's gbafix to fix the header. This tool comes with
DKA, so you don't have to download it separately.

The demo in the next chapter is called £irst, which uses a single source file, first.c. To create the binary first.gba, you'l
need to execute the following commands.

Compile first.c to first.o
arm-none-eabi-gcc -mthumb -mthumb-interwork -c first.c

Link first.o (and standard libs) to first.elf
arm-none-eabi-gcc -specs=gba.specs -mthumb -mthumb-interwork first.o -o first.elf

Strip to binary-only
arm-none-eabi-objcopy -0 binary first.elf first.gba

Fix header
gbafix first.gba

Note that apart from the filenames (bolded), there are also different options for the tools (anything that starts with a hyphen). The
options in italics are technically not required, but recommended nonetheless. I've collected a few of the more common flags in the
makefile appendix, so look them up if you want to know. You can look up the full list of options in the manuals, though I should warn you
that the number of options can be very large.

e \
devkitARM's linker requires a -specs option.
Unlike other GBA toolchains, devkitARM requires that either ~specs=gba.specs or ~specs=gba_mb.specs is

present as a linker option. These specs contain the memory map without which the linker can't do its job. If you're migrating
from an older toolchain and find that suddenly the binary doesn't work anymore, this is a likely cause.

It is also a good idea to always have -mthumb -mthumb-interwork inthe compiler and linker flags. Enabling compiler
optimization (like ~02) and warnings (-Wall) are helpful as well.

\\

Better living through automation
You can build a GBA binary by typing the commands given above into a command-line interface each time. It is also possible to clean
toilets with a toothbrush before use it on your teeth — just because you can doesn't always mean you should. To manually enter each line
whenever you want to rebuild is, well, insane. It's much more useful to use some sort of script to do this for you. Technically, you can
use any kind of scripting environment you want, but I'll focus on two in particular here: batch-files and makefiles.

Batch-files (.bat) are Windows shell script that have been there since ye olde MS-DOS. Batch-files are pretty easy to use: simply
drop the commands in a .bat file and run that. But as usual, complex questions have easy to understand, wrong answers. While batch-
files are indeed very easy to use, they are utterly inadequate for anything but the most simple projects. More complex projects will have
multiple files and adding extra compilation lines every time you add a file becomes annoying. To be fair, it is possible to use variables and
loops and stuff in batch-files to ease this a little, but no one ever mentions those.

Another problem is that if you run a batch-file, you run the whole thing. This means that you're compiling every file every time, and
that if there are errors, you'll get the errors for every file in the project. This can be very tricky to navigate and sometimes it may not be
possible at all because the first errors are past the scroll-limit. (This was especially true for Windows versions 98 and earlier, which
didn't even have a scrollbar for a DOS-box. Eeek!)

Lastly, the syntax for batch-files are DOS/Windows only. This makes them unsuited for platform independent development.

A better solution is using makefiles. Makefiles are scripts run by a tool called make (which windows usually doesn't have, but it comes

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 16/331

http://en.wikipedia.org/wiki/Object_code
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
file:///H:/dev/gba/proj/tonc/bak/makefile.htm#sec-flags
http://www.gnu.org/manual/manual.html
http://en.wikipedia.org/wiki/Batch_file
http://en.wikipedia.org/wiki/Make_%28software%29

28-03-13 Tonc : GBA Programming in rot13

with MSys). Makefiles are platform independent and make managing files easier by working with rules instead of just commands. You
can have pattern rules that tell you how to turn files from one type into files of another type (like compiling . ¢ into . o files) and make
will take care of it; all you need to do is give a list of files which need to be compiled. Make will also check whether the compilation is
necessary in the first place so no unnecessary work will be done if the output file is already up to date.

The problem with makefiles is that they're harder to create than batch-files — at least for the uninitiated. But thanks to the devkitPro
template makefiles, you generally don't have to worry about that anymore: you can just set the correct directories and go. That said, it is
still worth learning a bit more about how makefiles work. For that reason, the next section explains a bit about the makefile process. The
makefiles in the Tonc examples also have a makefiles that increase in complexity.

If you're annoyed that makefiles can't be double-clicked to run, you can always create a batch-file that runs the makefile. Something like
this should suffice.

REM batch-file to run make
make
pause

Don't start this batch-file with ' make clean'though, as that would force a complete rebuild — something we're trying to avoid.. I'd
also advise against calling it make . bat, because that may clash with the name of the actual make tool

I'd recommend against this method though. The batchfile output will go into a DOS-box, which doesn't exactly navigate nicely. It would
be better to use a notepad that can execute shell commands and capture its output. Most of these will also allow you to go to errors by
double-clicking on the error message. PN2 is one of the many editors that can do these things.

{)
Prefer makefiles over batch-files
For all its initial ease, using batch-files will only hurt you in the long run. It's better to use something that can deal with
complex projects as well from the get go.

A down side to makefiles is that you can't activate them by double-clicking. It's possible to create a dummy batch-file to
invoke the makefile, but a better approach would be to use a code editor that can also execute shell commands.

\\

Paths and system variables
If you try to build anything using the commands given earlier, you'll probably find that it doesn't quite work. This is because I omitted an
important bit of information: the path. for the shell to execute the commands, it needs to be able to find them first and merely using
arm-none-eabi-gcc isn't enough because the file itself is actually at [initial
dirs]/devkitPro/devkitARM/bin/arm-none-eabi-gcc. The full path needs to be visible to the shell in order for
anything to happen, not just the filename.

Because typing out the whole thing is rather annoying and because my directory structure may be different than yours, the operating
system has a variable called PATH for standard directories. If you only give the filename, the shell will search in the current directory
and all the paths in the PATH for a match.

It is possible to add the DKA bin directory to the path directly, but devkitPro has chosen a cleaner approach. Instead of adding it to
the PATH, the installer creates a number of environment variables to some of the core directories, and you can use these during the build
process to point to the real paths. For example, there is a DEVKITARM variable, which in my case equates to
/e/dev/devkitPro/devkitARM. Yours will probably be a little different, but the point is that in both cases
$ (DEVKITARM) /bin will be the directory where the main tools are.

Note that the standard Windows format for directories is something like c: / foo/bar, whereas the DEVKITPARM variable is
formatted as a POSIX pathname with forward slashes. As far as I know, Windows is the only OS that doesn't allow POSIX names
which, well, kinda sucks. This is where MSys comes in. MSys is a collection of tools to make the standard Unix tools available on
DOS/Windows systems. Apart from make, it also has the bash shell where you can use POSIX names like every other programmer.
To switch to bash in a DOSbox, type "sh'. On the whole, bash is a more useful shell than DOS, though you may have to get used to the
different command set. But that's why we have manuals.

2.4.2. Basic Makefilese

Like batch-files, makefiles are scripts that can aid you in building a project. The main difference in how they work is that batch-files uses
a sequential list of commands, while makefiles use a chain of rules that define how files are converted into others, eventually leading to
the binary. This is the basic format of a rule:

Makefile rule example
target : prerequisite
command

The target can be the output file or files, or just an identifier for the rule, the prerequisite(s) are the files the target depends on and the
command(s) are a list of commands that turn the prerequisites into the targets (although technically they can do other things as well).
Note that the indentation of the commands must be a tab (ASCII 9), not spaces. This is an annoying little requirement that can trip you

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 17/331

http://en.wikipedia.org/wiki/Bash
http://www.gnu.org/software/bash/manual/

28-03-13 Tonc : GBA Programming in rot13

up when copy-pasting makefiles, so remember it well.
The direct equivalent of the commands used earlier to build first . gba would be like this:

#

Equivalent makefile for the earlier build procedure.
#

PATH := $(DEVKITARM) /bin:$ (PATH)

first.gba : first.c
arm-none-eabi-gcc -mthumb -mthumb-interwork -c first.c
arm-none-eabi-gcc -specs=gba.specs -mthumb -mthumb-interwork first.o -o first.elf
arm-none-eabi-objcopy -v -0 binary first.elf first.gba
gbafix first.gba

There is only one rule here, with target £irst.gba and prerequisite first.c. The commands are just what we typed in earlier.

Tabs, not spaces, before make commands

NOTE: GNU's make requires tabs before actual commands, not spaces. If you copy-paste, you may have to place the tabs
manually.

Running makefiles
You can invoke make to run the makefile like this:

make -f file-name target-name J

The "-£' flag indicates which makefile to execute; the farget-name tells which rule to start the chain with. Both of these options are
actually optional. Without the "~ £' option, ma ke will look in the current directory for files called 'GNUmakefile','Makefile' or
'makefile'and run that. This is why makefiles are usually called ‘Makefile”. If the target name is absent, the chain starts at the first
rule in the file.

It's not necessary to go to the commandline and type in ‘make' yourself: IDEs can often do that for you, although setting the IDE up
for that can take some doing. Because there are so many editors, I will not cover this here; google or use the help files to figure out what
needs to be done for your editor. I have examples for setting up conTEXT, an alternative for PN, and MS Visual Studio (5 and 6) in this
appendix. The DKP site also has a few examples in its FAQ

Makefiles, version 2
The makefile shown above was just an extremely simple (and limited) example of what a makefile would look like. Proper makefiles
have multiple rules and may use variables to define commonly-used data. The following is a more complex, but also more useful.

#

A more complicated makefile

#

PATH := $(DEVKITARM) /bin:$ (PATH)

--- Project details -—-—------——-—-——----—--- -
PROJ = first

TARGET = $ (PROJ)

OBJS := $(PROJ) .o

--- Build defines ———----—-—-———----—-—-—— -
PREFIX := arm-none-eabi-

cc = $(PREFIX)gcc

LD = $(PREFIX)gcc

OBJCOPY := $(PREFIX)objcopy

ARCH = -mthumb-interwork -mthumb

SPECS := —-specs=gba.specs

CFLAGS := $(ARCH) -02 -Wall -fno-strict-aliasing

LDFLAGS := $ (ARCH) $ (SPECS)

.PHONY : build clean

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 18/331

file:///H:/dev/gba/proj/tonc/bak/edmake.htm
http://www.devkitpro.org/faq.shtml

28-03-13 Tonc : GBA Programming in rot13

=== Builld ————m e
Build process starts here!
build: $ (TARGET) .gba

Strip and fix header (step 3,4)

$ (TARGET) .gba : $(TARGET) .elf
$ (OBJCOPY) -v -0 binary $< $@
-@gbafix $@

Link (step 2)
S (TARGET) .elf : $(OBJS)
S (LD) $~ S (LDFLAGS) -o $@

Compile (step 1)
$(OBJS) : %.0 : %.cC
$(CC) -c $< S$(CFLAGS) -o sa@

——— Clean ———————————— -
clean :

@rm -fv *.gba

@Qrm -fv *.elf

@Qrm -fv *.o

#EOF

The top half of this makefile is spent defining variables for later use. Something like 'FOO := bar' defines a variable called FOO
which can then be used via $ (FOO) . Although I'm only using : = here, there are other methods as well:

= |Direct substitution variable (like a C macro).

:= |Basic variable (overrides previous definition).

?=|Create variable if it didn't exist yet.

+=|Add to existing variable.

Table 2.2: variable definitions.

The variables created here are mostly standard things: names for the compiler and linker (CC and 1LD) and their flags (CFLAGS and
LDFLAGS). These aren't strictly necessary, but they are useful. The things actually related to the project are TARGET and OBJS.
TARGET is the base-name of the output binary, and OBJS is the list of object files. Note: list of object files! Right now there's only a
single file, but later projects will have multiple source files that all have to be compiled and linked. By using a variable like this, adding a
new file to the project is a matter of extending this list. It is also a list of object files, not source files. The rules start are based on the
target names, not the prerequisite names.

There are also more rules now. The primary rules are build and clean (the . PHONY is just to indicate that they're not actually
filenames themselves). In the build rule you see how the chaining works: build depends on the .gba binary, which depends on the
.elf file, which depends on the object files, which depends on the source files. It's basically the basic steps I gave earlier in reverse.

Part of the makefile magic is that a rule will only be executed if the prerequisites are younger than the targets. For example, if a
particular source-file has been modified, it will be younger than its .o file and the compilation rule will run for that particular file but not
the others. This is partly why dividing the process into separate rules is useful.

The funny things with with dollar signs ($@, etc) are automatic variables. They are shorthand for the target and prerequisite names.
You can find what they mean in table 2.3. This is just three of the automatic variables available; for a full list, go to the ma ke manual.

$< |Name of the first prerequisite

$~ |List of all the prerequisites
$@|Name of the target

Table 2.3: automatic variables for rules.

The last thing I want to discuss here concerning this particular makefile is the compilation rule. The form %0 : %.c is an example a
static pattern rule. It basically says “for every file in OBJS with the extension ‘.0, look for the corresponding ‘.c’ file and run the
command”. Like I said earlier, OBJS can have multiple filenames, each of which will compile automatically via this one rule. Again, this
is one of the nice things about makefiles: to add a file for the project, you don't have to write another rule, just add its object name to
OBJS and you're done. There are also possibilities to get all files in a directory so that you won't heven have to add it yourself, but that's
out of the scope of this section.

2.4.3.Legacy: on Tonc's structure

This last section shouldn't really be here. With devkitPro's template makefiles, managing projects should be easy enough without having
to know anything about makefiles, so this stuff could be tucked safely in an appendix. So why is it here?

The reason it's put in front is historical in nature. When I started this around 2004, devkitARM was still young and libgba, the installer
and the templates simply didn't exist yet. There we a handful of GBA tutorials which did explain the basics, but all used poor (sometimes

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 19/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sssec-build-steps

28-03-13 Tonc : GBA Programming in rot13
very poor) programming standards and project structure. With the latter I mean three things:

o using the wrong compiler flags;

o #including the whole program into a single file (covered in some detail in the data section in the chapter on bitmaps);
¢ using batch-files instead of makefiles.

e code that was simply incorrect or at best very inefficient.

Instead of just saying how to do things, I also tried to make a point about how rot to do things. Knowing what to avoid can be just as
important as knowing the right moves. I've also tried to ease into makefiles so that they wouldn't seem so daunting for new users. This
resulted in dividing Tonc into three main parts:

e basic: completely stand-alone projects; with very simple makefiles.
e extended: projects use tonclib; makefiles are more complex.
¢ advanced: projects use tonclib and makefiles derived from devkitPro's makefiles.

In the ‘basics’ section, I spend much time on good/bad practices to get it out of the way. This requires knowing elementary makefiles,
hence this section. If I had the time or if there was a real need I'd do things differently now, but the requirement of the good/bad
practices have made the earlier parts somewhat harder to maintain than the later chapters. One of life's little ironies.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 20/331

file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-hdr

28-03-13 Tonc : GBA Programming in rot13

3. My first GBA demo

Finally, vour first GBA program.

Your second first GBA program.

General notes on GBA programming
Testing your code on a real GBA.

3.1. Finally, your first GBA program

Now that you have your development environment ready, it's time to take a look at a simple GBA program. For this we will use the code

from the C-file first.c. The plan at this point is not full understanding; the plan is to get something to compile and get something

running. The code will be discussed in this chapter, but what it all means will be covered in later chapters.

// First demo. You are not expected to understand it
// (don't spend too much time trying and read on).
// But if you do understand (as a newbie): wow!

int main ()

{
(unsigned int)0x04000000 = 0x0403;

((unsigned short*)0x06000000) [120+80*240] = 0x001F;
((unsigned short*)0x06000000) [136+80*240] = 0x03EOQ;
((unsigned short*)0x06000000) [120+96*240] = 0x7C00;

while (1) ;

return 0;

}

Don't worry about the code just yet, there's time for that later. And don't leave just yet, I'll give a nicer version later on. All that matters
now is that you're able to compile and run it. The makefile to build the project was given in the setup, but I'll repeat it here. You can also

find it on Tonc's examples folder under code /basic/first.

#

Makefile for first.gba

#

PATH := $(DEVKITARM) /bin:$ (PATH)

——- Project details —=——————————m e
PROJ := first

TARGET := $(PROJ)

OBJS := $(PROJ) .o

—--- Build defines -—-—------—"--—--——--—--— -
PREFIX := arm-none-eabi-

cc := $(PREFIX)gcc

LD := $(PREFIX)gcc

OBJCOPY := $(PREFIX)objcopy

ARCH := -mthumb-interwork -mthumb

SPECS 1= —-specs=gba.specs

CFLAGS = $(ARCH) -02 -Wall -fno-strict-aliasing

LDFLAGS := $(ARCH) $(SPECS)

.PHONY : build clean
=== Build =====-mm e e

Build process starts here!
build: $(TARGET) .gba

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

21/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-first
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-second
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-notes
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-testing
file:///H:/dev/gba/proj/tonc/bak/setup.htm#ssec-cli-make

28-03-13 Tonc : GBA Programming in rot13

Strip and fix header (step 3,4)

$ (TARGET) .gba : $(TARGET) .elf
$ (OBJCOPY) -v -0 binary $< $@
-@gbafix $@

Link (step 2)
$ (TARGET) .elf : $(OBJS)
$(LD) $~ S$(LDFLAGS) -o $@

Compile (step 1)
S(OBJS) : %$.0 : %.cC
$(CC) -c $< S$(CFLAGS) -o s@

-—— Clean ——————————— -
clean :

@rm -fv *.gba

@Qrm -fv *.elf

@rm -fv *.o

#EOF

Build the project by opening first .pnproj and hitting Alt+1 or double-clicking
build.bat. This wil

e compile first.ctofirst.o (the $ (PROJ) is replaced with “first’,
remember?),

¢ link the list of object files (currently only first.o)to first.elf,

e translate first.elf to first.gba by stripping all excess ELF information,

o fix the header so that the GBA will accept it.

After the makefile has run, you should have a file called first.gba, if you don't there's a
problem with your set-up because the code sure isn't wrong. I've made a list of potential
problems setup:dkp; check if yours is one of them.

If you do find yourself with a GBA executable, run it on hardware or your emulator of
choice and you should get a red, a green, and a blue pixel at positions (120, 80), (136, 80) and (120, 96), respectively.

Fig 3.1: picture of the first demo

Now, for the code itself ...

3.1.1. Huh?

If you're somewhat confused by it, you wouldn't be alone. I expect that unless you already know a thing or two about GBA
programming or have experience with low-level programming from other platforms, the code will be a total mystery. If you're proficient
enough in C you may have some idea what's making the three pixels appear, but I admit that it is very hard to see.

And that was kind of my point actually. If one were to hand this in for a test at a programming class, you would fail so hard. And if
not, the professors should be fired. While the code show above does work, the fact that it's almost unreadable makes it bad code.
Writing good code is not only about getting results, it's also about making sure other people can understand what's happening without too
much trouble.

The code of first.c also serves another purpose, namely as a reminder that GBA programming is very low-level. You interact
directly with the memory, and not through multiple layers of abstraction brought by APIs. To be able to do that means you have to really
understand how computers work, which all programmers should know at least to some degree. There are APIs (for lack of a better
word) like HAM that take care of the lowest levels, which definitely has its merits as it allows you to deal with more important stuff like
actual game programming, but on the other hand it hides a lot of details — details that sometimes are better left in the open.

Those who want a better, more intelligible, version of the previous code can skip the next section and move on to the second first demo.
The warped minds who can't just let it go and want to have an explanation right now (for the record, I count myself among them), here's
what's going on.

3.1.2. Explanation of the code
This is a quick and dirty explanation of the earlier code. Those previously mentioned warped minds for whom this section is intended will
probably prefer it that way. A more detailed discussion will be given later.

As I said, GBA programming is low-level programming and sometimes goes right down to the bit. The 0x04000000 and
0x06000000 are parts of the accessible memory sections. These numbers themselves don't mean much, by the way; they just refer to
different sections. There aren't really 0x02000000 between these two sections. As you can see in the memory map, these two
sections are for the 10 registers and VRAM, respectively.

To work with these sections in C, we have to make pointers out of them, which is what the ‘unsigned int*’ and ‘unsigned
short*’ do. The types used here are almost arbitrary; almost, because some of them are more convenient than others. For example,
the GBA has a number of different video modes, and in modes 3 and 5 VRAM is used to store 16-bit colors, so in that case casting it to

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 22/331

file:///H:/dev/gba/proj/tonc/bak/setup.htm#ssec-dkp-error
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-second
file:///H:/dev/gba/proj/tonc/bak/hardware.htm#sec-memory

28-03-13 Tonc : GBA Programming in rot13

halfword pointers is a good idea. Again, it is not required to do so, and in some cases different people will use different types of
pointers. If you're using someone else's code, be sure to note the datatypes of the pointers used, not just the names.

The word at 0400:0000 contains the main bits for the display control. By writing 0x04 03 into it, we tell the GBA to use video mode
3 and activate background 2. What this actually means will be explained in the video and bitmap mode chapters.

In mode 3, VRAM is a 16-bit bitmap; when we make a halfword pointer for it, each entry is a pixel. This bitmap itself is the same
size as the screen (240x160) and because of the way bitmaps and C matrices work, by using something of the form ‘array[y*width +
x]” are the contents of coordinates (x, y) on screen. That gives us our 3 pixel locations. We fill these with three 16-bit numbers that
happen to be full red, green and blue in 5.5.5 BGR format. Or is that RGB, I always forget. In any case, that's what makes the pixels
appear. After that there is one more important line, which is the infinite loop. Normally, infinite loops are things to be avoided, but in this
case what happens after main () returns is rather undefined because there's little to return 7o, so it's best to avoid that possibility.

And that's about it. While the Spartan purity of the code does appeal to a part of me, I will stress again that this is not the right way
to program in C. Save the raw numbers for assembly please.

3.2. Your second first GBA program

So, let's start over again and do it right this time. Or at least more right than before. There are a number of simple ways to improve the
legibility of the code. Here is the list of things we'll do.

¢ First and foremost is the use of named literals, that is to say #defined names for the constants. The numbers that went into
the display control will get proper names, as will the colors that we plotted.

e We'llalso use #define for the me mory mapping: the display control and VRAM will then work more like normal variables.

o We'llalso create some typedefs, both for ease of use and to indicate conceptual types. For instance, a 16-bit color is
essentially a halfword like any other, but if you typedef it as, say, COLOR, everyone will know that it's not a normal halfword,
but has something to do with colors.

o Finally, instead of plotting pixels with an array access, which could still mean anything, well use a subroutine for it instead.

Naturally, this will expand the total lines of code a bit. Quite a bit, in fact. But it is well worth it. The code is actually a two-parter. The
actual code, the thing that has all the functionality of the first demo, can be found in second. c. All the items discussed above, the
typedefs, #defines and inlines, are put in toolbox.h.

// toolbox.h:

//

// === NOTES ===

// * This is a small set of typedefs, #defines and inlines that can
// be found in tonclib, and might not represent the

// final forms.

#ifndef TOOLBOX H
#define TOOLBOX H

// === (from tonc types.h) ==
typedef unsigned char u8;

typedef unsigned short ul6;

typedef unsigned int u32;

typedef ul6 COLOR;

#define INLINE static inline

/ === (from tonc memmap.h) ===
#define MEM IO 0x04000000

#define MEM VRAM 0x06000000

#define REG DISPCNT *((volatile u32*) (MEM I0+0x0000))

/ === (from tonc memdef.h) ===
// --- REG_DISPCNT defines ---

#define DCNT MODEO 0x0000

#define DCNT MODEl 0x0001

#define DCNT MODE2 0x0002

#define DCNT MODE3 0x0003

#define DCNT MODE4 0x0004

#define DCNT MODES 0x0005

// layers

#define DCNT BGO 0x0100

#define DCNT BG1 0x0200

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 23/331

file:///H:/dev/gba/proj/tonc/bak/video.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm

28-03-13 Tonc : GBA Programming in rot13

#define DCNT_ BG2 0x0400
#define DCNT_ BG3 0x0800
#define DCNT_OBJ 0x1000
// === (from tonc_video.h) ==

#define SCREEN WIDTH 240
#define SCREEN HEIGHT 160

#define vid mem ((ul6*)MEM_ VRAM)

INLINE void m3 plot(int x, int y, COLOR clr)
{ vid mem[y*SCREEN WIDTH+x]= clr; }

#define CLR BLACK 0x0000

#define CLR_RED 0x001F
#define CLR_LIME 0x03E0
#define CLR_YELLOW O0x03FF
#define CLR BLUE 0x7C00
#define CLR_MAG 0x7C1F
#define CLR_CYAN 0x7FEO

#define CLR WHITE 0x7FFF

INLINE COLOR RGB15(u32 red, u32 green, u32 blue)
{ return red | (green<<5) | (blue<<10); }

#endif // TOOLBOX H

#include "toolbox.h"

int main ()

{
REG DISPCNT= DCNT MODE3 | DCNT BG2Z;

m3 plot(120, 80, RGB15(31, 0, 0)); // or CLR _RED
m3 _plot(136, 80, RGB15(0,31, 0)); // or CLR_LIME
m3_plot(120, 96, RGB15(0, 0,31)); // or CLR BLUE
while (1) ;

return 0;

}

As you can see, the number of lines in toolbox.h is actually much larger than that of the real code. This may seem like a bit of a
waste now, but this is only because it's such a small demo. None of the contents of toolbox.h is actually compiled, so there is no
cost in terms of memory use. In fact, if it did it wouldn't belong in a header file, but that's a discussion I'll go into another time. Right
now, let's see what we actually have in toolbox.h

3.2.1. The toolbox

Types and typedefs
First of all, we create some shorthand notations of commonly used types. No matter what anyone says, brevity is a virtue. For
example, unsigned types are very common and writing out the full names (e.g, ‘unsigned short’) serves little purpose. The
shorthand ‘ul6’ is just much more convenient. Besides convenience, it also gives better information on the size of the variable, which is
also of great importance here.

I've also added a conceptual typedef. While it's true that, in principle, an int is an int no matter what it's used for, it is helpful if you

can tell what its supposed use is from its type. In this case, I have a COLOR alias for ul 6 when [want to indicate a particular halfword
contains color information.

Memory map defines
To be able to work directly specific addresses in memory, you'll have to cast them to pointers or arrays and work with those. In this
demo's case, the addresses we're interested in are 0600: 0000 (VRAM) and 0400: 0000 (the display control register). In the first
demo I did the casts manually, but it's better to use names for them so that you don't have to remember all the numbers and also because
nobody else would have any clue to what's going on.

For the 10 registers I'm using the official names, which are recognized by all parties. The display control is known as

REG_DISPCNT, and is defined as the word at 0400 : 0000. Note that neither the name nor the type are set in stone: you could as
easily have called it “BOO” and even used a halfword pointer. The full list of register #defines can be found in tonclib's regs . h.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 24/331

file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-hdr

28-03-13 Tonc : GBA Programming in rot13

For those who aren't as familiar with pointers as you should (boy, are you gonna be in trouble : P), here is the structure of the
REG_DISPCNT #define. I'm using vu32 as a typedef for ‘volatile u32’ here.

#define REG_DISPCNT * ((volatile u32*) (MEM IO+0x0000)) J

code type description
MEM I0+0x0000 Address |MEM_10=0x04000000, so this is address 0400:0000
(vu32*) 0x04000000 [pointer |A pointer to an unsigned int of the volatile persuasion (ignore this last part for now)

* ‘variable’ By dereferencing the pointer (the ‘*’ unary operator), we access the contents of

(vu32*)0x04000000 the pointer. Id est, the whole thing becomes usable as a variable.

So for all intents and purposes, REG DISPCNT is a variable just like any other. You can assign values to it, read its contents, perform
bit operations on it and so forth. Which is good, because that's just the way we want to use that register.

A similar procedure is carried out for VRAM, only this is still in its pointer form in the end. Because of that, vid mem works as an
array, not a variable. Again, this is exactly how we want things. Please be careful with the definition, though: all the parentheses there
are required! Because of the operator precedence between casts and arrays, leaving out the outer parentheses pair gives compilation
erTors.

IO register and their bits
The 10 registers (not to be confused with the CPU registers) are a collection of switches in the form of bitfields that control various
operations of the GBA. The IO registers can be found in the 0400: 0000 range of memory, and are usually clumped into words or
halfwords according to personal preference. To get anything done, you have to set specific bits of the 10 registers. While you can try to
remember all the numerical values of these bits, it's more convenient to use #defines instead.

The toolbox header lists a number of the #defines I use for REG_DISPCNT. The full list can be found in vid.h of tonclib, and the
register itself is described in the video chapter. For now, we only need DCNT_MODE3 and DCNT_BG2. The former sets the video
mode to mode 3, which is simplest of the 3 available bitmap modes, and the latter activates background 2. Out of a total of four, bg 2 is
the only one available in the bitmap modes and you have to switch it on if you want anything to show up. You have to admit that these
names are a lot more descriptive than 0x0003 and 0x0400, right?

I've also added a list of useful color defines, even though I'm not using them in second. c. They may or may not be useful in the
future, though, so it's good to have them around.

Creating the register #defines is probably the biggest part of header files. As a rough estimate, there are 100 registers with 16 bits each,
so that would be 1600 #defines. That's a lot. The exact number may be smaller, but it is still large. Because the names of the #defines in
and of themselves aren't important, you can expect different naming schemes for different people. I am partial to my own set of names,
other older GBA coders may use PERN's names and more recent ones may use libgba's, which comes with devkitARM. Take your
pick.

Macros and inline functions

You can also create #defines that work a little like functions. These are called macros. I'm not using them here, but there are plenty to
be found in tonclib's headers. Like all #defines, macros are part of the preprocessor, not the compiler, which means that the debugger
never sees them and they can have many hidden errors in them. For that reason, they have been depreciated in favor of inline
functions. They have all the benefits of macros (i.e., integrated into the functions that call them so that they're fast), but are still
function-like in syntax and resolved at compile time. At least that's the theory, in practice they're not quite as speedy as macros, but
often preferable anyway.

One inline function I'm using is m3_plot (), which, as you may have guessed, is used to plot pixels in mode 3. In mode 3, VRAM
is just a matrix of 16bit colors, so all we have to do to plot a pixelis enter a halfword in the right array element. m3 plot () looks
exactly like a normal function, but because the ‘static inline’ in front of it makes it an inline function. Note that inlining is only a
recommendation to the compiler, not a commandment, and it only works if optimizations are switched on.

// Mode 3 plotter as macro ...
#define M3 PLOT(x, y, clr) vid mem[(y) *SCREEN WIDTH+ (x)]=(clr)

// and as an inline function
static inline void m3 plot(int x, int y, COLOR clr)
{ vid mem[y*SCREEN WIDTH+x]= clr; }

The second inline function is RGB15 (), which creates a 16bit color from any given red, green and blue values. The GBA uses 16bit
colors for its graphics — or actually 15bit colors in a 5.5.5 BGR format. That's 32 shades of red in the first (lowest) 5 bits, 32 greens in
bits 5 to 9, and 32 blues in 10-14. The RGB15 () inline takes care of all the shifting and masking to make that happen.

3.2.2. The working code

Making use of the contents of toolbox .h makes the code of the demo much more understandable.
The first line inmain () sets a few bits in the display control, commonly known as REG_DISPCNT. I use DCNT MODE3 to set
the video mode to mode 3, and activate background 2 with DCNT BG2. This translates to 0x0403 as before, but this method gives a

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 25/331

file:///H:/dev/gba/proj/tonc/bak/video.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/Inline.html

28-03-13 Tonc : GBA Programming in rot13

better indication of what's happening than entering the raw number. Using a variable-like #define instead of the raw dereferenced
pointer is also preferable; especially as the latter is sure to wig out people new to C.

So how do I know what bit does what to create the #defines in the first place? Simple, I looked them up in GBATek, the essential
reference to GBA programming. For every 10 register I use in these pages I'll give a description of the bits and a list of #defines as
they're defined in tonclib. The formats for these descriptions were given in the preface, and the table for REG DISPCNT can be found
in the video chapter.

Actually plotting the pixels is now done with the inline functionm3 plot (), which is formatted much the same way as every kind
of pixel plotter in existence: 2 coordinates and the color. Much better than raw memory access, even though it works exactly the same
way. The colors themselves are now created with an inline too: RGB15 takes 3 numbers for the red, green and blue components and
ties them together to form a valid 16-bit color.

Finally, there is an endless loop to prevent the program from ever ending. But aren't endless loops bad? Well usually yes, but not
here. Remember what happens when PC programs end: control is kicked back to the operating system. Well, we don't zave an
operating system. So what happens after main () returns is undefined. It is possible to see what happens by looking at a file called
ctrs0.S, which comes with your dev-kit, but that's not a thing for beginners so at the moment my advice is to simply not let it happen.
Ergo, endless loop. For the record, there are better ways of stopping GBA programs, but this one's the easiest. And now we've reached
the end of the demo.

Better, no?
And that is what proper code looks like. As a basic rule, try to avoid raw numbers: nobody except you will know what they mean, and
after a while you may forget them yourself as well. Typedefs (and enums and structs) can work wonders in structuring code, so can
subroutines (functions, inline functions and macros). Basically, every time you notice you are repeating yourself (copy&paste coding), it
might be time to think about creating some subs to replace that code.

These are just a few basic guidelines. If you need more, you can find some more here, for example. Google is your friend. Now, if
you've followed any classes on C, you should already know these things. If not, you have been cheated. Books and tutorials may
sometimes skip these topics, so it may be necessary to browse around for more guidelines on programming styles. That's all they are, by
the way: guidelines. While the rules are usually sensible, there's no need to get fascist about them. Sometimes the rules won't quite
work for your situation; in that case feel free to break them. But please keep in mind that these guidelines have been written for a
reason: more often than not you will benefit from following them.

3.2.3. First demo v3?

There are many ways that lead to Rome. You've already seen two ways of coding that essentially do the same thing, though one was
easily superior. But sometimes things aren't so clear cut. In many cases, there are a number of equally valid ways of programming. The
obvious example is the names you give your identifiers. No one's forcing you to a particular set of names because it's not the names that
are important, it's what they stand for. Another point of contention is whether you use macros, functions, arrays or what not for dealing
with the memory map. In most cases, there's no difference in the compiled code.

The code below shows yet another way of plotting the 3 pixels. In this case, I am using the color #defines rather than the RGB
nline, but more importantly I'm using an array typedef M3LINE with which I can map VRAM as a matrix so that each pixel is
represented by a matrix element. Yes, you can do that, and in some way it's even better than using an inline or macro because you're not
limited to just setting pixels; getting, masking and what not are all perfectly possible with a matrix, but if you were to go the subroutine
way, you'd have to create more for each type of action.

As you can see, there's all kinds of ways of getting something done, and some are more practical than others. Which one is
appropriate for your situation is pretty much up to you; it's just part of software design.

#include "toolbox.h"

// extra stuff, also in tonc video.h

#define M3_WIDTH SCREEN_ WIDTH

// typedef for a whole mode3 line

typedef COLOR M3LINE [M3 WIDTH];

// m3 mem is a matrix; m3 mem[y] [x] is pixel (x,y)
#define m3_mem ((M3LINE*)MEM VRAM)

int main ()
{
REG_DISPCNT= DCNT MODE3 | DCNT BG2;

m3 mem[80] [120]= CLR RED;
m3 mem[80] [136]= CLR LIME;
m3 mem[96] [120]= CLR BLUE;

while (1) ;
return 0;

3.3. General notes on GBA programming

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 26/331

http://nocash.emubase.de/gbatek.htm
file:///H:/dev/gba/proj/tonc/bak/intro.htm#ssec-note-reg
file:///H:/dev/gba/proj/tonc/bak/video.htm#sec-vid-regs
http://www.jetcafe.org/~jim/c-style.html

28-03-13 Tonc : GBA Programming in rot13

Console programming is substantially different from PC programming, especially for something like the GBA. There is no operating
system, no complex API to learn, it's just you against the memory. You need to have intimate knowledge of the GBA memory sections
to make things work, and good pointer and bit-operation skills are a must. Also remember that you don't have a 2GHz CPU, half a gig of
RAM and a GPU that can do a gazillion polygons per second. It's just a 16 MHz CPU with 96kB video memory. And no floating point
support or even hardware division. These are all things you need to be aware of when designing your GBA software.

Another thing that you need to remember is that the GBA has a tendency to do things just a tiny bit different than you may expect. The
primary example of this is the matrix used for affine transformations like rotation and scaling. All of the popular tutorials give the wrong
matrix for a rotation-scale transformation, even though the reference documents give the correct description of each element. Other
good examples are the end result of trying to write a single byte to VRAM, the fact that bits for key-states are actually sef when the
button's unpressed instead of the other way around, or what the timer register REG_TMxD really does.

I've tried to be complete in my explanations of all these things, but I'm positive I've missed a thing or two. If you encounter problems,
you're probably not the first one. There are plenty of FAQs and forums where you can find the solution. If that fails, it never hurts to
ask. If any of my information is incorrect or incomplete, please don't hesitate to tell me.

3.3.1. GBA Good/bad practices

For some reason, there are a lot of bad programming practices among the GBA development community. The main reason for this is
probably that people just copy-paste from tutorial code, most of which use these practices. Here's a short list of things to avoid, and
things to adopt.

e Don't believe everything you read. Bottom line: people make mistakes. Sometimes, the information that is given is
incorrect or incomplete. Sometimes the code doesn't work; sometimes it does, but it's inefficient or inconsistent or just contains
practices that will come back to bite you later on. This is true for most (if not all) older tutorials. Don't automatically assume
you're doing it wrong: there is a chance it's the source material.

Unfortunately, if you're new to programming you might not recognize the bad and adopt the standards exhibited by some
sources. Do not learn C programming from GBA tutorials! I'd almost extent that suggestion to on-line tutorials in general,
especially short ones. Books are usually more accurate and provide a better insight into the material. (But again, not always.)

e RTFAQ /RTFR. Read the gbadev forum FAQ. Should go without saying. It covers a lot of common problems. Additionally,
read the fuckin reference, by which I mean GBATek, which covers just about everything.

e Makefiles are good. Many tutorials use batchfiles for building projects. This is a very easy method, I agree, but in the long
run, it's very inefficient, Windows only and is prone to maintainability problems. Makefiles are better for Real World projects,
even though there may be a hurdle setting them up initially. Fortunately, you don't have to worry about it that much, because
DevkitPro comes with a template makefile/project (see $ { DEVKITPRO} /examples/gba/template) where all you
need to do is say in which directories the source/header/data files are kept. The makefiles I use for the advanced and lab
projects are an adaptation of these.

e Thumb-code is good. The standard sections for code (ROM and EWRAM) have 16bit buses. ARM instructions will clog
the bus and can seriously slow down performance. Thumb instructions fit better here. Thumb code is often smaller too. Note
that because of the 32bit bus of IWRAM, there is no penalty for ARM code there.

¢ Enabling interworking, optimizations and warnings are good. Interworking (-mthumb-interwork) allows you to
use switch between ARM and Thumb code; you may want this if you have a few high-performance routines in
ARM/ITWRAM that you want to call from ROM code. Optimizations (-0 #) make GCC not be an idiot when compiling C into
machine code (I'm serious: without them the output is attrociously bad in every way). It produces faster code, and usually
smaller as well. Warnings —-Wa 11 should be enabled because you will do stupid things that will produce compilable output, but
won't do what you expected. Warnings are reminders that something funky may be going on.

e 32bit variables are good. Every CPU has a ‘native’ datatype, also known as the word, or in C-speak, the int. Generally
speaking, the CPU is better equipped to deal with that datatype than any other. The GBA is called a 32bit machine because
the CPU's native datatype is 32-bit. The instruction sets are optimised for word-sized chunks. It /ikes words, so you'd better
feed it words unless you have no other choice.

In a very real way, the 32bit integer is the only datatype the GBA has. The rest are essentially emulated, which carries a
small performance penatly (2 extra shift instructions for bytes and halfwords). Do not use u8 or ul6 for loop-indices for
example, doing so can cut the speed of a loop in half! (The belief that using smaller types means lower memory-use only
holds for aggregates and maybe globals; for local variables it actually costs memory). Likewise, if you have memory to copy
or fill, using words can be about twice as fast as halfwords. Just be careful when casting, because an ARM CPU is very
picky when it comes to alignment.

e Data in header files is bad, very bad. I'll go in a little detail about it when talking about data. And see also here and here.

Those are points where other GBA tutorials often err. It's not an exclusive list, but the main points are there I think. There are also a
few things on (C) programming in general that I'd like to mention here.

¢ Know the language; know the system. It should go without saying that if you're programming in a certain language or on a
certain system, you should know a little (and preferably a lot) about both. However, I have seen a good deal of code that was
problematic simply because the author apparently didn't know much about either. As I said in the beginning of this section, the
GBA has a few interesting quirks that you need to know about when programming for it. That, of course, is what Tonc is all
about. Some things stem from lack of C skills — the ‘int’-thing is an example of this. Another very common problem is correct
memory and pointer use, something that I will cover a little later and also in the section on data. With C, you have different

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 27/331

file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-intro-details
file:///H:/dev/gba/proj/tonc/bak/keys.htm#ssec-reg-keys
file:///H:/dev/gba/proj/tonc/bak/timers.htm#ssec-reg-tmxd
http://www.coranac.com/documents/taptngba/
http://forum.gbadev.org/viewtopic.php?t=418
http://nocash.emubase.de/gbatek.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-align
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-hdr
http://forum.gbadev.org/viewtopic.php?t=2605
http://forum.gbadev.org/viewtopic.php?t=3687
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#sec-data

28-03-13 Tonc : GBA Programming in rot13

kinds of datatypes, pointers, the preprocessor and bit-operators at your disposal. Learn what they do and how to use them
effectively.

e Think first, code later. Don't open up an editor, type some code and hope it works correctly. It won't. How can i, if you
haven't even defined what ‘correctly’ means? Think of what you want to do first, then what you need to get it done and then
try to implement it.

A lot of programming (for me anyway) is not done in a text editor at all. For example, for anything involving math (which
can include graphics as well), it's better to make a diagram of the situation. I have pages of diagrams and equations for the
affine transformation and mode 7, just to see what what going on. Pen and paper are your friends here.

e Learn to generalize and simplify. This is actually not about programming, but problem-solving in general. Specific problems
are often special cases of more general problems. For example, 2D math is a subset of multi-dimensional math; vector analysis
and transformations such as rotations and scaling are parts of linear algebra. If you know the general solution, you can always
(well, often, at any rate) work down to the specific case. However, what is often taught (in school, but in universities as well)
are the specific solutions, not the general ones. While using the special case solutions are often faster in use, they won't work
at all if the case is just a little different than the example in the book. If you'd learned the general solution — better yet, how to
arrive at the general solution — you'd stand a much better change of solving the task at hand.

A related issue is simplification. For example, if you have long expressions in a set of equations (or algorithms), you can
group them to together under a new name. This means less writing, less writing and a lower risk of making a mistake
somewhere.

e Learn basic optimization strategies. By this I don't mean that you should know every trick in the book, but there are a few
things that you can use in writing code that can speed things up (sometimes even significantly) without cost to readbility and
maintainability. In fact, sometimes the code actually becomes easier to read because of it. A few examples:

o Use a better algorithm. Okay, so this one may not always be simple, but it's still very true.

o Use ints. The int is loosely defined as the native datatype. Processors tend to perform better when they deal with
their native datatype.

o Use temporary variables for common expressions. If you use a long expression more than a few times,
consider dumping it in a temp. This means less writing for you, and less reading for everyone. It can also make your
code faster because you don't need to evaluate the entire expression all the time. This is especially true for global
variables, which have to be reloaded after each function-call because the values may have changed.

o Use pointers. Pointers have the reputation of being dangerous, but they're a very powerful tool if used correctly.
Pointer arithmetic is usually faster than indexing because it's closer to hardware, and by assigning temp pointers to
deeply nested structure expressions (see above), you can gratly reduce the length of the expressions, which makes
things easier on the compiler and the reader alike.

o Precalculate. This is related to the previous two points. If you have a loop in which things don't depend on the loop-
variable, precalculate that part before the loop. Also, to avoid (complex) calculations, you could dump the data in a
Look-up Table and simply grab a value from there.

o Avoid branches. Things that redirect program flow (ifs, loops, switches) generally cost more than other operations
such as arithmetic. Sometimes it's possible to effectively do the branch with arithmetic (for example, (int)x>>1
gives —1 or 0, depending on the sign of x)

There are many more optimization techniques, of course. Wikipedia has a nice overview, and you can find pages discussing
particular techniques here[bOrked] and there. Some of these techniques will be done by the compiler anyway, but not always.
e Learn to optimize later. Also known as “premature optimization is the root of all evil”’. Optimization should be done in the
final stages, when most code is in pace and you can actually tell where optimization is necessary (if it's necessary at all).
However, this does not mean you should actually strive for the slowest solution in the early phases. Often there is a cleaner
and/or faster (sometimes even much faster) algorithm then the trivial one, which will come to you with just a small amount of
thought. This isn't optimization, it's simply a matter of not being stupid. A few of the points mentioned above fall in this
category.
e There are always exceptions. There is no programming guideline that doesn't have its exception. Except maybe this one.
I'll leave it at that for now. Entire books have been written on how to code efficiently. Resources are available on the well as well:
search for things like “optimization”, “coding standards” or “coding guidelines” should give you more than enough. Also look up Design
Pattern and Anti-pattern. Also fun are books and sites that show how nof to code. Sometimes these are even more useful. Worse than
Failure is one of these (in particular the codeSOD category); The programming section of Computer stupidities is also nice. If you want
to see why the use of global variables is generally discouraged, do a search for ‘alpha’ in the latter page.

3.3.2. A few examples of good/bad practices

Here are a few examples of code that, while functional, could be improved in terms of speed, amount of code and/or maintainability.

Ints versus non-ints
Above, I noted that use of non-ints can be problematic. Because this bad habit is particularly common under GBA and NDS code (both
homebrew and commercial), I'd like to show you an example of this.

// Force a number into range [min, max>
#define CLAMP (x, min, max) \
((x)>=(max) ? ((max)-1) : (((x)<(min)) ? (min) : (x)))

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 28/331

file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/mode7.htm
file:///H:/dev/gba/proj/tonc/bak/fixed.htm#sec-lut
http://en.wikipedia.org/wiki/Optimization_(computer_science)
http://www.abarnett.demon.co.uk/tutorial.html
http://linuxgazette.net/issue71/joshi.html
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Anti-pattern
http://worsethanfailure.com/Default.aspx
http://www.rinkworks.com/stupid/cs_programming.shtml

28-03-13 Tonc : GBA Programming in rot13

// Change brightness of a palette (kinda) (70)
void pal brightness(ul6 *pal, ul6 size, s8 bright)
{

ule ii;

s8 r, g, b;

for (ii=0; ii<size; 1ii++)
{
r= (palfii]) &31;
g= (pal[ii] >>5)&31;
b= (pal[ii]>>10)&31;

r += bright; r= CLAMP(r, 0, 32);
g += bright; g= CLAMP (g, 0, 32);
b += bright; b= CLAMP (b, 0, 32);
pal[ii]l= r | (g<<5) | (b<<10);

}

This routine brightens or darkens a palette by adding a brightness-factor to the color components, each of which is then clamped to the
range [0,31[] to avoid funky errors. The basic algorithm is sound, even the implementation is, IMHO, pretty good. What isn't good,
however is the datatypes used. Using s8 and ul 6 here adds an extra shift-pair practically every time any variable is used! The loop
itself compiles to about 90 Thumb instructions. In contrast, when using ints for everything except pal the loop is only 45 instructions
long. Of course the increase in size means an increase in time as well: the int-only version is 78% faster than the one given above. To
repeat that: the code has doubled in size and slowed down by 78% just by using the wrong datatype !

I'll admit that this example is particularly nasty because there is a lot of arithmetic in it. Most functions would incur a smaller penalty.
However, there is no reason for losing that performance in the first place. There is no benefit of using s8 and ul6; it does not increase
redability — all it does is cause bloat and slow-down. Use 32-bit variables when you can, the others only when you have to.

Now, before this becomes another goto issue, non-ints do have their place. Variables can be divided into two groups: worker variables
(things in registers) and memory variables. Local variables and function parameters are worker variables. These should be 32-bit. Items
that are in memory (arrays, globals, structs, and what not) could benefit from being as small as possible. Of course, memory variables
still have to be loaded into registers before you can do anything with them. An explicit local variable may be useful here, but it depends
on the case at hand.

Pointer problems

One of the most common mistakes GBA neophytes make is mixing up array/pointer sizes when copying data. Data is data, but you can
access it in different ways. For example, here's code that copies bitmap-data from an array into VRAM.

// An array representing a 240x160@16 bitmap, converted
// to an array by some graphics conversion tool.

const u8 fooBitmap[240*160*2]=

{

// Maaaaany, many lines of data.

}
int main ()
{
REG DISPCNT= DCNT MODE3 | DCNT BG2;

// Copy 240x160 pixels to VRAM (ORLY?)

int 1i;
for (ii=0; 1i<240*160; ii++)
vid mem[ii]= fooBitmap[ii];

return 0;

}

The fooBitmap array represents some bitmap. In order to display that bitmap on the screen, you need to copy its data into VRAM.
That's simple enough: we have vid mem from before, and we can copy from fooBitmap to VRAM by copying elements using a
simple for-loop.

However, it's not quite as simple as that. vid mem is an ul6 array; so defined because in mode 3 each pixel is an 16-bit color. But
fooBitmap is a byte-array: two elements of this array represent one color, and copying bytes-to-halfwords leaves the top-byte of
each pixel empty, giving a very skewed result. Such a source-destination is incredibly common, partly because people don't know how
pointers and arrays represent memory, but also because they don't pay attention to the datatype.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 29/331

http://www.xkcd.com/292/
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#sec-data

28-03-13 Tonc : GBA Programming in rot13

Here's a version that would work:

// An array representing a 240x160@16 bitmap, converted
// to an array by some graphics conversion tool.

const u8 fooBitmap[240*160*2]=

{

// Maaaaany, many lines of data.
}
int main ()
{
REG_DISPCNT= DCNT MODE3 | DCNT BG2;

ul6 *src= (ul6*)fooBitmap; // Cast source to ul6-array

// Copy 240x160 pixels to VRAM (YARLY!)

int 1ii;
for (1i=0; 1i<240*160; 1ii++)
vid mem[ii]= src[ii];

return 0;

}

By ensuring the source and destinations are of the same type, the copying leaves no gaps. Note that the underlying data hasn't changed
— only how it's used. There are actually a lot more things you need to know about how to use data and memory, which will be covered in
a later chapter.

Simplification
Consider the following function (basically taken from the Rinkworks site mentioned earlier):

int foo(int x)
{
switch (x)

{

case 1l: return 1;
case 2: return 2;
case 3: return 3;
case 4: return 4;
case 5: return 5;
case 6: return 6;
case 7: return 7;

return 0;

}

What this function does is this: if x is between 1 and 7, return that number, otherwise return 0. The thing to note is that the case-value
and the return code are the same, so instead of the switch-block you could have just returned x.

int foo (int x)
{
1f(x >= 1 && x <= 7)
return x;
else
return 0;

}

Simplifications like this often present themselves if you just think about what you're doing for a little while, rather than just entering code.
Now, this would should be rather obvious, but more difficult switch-blocks can often be replaces by something like this as well. For
example, if there is a simple mathematical relation between the input and the return value (some addition or multiplication, for example),
you can just use that relation. Even if there is not such a simple relation, there can be possibilities. If you're returning constants, you
could put those constants in a table and use x as an index.

The above is a simplification in terms of the algorithm used. Another kind of simplification is in readability. Of course, everybody has
their own ideas about what's readable. Personally, I prefer to keep my statements short, especially in the place where the action
happens. The next function is an example of bounding circle collision detection. Basically, you have two circles at points p, = (x,y,) and
p, = (x,,»,) and radii r, and r,. The distance between these two points can be calculated with the Pythagorean theorem. If this distance
is smaller than the sum of the two radii, the circles overlap. A function that checks whether the player sprite hits any of the enemy
sprites could look something like this:

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 30/331

http://en.wikipedia.org/wiki/Pythagorean_theorem

28-03-13 Tonc : GBA Programming in rot13

// Some basic structs and a sprite array.
// #defines for sprite-indices and amounts omitted.
typedef struct { int x, y; } POINT;

typedef struct

{
POINT position;
int radius;

} TSprite;

TSprite gSprites[SPRITE MAX];
// Collision function.
int player collision()
{
int ii;
for (1i=0; 1i<ENEMY MAX; ii++)

{

// Test for hit between player and enemy ii

if((gSprites[ENEMY ID+ii].position.x - gSprites[PLAYER ID].position.x) *
gSprites [ENEMY ID+ii].position.x - gSprites[PLAYER ID].position.x)
gSprites [ENEMY ID+ii].position.y - gSprites[PLAYER ID].position.y) *

y) <

gSprites[ENEMY ID+ii].radius + gSprites[PLAYER ID].radius) *

([1

([]

(gSprites[ENEMY ID+ii].position.y - gSprites[PLAYER ID].position.
([1

(gSprites[ENEMY ID+ii].radius + gSprites[PLAYER ID].radius))

return 1;

// Not hit
return 0;

Personally, I have a hard time reading what actually goes on inside the if-statement there. Because the expression is 6 lines long, I
actually have to sit down and parse what it actually does, and hope that the parentheses are all correct, etc. Now, note that a number of
things are used multiple times here: the gSprites accesses (6x for the player, 6x for the enemy) and then the positions as well. These
can all be accessed with less code by using pointers and other local variables. Also, the player's attributes are loop invariant (they don't
change during the loop), so they can be loaded outside the loop.

int player collision()

{
int ii;
int rl= gSprites[PLAYER ID].radius, r2, dx, dy;
POINT *ptl= &gSprites[PLAYER ID].position, *pt2;
TSprite *enemy= &gSprites[ENEMY ID];

for(ii=0; 1i<ENEMY MAX; ii++)
{
r2= enemy[ii].radius;
pt2= &enemy[ii] .position;
dx= pt2->x - ptl->x;
dy= pt2->y - ptl->y;

// Test for hit between player and enemy ii
if(dx*dx + dy*dy < (rl+r2)*(rl+r2))
return 1;

// Not hit
return 0;

There may not have been a real change in the number of lines, but the lines themselves are shorter and easier to read. Also, instead of a
6-line i f-expression, it now fits on a single line and you can actually see what it does. Personally, I'd call that a win.

3.4. Testing your code on a real GBA

If you're just starting GBA programming, chances are you're using the emulators that are out there, and will be content with those.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 31/331

http://en.wikipedia.org/wiki/Loop-invariant_code_motion

28-03-13 Tonc : GBA Programming in rot13

However, if you look through the forums you'll see many people urging you to test on hardware regularly. They are absolutely right.

Now, it isn't that the emulators are bad. On the contrary, in fact; the most popular emulators have things like tile, map and memory
viewers that are essential to debugging. An emulator like VBA is very, very good, but not quite perfect. Take the Tonc demos, for
example: they run the same on VBA as on a real GBA in all cases ... mostly. For one thing, timing is a real issue on most of them (the
exception here is no$gba, which I've never seen off the mark by more than 2%, usually a lot less). Also, in a few rare occasions (like in
cbb_demo and win demo) there were small but important differences between GBA and emulator outputs, and if you've never
tested on the real thing, you'd never know.

One other thing that is very different is the colors. Since it's not back-lit the GBA screen is much darker than a PC monitor. Or
maybe that's just my room ;) . Also, on an emulator you have the luxury of scaling your view; the real GBA is always 3" screen.
There's world of difference, trust me on this. Take that first.gba example I showed above: the pixels are so tiny it's almost
impossible to see on a real GBA! Even an 8xS8 tile is pretty small. Also, the use of a keyboard in an emu is nothing like holding a real
GBA in your hands.

And, of course, the whole idea of creating something that works on a console has an air of coolness that defies description. Well, almost
anyway. The word is progasm. Says it all really, doesn't it?

3.4.1. Multiboot & linkers

OK, so now you know you should test on hardware, how do you do it? After all, you can't exactly plug a GBA into your PC like a USB
memory stick or a printer? Well, yes you can ... with the right equipment. The two most common ways are a multiboot cable or a flash
linker.

Flash Card & Linker
A flash card is a GBA cart with a difference: it is completely rewritable. There are a number of different sets available: different sized
carts (64Mbit to 1024Mbit), USB or Parallel port versions; sets that use a separate linker (where you have to take the cart out of the
GBA, write to it, and reinsert) or ones that write directly to the cart or transfer through the multiboot port. Ideally you'd use one of these.
However, they can be rather pricy ($60 - $200 (and up?)) and generally only available through online stores, which also means shipping
and taxes and such.

Multimedia cards
A solution that's becoming more and more popular is using standard multimedia cards (eg. SD, CompactFlash) and an adapter like
GBAMP and SuperCard. Memory cards can be very cheap (like $10) and bought in most electronics stores; the adapters are genereally
$25 and up.
é)

Supercard vs waitstates.

There is one small technicaly problem with Supercards: they use slow memory that doesn't support what 3/1 ROM
waitstates. This is a faster setting than the default 4/2 and anything that uses the former simply won't run. This shouldn't be a
problem with most homebrew things, but a handful of binaries will fail and you wouldn't be able to make use of the speed-up
yourself either.

\\

Multiboot cable

The other way is a multiboot cable. This is a cable that plugs into the GBA multiboot port (like multiplayer games do) and one of the PC
ports, usually the parallel port. These are a lot cheaper than a flash kit. You can even build one yourself :) ! You can find the
instructions and necessary software to build an Xboo communication cable on www.devkitpro.org, which works like a charm. Basically
all you need to do is connect one end of the link cable to a male parallel port cable. If you shop around you should be able to get all you
need for as little as $5.

But, like always, there's no such thing as a free lunch. What happens in a multiboot game is that the code is written to EWRAM.
That's how you can use one cart in a multiplayer game. The multiboot cable is the same thing, only with the PC as the host. The trouble
is that EWRAM is only 256kb in size; you won't be able to fit an entire game on it. And, of course, it runs always through your
computer, so unless you have a laptop, forget about taking it outside to show off to your friends.

Fig 3.3: SuperCard, compact flash
version.

Fig 3.4: xboo multiboot cable.

Fig 3.2: efa flash card.

3.4.2. Compiling for real hardware
This is almost the same as for emulators. The only real things you have to worry about are a) that you can only use the binary after the

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 32/331

file:///H:/dev/gba/proj/tonc/bak/regbg.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/gfx.htm#sec-win
http://www.catb.org/~esr/jargon/html/P/progasm.html
http://www.gbamovie.com/
http://eng.supercard.cn/
http://www.devkitpro.org/

28-03-13 Tonc : GBA Programming in rot13
objcopy treatment, and b) that you need to have a valid GBA header, which it usually doesn't. If the intro screen shows “GameBoy”
as normal, but the “Nintendo” at the bottom is garbled, you have a bad header. To get a valid header, use a program called
gbafix.exe. This is originally by darkfader, but you can also find it at www.devkitpro.org. I already mentioned the extra steps for a
multiboot game earlier.
Flash kits usually come with software that can take care of all this stuff for you (or so I'm told, I don't have one). The Xboo zip-file
also has a little app that sends your binary to the GBA.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 33/331

http://darkfader.net/main/
http://www.devkitpro.org/

28-03-13 Tonc : GBA Programming in rot13

4. Introduction to GBA Graphics

o General introduction.

e Draw and blank periods.

e Colors and palettes.

¢ Bitmaps, backgrounds and sprites.

¢ Display registers.
e Vsyncing part I, the busy-wait loop.

4.1. General introduction
The GBA has an LCD screen that is 240 pixels wide, 160 pixels high and is capable of displaying 32768 (15 bit) colors. The refresh rate
is just shy of 60 frames per second (59.73 Hz). The GBA has 5 independent layers that can contain graphics: 4 backgrounds and one
sprite layer and is capable of some special effects that include blending two layers and mosaic and, of course, rotation and scaling.
Whereas sound and joypad functionality have to make do with only a few measly registers, the video system has a great deal of
memory at its disposal (relatively speaking). Apart from a multitude of registers in I/O memory, there's the 96kb of video memory
(starting at 0600 : 0000h), palette memory (0500 : 0000h) and OAM memory (0700 : 0000h).

4.2. Draw and blank periods

As said, the entire GBA screen is refreshed every 60th of a second, but there's more to it than that. After a scanline has been drawn
(the HDraw period, 240 pixels), there is a pause (HBlank, 68 pixels) before it starts drawing the next scanline. Likewise, after the 160
scanlines (VDraw) is a 68 scanline blank (VBlank) before it starts over again. To avoid tearing, positional data is usually updated at the
VBlank. This is why most games run at 60 or 30 fps. (FYI, syncing at the VBlank is also why we in PAL countries often had slower
games: PAL TVs run (ran) at 50Hz, hence only 50 fps instead of 60, hence a 17% slower game if nobody bothered to account for it.
Few companies ever did : ().

Both the CowBite Spec and GBATek give you some interesting details about the timings of the display. A full screen refresh takes
exactly 280896 cycles, divided by the clock speed gives a framerate of 59.73. From the Draw/Blank periods given above you can see
that there are 4 cycles per pixel, and 1232 cycles per scanline. You can find a summary of timing details in table 4.1.

o - subject| length |cycles
' Py .
41y F I |1 4
N zcanline " pixe
. vdraw bl HDraw |240px 960
HBlank |68px 272
¥ 74 scanline |Hdraw+Hbl |1232
% vhlank E VDraw |160*scanline | 197120
” VBlank |68*scanline 83776
Fig 4.1: vdraw, vblank and hblank
periods. refresh | VDraw+Vbl|280896

Table 4.1: Display timing details

4.3. Colors and palettes
The GBA is capable of displaying 16bit colors in a 5.5.5 format. That means 5 bits for red, 5 for green and 5 for blue; the leftover bit is
unused. Basically, the bit-pattern looks like this: “ xbbbbbgggggrrrrr”. There are a number of defines and macros in color.h
that will make dealing with color easier.

Now, as for palettes...
<rant>

Guys, the word here is “palette”! One ‘I’, two ‘t’s and an ‘e’ at the end. It is not a “pallet”, which is “a low, portable platform,
usually double-faced, on which materials are stacked for storage or transportation, as in a warehouse”, nor is it a “pallette”, meaning “a
plate protecting the armpit, in a suit of armor”. The word “pallete”, its most common variant, isn't even in the dictionary, thus not even
worth considering. It's “palette”, people, “palette”.
</rant>

Anyhoo, the GBA has two palettes, one for sprites (objects) and one for backgrounds. Both palettes contain 256 entries of 16bit
colors (512 bytes, each). The background palette starts at 0500 : 0000h, immediately followed by the sprite palette at 0500: 0200h.
Sprites and backgrounds can use these palettes in two ways: as a single palette with 256 colors (8 bits per pixel); or as 16 sub-palettes or
palette banks of 16 colors (4 bits per pixel).

One final thing about palettes: index 0 is the transparency index. In paletted modes, pixels with a value of 0 will be transparent.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 34/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-blanks
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-colors
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-vid-types
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-vid-regs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-vsync1
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm#Graphics%20Hardware%20Overview
http://nocash.emubase.de/gbatek.htm#lcddimensionsandtimings

28-03-13 Tonc : GBA Programming in rot13
4.4. Bitmaps, backgrounds and sprites

All things considered, the GBA knows 3 types of graphics representations: bitmaps, tiled backgrounds and sprites. The bitmap and
tiled background (also simply known as background) types affect how the whole screen is built up and as such cannot both be activated
at the same time.

In bitmap mode, video memory works just like a wx/A bitmap. To plot a pixel at location (x,)), go to location y *w+x and fill in the color.
Note that you cannot build up a screen-full of individual pixels each frame on the GBA, there are simply too many of them.

Tiled backgrounds work completely different. First, you store 8x8 pixel #iles in one part of video memory. Then, in another part, you
build up a tile-map, which contains indices that tells the GBA which tiles go into the image you see on the screen. To build a screen
you'd only need a 30x20 map of numbers and the hardware takes care of drawing the tiles that these numbers point to. This way, you
can update an entire screen each frame. There are very few games that do not rely on this graphics type.

Finally, we have sprites. Sprites are small (8x8 to 64x64 pixels) graphical objects that can be transformed independently from each
other and can be used in conjunction with either bitmap or background types.

Prefer tile modes over bitmap modes
In almost all types of games, the tile modes will be more suitable. Most other tutorials focus on bitmap modes, but that's only
because they are easier on beginners, not because of their practical value for games. The vast majority of commercial games
use tile modes; that should tell you something.

Those are the three basic graphical types, though other classifications also spring to mind. For example, the bitmap and tiled backgrounds
types, since they're mutually exclusive and use the entire screen, constitute the background-types. Also, it so happens that the tiles of
tiled backgrounds and the sprites have the same memory layout (namely, in groups of 8x8 pixel tiles). This makes tiled backgrounds and
sprites the tiled-types.

4.5. Display registers: REG_DISPCNT, REG_DISPSTAT and REG_VCOUNT

There are three 1/0 registers that you will encounter when doing anything graphical: the display control REG_ DISPCNT
(0400:0000h), the display status REG DISPSTAT (0400:0004h) and the scanline counter REG VCOUNT
(0400:0006h) . Those names are simply defines to the memory locations and can, in principle, be chosen at will. However, we will

use the names as they appear in the Pern Project, which are the most common.

The REG_DISPCNT register is the primary control of the screen. The bit-layout of this register and their meanings can be found in the
following table. This is the general format I will use for registers or register-like sections. The details of the format have already been
explained in the preface.

REG _DISPCNT @ 0400:0000h

F|E D c B A 9 8 7 6 5 4 31210

OW |W1l |WO |Obj |BG3 |BG2 |BG1l |BGO | FB |OM | HB | PS | GB | Mode

bits name define description
0-2 Mode DCNT MODEx. Sets video mode. 0, 1, 2 are tiled modes; 3, 4, 5 are bitmap modes.
DCNT_MODE#
3 GB DCNT_GB Is set if cartridge is a GBC game. Read-only.
4 PS DCNT PAGE Page select. Modes 4 and 5 can use page flipping for smoother animation. This bit
selects the displayed page (and allowing the other one to be drawn on without
artifacts).

5 HB DCNT_OAM _HBL Allows access to OAM in an HBlank. OAM is normally locked in VDraw. Will
reduce the amount of sprite pixels rendered per line.

6 OM DCNT OBJ 1D Object mapping mode. Tile memory can be seen as a 32x32 matrix of tiles. When
sprites are composed of multiple tiles high, this bit tells whether the next row of
tiles lies beneath the previous, in correspondence with the matrix structure (2D
mapping, OM=0), or right next to it, so that memory is arranged as an array of
sprites (1D mapping OM=1). More on this in the sprite chapter.

FB DCNT BLANK Force a screen blank.

8-B BGO- DCNT_BGgx, Enables rendering of the corresponding background and sprites.
BG3, DCNT_OBIJ.
Obj DCNT _LAYER#

D-F W0-OW DCNT_WINK, Enables the use of windows 0, 1 and Object window, respectively. Windows can
DCNT WINOBJ be used to mask out certain areas (like the lamp did in Zelda:LTTP).

Setting the display control is probably the first thing you'll be doing. For simple demos, you can just set it once and leave it at that, though
switching between the video-modes can have some interesting results.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 35/331

http://www.thepernproject.com/
file:///H:/dev/gba/proj/tonc/bak/intro.htm#ssec-note-reg
file:///H:/dev/gba/proj/tonc/bak/regobj.htm

28-03-13 Tonc : GBA Programming in rot13
Now the other two registers I mentioned, REG_DISPSTAT and REG_VCOUNT. The latter tells you the scanline that is currently being
worked on. Note that this counter keeps going into the VBlank as well, so it counts to 227 before starting at 0 again. The former gives
you information about the Draw/Blank status and is used to set display interrupts. You can also do some really cool stuff with the
interrupts that you can enable here. For one thing, the HBlank interrupt is used in creating Mode 7 graphics, and you want to know how
that works, don't you?

REG DISPSTAT @ 0400:0004h

ol

FEDCBAZOY9 8|76 5 4 3 2 1

VeT - |VeI |HbI |VbI (VcS |HbS |VbS

bits name define description
0 VbS DSTAT IN_VBL VBlank status, read only. Will be set inside VBIlank, clear in VDraw.
1 HbS DSTAT IN _HBL HBIlank status, read only. Will be set inside HBlank.

2 VeS DSTAT IN_VCT VCount trigger status. Set if the current scanline matches the scanline trigger (
REG_VCOUNT = REG_DISPSTAT {8-F})

3 Vbl DSTAT_VBL_IRQ VBlank interrupt request. If set, an interrupt will be fired at VBlank.
HbI DSTAT HBL_IRQ HBIlank interrupt request.
Vel DSTAT VCT_IRQ VCount interrupt request. Fires interrupt if current scanline matches trigger value.

8-F VcT DSTAT VCT# VCount trigger value. If the current scanline is at this value, bit 2 is set and an
nterrupt is fired if requested.

REG_VCOUNT @ 0400:0006h (read-
only)

FEDCBAS98|76543210

- Ve

bits name description
0-7 Vc Vertical count. Range is [0,227]

4.6. Vsyncing part I, the busy-wait loop

As said, use the VBIlank as a timing mechanism and to update the game data. This is called vsync (vertical syncronisation). There are a
number of ways to vsync. The two most common methods use a while loop and check REG_VCOUNT or REG_DISPSTAT. For
example, since the VBlank starts at scanline 160, you could see when REG_VCOUNT goes beyond this value.

#define REG _VCOUNT * (ul6*)0x04000006

void vid vsync()
{ while (REG_VCOUNT < 160); }

Unfortunately, there are a few problems with this code. First of all, if you're simply doing an empty while loop to wait for 160, the
compiler may try to get smart, notice that the loop doesn't change REG VCOUNT and put its value in a register for easy reference.
Since there is a good chance that that value will be below 160 at some point, you have a nice little infinite loop on your hand. To prevent
this, use the keyword volatile (see regs.h). Second, in small demos simply waiting for the VBlank isn't enough; you may still be
in that VBlank when you callvid sync () again, which will be blazed through immediately. That does not sync to 60 fps. To do this,
you first have to wait until the next VDraw. This makes our vid sync look a little like this:

#define REG _VCOUNT * (vul6*)0x04000006

void vid vsync()

{
while (REG_VCOUNT >= 160); // wait till VDraw
while (REG_VCOUNT < 160); // wait till VBlank

}

This will always wait until the start of the next VBlank occurs. And REG_VCOUNT is now volatile (the “vul6” is typedefed as
a volatile unsigned (16bit) short. I'll be using a lot of this kind of shorthand, so get used to it). That's one way to do it. Another is
checking the last bit in the display status register, REG DISPSTAT{0}.

So we're done here, right? Errm ... no, not exactly. While it's true that you now have an easy way to vsync, it's also a very poor one.
While you're in the while loop, you're still burning CPU cycles. Which, of course, costs battery power. And since you're doing absolutely
nothing inside that while-loop, you're not just using it, you're actually wasting battery power. Moreover, since you will probably make only
small games at first, you'll be wasting a LOT of battery power. The recommended way to vsync is putting the CPU in low-power mode

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 36/331

file:///H:/dev/gba/proj/tonc/bak/interrupts.htm
file:///H:/dev/gba/proj/tonc/bak/mode7.htm

28-03-13 Tonc : GBA Programming in rot13

when you're done and then use interrupts to bring it back to life again. You can read about the procedure here, but since you have to
know how to use mterrupts and BIOS calls, you might want to wait a while.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 37/331

file:///H:/dev/gba/proj/tonc/bak/swi.htm#sec-vsync2
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm
file:///H:/dev/gba/proj/tonc/bak/swi.htm

28-03-13 Tonc : GBA Programming in rot13

5. The Bitmap modes (mode 3, 4, 5)

Introduction.

GBA bitmap modes, for real
Page flipping.

On data and how to use it.
Conclusions.

5.1. Introduction

In this chapter, we'll look at the bitmap modes. Bitmap modes are a good place to start because there is a one to one relation between
the contents of memory and the pixels on the screen. The essentials of all the bitmap modes will be discussed briefly, with a closer look
at what you can do in mode 3 as an example. We'll also see a bit of page flipping (mode 4), which allows for smoother animation.

The chapter will close with a section on how to deal with data and computer memory in general. Because GBA programming is very
close to the hardware, you need to know these things. If you've been programming (in C or assembly) for a long time and have already
gained a good understanding on data, datatypes and memory you can probably skip it; for the rest of you, I would strongly urge to read fit,
because it is very important for all the chapters to come.

5.1.1. Bitmap 101

In fig 5.1 you can find a bitmap of one of the game characters that made Nintendo great. This is probably how most
people think of bitmaps: a grid of colored pixels. In order to use bitmaps in a program we need to know how they're
arranged in memory. For that we use fig 5.2 (below); this is a zoomed out version of fig 5.1, with a pixel grid
imposed over it and some numbers.

A bitmap is little more than a wx/ matrix of colors (or color-indices), where w is the number of columns (the
width) and / the number of rows (the height). A particular pixel can be referred to with a coordinate pair: (x,). By
the way, the y-axis of the GBA points down, not up. So pixel (0, 0) is in the top-left corner. In memory, the lines of
the bitmap are laid out sequentially, so that the following rule holds: in a wx/ bitmap, the pixel (x, y) is the (wxy + x)-th pixel. This is
true for all C matrices, by the way.

Fig 5.2 shows how this works. This is a w=24 by £=24 bitmap, at 8bpp (8 Bits Per Pixel (=1 byte)). The numbers in yellow indicate
the memory locations; you can count them for yourself if you don't believe me. The first pixel, (0, 0), can be found at location 0. The last
pixel of the first row (23, 0) is at w—1 (=23 in this case). The first pixel of the second row (0, 1) is at w (=24) etc, etc, till the last pixel at
wxh—1.

Fig 5.1: Link
(24x24 bitmap).

start
+0
+ 1w
+ 2w
+ 3w
+ 4w
+ 5w
+ bw
+ 7w
+ Gw
+ 9w
+10w
+11lw
+12w
+13w
+14w
+15w
+16w
+17w
+18w
+19w
+20w
+Z21w
+22wm
+23w
+24wm
Fig 5.2b: zoom out of fig 5.1, with pixel values. Zero omitted for

clarity. Palette on the lefthand side.

Fig 5.2a: zoom out of fig 5.1, with pixel offsets.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 38/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-modes
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-page
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-data
file:///H:/dev/gba/proj/tonc/bak/ssec-conc

28-03-13 Tonc : GBA Programming in rot13

Note, however, that when you use another bitdepth, the addresses change too. For example, at 16bpp (2 bytes per pixel), you'd need to
multiply the pixel-number by 2. Or use another datatype for your array. The general formula is left as an exercise for the reader.
Usually it's not actually the width (i.e., the number of pixels in a row) that's important, but the pitch. The pitch is defined as the number
of bytes in a scanline. For 8bpp images the pitch and width will usually be the same, but for, say, 16bpp images (2 bytes per pixel) the
pitch is the width times two. There's another catch: memory alignment. Alignment will be covered in a later section, but the upshot is that
systems generally have a ‘preferred’ type size and can better deal with data if the addresses are a multiple of that type size. This is why
windows BMPs' scanlines are always aligned to 32bit boundaries.

5.2. The GBA bitmap modes

Video modes 3, 4 and 5 are the bitmap modes. To use them, put 3, 4 or 5 in the lowest bits of REG_DISPCNT and enable BG2. You
may wonder why we start with mode 3, rather than mode 0. The reason for this is that bitmaps are a lot easier to come to terms with
than tilemaps. And this is the on/y reason. The truth of the matter is that the bitmap modes are just too slow to be used for most
conventional GBA games. I can't give an exact figure, but if someone told me 90% or more of GBA games used tilemodes and not
bitmap modes, I wouldn't be surprised. The only time when bitmap modes would be beneficial would be either for very static screens
(introductory demos) or very dynamic screens (3D games like Starfox or Doom).

The bitmap modes have the following characteristics:

mode |width |height|bpp| size |page-flip
3 240 |160 |16 |1x 12C00h|No
4 240 |160 |8 |2x9600h |Yes
5 160 |128 |16 [2x AOOOh |Yes

Table 5.1: Bitmap mode characteristics

What width, height and bpp mean should be clear by now; the size that the bitmap requires is simply width x height % bpp/8. Page
flipping may need some more explanation, but first we'll look at some examples of mode 3 graphics.

5.2.1. Drawing primitives in mode 3

We've already seen how to plot pixels, now it's time for some lines and rectangles. Horizontal lines are piss-easy: because the pixels are
in adjacent memory, all you need is a simple loop from the starting x to the final x. Vertical lines are nearly as easy: while the pixels
aren't right next to each other, they do have a fixed offset between them, namely the pitch. So again a simple loop is all you need.
Rectangles are essentially multiple horizontal lines, so those are easy as well.

Diagonal lines are a little trickier, for a number of reasons. Diagonal lines have a slope that indicates how many horizontal steps you
need to take before moving to the next scanline. That would only work if the absolute value were lower than one, otherwise you'd get
gaps between pixels. For higher slopes, you need to increment vertically, and plot horizontally.

Another point is how to make the routine fast enough to be of real use. Fortunately, these things have all been figured out in the past
already, so we'll just use the results here. In this case, we'll use a Bresenham Midpoint algorithm for the line drawing, modified to deal
with horizontal and vertical lines separately. While I could explain what the routine does exactly, it is out of the scope of the chapter,
really.

Two points I have ignored here are normalization and clipping. Noermalization means making sure the routine runs in the right
direction. For example, when implementing a line drawing routine that runs from x1 to x2 via an incrementing for loop, you'd best be
sure that x2 is actually higher than x1 in the first place. Clipping means cutting the primitive down to fit inside the viewport. While this
is a good thing to do, we will omit it because it can get really hairy to do it well.

The code below is an excerpt from toolbox. c from the m3 demo and contains functions for drawing lines, rectangles and frames
on a 16bpp canvas, like in mode 3 and mode 5. dstBase is the base-pointer to the canvas and dstPitch is the pitch. The rest of the
parameters should be obvious.

#include "toolbox.h"

//!' Draw a line on a lébpp canvas

void bmpl6 line(int x1, int yl, int x2, int y2, u32 clr,
void *dstBase, uint dstPitch)

{
int ii, dx, dy, xstep, ystep, dd;
ul6 *dst= (ulé6*) (dstBase + yl*dstPitch + x1*2);
dstPitch /= 2;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 39/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-data-align
file:///H:/dev/gba/proj/tonc/bak/video.htm#tbl-reg-dispcnt
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

28-03-13
// --- Normalization ---
1f(x1>x2)
{ xstep= -1; dx= x1-x2; }
else

{ xstep= +1; dx= x2-x1; }

Tonc : GBA Programming in rot13

if(yl>y2)

{ ystep= -dstPitch; dy= yl-y2; }
else

{ ystep= +dstPitch; dy= y2-yl; }
// --- Drawing —---

if(dy == 0) // Horizontal

{
for (ii=0; ii<=dx; 1ii++)
dst[ii*xstep]= clr;

}

else if (dx == 0) // Vertical

{
for (ii=0; ii<=dy; 1ii++)
dst[ii*ystep]= clr;

}

else 1if (dx>=dy) // Diagonal, slope <= 1

{
dd= 2*dy - dx;

for (1i=0; ii<=dx; 1ii++)
{

*dst= clr;

if(dd >= 0)

{ dd -= 2*dx; dst += ystep; }

dd += 2*dy;
dst += xstep;

}

else // Diagonal, slope > 1

{
dd= 2*dx - dy;

for(1ii=0; ii<=dy; ii++)
{

*dst= clr;

if(dd >= 0)

{ dd -= 2*dy; dst += xstep; }

dd += 2*dx;
dst += ystep;

//! Draw a rectangle on a lébpp canvas

void bmpl6 rect (int left, int top,
void *dstBase, uint dstPitch)
{

int ix, 1iy;

int right, int bottom, u32 clr,

uint width= right-left, height= bottom-top;
ul6 *dst= (ulé6*) (dstBase+top*dstPitch + left*2);

dstPitch /= 2;

// —--- Draw —--
for (iy=0; iy<height; iy++)
for (ix=0; ix<width; ix++)
dst[iy*dstPitch + ix]=

//! Draw a frame on a l6bpp canvas
void bmpl6 frame(int left, int top,
void *dstBase, uint dstPitch)

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

clr;

int right, int bottom, u32 clr,

40/331

28-03-13 Tonc : GBA Programming in rot13

// Frame is RB exclusive

right--;
bottom--;
bmpl6 line(left, top, right, top, clr, dstBase, dstPitch);

bmpl6 line(left, bottom, right, bottom, clr, dstBase, dstPitch);

bmpl6 line(left, top, left, bottom, clr, dstBase, dstPitch):;
bmpl6 line(right, top, right, bottom, clr, dstBase, dstPitch);

These functions are very general: they will work for anything that has 16bit colors. That said, it may be annoying to have to add the

canvas pointer and pitch all the time, so you could create an interface layer specifically for mode 3 and mode 5. The ones for mode 3

would look something like this:

typedef ul6 COLOR;

#define vid mem ((COLOR*)MEM VRAM)
#define M3 WIDTH 240
// === PROTOTYPES =====m===—ommoomomme oo e e e e e e e e

INLINE void m3 plot(int x, int y, COLOR clr);

INLINE void m3 line(int x1, int yl, int x2, int y2, COLOR clr);

INLINE void m3 rect(int left, int top, int right, int bottom, COLOR clr);
INLINE void m3 frame(int left, int top, int right, int bottom, COLOR clr);

// === INLINES ==

//! Plot a single \a clr colored pixel in mode 3 at (\a x, \a y).
INLINE void m3 plot (int x, int y, COLOR clr)
{

vid mem[y*M3 WIDTH+x]= clr;

//!' Draw a \a clr colored line in mode 3.
INLINE void m3 line(int x1, int yl, int x2, int y2, COLOR clr)
{

bmpl6é line(x1l, yl, x2, y2, clr, vid mem, M3 WIDTH*2);

//!' Draw a \a clr colored rectangle in mode 3.
INLINE void m3 rect(int left, int top, int right, int bottom, COLOR clr)
{

bmpl6 rect(left, top, right, bottom, clr, vid mem, M3 WIDTH*2);

//! Draw a \a clr colored frame in mode 3.
INLINE void m3 frame(int left, int top, int right, int bottom, COLOR clr)
{

bmpl6 frame(left, top, right, bottom, clr, vid mem, M3 WIDTH*2);

Finally, there isam3 £il1 () function, that fills the entire mode 3 canvas with a single color.

//! Fill the mode 3 background with color \a clr.
void m3 fill (COLOR clr)
{

int 1ii;
u32 *dst= (u32*)vid mem;
u32 wd= (clr<<16) | clr;

for (ii=0; 1i<M3_SIZE/4; ii++)
*dst++= wd;

Now, note what I'm doing here: instead of treating VRAM as an array of 16bit values which are appropriate for 16bpp colors, I'm using

a 32bit pointer and filling VRAM with a 32bit variable containing two colors. When filling large chunks of memory, it makes no
file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

41/331

28-03-13 Tonc : GBA Programming in rot13

difference if I fill it in NV 16bit chunks, or 2N 32bit chunks. However, because you only use half the number of iterations in the latter

case, it's roughly twice as fast. In C, it's perfectly legal to do something like this and often
actually useful. This is why it's important to know the principles of data and memory. Also
note that I'm using pointer arithmetic here instead of array indices. While the compiler
generally make the conversion itself, doing it manually is still often a little faster.

While this method is already twice as fast as the ‘normal’ method, there are actually
much faster methods as well. We will meet these later, when we stop using separate
toolkit files and start using tonclib, the code library for tonc. Tonclib contains the
functions described above (only faster), as well as 8bpp variations of the bmp16 routines
and interfaces for mode 4 and mode 5.

Below you can find the main code for m3 _demo, which uses the m3 functions to draw
some items on the screen. Technically, it's bad form to use this many magic numbers, but
for demonstration purposes it should be okay. The result can be seen in fig 5.3.

#include "toolbox.h"
int main ()
{

int ii, j3;

REG DISPCNT= DCNT MODE3 | DCNT BG2;

// Fill screen with grey color

m3 fill(RGB15(12, 12, 14));

// Rectangles:

m3 rect(12, 8, 108, 72, CLR _RED);

m3 rect (108, 72, 132, 88, CLR_LIME);

m3 rect (132, 88, 228, 152, CLR BLUE);

// Rectangle frames

m3 frame (132, 8, 228, 72, CLR_CYAN);
m3 frame (109, 73, 131, 87, CLR BLACK);
m3 frame(12, 88, 108, 152, CLR YELLOW);

// Lines in top right frame
for (ii=0; 1ii<=8; ii++)
{
jj= 3*1ii+7;
m3 line(132+11%ii, 9,
m3 line(226-11%ii,70,

226,
133,

12+7*11,
69-7*ii,

RGB15(jj, 0, 33)):
RGB15 (33, O,

~.

}

// Lines in bottom left frame
for(ii=0; 1i<=8; ii++)
{

Jj= 3*1i+7;

m3 line(15+11*ii, 88, 104-11*ii,

150, RGBL15 (0,

33,
}

while (1) ;

return 0;

Fig 5.3a: drawing in mode 3.

33)) i

A dash of mode 4

Mode 4 is another bitmap mode. It also has a 240x160 frame-buffer, but instead of 16bpp pixels it uses 8bpp pixels. These 8 bits are a
palette index to the background palette located at 0500: 0000. The color you'll see on screen is the color found in the palette at that

location.

Pixels of a bitdepth of 8 mean you can only have 256 colors at a time (instead of 32678 in the case of 15bpp), but there are benefits
as well. For one, you can manipulate the colors of many pixels by simply changing the color in the palette. An 8bpp frame-buffer also
takes up half as much memory as a 16bpp buffer. Not only is it faster to fill (well, in principle anyway), but there is now also room for a

second buffer to allow page flipping. Why that's useful will be covered in a minute.

There is, however, one major downsize to using mode 4, which stems from a hardware limitation. With 8bit pixels, it'd make sense to
map VRAM as an array of bytes. This would be fine if it weren't for the rather annoying fact that VRAM does not allow byte-writes!
Now, because this is a very important point, let me repeat that: You cannot write to VRAM in byte-sized chunks!!!. Byte-reads are

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

42/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-data
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-page

28-03-13 Tonc : GBA Programming in rot13
ok, but writes have to be done in 16-bit or 32-bit bit chunks. If you do write in bytes to VRAM, the halfword you're accessing will end
up with that byte in both its bytes: you're setting two pixels at once. Note that this no-byte-write rule also extends to PALRAM and
OAM, but there it doesn't cause trouble because you won't be using that as bytes anyway.
So how to plot single-pixels then? Well, you have to read the whole halfword you're trying to access, mask off the bits you don't
want to overwrite, insert your pixels and then write it back. In code:

#define M4 WIDTH 240 // Width in mode 4
ul6 *vid page= vid mem; // Point to current frame buffer

INLINE void m4 plot(int x, int y, u8 clrid)
{

ul6 *dst= &vid page[(y*M4 WIDTH+x)/2]; // Division by 2 due to u8/ul6 pointer mismatch!
1f(x&1)

*dst= (*dst& OxFF) | (clrid<<8); // odd pixel
else

*dst= (*dst&~0xFF) | clrid; // even pixel

}

As you can see, it's a little more complicated thanm3 plot (). It takes a lot longer to run as well. Still, once you have a pixel plotter,
you can create other rendering routines with ease. The basic code for drawing lines, rectangles, circles and the like are pretty much
independent of how pixels are formatted. For example, drawing a rectangle is basically plotting pixels in a double loop.

void generic rect (int left, int top, int right, int bottom, COLOR clr)
{
int ix, iy;
for (iy=top; iy<bottom; iy++)
for (ix=left; ix<right; ix++)
generic plot (ix, iy, clr);

}

This is the generic template for a rectangle drawing routine. As long as you have a functional pixel plotter, you're in business. However,
business will be very slow in mode 4, because of the complicated form of the plotter. In all likelihood, it'll be so slow to make it useless
for games. There is a way out, though. The reasonm4 plot () is slow is because you have to take care not to overwrite the other
pixel. However, when you're drawing a horizontal line (basically the ix loop here), chances are that you'll have to give that other pixel
the same color anyway, so you needn't bother with read-mask-write stuff except at the edges. The implementation of this faster (much
faster) line algorithm and subsequently rectangle drawer is left as an exercise for the reader. Or you can seek out tonc_bmp8.c in
tonclib.

4 D
VRAM vs byte writes

You cannot write individual bytes into VRAM (or PALRAM or OAM for that matter). Halfwords or words only, please. If
you want to write single bytes, you have to read the full (half)word, insert the byte, and put it back.

Please don't skip this note, and make yourself aware of the full ramifications of this. Errors due to pointer-type mismatches
are very easy to make, and you may be writing to VRAM as bytes more often than you think.

Generic vs specific rendering routines

Every kind of graphics surface needs its own pixel plottet. In principle, more complicated (multi-pixel) shapes are surface
independent. For example, a line routine follows the same algorithm, but simply uses a different plotter for drawing pixels.
These generic forms are great in terms of re-usability and maintainability, but can be disastrous when it comes to speed.
Creating surface-specific renderers may be extra work, but can on occasion save you up to a factor 100 in speed.

\

5.2.3. Complications of bitmap modes

While I could go on to discuss more complicated matters, such as drawing rectangles and blits and text, there's very little reason to do so
at this junction. As I said before, the bitmap modes are useful to learn some basic functionality, but for most practical purposes, you're
better off with tiled modes.

The primary issue is speed. Even simple primitives such as the ones shown here can take a lot of time, especially if you're not
careful in your implementation. For example, a full mode 3 screen-wipe would take about 60% of a VBlank at best! In bad
implementations of a screen-wipe, like doing it with a rectangle drawer that calls a non-inline pixel-plotting function, could take as much
as 10 frames. And then you still have to draw all your backgrounds and sprites and do the game logic. The phrase ‘crawling horror’
somehow springs to mind at the thought of this.

Aside from that, bitmap modes can use only one background and have no hardware scrolling to speak of. Also, though this is jumping
the gun a bit, it overlaps the memory that contains the sprite tiles, which starts at 0601 : 0000h. For that reason, you will only be able
to use sprite-tiles 512 to 1023 when in modes 3-5.

Page flipping can alleviate some of these items, but that's not available in mode 3. It is in mode 5, but that uses only a small portion of

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 43/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-data-memcpy
file:///H:/dev/gba/proj/tonc/bak/objbg.htm#sec-img

28-03-13 Tonc : GBA Programming in rot13

the screen, so gaming with only that looks awkward. As for mode 4, well, that's one of those places where you will really see what
programming close to the hardware means: it doesn't allow you to write to VRAM in byte-sized chunks! The only way to have a single-
pixel resolution is to combine 2 adjacent pixels and write those, which costs a lot of extra time.

So basically, use the bitmap modes for testing and/or static images, but not much else unless you know the tilemodes can't do what
you want.

Bitmap modes are not for gaming

Do not get too comfortable with bitmap modes. They're nice for gbadev introductory sections because they are easier to
work with than tile modes, they are not suitable for most types of games because the GBA simply can't push pixels fast
enough. Tinker with them to get a feel for IO registers and the like, then move on.

5.3. Page flipping

Page flipping is a technique that eliminates nasty artifacts like tearing in animation. There are
two things going on at the same time in an animation: placing the pixels on bitmap (writing), and | ...; ‘ disp
drawing the bitmap on screen (displaying). Software takes care of writing, updating the
positions of characters etc; hardware does the displaying: it simply takes the bitmap and copies
it to the screen. The problem is that both these processes take time. What's worse, they happen
at the same time. And when the game state changes in mid draw, the bottom section will be of | Fig 5.4: Page flipping procedure. No data is

the current state, while the top section will represent the previous state. Needless to say, this is | copied, only the “display’ and *write’
bad. pointers are swapped.

flip flip

paged “WI‘itE:

Enter page flipping. Instead of using one single bitmap to write and display, you use two.

While one bitmap is displayed, you write all you need onto a second bitmap (the back-buffer). Then, when you're finished, you tell the
hardware to display that second bitmap and you can prepare the next frame on the first. No artifacts whatsoever.

While the procedure works great, there are some snares. For the first, consider this. Given are the pointers to the two pages pagel
and page?2. Right now, pagel is displayed and page? is being prepared; so far so good. But when you switch to the second page,
this only makes page?2 the display-page; you have to make pagel the write-page yourself! The solution to this problem is simple: use
a write-buffer pointer, but it can catch you off-guard if you're new to this stuff.

The second problem concerns a little nasty in the age-old method of animation. The canonical animation does this. Frame1: draw
object. Frame2: erase old object, draw object in new state. This doesn't work for page flipping since Frame?2 is written on an entirely
different bitmap than Framel, so trying to erase Framel's old object doesn't. What you need to erase is the object from 2 frames ago.
Again, easy solution, but you have be aware of the problem. (Of course, erasing the entire frame each time would work too, but who's
got the time?)

{ N
Pageflipping, not double buffering
Another method of smoother animation is double buffering: draw on a secondary buffer (the backbuffer) and copy it to the
screen when finished. This is a fundamentally different technique than page flipping! Even though both use two buffers, in
page flipping you don't copy the backbuffer to the display buffer, you make backbuffer the display buffer.
What the GBA does is page flipping, so refer to it as such.

\\

5.3.1. GBA page flipping

The second page of the GBA is located at location 0600 : A000h. If you look at the size required for mode 3, you'll see why it doesn't
have page-flipping capabilities: there's no room for a second page. To set the GBA to display the second page, set REG_DISPCNT {4}.
My page flipping function looks a little like this:

ul6 *vid flip()
{
// toggle the write buffer's page
vid page= (ul6*) ((u32)vid page *~ VID FLIP);
REG_DISPCNT “= DCNT_ PAGE; // update control register
return vid page;

}

The code is relatively straightforward. vid page is the pointer that always points to the write-page. I had to pull a little casting
trickery to get the XOR to work (C doesn't like it when you try it on pointers). On the GBA, the steps for page flipping are perfectly
xorrable operations. Sure, you could just put the equivalent in an 1 f-e1se block, but where's the fun in that : P?

5.3.2. Page flipping demo
What follows is the code (sans data) for the pagef1ip demo. The actual part concerned with page flipping is very small. In fact, the
actual flip is merely a callto vid f1ip () once every 60 frames = 1 second (point 3). We'll also have to set the video mode to
something that actually has pages to flip, which in this case is mode 4.

What we'll have to do as well is load the data that will be displayed on these two pages. I'm using the standard C routine
memcpy () for the copy, because that's the standard way of copying things in C. While it's faster than manual loops, it does come with

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 44/331

file:///H:/dev/gba/proj/tonc/bak/video.htm#tbl-reg-dispcnt

28-03-13 Tonc : GBA Programming in rot13

a few snares that you need to be aware of before using it everywhere. Tonclib comes with faster and safer routines, but we'll get to

those when it's time.

Loading a bitmap is very simple in theory, but the bitmap(s) I'm using are only 144x16 in size, while the VRAM page's pitch is 240

pixels wide. This means that we'll have to copy each scanline separately, which is done at point (1). Note that I'm copying

frontBitmap tovid mem front and backBitmap tovid mem back, because those are the starting locations of the two

pages.

Since these are mode 4 bitmaps, they'll also need a palette. Both palettes use frontPal, but instead of using memcpy () to copy

it to the background palette memory, I'm using a u32-array because ... well, just because I guess.

Lastly, you can pause and unpause the demo by holding down start.
#include <string.h>

#include <toolbox.h>
#include "page pic.h"

void load gfx()
{

int 1ii;

// (1) Because my bitmaps here don't fit the screen size,

// I'11 have to load them one scanlline at a time
for(ii=0; 1ii<1l6; ii++)

{

memcpy (&vid mem front[i1ii*120], &frontBitmap[ii*144/4],

memcpy (&vid mem back[ii*120], &backBitmap[ii*144/4]7,
}

// (2) You don't have to do everything with memcpy.

// In fact, for small blocks it might be better if you didn't.
// Just mind your types, though. No sense in copying from a 32bit

// array to a lé6bit one.

u32 *dst= (u32*)pal bg mem;

for (1i=0; 1ii<8; 1ii++)
dst[ii]= frontPal[iil];

int main ()
int 1i=0;

load gfx();
// Set video mode to 4 (8bpp, 2 pages)
REG_DISPCNT= DCNT MODE4 | DCNTiBG2;

while (1)

{
while(KEY_DOWN_NOW(KEY_START)); // pause with start
vid vsync();

// (3) Count 60 frames, then flip pages
if (++ii == 60)
{
1i=0;
vid flip();
}
}

return 0;

F—0G000000h Front

Fig 5.5: the page flipping demo switches between these two blocks.

5.4. On data and how to use it

This section is a little boring (ok, very boring) but it needs to be said. While books and tutorials on C may use data for whatever purpose,

they often gloss over what data actually is at the lowest level, and how to deal with it correctly. As you'll be dealing directly with

hardware and memory here, it is important that you are aware of these items, preferably even understand them, so that they don't bite

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

45/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-data-memcpy

28-03-13 Tonc : GBA Programming in rot13

you in the ass at some later point.

The first two subsections are about how to get graphics into your game, something that you'll really need to know. After that I'll
discuss a few nasty and highly technical things that may or may not cause problems later on. These are optional and you can skip to the
data-loading/interpreting demo at any time. That said, I urge you to read them anyway because they may save you a lot of debugging
time.

Relax, it's only 1s and 0s

When you get right down to it, everything on computers is merely a big mess of bits without any purpose by itself. It is the
interaction between hardware and software that makes sequences of bits appear as valid executable code, a bitmap, music or
whatever.

5.4.1. Yes, we have no files

This may be a good point to say a few words on data. Strictly speaking, everything is data, but in this case I'm referring to data that on
PC games would be separate from the executable: graphics, music, maybe scripts and text-files and what not. This all works fine on a
PC, but not so fine on the GBA because there is no file system. This means that you cannot use the standard file I/O routines
(fscanf (), fread (), etc) to read the data, because there are no files to read them from.

All the game's data has to be added directly to the binary. There are a number of ways to do this. The most common way is to
convert the raw binary files to C-arrays, then compile those and link them to the project. Well, the most common among homebrewers is
probably converting to C-arrays and #including them, but that's something that you should never do. Also popular are assembly arrays.
These are a useful alternative to C arrays because a) they can 't be #included and b) because they bypass the compilation step and
compilation of arrays is very intensive. Of course, you would have to know how to work with the assembler. Another nice thing about
the assembler is that you can include binary files directly into them, eliminating the need for a converter. Lastly, while the GBA doesn't
have a native file system, you can always write your own. A common one is GBFS by the gbadev forum FAQ maintainer, tepples.
Using a file system is actually the recommended method, but for now, I'll stick to C-arrays because they are the easiest to use.

Ahem. Actually, we do have files

There were no files in the past, but in July of 2006, Chishm gave us 1ibfat, which is a FAT-like file system for GBA and
NDS. It is distributed via DKP as well, so chances are you have it already.

Where do my arrays go?
By default, arrays go into IWRAM. You know, the one that's only 32 kb long. Now, a mode 3 bitmap is 240x160x2 = 77 kb. Obviously,
trying to put a 77 kb object into a 32kb section would fit nicely into the bad things category. To avoid this, put it in the read-only section
(ROM), which is much larger. All you have to do for this is add the ‘const’ keyword to the definition if you're using C, or the
‘. rodata’ directive in assembly. Note that for multiboot programs ROM actually means EWRAM, which is only 256 kb long. The
latter would fit three mode 3 bitmaps; more would again be bad unless you use compression.

Note that what I said about arrays is true for a// arrays, not just data arrays: if you want any kind of large array (like a backbuffer
for mode 3), it would also default to and kil//l IWRAM. But you can't make it const because then you'd not be able to write on it. GCC
has attributes that lets you choose where things are put — in EWRAM for instance. Here are the commonly seen #defines for the
attributes that can be used for specific section placement.

#define EWRAM DATA attribute ((section(".ewram")))

#define IWRAM DATA _ attribute ((section(".iwram")))

#define EWRAM BSS attribute ((section(".sbss")))

#define EWRAM CODE _ attribute ((section(".ewram"), long call))
#define IWRAM CODE _ attribute ((section(".iwram"), long call))

Const is good

Data that you don't expect to change in your game should be defined as constant data using the ‘const’ keyword, lest it
trashes your IWRAM.

Converted and const arrays in C++
There are two little snags that you can trip on if you're using (converted) data arrays in C++. The first is that tools that generate the
arrays will output C-files, not C++-files. This is not a problem in itself because those files will be compiled just the same. What is a
problem is that C++ uses something known as Name mangling to allow overloading and stuff like that. C doesn't and as a result, the
name that the C++ file looks for isn't the same one as in the C file and you get undefined references. To fix this, use ‘extern "C"'in
front or around the declarations of the stuff in the C files.

// This:

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 46/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-data-demo
http://www.pineight.com/gba/#gbfs
http://chishm.drunkencoders.com/
http://en.wikipedia.org/wiki/Name_mangling

28-03-13 Tonc : GBA Programming in rot13

extern "C" const unsigned char C arrayl[];

// Or this:

extern "C"

{

const unsigned char C arrayl[];
const unsigned char C array2[]

}

’

Another problem with C++ is that const-arrays are considered static (local to the file that contains it) unless you add an external
declaration to it. So if you just have ‘const u8 foo[]= { etc }'ina file, the array will be invisible to other files.The solution
here would be to add the declaration inside the file itself as well.

// foo.cpp. Always have an external declaration
// inside the file as well.

extern const unsigned char fool];

const unsigned char fool[]l=

{
// data
}i

5.4.2. Data conversion

It's rather easy to write a tool that converts a binary file to a C or asm array. In fact, devkitARM comes with two that do just that:
raw2c.exe and bin2s.exe. It also comes with the basic tools for gbfs by the way. But being able to attach binary files to your
game is only part of the story. Consider a bitmap, for example. In principle, a bitmap is a binary file just like any other. There's nothing
inherently graphical about it, and it doesn't magically appear as a bitmap whenever you use it by itself. Yes, when you double-click on i,
an image viewer may pop up and display it, but that's only because there's some serious work by the OS going on underneath. Which we
don't have here.

Most files will follow a certain format to tell it what it is, and how to use it. For bitmaps, that usually means width, height, bitdepths
and a few other fields as well. The point is that they're not directly usable. You can't just attach, say, a BMP file to your project and
copy it to VRAM and think that everything will work out. No, you have to convert it to a GBA-usable format. Now, you can do this
nternally (on the GBA itself), or externally (on the PC and attach the converted data to the project). Because the latter is a much more
efficient use of GBA resources, that is the usual procedure.

There are many conversion tools, one might almost say too many. Some are one-trick ponies: a single file-type to a single graphics
mode for example. Some are very powerful and can handle multiple file-types, multiple files, different conversion modes with lots of
options on the side, and compression. It should be obvious which are of the most value.

A good one is gfx2gba. This is a command-line tool so that it can be used in a makefile, but there is a GUI front-end for it as well.
This tool has the Good Things I mentioned earlier, plus some map-exporting options and palette merging, but the input file must be 8bit
and I hear that while it does compress data, the array-size is still given as its uncompressed size for some unfortunate reason. This tool
comes with the HAM installation, and is quite common, so definitely recommended. Unfortunately, there seems to be another tool with
the same name. You'll want the v0.13 version by Markus, not the other one.

Personally, I use Usenti, but then I pretty much have to because its my own tool. This is actually a bitmap editor with exporting
options thrown in. It allows different file-types, different bitdepths, different output files, all modes, some map-exporting stuff, meta-tiling,
compression and a few others. It may not be as powerful as big photo-editing tools as PhotoShop, Gimp and the like, but it gets the job
done. If you're still drawing your graphics with MS-Paint, please stop that and use this one instead. The exporter is also available
separately in the form of the open source project called (win)grit, which comes in a command-line interface (grit) and a GUI (wingrit).
As of January 2007, it is also part of the devkitPro distribution.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 47/331

http://www.coranac.com/files/gba/gfx2gba.zip
http://www.coranac.com/projects/#usenti
http://www.coranac.com/projects/#grit

28-03-13 Tonc : GBA Programming in rot13

p
Bitmap conversion via CLI

There are many command-line interfaces available for graphics conversion, but to make them function you need the correct

flags. Here are examples for gfx2gba and grit, converting a bitmap foo .bmp to a C array for modes 3, 4 and 5. This is just

an example, because this is not the place for a full discussion on them. Look in their respective readme's for more details.

gfx2gba
mode 3, 5 (C array; ul6 foo Bitmap[]; foo.raw.c)
gfx2gba -fsrc -c32k foo.bmp

gfx2gba -fsrc -c256 foo.bmp

mode 4 (C array u8 foo Bitmap[], ulé master Palette[]; foo.raw.c,

mastel.pal.c)

grit
mode 3, 5 (C array; u32 fooBitmap[]; foo.c foo.h)
grit foo.bmp -gb -gBl6

grit foo.bmp -gb -gBS8

mode 4 (C array; u32 fooBitmap[], ul6e fooPal[]; foo.c foo.h)

\\

Below, you can see a partial listing of modes . ¢, which contains the bitmap and the palette

used in the bm modes demo discussed at the end of this section, as exported by Usenti. It is big u32 0x01020304

only a very small part of the file because at over 2700 lines it is way too long to display here, big ul6 | 0x0102 0x0304
which wouldn't serve much of a purpose anyway. Note that both are u32-arrays, rather than

the u8 or ul6-arrays you might encounter elsewhere. What you need to remember is that it u8 0x01]0x02/0x03[0x04
doesn't matter in what kind of an array you put the data: in memory it'll come out the same little u16| 0x0201 0x0403
anyway.

Well, that's not quite true. Only with u32-arrays is proper data alignment guaranteed, little u32 0x04030201
which is a good thing. More importantly, you have to be careful with the byte-order of multi- Table 5.2: Big endian vs little endian
byte types. This is called the endianness of types. In a little endian scheme, least significant interpretation of byte-sequence 01h, 02h,
bytes will go first and in a big endian, most significant bytes will go first. See table 2 for an 03h, 04h

example using 0x01, 0x02, 0x03 and 0x04. The GBA is a little endian machine, so the first

word of the modesBitmap array, 0x7FE003EO is the halfwords 0x03EO0 (green) followed by 0x7FEO (cyan). If you want more
examples of this, open up VBA's memory viewer and play around with the 8-bit, 16-bit and 32-bit settings.

The key point here: the data itself doesn't change when you use different data-types for the arrays, only the way you represent it
does. That was also the point of the bm modes demo: it's the same data in VRAM all the time; it's just used in a different way.

//

// modes, 240x160Q@16,

// + bitmap not compressed

// Total size: 76800 = 76800

//

// Time-stamp: 2005-12-24, 18:13:22

// Exported by Cearn's Usenti v1.7.1

// (comments, kudos, flames to "daytshen@hotmail.com")

//

const unsigned int modesBitmap[19200]=

{

//

// over 2500 more lines like this

//

}i

const unsigned int modesPal[8]=

{

}i

0x7FE003EQ, Ox7FEQ07FEOQ, Ox7FEQ7FEO, 0x7FE07FEQ, 0x7FE07FEQ, 0x7FE07FEQ, 0x7FE07FEQ, Ox7FE07FEOQ,
0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F,
0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F,
0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F,

0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F,
0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F,
0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F, 0x080F080F,
0x7FE07FEQ, Ox7FEQ07FEOQ, Ox7FEQ7FEO, 0x7FE07FEO, 0x7FE07FEQ, 0x7FE07FEQ, 0x7FE07FEQ, Ox7FE07FEOQ,

0x7FEO7C1F, 0x03FF0505, 0x03E00505, 0x7C000000, 0x0000080F, 0x00000000, 0x00000000, 0x080F0000,

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 48/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-data-align
file:///H:/dev/gba/proj/tonc/bak/numbers.htm#ssec-bits-endian

28-03-13 Tonc : GBA Programming in rot13

Those 2700 lines represent a 77kb bitmap. One single bitmap. In all likelihood, you'll need at least a couple of them to make anything
worthwhile. Most games have lots of data in them, not only graphics but maps and sound and music as well. All this adds up to a huge
amount of data, certainly too much for just EWRAM and maybe even for a full cart. That is why compression is also important. The
GBA BIOS has decompression routines for bit-packing, run-length encoding, LZ77 and Huffman. Converters sometimes have the
appropriate compressors for these routines, which can drastically shrink the amount of memory used. Usenti and (win)grit support these
compressors. So does gfx2gba, which even has some more. A tool that just does compression on binary files (but does it very well) is
GBA Crusher. I won't go into compression that much (or at all), but you can read up on the subject here.

Understanding data

It is vital that you understand what data is, how the different datatypes work. Preferably endianness and alignment too.
Emulators and hex editors can help you with this. Once you have compilation working, just make a few random arrays and
see what they look like in the VBA memory viewer for a while.

5.4.3. #including code or data considered harmful
Most non-trivial projects will have multiple files with code and data. The standard way of
dealing with these is to compile these separately and then link the results to the final binary. | [SES. put data in header files, T will
This is the recommended strategy. However, most other tutorials and many of the example not put data in header files. T will not put

code you can find on the web do something else: they #include everything into the main data in header files. I will nat put data in
source file and compile that. This is not a recommended practice and should be avoided. haadenyfilesilellaot{putidatalinihes
: files. I will not put dota in header file
”But why not? It seems to work fine, and it's so easy!” will not put data in header files. T wil Gl

Yes, it is easy; and it does seem to work. The main problem is that it isn't scalable. For | MR iR LR 50
small projects (a handful of files) you probably won't notice, but as projects grow to —
hundreds and perhaps thousands of files, you will run into some very annoying problems. =
The main issue is what #include actually does. It copies the whole included file into the
includer to form a single larger file. This leads to the following issues.

Fig 5.6: even Bart knows ...

e Massive files to compile. So, #including creates one big file. If you have a lot of stuff, you'll have one very big file. This will
cost large amounts of memory and slows down compilation. As the project grows, what starts as a compile time of a second
can grow to several, then minutes and perhaps even hours.

At some point, there was also the problem that the compiler couldn't handle files exceeding 4MB, putting a limit on how
much you could #include in a C file. I'm not sure if this is still an issue.

¢ Recompiling the world. The main problem is that when you #include everything, you need to recompile everything as well.
If you make one change anywhere, no matter how small, causes everything to be compiled. For small projects (say, a handful
of files), a full rebuild would take a few seconds so it's not a problem. But larger projects can have hundreds or thousands of
files, and the time is not measured in seconds, but in minutes or perhaps hours. Sure it's a good excuse to go sword fighting,
but terribly annoying if you want to do something productive.

¢ Bloat. Even if your own code and data are relatively small in number, you're probably using some code library for API
functions. Normally, these are pre-compiled and only the functions used are linked into your binary. But if those worked by
#include as well (in other words, if their creators had followed the practice I'm warning against), every function in that library
would be included as well, including the ones you're not using. This increases the filesize, and increases the problems
mentioned above.

¢ Undeclared identifiers, multiple definitions and circular dependencies. In a nutshell, C requires that you declare an
identifier before it's referenced, and it can only be defined once. The first point means that the order of inclusions starts to
matter: if, say, fileB. c needs something from £ileA. c, the latter needs to be included before the former to get a compile.
The second means that you could only #include a file once in the whole project: if fileB.c and £ileC. c both need stuff
from fileA. c, you can't #include it in them both because when they're #included nmain.c, fileA. c is effectively
#included twice and the compiler will balk.

These points can technically be overcome by being careful. But, again, when projects grow, things can get increasingly
more difficult to keep track of which comes before what and why. There is, however, one point at which it will go wrong,
namely when there are circular dependencies: £ileB. c needs fileA. c and vice versa. Each file would require the other
to go first, which simply isn't possible because it'd cause multiple definitions.

¢ Data alignment. I'll get to what this means in a minute, but right now know that copy routines work better if the data is
aligned to 32-bit boundaries (even for byte and halfword arrays). Some of them won't even work properly if this isn't the case.
This is usually guaranteed if you compile separately, but if the arrays are #included and no steps have been taken to force
alignment, you simply never know.

It's not much of a problem nowadays because most graphics converters force data-alignment, but you still need to know
about it. Because data alignment is a fairly esotheric concept, it's next to impossible to track down unless you're aware of the
problems it can bring.

So please, do yourself a favor and do not #include every file you have into main. c or its moral equivalent. Put function and variable
definitions in separate source files to be compiled separately and linked later. The #include directive is only to be used for files with
preprocessor directives and declaractions and type definitions. Oh, and inline functions. Those are okay there too.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 49/331

file:///H:/dev/gba/proj/tonc/bak/swi.htm
http://www.coranac.com/files/gba/GBACrusher.zip
http://members.iinet.net.au/~freeaxs/gbacomp/
http://en.wikipedia.org/wiki/Scalability
http://xkcd.com/303/

28-03-13 Tonc : GBA Programming in rot13
5.4.4. Proper build procedure

Separate compilation
So what do you do instead? Well, for starters keep all the code and data in separate source files. Compile these separately by invoking
gcc on each file. This gives you a list of object files. These you then link together. In batch files, you'd need to add extra commands for
each file, but a properly setup makefile uses a list of object files, and the makefile's rules will then take care of the rest automatically.
Using the makefile of the second demo as a reference, you'll get something like this:

partial makefile for using multiple source files
some steps omitted for clarity

3 targets for compilation
OBJS := foo.o bar.o boo.o

link step: .o -> .elf
$ (PROJ) .elf : $(OBJS)
$(LD) $” $(LDFLAGS) -o s@

compile step .c -> .o
S(OBJS) : %$.0 : %.cC
$(CC) -c $< $(CFLAGS) -o $@

The OBJS variable contains the names of three object files, which would be the targets of compiling foo.c,bar.c and boo.c.
Remember, makefiles list rules by target, not by prerequisite. The compilation step uses a static pattern rule, which for each .0’ file in
OBJS compiles the ‘.c’ file with the same title. This is what runs the compiler for our three source files. In the linking step the automatic
variable $” expands to the prerequisites of the rule, which is the list of all object files, and this is how the files are all linked together. If
you need more files, add them to the OBJS list.

Note that the devkitPro and tonc template files take care of these things automatically. Just put the source files into the right
directory and you're good to go.

Symbols, declarations and definitions
If you have been doing everything via #include, you should consider refactoring all of your stuff to separate source files. No, let me
rephrase that, you need to do this because you'll benefit from it in the end. If you're already well in your project, this is going to suck
because it's boring and time consuming and most likely it's not even going to work properly when you try the first build afterwards. I
expect you'll get a whole slew of errors, particularly these three:

e 'foo' undeclared
e redefinition of ‘foo'
« multiple definition of “foo'

To understand what these mean, you need to know a little bit more about how C (and indeed programs) actually works.

As I said before, there aren't really things like programs, bitmaps, sound on computers; it's all just bits. Bits, bits and more bits. What
makes a sequence of bits work as a program is the way it is fed to the CPU, VRAM, and other sections. Somewhere in the build
process, there has to be a translation of all the C code to data and machine instructions. This, of course, is the compiler's job.

But wait, there's more. C allows you to compile each file separately, and then link them later into the actual program. This is a good
idea, because it allows you to save time by only compiling the files that you have recently modified, as well as the use of code libraries,
which are little more than a bunch of precompiled source files. If you're not convinced that this is a good idea, consider what it would
take without it. You'd have to have all the source code that you wanted to use (including for things like printf () and all the API
code), and compile all those megabytes of source files each time. Sounds like fun? No, I didn't think so either.

However, you need a little more bookkeeping to make this all work. Because everything is just bits, you'd need a way to find out
where the function or data you want to use actually is. The contents of the compiled files (the object files) isn't just raw binary, it
contains symbols. This is just a word for the group of things that have actual binary information attached to them. Among other things,
the object file keeps track of the symbol's name, section, size, and where its content is in the object file. A function is a symbol, because
it contains instructions. A variable is also a symbol, as is data for bitmaps, sound, maps et cetera. Preprocessor #defines, typedefs and
struct/class declarations are not symbols, because they only don't have actual content in them, but allow you to structure your code
better.

The other bookkeeping note is that each source/object file is a separate entity. In principle, it knows nothing about the outside world.
This makes sense because it limits the dependency on other files, but it does create a little problem when you want to make files work
together. This is where declarations come in.

You may have noticed that C is pretty strict when it comes to names of stuff. Before you can use anything, it requires you to
mention what it is beforehand. For example, if you use a function foo () in your code and you never defined its code, or even if you put
it after the call to foo (), the compiler will complain that it doesn't know what you're talking about. That is, it will say that “*foo' is
undeclared’. You have to admit it has a right to stop there: how would it know how to use the thing if you never told it what it was?

The code snippet below gives an example of when a reference is and is not declared, and why it's important to have a declaration.
Function a () calls foo (), which is not known at the time, so an error is produced. Function b () also calls foo (), which is known at
that time, but still gives an error because foo () just happens to require an integer as an argument. If the declaration wasn't mandatory

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 50/331

file:///H:/dev/gba/proj/tonc/bak/first.htm#ssec-2nd-make

28-03-13 Tonc : GBA Programming in rot13

and the callin a () was allowed, foo () would have been processing the wrong kind of information at runtime. There are ways around
such problems, of course, languages like PHP, VB and others work fine without mandatory declarations, but the cost for that is speed
and possibly a lot more runtime errors.

//# C requires identifiers to be declared or defined before first use.

// ERROR: "foo' is undefined.

void al()
{
foo();
}
// Definition of foo(). Now the system 'knows' what foo is.

void foo (int x)
{

// code
}

// foo is known and used correctly: no errors.
void b ()
{
foo (42);
}

// foo is known but used incorrectly. Compiler issues error.
void c ()
{

foo ()

}

Now back to our separate files, and the difference between declarations and definitions of symbols. A definition is something of actual
content: it is what actually forms the symbol. Examples are the value(s) in variables, and the code in functions. A declaration is just an
empty reference. It just says that there is something in the project with a particular name, and indicates how that something is supposed
to be used: whether it's a function or variable, what datatype, which arguments, that sort of things. This is how you can use symbols
from other object files.

You should be familiar with what a definition looks like. A declaration looks very similar. The basic variable declaration is the
variable name and attributes (type, const, section) preceded by extern. For functions, replace the code block by a semi-colon. You
can also add extern there, but it's not required.

/) mm e
// DECLARATIONS. Put these in source (.c) or header (.h) files.

f
extern int var;

extern const unsigned int datal[256];

void foo (int x);

[mm e e
// DEFINITIONS. Put these in source (.c) only.
[e

// uninitialized definition
int wvar;

// initialized definition
const unsigned int data[256]=
{

// data
}i

void foo (int x)
{

// code
}

Now, a definition is also a declaration, but this does not work the other way. How can it, the declaration is supposed to be empty. The
distinction is subtle, but it's the reason you might get multiple definition errors when linking the files together. Think of what would
happen if you have the definition of function foo () in multiple files. Each file itself would know what foo () is because defmitions are
also declarations, so it would pass the compilation stage. So now you have multiple object files, each containing a symbol called foo.
But then you try to link them into one file. The linker sees different versions of foo, and stops because it doesn't know which one you

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 51/331

28-03-13 Tonc : GBA Programming in rot13

are actually trying to use. The moral here is that you can have as many declarations as you want, but there can be only one definition.

Another point I should raise is that the declaration defines how a symbol is to be dealt with, as it is the only point of reference if the
definition is in another file. This means that, in theory, you could have a variable var defined as an int, but declared as a short, or even a
function! While not exactly recommended, but it is an interesting item.

Lastly: the distinction of what should go in source files, and what in headers. Source files can actually contain anything, so that's an
easy one. Remember that they will contain everything after the preprocessor step anyway, because that's what #include really does. So
what matters is what you put in headers. The purpose of header files is to have a place for all the non-symbol stuff that you want to
use in different source files. That means declarations, #defines, macros, typedefs, struct/class descriptions. It also means (static) inline
functions, because these don't form symbols either, but are integrated in the functions that call them.

Summary

All this stuff about separate compilation, declarations, and definitions is rather important for C programming, but the preceding text may
be a little much to take in at once. So here is a summary of the most important points.

¢ Symbols. Symbols are those parts of the code that form actual binary content in the final program. This includes functions,
variables, data, but not preprocessor or type description stuff.

¢ Declarations/definitions. A definition of a symbol is where the actual content is. A declaration just says that something of a
certain name exists, but will be added to the project later. Multiple (identical) declarations may exist, but there can be only one
definition in the project. Definitions are also declarations.

e Source/object files are selfcontained entities. They contain the definitions of the symbols that are in the code, and a list of
references to outside symbols, as indicated by the declarations.

¢ Header files contain meta-data, not symbols. Header files cannot be compiled, but are intended contain the ‘glue’ that
allow difference sources to work together (i.e., declarations) and stuff that makes writing the sources easier (like #defines and
macros). They are meant to be included in multiple files, so they cannot create symbols because that would lead to multiple
definitions.

Potential problems during compilation or linking:

e “foo' undeclared. Compiler error. The identifier ‘foo' is not known at this point. Check the spelling, or add the appropriate
declaration or header file containing the declaration.

o redefinition of ‘foo'. Compiler error. The identifier as a previous declaration or definition conflicting with the current one in
the same file or included headers. Usually accompanied by a message of the previous definition.

¢ multiple definition of 'foo'. Linker error. The symbol name ‘foo' is shared by multiple object files. Replace all but one
definitions of "foo' in the source files with the appropriate declarations. Usually accompanied with a message indicating the
object file with the other definition(s).

5.4.5. Data alignment

Data alignment is about the ‘natural’ memory addresses of variables. It is often beneficial to have a variable of a certain length to start
at an address divisible by that length. For example, a 32-bit variable likes to be put at addresses that are a multiple of 4. Processors
themselves also have certain preferred alignments. Addressing will work faster if you stick to their native types and alignment (say, 32-
bit everything for 32-bit CPUs). For PCs it is not required to do any of this, it'll just run slower. For RISC systems, however, things must
be aligned properly or data gets mangled.

In most cases, the compiler will align things for you. It will put all halfwords on even boundaries and words on quad-byte boundaries.
As long as you stick to the normal programming rules, you can remain completely oblivious to this alignment stuff. Except that you won''t
always stick to the rules. In fact, C is a language that allows you to break the rules whenever you feel like it. It trusts you to know what
you're doing. Whether that trust is always justified is another matter : P

The best example of breaking the rules is pointer casting. For example, most graphics converters will output the data as ul6-arrays,
so you can copy it to VRAM with a simple for-loop. You can speed up copying by roughly 160% if you copy by words (32-bit) rather
than halfwords (16-bit). Run the txt se2 demo and see for yourself. All you have to do for this is one or two pointer casts, as shown
here.

#define fooSize ...
const ule fooDatall= { ... };

// copy via ulé array (the de facto standard)

ul6 *dst= (ul6*)vid mem, *src= (ul6*)fooData;
for (ii=0; ii<fooSize/2; ii++)
dst[ii]= src[iil];

// copy via u32 array (mooch faster)
u32 *dst= (u32*)vid mem, *src= (u32*)fooData;
for (1ii=0; ii<fooSize/4; ii++)

dst[ii]l= src[iil];

Both these routines copy fooSize bytes from fooData to VRAM. Only the second version is much faster because there are half as
many loop iterations and also because the ARM CPU is just better at dealing with 32-bit chunks. The only danger here is that while
fooData will be halfword aligned, it need not be word aligned, which is a requirement for the second version. For those readers that

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 52/331

file:///H:/dev/gba/proj/tonc/bak/text.htm#ssec-demo-se2

28-03-13 Tonc : GBA Programming in rot13

think casts like this and mis-alignment only happen to other people, think again: the faster copy routines (memcpy (), CouFastSet (),
and DMA too) cast to word-pointers implicitly. Use them (and you should) and you run the risk of misalignment.

There are many ways of ensuring proper alignment. The easiest way is to not mix converted data with the rest of your stuff. That is,
don't #include data-files. This should suffice. Another method is to convert to u32-arrays in the first place. In assembly files, you can
control alignment by using the .align n’ directive, where n aligns to 2" bytes. C itself doesn't allow manual alignment, but there is an
extension for this in GCC: © attribute ((aligned(4)))’. Add that to the definition and it'll be word aligned. This is
often #defined as ALIGN4 in some headers. Files in GBFS are also always correctly aligned.

Struct alignment

One other area where alignment can cause problems is in struct definitions. Look at the following code. Here we have a struct named
FOO consisting of one byte, b, one word w and one halfword /. So that's 1+4+2=7 bytes for the struct right? Wrong. Because of the
alignment requirement, w doesn't immediately follow b but leaves 3 bytes of padding. When defining arrays of this type, you'll also see
that there are also two padding bytes after /, because otherwise later array-entries would run into trouble.

// one byte, one word, one halfword. 7 byte struct?
// Well let's see
struct FOO
{
u8 b;
u32 w;
ulé h;
}i

// Define a FOO array

struct FOO foos[4]=

{

0x10, 0x14131211, Ox161l5 1},
0x20, 0x24232221, 0x2625 1},
0x30, 0x34333231, 0x3635 1},
0x40, 0x44434241, 0x40645 1},

e e

}i

// In memory. 4x12 bytes.

// 10 00 00 00 | 11 12 13 14 | 15 16 00 00
// 20 00 00 00 | 21 22 23 24 | 25 26 00 00
// 30 00 00 00 | 31 32 33 34 | 35 36 00 00
// 40 00 00 00 | 41 42 43 44 | 45 46 00 00

The real size is actually 12 bytes. Not only is this almost twice the size, if you ever try to copy the array using a hard-coded 7 rather
than sizeof (struct FOO),you completely mess it up. Take this lesson to heart. It's a very easy mistake to make and difficult to
detect after the fact. If you were unaware of this fact and you've already done some GBA coding, check your structs (or classes) now;
chances are there are gaps that shouldn't be there. Simply rearranging some of the members should suffice to make them fit better.
Note that this is not specific to the GBA: structs on PCs may behave the same way, as I noticed when I was writing my TGA functions.

There are ways of forcing packing, using the ©° attribute ((packed))’ attribute. If the FOO struct had that, it really
would be 7 bytes long. The downside of this is that the non-byte members could be mis-aligned and have to be put together byte for byte
(the compiler does this for you). This is very much slower than the non-packed version, so only use this attribute if you have no other
choice. What happens with mis-aligned (half)words then I can't tell you though, but I'm sure it's not pretty.

{ N
Forcing alignment and packing
GCC has two attributes that allow you to force alignment of arrays, and remove member-alignment in structs.

// Useful macros
#define ALIGN (n) __attribute ((aligned(n)))
#define PACKED __attribute ((packed))

// force word alignment
const u8 arrayl[256] ALIGN(4) = {...};
typedef struct FOO {...} ALIGN(4) FOO;

// force struct packing
struct FOO {...} PACKED;

\

DevKkits and struct alignment

As far as ['ve been able to tell, structs have always had word alignment. This was useful because it made copying structs faster. C
allows you to copy structs with a single assignment, just like the standard data types. Because of the word-alignment, these copies are

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 53/331

28-03-13 Tonc : GBA Programming in rot13

fast because GCC will make use of ARM's block-copy instructions, which are much faster than copying member by member.

However, this does not seem to be true under devkitARM r19 (and presumably higher) anymore. The new rule seems to be “structs
are aligned to their largest member”. This does make more sense as a struct of two bytes would actually be two bytes long. However, it
does mean that GCC will now callmemcpy () for non-aligned structs. Apart from it being a function with quite a bit of overhead (i.e.,
it's very slow if you want to copy a single small struct), it will actually fail to produce correct results in some cases. The problem is that
low-number copies it will copy by the byte, which is something you cannot do for VRAM, PALRAM or OAM. For example, objects
that we'll see later use a struct of four halfwords; using a struct-copy there, something I am very fond of doing, screws up everything.
The only way to make it work properly is to force word-alignment on the struct.

// This doesn't work on devkitARM rl9 anymore
typedef struct OBJ ATTR
{
ul6é attr0, attrl, attr2;
sle fill;
} OBJ ATTR;

OBJ ATTR a, b;
b= a; // Fails because of memcpy

// Forcing alignment: this works properly again
typedef struct OBJ ATTR
{
ul6é attr0, attrl, attr2;
sle fill;
} ALIGN(4) OBJ ATTR;

OBJ ATTR a, b;
b= a; // No memcpy == no fail and over 10 times faster

Forcing struct-alignment on devkitARM r19 is a Good Thing

The rules for struct alignment have changed since devkitARM r19. Instead of being always word-aligned, they are now
aligned as well as their members will allow. If this means they're not necessarily word-aligned, then they will use memcpy ()
for struct-copies, which is slow for small structs, and may even be wrong (see next section). If you want to be able to do
struct copies fast and safe, either force alignment or cast to other datatypes.

\\

5.4.6. Copying, memcpy() and sizeof
There are many different ways of copying data on this platform. Arrays, struct-copies, standard copiers like memcpy (), and GBA
specific routines like CpuFastSet () and DMA. All of these have their own strengths and weaknesses. All of them can be affected
by misalignment and the no-byte-write rule. I discuss some of them in the txt se2 demo.

I've chosen to use memcpy () in the early demos for a number of reasons. The main one is that it is part of the standard C library,
meaning that C programmers should already be familiar with it. Secondly, it is somewhat optimized (see the txt se2 demo for
details). However, there are two potential pitfalls with the routine. The first is data alignment (yes, that again). If either the source or
the destination is not word-aligned, you're in trouble. Secondly, if the number of bytes is too small, you're in trouble too.

Both of these have to do with the basic function of memcpy (), namely to be a fast byte copier. But as you know, you can't copy
single bytes to VRAM directly. Fortunately, it has an optimised mode that uses an unrolled word-copy loop if two conditions are
satisfied:

1. When both source and destinations are word aligned.
2. When you are copying more than 16 bytes.

This is usually the case so I figured it'd be safe enough for the demos. There are also look-alikes in tonclib that do the same thing only
better, namely memcpyl16 () and memcpy32 (), but these are in assembly so I thought I wouldn't lay them on you so soon. Highly
recommended for later though.

On a related subject, there is also memset () for memory fills. Be careful with that one, because that will only work with bytes.
Tonclib also includes 16- and 32-bit versions of this routine, but also in assembly.

The last thing [want to discuss is the sizeof () operator. In other tutorials you will see this being used to find the size in bytes of
arrays, which is then used in memcpy () . It's a good procedure but will not always work. First, sizeof () actually gives the size of
the variable, which need not always be the array itself. For example, if you use it on a pointer to the array, it'll give the size of the
pointer and not of the array. The compiler never complains, but you might when hardly anything is copied. Secondly, sizeof () is an
operator, not a function. It is resolved at compile-time, so it needs to be able to find the size at that time as well. To do this, either the
declaration (in the header) should indicate the size, or the array definition (in the source file) should be visible.

Bottom line: you can use sizeof (), just pay attention to what you use it on.
Okay, that was the long and boring —yet necessary— section on data. Congratulations if you've managed to stay awake till this point,

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 54/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-data-memcpy
file:///H:/dev/gba/proj/tonc/bak/text.htm#ssec-demo-se2

28-03-13 Tonc : GBA Programming in rot13

especially if you've actually understood all of it. It's okay if you didn't though, in most cases you won't run into the problems discussed
here. But just remember this section for if you do run into trouble when copying and you can't find it in the code; it might save you a few
hours of debugging.

5.4.7. Data interpretation demo
The bm modes is an example of how the same data can result in different results depending on interpretation (in this case, modes 3, 4
and 5). In the code below, I make one copy into VRAM, and switch between the modes using Left and Right. The results can be seen
in figs 5.7a-c.

I've arranged the data of the bitmap in such a way that the name of the current mode can be read clearly, as well as indicated the
mode's boundaries in memory. Because the data intended for the other modes is still present, but not interpreted as intended, that part of
the bitmap will look a little shitty. And that's partly the point of the demo: when filling VRAM, you need to know how the GBA will use
the data in it, and make sure it'll be used. If the bitmap ends up being all garbled, this is the likely suspect; check the bitdepth, dimensions
and format (linear, tiled, compressed, etc) and if something conflicts, fix it.

Now, sometimes this is not as easy as it sounds. The general procedure for graphics is to create it on the PC, then use an exporter
tool to convert it to a raw binary format, then copy it to VRAM. If the exporter has been given the wrong options, or if it can't handle the
image in the first place, you'll get garbage. This can happen with some of the older tools. In some cases, it's the bitmap editor that is the
culprit. For paletted images, a lot depends on the exact layout of the palette, and therefore it is vital that you have a bitmap editor that
allows total control over the palette, and leaves it intact when saving. MS-Paint for example does neither. Even very expensive photo
editing tools don't, so be careful.

For this image, I used <plug>my own bitmap editor Usenti</plug>, which not only has some nice palette control options, and tiling
functions, but a built-in GBA graphics exporter as well. To make the background be the same color in all modes, the two bytes of the
16bit background color of modes 3 and 5 had to serve as palette entries for mode 4, both using that 16bit color again. In this case, the
color is 0x080F, sort of a brownish color. The bytes are 8 and 15, so that's the palette entries where the color goes too. Normally you
don't have to worry about switching bitdepths mid-game, but knowing how to read data like this is a useful debugging skill.

#include <string.h>
#include "toolbox.h"
#include "modes.h"

int main ()

{
int mode= 3;
REG_DISPCNT= mode | DCNT_BGZ;

// Copy the data and palette to the right

// addresses

memcpy (vid mem, modesBitmap, modesBitmapLen);
memcpy (pal bg mem, modesPal, modesPallen);

while (1)

{
// Wait till VBlank before doing anything
vid vsync();

// Check keys for mode change

key poll();

if (key hit (KEY LEFT) && mode>3)
mode-—;

else if (key hit (KEY RIGHT) && mode<b)
mode++;

// Change the mode
REG_DISPCNT= mode | DCNT BG2;
}

return O;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 55/331

http://www.coranac.com/projects/#usenti

28-03-13 Tonc : GBA Programming in rot13

Mode 3

Fig 5.7a: bm modes in mode 3. Fig 5.7b: bm_modes in mode 4. .

Mode 5
_

Fig 5.7¢: bm modes in mode 5.

Conclusions

Now we've seen some of the basics of the GBA bitmap modes: the properties of modes 3, 4 and 5, page flipping, rudimentary drawing
for mode 3 and one of the most important rules of VRAM interactions: you cannot write to VRAM in bytes. There is much more that
can be said, of course. Bitmap graphics is a rich subject, but going into more detail right now may not be the best idea. For one, the
bitmap modes are very rarely used in games anyway, but also because there are other things to talk about as well. Things like button
input, which is what the next chapter is about.

This chapter also discussed a few things about handling data, a very important topic when you're this close to the hardware.
Datatypes matter, especially when accessing memory through pointers, and you need to be aware of the differences between them, and
the opportunities and dangers of each. Even if you don't remember every little detail in the data section, at least remember where to look
when things go screwy.

Before continuing with further chapters, this may be a good time to do some experimenting with data: try changing the data arrays
and see what happens. Look at the different data interpretations, different casts, and maybe some intentional errors as well, just to see
what kinds of problems you might face at some point. It's better to make mistakes early, while programs are still short and simple and
you have less potential problems.

Or not, of course : P. Maybe it's worth waiting a little longer with that; or at least until we've covered basic input, which allows for much
more interesting things than just passive images.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 56/331

28-03-13 Tonc : GBA Programming in rot13

6. The GBA buttons (a.k.a. keys)

Introduction

o Key registers.

Beyond basic button states.
A simple key demo.

6.1. Introduction

As you no doubt already know, the GBA has one 4-way directional pad (D-pad); two control buttons (Select and Start); two regular fire
buttons (A and B) and two shoulder buttons (L and R), making a total of 10 keys. This is all you have in terms of user-GBA interaction,
and for most purposes it is plenty. The principles of key-handling are pretty simple: you have one register with the keystates and you see
which buttons are pressed based on whether its bits are set or cleared. I will cover this, but I'll also give some more advanced functions

that you will probably want to have at some point.

6.2. Keypad registers
6.2.1. The keypad register, REG_KEYINPUT

As said, the GBA has ten buttons, often referred to as keys. Their states can be found in the first 10 bits of the REG_KEYINPUT
register at location 0400: 0130h (a.k.a. REG_P1). The exact layout is shown below. I will refrain from giving a bit-by-bit description
because it should be quite obvious. The names of the defined constants I use are "KEY x", where x is the name of the button, in caps.

REG KEYINPUT (REG P1) @ 0400:0130h

FEDCBA|9]8 7 6 5 4 3 2 110

- L|R|down |up |left |right |start |select |B|A

Checking whether a key is pressed (down) or not would be obvious, if it weren't for one little detail: the bits are cleared when a key is
down. So the default state of REG_KEYINPUT is 0x03FF, and not 0. As such, checking if key is down goes like this:

#define KEY DOWN NOW (key) (~(REG_KEYINPUT) & key) J

In case your bit-operation knowledge is a bit hazy (get it cleared up. Fast!), this first inverts REG_KEYINPUT to a more intuitive (and
useful) “bit is set when down’ setting and then masks it with the key(s) you want to check. Note that key can in fact be a combination
of multiple keys and the result will be the combination of keys that are actually down.

Key states are inverted

The key bits are low-active, meaning that they are cleared when a button is pressed and set when they're not. This may be
a little counter-intuitive, but that's the way it is.

6.2.2. The key control register, REG_KEYCNT

Just about everything you will ever need in terms of key-handling can be done with REG_KEYINPUT. That said, you might like to know
there is another key-register for some extra control. The register in question is REG_KEYCNT, the key control register. This register is
used for keypad interrupts, much like REG DISPSTAT was used for video interrupts. The layout is the same as for REG_KEYINPUT,
except for the top two bits, see the table below. With REG_KEYCNT {14} you can enable the keypad interrupt. The conditions for
raising this interrupt are determined by REG_KEYCNT {0-9}, which say what keys to watch out for and REG_KEYCNT {15}, which
state the exact conditions. If this bit is clear, then any of the aforementioned keys will raise the interrupt; if set, then they must all be
down for the interrupt to be raised. I wouldn't be surprised if this is how you can reset most games by pressing Start+Select+B+A. Of
course, to make use of this register you need to know how to work with interrupts first.

REG KEYCNT (REG P1CNT) @ 0400:0132h

F|E|[DCBA|9|8]| 7 6 5 4 3 2 10
Op|I - L|R|down |up |left |right |start |select |B|A
bits name define description
0-9 keys KEY x keys to check for raising a key interrupt.
E | KCNT _IRQ Enables keypad interrupt
F Op KCNT _OR, Boolean operator used for determining whether to raise a key- interrupt or not. If clear, it

KCNT_AND uses an OR (raise if any of the keys of bits 0-9 are down); if set, it uses an AND (raise if

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 57/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-regs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-adv-keys
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm

28-03-13 Tonc : GBA Programming in rot13
all of those keys are down).

6.3. Beyond basic button states

While checking for the keystate with KEY DOWN_ NOW () is nice and simple, there are better and/or more preferable methods of key-
state handling. I will discuss two (or three) of them here. First, synchronous keystates. This is just a fancy way of reading the key-state
at a given point and using that variable, instead of repeated reads of REG_KEYINPUT when you process input. An outshoot of this is
transitional states, where you track not only the current state, but also the previous one. This lets you test for changes in keystates,
rather than just the keystates themselves.. Lastly, tribools: three-state variables (in this cases —1, 0 and +1) that can be used to simplify
direction processing.

6.3.1. Synchronous and transitional key states

The use of KEY DOWN NOW () is a form of asynchronous key handling: you check the state at the time the code needs it. While it
works, it's not always the best approach. Firstly, it is less efficient in terms of code because the register is loaded and read every time it
is necessary (it's volatile, remember?). A secondary concern is that a simultaneous multi-button tap may not be registered as such
because the code reading the button states are a little apart.

But those are just minor concerns; the main issue is that there's just little you can really do with them. You can get the current state,
but that's it. As a simple example of why this is insufficient for games, consider (un)pausing a game. This is usually done by pressing
Start, and then Start again for unpausing. That's fine until you consider that the game runs faster than you can react (this is a basic fact
of life; the only reason you can win games is because the game lets you. Deal), so the Start button will be down for multiple frames.
With KEY DOWN NOW (), the game will pause and unpause during this time; the state of the game when you finally release the button
is essentially random. Needless to say, this is a Bad Thing™.

Enter synchronous states. Simply read the state once, at the beginning of the frame for example, and use that as ‘the’ state for the
whole frame. That takes care of the excess readings of REG_KEYINPUT, and potentially missed simultaneity. For tracking state
changes, we also save the state of the previous frame. So at the very least, we need two variables and a function that updates them, and
for good measure, some functions that check the states. Because these will be quite small, it makes sense to inline them as well.

// === (tonc_core.c) ====================—====————mm— e
// Globals to hold the key state
ulé key curr=0, key prev=0;

// === (tonc_input.h) ===
extern ul6 key curr, key prev;
#define KEY A 0x0001
#define KEY B 0x0002
#define KEY SELECT 0x0004
#define KEY START 0x0008
#define KEY RIGHT 0x0010
#define KEY LEFT 0x0020
#define KEY UP 0x0040
#define KEY DOWN 0x0080
#define KEY R 0x0100
#define KEY L 0x0200
#define KEY MASK 0x03FF

// Polling function
INLINE void key poll()
{
__key prev= _ key curr;
~_key curr= ~REG KEYINPUT & KEY MASK;
}

// Basic state checks

INLINE u32 key curr state() { return key curr; }
INLINE u32 key prev state() { return _ key prev; }
INLINE u32 key is down(u32 key) { return key curr & key; }
INLINE u32 key is up(u32 key) { return ~ key curr & key; }
INLINE u32 key was_down (u32 key) { return _ key prev & key; }
INLINE u32 key was up(u32 key) { return ~ key prev & key; }

The key states are storedin _key currand key prev. The function that updates themis key poll (). Note that this
function already inverts REG_ KEYINPUT, so that the variables are active high, which makes later operations more intuitive. For
example, to test whether A is currently down (pressed), just mask key curr with KEY A, the bit for A. This is what

key is down () does. While KEY DOWN NOW () gives (almost) the same answer, I would still recommend using

key is down () instead.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 58/331

28-03-13 Tonc : GBA Programming in rot13

Invert REG_KEYINPUT reads as soon as possible

The things that you might check the keystates for are simply easier in active-high settings. Therefore, it is a good idea to
make the keystate variables work that way.

6.3.2. Transitional states

Back to the pause/unpause issue. The nasty behaviour KEY DOWN NOW () causes is known as key bounce. This is because the macro
only checks the current state. What you need for proper (un)pausing is something that checks whether a key is going down, rather than
just down: you need to check the transition. That's where the previous state comes in. When a key is hit, i.e., the moment of it going
down, it will be pressed in the current state, but not the one before. In other words, the keys that are ‘hit” are down currently, and not
before: key curr&~ key prev. After that, checking for a particular key can be achieved with a simple mask as usual. This is
done by key hit ().

That's really all there is to it, and you can create similar functions to check for releases (before AND NOT now), if it is held (before
AND now), et cetera. Again, it all seems so simple because the states were already inverted; when I first made these functions, I had a
terrible time figuring out what the right bit-ops were because the active-low logic was throwing me off. Well okay, not really but it
would have been easier if I had them inverted from the start.

// Transitional state checks.

// Key is changing state.
INLINE u32 key transit(u32 key)
{ return (_ key curr ©~ key prev) & key; }

// Key is held (down now and before).
INLINE u32 key held(u32 key)
{ return (key curr & _ key prev) & key; }

// Key is being hit (down now, but not before).
INLINE u32 key hit(u32 key)
{ return (_ key curr &~ _ key prev) & key; }

Key is being released (up now but down before)
INLINE u32 key released(u32 key)
{ return (~_ key curr & _ key prev) & key; }

6.3.3. Key tribool states
This is a little technique taken from the PA_Lib wiki. It isn't so much about keys per se, but a shorthand in how you can use the
functions, and you will have to make up for yourself whether what's discussed in this subsection is right for you.

Imagine you have a game/demo/whatever in which you can move stuff around. To make a character move left and right, for
example, you might do use something like this.

// variable x, speed dx
if (key is down (KEY RIGHT))

x += dx;
else if (key is down (KEY LEFT))
x -= dx;

Thing moves right, x increases; thing moves left, x decreases, simple enough. Works fine too. However, and this may just be my ifphobia
acting up, it's not very pretty code. So let's see if we can find something smoother.

Take a look at what the code is actually doing. Depending on two choices, the variable is either increased (+), decreased (—), or
unchanged (0). That's a pretty good definition of a #ribool, a variable with three possible states, in this case +1, 0 and —1. What I'm after
is something that lets you use these states to do the following.

x += DX*key tri horz(); J

I suppose I could just wrap the i fs in this function, but I prefer to do it via bit operations. All I need to do for this is shift the bits for
specific keys down, mask that with one, and subtract the results.

// === (tonc_core.h) ==
// tribool: 1 if {plus} on, -1 if {minus} on, 0 if {plus}=={minus}
INLINE int bit tribool (u32 x, int plus, int minus)

{ return ((x>>plus)&l) - ((x>>minus)&l); }

// === (tonc_ input.h) ===
enum eKeyIndex

{

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 59/331

http://www.palib.info/wiki/doku.php?id=day4

28-03-13 Tonc : GBA Programming in rot13

KI A=0, KI B, KI SELECT, KI_ START,
KI RIGHT, KI LEFT, KI UP, KI DOWN,
KI R, KI L, KI MAX

}i

// —--- TRISTATES ---

INLINE int key tri horz() // right/left : +/-
{ return bit tribool (key curr, KI RIGHT, KI LEFT); }

INLINE int key tri vert() // down/up : +/-

{ return bit tribool(key curr, KI DOWN, KI UP); }
INLINE int key tri shoulder () // R/L : +/-

{ return bit tribool(key curr, KI R, KI L); }
INLINE int key tri fire() // B/A -/+

{ return bit tribool(key curr, KI A, KI B); }

The mline function bit tribool () creates a tribool value from any two bits in a number (register or otherwise). The rest of the

functions listed here use the current keystate and the key-bits to create tribools for horizontal, vertical, shoulder and fire buttons; others

can be creates with relative ease. These functions make the code look cleaner and are faster to boot. You will be seeing them quite

often.

While the functions mentioned above only use key curr, it is easy to write code that uses other key-state types. For example,

a right-left key hit variant might look something like this:

// increase/decrease x on a right/left hit
x += DX*bit tribool(key hit(-1), KI RIGHT, KI LEFT);

It'sjustacalltobit tribool () withusing key hit () insteadof key curr. Incase you're wondering what the “—1” is

doing there, I just need it to get the full hit state. Remember that —1 is OxFFFFFFFF in hex, in other words a full mask, which will be

optimized out of the final code. You will see this use of tribools a couple of times as well.

6.4. A simple key demo

I have the key demo demo illustrates how these key functions can be used. It shows a mode 4 picture of a
GBA (a 240x160 8bit bitmap); the colors change according to the button presses. The normal state is grey;
when you press the key, it turns red; when you release i, it goes yellow; and as long as it's held it's green. Fig

6.1 shows this for the L and B buttons. Here's the code that does the real work:

#include <string.h>

#include "toolbox.h"
#include "input.h"

#include "gba pic.h"

#define BTN PAL ID 5
#define CLR UP RGB15(27,27,29)

int main ()

{
int 1ii;
u32 btn;
COLOR clr;
int frame=0;

memcpy (vid mem, gba picBitmap, gba picBitmapLen);
memcpy (pal bg mem, gba picPal, gba picPallLen);

REG_DISPCNT= DCNT MODE4 | DCNT BG2;

while (1)
{

vid vsync();

// slowing down polling to make the changes visible

if ((frame & 7) == 0)
key_poll();

// check state of each button

for (ii=0; 1i<KI MAX; ii++)

{

clr=0;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

Fig 6.1: key _demo
screenshot, with L and B
held.

60/331

28-03-13 Tonc : GBA Programming in rot13
btn= 1<<ii;
if (key hit (btn))
clr= CLR_RED;
else if (key released(btn))
clr= CLR_YELLOW;
else if (key held(btn))
clr= CLR LIME;
else
clr= CLR UP;
pal bg mem[BTN PAL ID+ii]= clr;
}

frame++;

return 0;

}

BTN PAL ID is the starting index of the palette-part used for the buttons and CLR UP is a shade of grey; the rest of the colors should
be obvious. To make sure that you can actually see the changes in button colors I'm only polling the keys once every 8 frames. If I didn't
do that, you'll hardly ever see a red or yellow button. (By the way, I don't actually change the buttons' colors, but only the palette color
that that button's pixels use; palette animation is a Good Thing™).

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 61/331

28-03-13 Tonc : GBA Programming in rot13

7. Sprite and background overview

e Sprites and backgrounds introduction.
e Sprite and background control.

o Sprite and background mapping.

o Sprite and background image data.

¢ Summary.
e What's in a name?

7.1. Sprites and backgrounds introduction

Although you can make games based purely on the bitmap modes, you'll find very few that do. The simple reason for this is that all
graphics would be rendered by software. No matter how good your code is, that's always going to be a slow process. Now, I'm not
saying it can't be done: there are several FPSs on the GBA (Wolfenstein and Doom for example). I am saying that unless you're willing
to optimize the crap out of your code, you'll have a hard time doing it.

The vast majority uses the GBA's hardware graphics, which come in the forms of sprites and tiled backgrounds (simply
“background” or “bg” for short). As I said in the video introduction, a tiled background is composed of a matrix of tiles (hence the name)
and each tile contains an index to an 8x8 pixel bitmap known as a tile. So what ends up on screen is a matrix of tiles. There are four of
these backgrounds with sizes between 128x128 pixels (32x32 tiles) to 1024x1024 pixels (128x128 tiles). Sprites are smaller objects
between 8x8 to 64x64 pixels in size. There are 128 of them and you can move them independently of each other. Like backgrounds,
sprites are built out of tiles.

The hardware takes care of several other aspects of rendering besides mere raster blasting. For one thing, it uses color keying to
exclude some pixels from showing up (i.e., these are transparent). Basically, if the tile's pixel has a value of zero it is transparent.
Furthermore, the hardware takes care of a number of other effects like flipping, alpha-blending and affine transformations like rotation
and scaling.

The trick is setting up the process. There are three basic steps to be aware of: control, mapping and image data. The boundaries

of these steps are a bit vague, but it helps to see it in this manner since it allows you to see sprites and backgrounds as two sides of the
same coin. And unification is a Good Thing®. There are still differences, of course, but only in the details.

This page gives a broad overview of what I will talk about in the next couple of pages. Don't worry if you don't understand right away,
that's not really the point right now. Just let it seep into your brain, read the other pages and then you'll see what I'm on about here.

7.2. Sprite and background control

The first step of rendering is control. Control covers things that act on the sprites or backgrounds as a whole, like activation of the things
themselves, whether to use 16 or 256 color tiles, and effects like alpha-blending and transformations. First up is whether or not you want
to use the things in the first place. This is done by setting the right bits in the display control register REG_DISPCNT. Once you've done
that there are further control registers for backgrounds: the REG_BGxCNT registers (0400:0008h-0400: 000Fh). For sprites
there's the Object Attribute Memory, or OAM, which can be found at 0700 : 0000h. Each of the 128 sprites has three so-called
attributes (hence OAM) which covers both the control and mapping aspects of the sprites.

7.3. Sprite and background mapping

There's a lot of grey area between control and mapping, but here goes. Mapping concerns everything about which tiles to use and where
they go. As said, the screen appearance of both sprites and backgrounds are constructed of tiles, laid out side by side. You have to tell
the GBA which tiles to blit to what position. Fig 7.1a-c (below) illustrates this. In fig 7.1b you see the tiles. Note that both sprites and
backgrounds have their own set of tiles.

In fig 1c you see how these tiles are used. The background uses a tile-map, which works just like an ordinary paletted bitmap
except that it's a matrix of screenblock entries (with tile-indices) instead of pixels (containing color-indices). Excuse me, a what?!?
Screenblock entry. Yes, I know the name is a bit silly. The thing is that you need keep a clear distinction between the entries in the map
(the screenblock entries, SE for short) and the image-data (the actual tiles). Unfortunately, the term “tile” is often used for both. I'll stick
to tiles for the actual graphical information, and since the tile-map is stored in things called screenblocks, screenblock entries or SE for
the map data. Anyway, each SE has its own tile-index. It also contains bits for horizontal and vertical flipping and, if it's a 16-color
background, an index for the palbank as well. In fig 7.1c, you only see the tile-index, though.

For sprites, it's s a bit different, but the basic steps remain. You give one tile-index for the whole sprite; the GBA then figures out the
other tiles to use by looking at the shape and size of the sprite and the sprite mapping-mode. I'll explain what this means later; suffice
to say that the mapping mode is either 1D or 2D, depending on REG_DISPCNT {6 }. In this case, I've used 1D mapping, which states
that the tiles that a sprite should use are consecutive. Like backgrounds, there's additional flipping flags and palette-info for 16-color
sprites. Unlike backgrounds, these work on the whole sprite, not just on one tile. Also, the component tiles of sprites are always
adjoining, so you can see a sprite as a miniature tiled-background with some imagination.

What belongs to the mapping step as well is the affine transformation matrix, if any. With this 2x2 matrix you can rotate, scale or

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 62/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-ctrl
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-map
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-img
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-summary
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-name
file:///H:/dev/gba/proj/tonc/bak/video.htm#sec-vid-types
file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/video.htm#tbl-reg-dispcnt
file:///H:/dev/gba/proj/tonc/bak/regobj.htm#sec-oam
file:///H:/dev/gba/proj/tonc/bak/affine.htm

28-03-13 Tonc : GBA Programming in rot13
shear sprites or backgrounds. There seems to be a lot of confusion about how this works so I've written a detailed, mathematical
description on how this thing works. Bottom line: the matrix maps from screen space to texture-space, and nof the other way round.
Though all the reference documents do state this in a roundabout way, almost every rotation-scale matrix I've seen so far is incorrect. If
your code is based on PERN's, chances are yours is too.

I:-| a. b a b

Fig 7.1a: 2 sprites on a background.

L Yy & Yy 5 4y £ Y 5 Y §
c d ¢ d ¢ d ¢ d ¢ d

HE=E EEEE et e R g e e e R e
........ Fig 7.1c: tile usage by bgs and sprites. One tile per SE for bgs, and the top-left

i tile for sprites. Default tiles (with index 0 are omitted for clarity's sake.
| gFs] WET 1R
AN

Fig 7.1b: background (above) and sprite
(below) tiles.

7.4. Sprite and background image data
Image data is what the GBA actually uses to produce an image. This means two things: tiles and palettes.

7.4.1. Tiles

Sprites and backgrounds are composed of a matrix of smaller bitmaps called #iles. Your basic tile is an 8x8 bitmap. Tiles come in 4bpp
(16 colors / 16 palettes) and 8bpp (256 colors / 1 palette) variants. In analogy to floating point numbers, I refer to these as s-tiles (single-
size tile) and d-tiles (double-size tiles). An s-tile is 32 (20h) bytes long, a d-tile 64 (40h) bytes. The default type of tile is the 4bpp variant
(the s-tile). If I talk about tiles without mentioning which type, it either doesn't matter or it's an s-tile. Just pay attention to the context.

There is sometimes a misunderstanding about what working in tiles really means. In tiled modes, VRAM is not a big bitmap out of
which tiles are selected, but a collection of 8x8 pixel bitmaps (i.e., the tiles). It is important that you understand the differences between
these two methods! Consider an 8x8 rectangle in a big bitmap, and an 8x8 tile. In the big bigmap, the data after the first 8 pixels contain
the next 8 pixels of the same scanline; the next line of the ‘tile’ can be found further on. In tiled modes, the next scanline of the tile
immediately follows the current line.

Basically, VRAM works as an 8x/N-8 bitmap in the tiled modes. Because such a small width is impractical to work with, they're
usually presented as a wider bitmap anyway. An example is the VBA tile viewer, which displays char blocks as a 256x256 bitmap; I do
something similar in fig 7.2a. It is important to remember that these do not accurately mimic the contents of VRAM; to reproduce the
actual content of VRAM you'd need something like fig 7.2b, but, of course, no-one is insane enough to edit bitmaps in that manner. In all
likelihood, you need a tool that can break up a bitmap into 8x8 chunks. Or restructure it to a bitmap with a width of 8 pixels, which in
essence is the same thing.

As with all bitmaps, it is the programmer's responsibility (that means you!) that the bit-depth of the tiles that sprites and backgrounds
correspond to the bit-depth of the data in VRAM. If this is out of sync, something like fig 7.2a may appear as fig 7.2c. Something like
this is likely to happen sooner or later, because all graphics need to be converted outside of the system before use; one misplaced
conversion option is all it takes.

1]z =

Fig 7.2a: 8bpp tiles. Fig 7.2b: 8bpp tiles as bitmap.

Fig 7.2¢: the data of fig 7.2a, interpreted as 4bpp data. If you see something
like this (and you will), you now know why.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 63/331

28-03-13 Tonc : GBA Programming in rot13

{ N
Tiled graphics considerations

Remember and understand the following points:

1. The data of each tile are stored sequentially, with the next row of 8 pixels immediately following the previous row.
VRAM is basically a big bitmap 8 pixels wide. Graphics converters should be able to convert bigger bitmaps into
this format.

2. As always, watch your bitdepth.

Tip for graphics converters
If you want to make your own conversion tools, here's a little tip that'll help you with tiles. Work in stages; do no¢ go directly
from a normal, linear bitmap to writing the data-file. Create a tiling function that takes a bitmap and arranges the tiles into a
bitmap 1 tile wide and H tiles high. This can then be exported normally. If you allow for a variable tile-width (not hard-coding
the 8-pixel width), you can use it for other purposes as well. For example, to create 16x16 sprites, first arrange with width=16,
then with width=8.

\\

7.4.2. Tile blocks (aka charblocks)

All the tiles are stored in charblocks. As much as I'd like them to be called tile-blocks because that's what they're blocks of, tradition
has it that tiles are characters (not to be confused with the programming type of characters: an 8bit integer) and so the critters are called
charblock. Each charblock is 16kb (4000h bytes) long, so there's room for 512 (4000h/20h) s-tiles or 256 (4000h/40h) d-tiles. You can
also consider charblocks to be matrices of tiles; 32x16 for s-tiles, 16x16 (or 32x8) for d-tiles. The whole 96kb of VRAM can be seen as
6 charblocks.

As said, there are 6 tile-blocks, that is 4 for backgrounds (0-3) and 2 for sprites (4-5). For tiled backgrounds, tile-counting starts at a
given character base block (block for the character base, CBB for short), which are indicated by REG_BGxCNT {2-3}. Sprite tile-
indexing always starts at the lower sprite block (block 4, starting at 0601 : 0000h).

It'd be nice if tile-indexing followed the same scheme for backgrounds and sprites, but it doesn't. For sprites, numbering always
follows s-tiles (20h offsets) even for d-tiles, but backgrounds stick to their indicated tile-size: 20h offsets in 4bpp mode, 40h offsets for
8bpp mode.

Bg vs sprite tile indexing
Sprites always have 32 bytes between tile indices, bg tile-indexing uses 32 or 64 byte offsets, depending on their set bitdepth.

Now, both regular backgrounds and sprites have 10 bits for tile indices. That means 1024 allowed indices. Since each charblock contains
512 s-tiles, you can access not only the base block, but also the one after that. And if your background is using d-tiles, you can actually
access a total of four blocks! Now, since tiled backgrounds can start counting at any of the four background charblocks, you might be
tempted to try to use the sprite charblocks (blocks 4 and 5) as well. On the emulators I've tested, this does indeed work. On a real GBA,
however, it does not. This is one of the reasons why you need to test on real hardware. For more on this subject see the background tile
subtleties and the cbb _demo.

Another thing you need to know about available charblocks is that in one of the bitmap modes, the bitmaps extend into the lower
sprite block. For that reason, you can only use the higher sprite block (containing tiles 512 to 1023) in this case.

Thanks to the wonderful concept of t ypedefs, you can define types for tiles and charblocks so that you can quickly come up with
the addresses of tiles by simple array-accesses. An alternative to this is using macros or inline functions to calculate the right addresses.
In the end it hardly matters which method you choose, though. Of course, the typedef method allows the use of the sizeof operator,
which can be quite handy when you need to copy a certain amount of tile. Also, struct-copies are faster than simple loops, and require
less C-code too.

// tile 8x8@4bpp: 32bytes; 8 ints

typedef struct { u32 datal[8]; } TILE, TILE4;
// d-tile: double-sized tile (8bpp)

typedef struct { u32 datal[l6]; } TILES;

// tile block: 32x16 tiles, 16x16 d-tiles
typedef TILE CHARBLOCKI[512];

typedef TILE8 CHARBLOCKS8[256];

#define tile mem ((CHARBLOCK*) 0x06000000)
#define tile8 mem ((CHARBLOCK8%*)0x06000000)

//In code somewhere
TILE *ptr= &tile mem([4][12]; // block 4 (== lower object block), tile 12

// Copy a tile from data to sprite-mem, tile 12
tile mem[4][12] = *(TILE*)spriteData;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 64/331

file:///H:/dev/gba/proj/tonc/bak/regbg.htm#ssec-map-subtle
file:///H:/dev/gba/proj/tonc/bak/regbg.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm

28-03-13
7.4.3. Palettes and tile colors

Tonc : GBA Programming in rot13

Sprites and backgrounds have separate palettes. The background palette goes first at 0500 : 000 0h, immediately followed by the sprite

palette (0500 : 0200h). Both palettes contain 256 entries of 15bit colors.

In 8-bit color mode, the pixel value in the tiles is palette-index for that pixel. In 4-bit color mode, the pixel value contains the lower
nybble of the palette index; the high nybble is the palbank index, which can be found in either the sprite's attributes, or the upper nybble
of the tiles. If the pixel-value is 0, then that pixel won't be rendered (i.e., will be transparent).

Because of 16-color mode and the transparency issue, it is essential that your bitmap editor leaves the palette intact. I know from
personal experience that MS-Paint and the Visual C bitmap editor don't, so you might want to use something else. Favorites among other

GBA developers are Graphics Gale and GIMP. Of course, since I have my my own bitmap editor, I prefer to use that.

7.5. Summary

This is a short list of various attributes of sprites and backgrounds. It's alright if you don't understand it right away; I'll explain in more

detail in the following pages.

Tile memory offsets

4bpp: start= base +
id*32
8bpp: start= base +
id*64

Subject Backgrounds Sprites
Number 4 (2 affine) 128 (32 affine)
. reg: 512x512
Max size aff: 1024x1024 64x64
Control REG_BGXCNT OAM
Base tile block 0-3 4
. "o reg: 0-1023 modes 0-2: 0-1023
A le til
vailable tles ids aff: 0-255 modes 3-5: 512-1023
Per tile size:

Always per 4bpp tile size:
start= base + id*32

reg: the full map is

If a sprite is m X n tiles in size:

divided into map-blocks |1D mapping: the m*n successive tiles
of 32x32 tegels. are used, starting at id

Mapping (banked map) 2D mapping: tile-blocks are 32x32
aff: one matrix of tegels, |matrices; the used tiles are the n
just like a normal bitmap |columns of the m rows of the matrix,
(flat map) starting at id.

. Each tile can be flipped |
Flipping individually Flips the whole sprite
Palette 0500:0000h 0500:0200h

7.6. What's in a name?

Well, since you are a programmer you should know the answer: plenty. If you disagree, visit the How To Write Unmaintanable Code
website and look at a number of their entries. My naming scheme is a bit different from that of the GBA community. I don't do this just
because I feel like being contrary. I find some of the conventional names are incomplete, misleading and ambiguous. I feel little need, at
least at present, to follow tradition simply because everyone else does. But you still need to know the traditional names, simply because
everyone else does. So here's a list of differences in names.

Tile-map entries

tiles (can you feel the confusion?)

Subject Traditional Tonc
Sprite and bg image data tiles tiles
screenblock

entries / SE

Matrix for transformations

Rot/Scale matrix

affine matrix / P

Sprite types

?7? vs Rot/Scale

regular vs affine

Background types

text vs rot

regular vs affine

(0601:0000)

Depository for sprite tiles

at 0700:0000)

OAMData (i.e., not the real OAM, which is

tile mem obj

OAM (0700:0000)

OAMData or OAMMem

oam_mem

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

65/331

http://www.tempest-j.com/gale/e/
http://www.gimp.org/
http://www.coranac.com/projects/#usenti
http://mindprod.com/jgloss/unmain.html

28-03-13 Tonc : GBA Programming in rot13

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 66/331

28-03-13 Tonc : GBA Programming in rot13

8. Regular sprites

¢ Sprite introduction.

o Sprite image data and mapping mode.
e Sprite control: Object Attribute Memory.

¢ Object attributes: OBJ ATTR.
¢ Bitfield macros (OAM or otherwise).

e Demo time.

8.1. Sprite introduction

According to Webster's, a sprite is “an imaginary being or spirit, as a fairy, elf, or goblin”. Right, glad that's cleared up.
For games, though, when referring to a sprite one is usually talking about “a [small] animated object that can move freely
from the background” (PERN). Primary examples are game characters, but status objects like scores and life bars are
often sprites as well. Fig 8.1 on the right shows a sprite of everybody's favorite vampire jellyfish, the metroid. I will use ¢
this sprite in the demo at the end of this chapter. Fig 8.1.
Metroid.
Sprites are a little trickier to use than a bitmap background, but not by much. You just have to pay a little more attention to | Rawr.
what you're doing. For starters, the graphics have to be grouped into 8x8 tiles; make sure your graphics converter can do

that. Aside from the obvious actions such as enabling sprites in the display control and loading up the graphics and palette, you also have
to set-up the attributes of the sprites correctly in OAM. Miss any of these steps and you'll see nothing. These things and more will be
covered in this chapter.

(N

Essential Sprite Steps
There are 3 things that you have to do right to get sprites to show up:

e Load the graphics and palette into object VRAM and palette.
e Set attributes in OAM to use the appropriate tiles and set the right size.
¢ Switch on objects in REG_DISPCNT, and set the mapping mode there too.

Sprites aren't objects

Or something like that. I know it sounds weird, but the more I think about it, the more I realize that sprites and objects
shouldn't be considered interchangeable. The term ‘object’, is a hardware feature, controlled in OAM. Right now, I think that
‘sprite’ is more of a conceptual term, and should be reserved for actors, like playing characters, monsters, bullets, etc. These
can in fact be built up of multiple hardware objects, or even use a background.

You could also thing of it in this way: objects are system entities linked to the console itself, and sprites are game entities,
living in the game world. The difference may be subtle, but an important one.

This is merely my opinion, and I can't say how right I am in this. Tonc still switches back and forth between the two words
because it's too late to do anything about it now. Mea culpa. I'd love to hear the opinion of others on the subject, so feel free
to speak your mind if you want.

\\

8.2. Sprite image data and mapping mode

Like I said in the sprite and background overview, sprites are composed of a number of 8x8 mini-bitmaps called tiles, which come in two
types: 4bpp (s-tiles, 32 bytes long) and 8bpp (d-tiles, 64 bytes long). The tiles available for sprites are stored in object VRAM, or
OVRAM for short. OVRAM is 32kb long and is mapped out by the last two charblocks of tile mem, which are also known as the
lower (block 4, starting at 0601 : 0000h) and higher (block 5, 0601 : 4000h) sprite blocks. Counting always starts at the lower sprite-
block and is always done in 32 byte offsets, meaning that sprite-tile #1 is at 0601 : 002 0h, no matter what the bitdepth is (see

table 8.1). With 4000h bytes per charblock, a quick calculation will show you that there are 512 tiles in each charblock, giving a total
range of 1024. However, since the bitmap modes extend into the lower sprite block, you can only use the higher sprite block (containing
tiles 512 to 1023) in modes 3-5.

It may seem that calculating those tile addresses can be annoying, and it would be if you had to do it manually. That's why I have
mapped the whole of VRAM with a charblock/tile matrix called tile mem, as discussed in the overview. Need tile #123 of OVRAM?
That'dbe tile mem([4] [123]. Need its address? Use the address operator: &tile mem[4] [123]. Quick, easy, safe.

Also, don't forget that the sprites have their own palette which starts at 0500 : 0200h (right after the background palette). If you
are certain you've loaded your tiles correctly but nothing shows up, it's possible you filled the wrong palette.

memory 0601:/0000(0020{0040{0060(0080]0100|...

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 67/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-tiles
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-oam
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-oam-entry
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-macro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-obj-demo
file:///H:/dev/gba/proj/tonc/bak/objbg.htm
file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm
file:///H:/dev/gba/proj/tonc/bak/objbg.htm#ssec-img-cbb

28-03-13 Tonc : GBA Programming in rot13
gbpptile J0 |1 |2 3 |4 |5
8bpp tile |0 2 4

Table 8.1: tile counting for sprites, always per 32 bytes. (You can
use odd numbers for 8bpp tiles, but be sure you fill the VRAM
accordingly .)

Bitmap modes and Object VRAM

Only the higher sprite block is available for sprites in modes 3-5. Indexing still starts at the lower block, though, so the tile
range is 512-1023.

8.2.1. The sprite mapping mode

Sprites aren't limited to a single tile. In fact, most sprites are larger (see Table 8.4 for a list of the available sizes for GBA sprites).
Larger sprites simply use multiple tiles, but this may present a problem. For backgrounds, you choose each tile explicitly with the tile-
map. In the case of sprites, you have two options: 1D and 2D mapping. The default is 2D mapping, and you can switch to 1D mapping
by setting REG_DISPCNT {6}.

How do these work? Consider the example sprite of fig 8.2a, showing the metroid of fig 8.1 divided into tiles. In 2D mapping, you're
interpreting the sprite charblocks as one big bitmap of 256x256 pixels and the sprite a rectangle out of that bitmap (still divided into tiles,
of course). In this case, each tile-row of a sprite is at a 32-tile offset. This is shown in fig8.2b. On the other hand, you can also consider
the charblocks as one big array of tiles, and the tiles of every sprite are consecutive. This is shown in fig 8.2c. The numbers in fig 8.2a
show the difference between 1D and 2D mapping. Assuming we start at tile 0, the red and cyan numbers follow 2d and 1d mapping,
respectively.

From a GBA-programming viewpoint, it is easier to use 1d mapping, as you don't have to worry about the offset of each tile-row
when storing sprites. However, actually creating sprites is easier in 2d-mode. I mean, do you really want to edit a bitmap tile by tile?
That's what I thought. Of course, it should be the exporting tool's job to convert your sprites from 2d to 1d mapping for you. You can do
this with Usenti too.

Fig 8.2b: how fig 8.2a should be stored in memory when
using 2d mapping.

S ENE TR i
Fig 8.2¢: how fig 8.2a should be stored in memory when
using 1d mapping.

Fig 8.2a: zoomed out version of Fig 8.1,
divided into tiles; colored numbers
indicate mapping mode: red for 2d, cyan
for 1d.

file://H:/devig ba/proj/tonc/bak/tonc-chrome.htm 68/331

http://www.coranac.com/projects/#usenti

28-03-13 Tonc : GBA Programming in rot13

{ N
Object data conversion via CLI
Some command-line interfaces can tile bitmaps for use with objects (and tilemaps). In some cases, they can also convert
images with multiple sprite-frames to a set of object tiles in 1D object mapping mode. If foo.bmp is a 64x16 bitmap with 4
16x16 objects, here's how you can convert it to 8x8 4bpp tiles using gfx2gba and grit (flags for 1D mapping are given in

brackets)
gfx2gba
4x 16x16Q@4 objects (C array; u8 foo Bitmap[], ul6 master Palette[]; foo.raw.c, master.pdl.c
gfx2gba -fsrc -cl6 -t8 [-T32] foo.bmp
grit
4x 16x16@4 objects (C array; u32 fooTiles[], ul6e fooPall[]; foo.c, foo.h)
grit foo.bmp -gB4 [-Mw 2 -Mh 2]

Two notes on the 1D mapping flags here. First, gfx2gba can only meta-tile (-T) square objects; for something like 16x8
objects you'd need to do the 1D mapping yourself. Second, grit's meta-tiling flags (-Mw and -Mh) can be anything, and use

tile units, not pixels.
\

4 N
Size units: tiles vs pixels

The default unit for bitmap dimensions is of course the pixel, but in tiled graphics it is sometimes more useful to use tiles as
the basic unit, i.e., the pixel size divided by 8. This is especially true for backgrounds. In most cases the context will suffice to
indicate which one is meant, but at times I will denote the units with a ‘p’ for pixels or ‘t’ for tiles. For example, a 64x64p
sprite is the same as a 8x8t sprite.

8.3. Sprite control: Object Attribute Memory

Much unlike in the bitmap modes, you don't have to draw the sprites yourself: the GBA has special hardware that does it for you. This
can get the sprites on screen faster than you could ever achieve programmatically. There are still limits, though: there is a limit to the
amount of sprite-pixels you can cram in one scanline. About 960, if the fora are anything to go by.

So you don't have to draw the sprites yourself; however, you do need to tell the GBA how you want them. This is what the Object
Attribute Memory —OAM for short— is for. This starts at address 0700: 0000h and is 1024 bytes long. You can find two types of
structures in OAM: the OBJ_ATTR struct for regular sprite attributes, and the OBJ_AFFINE struct containing the transformation
data. The definitions of these structures can be found below. Note that names may vary from site to site.

typedef struct tagOBJ ATTR
{

ul6e attr0;

ulé attrl;

ul6 attr2;

sle fill;
} ALIGN4 OBJ_ ATTR;

typedef struct OBJ AFFINE
{
ule £i110([3];
sl6 pa;
ulée £i111([3];
sl6 pb;
ule £i112[3];
sl6 pc;
ule £i113[3];
sl6 pd;
} ALIGN4 OBJ AFFINE;

There are a few interesting things about these structures. First, you see a lot of £i11er fields. Second, if you would take 4 OBJ ATTR
structures and lay them over one OBJ AFFINE structure, as done in table 2, you'd see that the fillers of one would exactly cover the
data of the other, and vice versa. This is no coincidence: OAM is in fact a weave of OBJ ATTRs and OBJ AFFINEs. Why would
Nintendo use a weave instead of simply having one section of attributes and one for transform data? That's a good question and
deserves a good answer. When I have one, I'll tell you (I'm guessing it's a data-alignment thing). Also, note that the elements of the
OBJ_AFFINE are signed shorts. I've gone through a world of hurt with the obj aff code because I used ul6 instead of s16. With
1024 bytes at our disposal, we have room for 128 OBJ ATTR structures and 32 OBJ AFFINESs. The rest of this file will explain
regular sprites that only use OBJ ATTR. I want to give the affine transformation matrix the full mathematical treatment it deserves and
will save affine sprites for later.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 69/331

file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/affobj.htm

28-03-13 Tonc : GBA Programming in rot13

mem (ul6) 0 3 |4 7 |8 b |c f
OBJ_ATTR |0 1 2 01 2 01 2 012
OBJ_AFFINE pa pb jole] pd
Table 8.2: memory interlace of OBJ ATTR and OBJ_AFFINE
structures.
' ~

Force alignment on OBJ_ATTRs

As of devkitARM r19, there are new rules on struct alignments, which means that structs may not always be word aligned,
and in the case of OBJ_ATTR structs (and others), means that struct-copies like the one in oam update () later on, will
not only be slow, they may actually break. For that reason, I will force word-alignment on many of my structs with
‘ALIGN4’, which is a macro for © attribute ((aligned(4)))’. For more on this, see the section on data

alignment.

\\

8.4. Object attributes: OBJ_ATTR

The basic control for every sprite is the OBJ ATTR structure. It consists of three 16-bit attributes for such qualities as size, shape,
position, base tile and more. Each of the three attributes is covered below.

8.4.1. Attribute 0

The first attribute controls a great deal, but the most important parts are for the y coordinate, and the shape of the sprite. Also important
are whether or not the sprite is transformable (an affine sprite), and whether the tiles are considered to have a bitdepth of 4 (16 colors,
16 sub-palettes) or 8 (256 colors / 1 palette).

OBJ ATTR.attr0

FE|D C |[BA|98|76543210

Sh |cM|Mos | GM | oM Y
bits name define description
0-7 Y ATTRO_Y# Y coordinate. Marks the top of the sprite.
89 OM ATTRO REG, (Affine) object mode. Use to hide the sprite or govern affine mode.
ATTRO_AFF, .
ATTRO_HIDE, ¢ 00. Normal rendering.

e 01. Sprite is an affine sprite, using affine matrix specified by
attrl{9-D}

¢ 10. Disables rendering (hides the sprite)

¢ 11. Affine sprite using double rendering area. See affine sprites for
more.

ATTRO_AFF _DBL.
ATTRO_MODE#

A-B GM ATTRO_BLEND, Gfx mode. Flags for special effects.
ATTRO_ WIN.

ATTRO GFX# ¢ 00. Normal rendering.

e 01. Enables alpha blending. Covered here.

¢ 10. Object is part of the object window. The sprite itself isn't rendered,
but serves as a mask for bgs and other sprites. (I think, haven't used it
yet)

¢ 11. Forbidden.

C Mos ATTRO MOSAIC Enables mosaic effect. Covered here.
D CM ATTRO _4BPP, Color mode. 16 colors (4bpp) if cleared; 256 colors (8bpp) if set.

ATTRO_8BPP

E-F Sh ATTRO_SQUARE, Sprite shape. This and the sprite's size (attr1 {E-F}) determines the sprite's
ATTRO WIDE, real size, see table 8.4.
ATTRO_TALL.

ATTRO SHAPE#

Two extra notes on attribute 0. First, at t rO contains the y coordinate; attr1 contains the x coordinate. For some reason I keep
messing these two up; if you find your sprite is moving left when it should be moving up, this may be why. Second, the affine and gfx
modes aren't always named as such. In particular, attr0 {9} is simply referred to as the double-size flag, even though it only works in
that capacity if bit 8 is set too. If it isn't, then it hides the sprite. I think that it's actually taken out of the object rendering stage entirely
leaving more time for the others, but I'm not 100% sure of that.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 70/331

file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-align
file:///H:/dev/gba/proj/tonc/bak/affobj.htm
file:///H:/dev/gba/proj/tonc/bak/gfx.htm#sec-blend
file:///H:/dev/gba/proj/tonc/bak/gfx.htm#sec-mos
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#tbl-obj-size

28-03-13 Tonc : GBA Programming in rot13

shapel\size| 00 01 10 11
00 8x8 |16x16|32x32|64x64
01 16x8|32x8 [32x16|64x32
10 8x16|8x32 |16x32|32x64

Table 8.4: GBA sprite sizes

8.4.2. Attribute 1

The primary parts of this attribute are the x coordinate and the size of the sprite. The role of bits 8 to 14 depend on whether or not this is
a affine sprite (determined by attr0{8}). If it is, these bits specify which of the 32 OBJ AFFINEs should be used. If not, they hold

flipping flags.

OBJ ATTR.attrl

FE|[D|C|[BAY9|87 6543210

Sz |VF |HF| - X
- AID -
bits name define description
0-8 X ATTRI X# X coordinate. Marks left of the sprite.

9-D AID ATTRI_AFF# Affine index. Specifies the OAM AFF ENTY this sprite uses. Valid only if the affine
flag (attr0{8}) is set.

C-D HF,VF ATTRI1_HFLIP, Horizontal/vertical flipping flags. Used only if the affine flag (attr0) is clear;
ATTRI1_VFLIP. otherwise they're part of the affine index.
ATTRI FLIP#

E-F Sz ATTRI_SIZE# Sprite size. Kinda. Together with the shape bits (att r0{E-F}) these determine the
sprite's real size, see table 8.4.

I'll say it here too: at trO contains y, attr1 contains x. Note that bits 12 and 13 have a double role as either flipping flags or affine
index. And if you are wondering if you can still flip affine sprites, the answer is yes: simply use negative scales in the matrix.

8.4.3. Attribute 2

This attribute tells the GBA which tiles to display and its background priority. If it's a 4bpp sprite, this is also the place to say what sub-
palette should be used.

OBJ ATTR.attr2

FEDC|BA|98 76543210

PB Pr TID
bits name description
09 TID ATTR2 ID# Base tile-index of sprite. Note that in bitmap modes this must be 512 or higher.
A-B Pr ATTR2 PRIO# Priority. Higher priorities are drawn first (and therefore can be covered by later

sprites and backgrounds). Sprites cover backgrounds of the same priority, and for
sprites of the same priority, the higher OBJ ATTRs are drawn first.

C-F PB ATTR2 PALBANK# Palette-bank to use when in 16-color mode. Has no effect if the color mode flag
(attr0{C}) is set.

8.4.4. Attribute 3

There is no attribute 3. Although the OBJ ATTR struct does have a fourth halfword, this is only a filler. The memory in that filler
actually belongs to the OBJ AFFINEs. Nobody is to mistreat att r3 in any way ... if there's any affine sprite active.

8.4.5. OAM double buffering
You could write all your sprite data directly to the OAM at 0700 : 0000h, but that might not always be the best move. If it's done
during VDraw there's the possibility of tearing. Even worse, you might change the sprite's tile-index in mid-render so that the top is in
one animation frame and the bottom is in another. Not a pretty sight. Actually, this isn't something to worry about because you can't
update OAM during VDraw; it's locked then. What's often done is creating a separate buffer of OAM entries (also known as the object
shadow) that can be modified at any time, and then copy that to the real OAM during VBlank. Here's my take on this.

OBJ ATTR obj buffer[128];
OBJ AFFINE *const obj aff buffer= (OBJ AFFINE*)obj buffer;

I'm using 128 now, but I suppose you could use a lower number if you don't use all the sprites. Anyway, now you have a double buffer
for both OBJ ATTR and OBJ AFFINE data, which is available at any given time. Just make sure you copy it to the rea/ OAM when
the time is right.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 71/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#tbl-obj-size

28-03-13 Tonc : GBA Programming in rot13
8.5. Bitfield macros (OAM or otherwise)

Setting and clearing individual bits is easy, but sometimes it's not too convenient to do it all yourself. This is especially true for field of bits
like positions or palette banks, which would involve long statements with masks and shifts if you want to do it nicely. To improve on this
a little bit, I have a number of macros that may shorted the amount of actual code. There are essentially three classes of macros here,
but before I go into that, I have to explain a little bit more about the hashed (foo‘#”) defines in the attribute lists above.

The hash means that for each of these, there will be three #defines with foo as their roots: foo MASK, foo SHIFT, and foo (n).
These give the bitmask, bitshift and a bitfield set macro for the corresponding type.

For example, the one attached to the tile index, ATTR2 ID#. The tile index field has 10 bits and starts at bit-0. The corresponding
defines therefore are:

// The 'ATTR2 ID#' from the attr2 list means these 3 #defines exist

#define ATTR2 ID MASK 0x03FF
#define ATTR2 ID SHIFT 0
#define ATTR2_ ID(n) ((n)<<ATTR2_ ID SHIFT)

Most GBA libraries out there have #defines like these, albeit with different names. The actual macro isn't 100% safe because it does no
range checking, but it's short and sweet. Now, as far as Tonc's text is concerned, every time you see the hash in the define list for a
register, it'll have these three #defines to go with that name.

I also have a second batch of macros you can use for setting and getting specific fields, which use the mask and shift names explained
above. I'll admit the macros look horrible, but I assure you they make sense and can come in handy.

// bit field set and get routines

#define BF PREP(x, name) (((x)<<name## SHIFT)& name## MASK)
#define BF GET(x, name) (((x) & name## MASK)>> name## SHIFT)
#define BF SET(y, X, name) (y = ((y)&~name## MASK) | BF_ PREP(x,name))

#define BF PREP2(x, name) ((
#define BF _GET2(y, name) ((
#define BF_SET2(y, x, name) (y

) & name## MASK)
) & name## MASK)
((y) &~name## MASK) | BF_PREP2(x, name))

[

Well, I did warn you. The ‘'name' argument here is the foo from before. The preprocessor concatenation operator is use to create the
full mask and shift names. Again using the tile-index as an example, these macros expand to the following:

// Create bitfield:

attr2 |= BF_PREP(id, ATTRO_SHAPE);
// becomes:
attr2 |= (id<<ATTR2_ID SHIFT) & ATTR2 ID MASK;

// Retrieve bitfield:

id= BF GET (attr2, ATTR2 ID);

// becomes:

id= (attr2 & ATTR2 ID MASK)>>ATTR2 ID SHIFT;

// Insert bitfield:

BF_SET(attrZ, id, ATTRZ_ID);

// becomes:

attr2= (attr&~ATTR2 ID MASK) | ((id<<ATTR2 ID SHIFT) & ATTR2 ID MASK);

BF_PREP () can be used to prepare a bitfield for later insertion or comparison. BE_GET () gets a bitfield from a value, and
BF_ SET () sets a bitfield in a variable, without disturbing the rest of the bits. This is basically how bitfields normally work, except that
true bitfields cannot be combined with OR and such.

The macros with a ‘2’ in their names work in a similar way, but do not apply shifts. These can be useful when you have already
shifted #defines like ATTRO WIDE, which can't use the other ones.

// Insert pre-shifted bitfield:
// BF_SET2(attr0, ATTRO_WIDE, ATTRO_SHAPE);
attr0= (attr0&~ATTRO SHAPE MASK) | (id & ATTRO SHAPE MASK);

Note that none of these three have anything GBA specific in them; they can be used on any platform.

Finally, what I call my build macros. These piece together the various bit-flags into a single number in an orderly fashion, similar to
HAM's tool macros. I haven't used them that often yet, and I'm not forcing you to, but on occasion they are useful to have around
especially near iitialization time.

// Attribute 0
#define ATTRO BUILD(y, shape, bpp, mode, mos, bld, win) \
(\

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 72/331

28-03-13 Tonc : GBA Programming in rot13

((y)&255) | (((mode)&3)<<8) | (((bld)&l)<<10) | (((win)e&l)<<1l) \
| (((mos)&l)<<12) | (((bpp)&8)<<10) | (((shape)&3)<<1l4) \
)

// Attribute 1, regular sprites
#define ATTR1 BUILD R(x, size, hflip, vflip) \
(((x)&511) | (((hflip)&l)<<12) | (((vflip)&l)<<13) | (((size)&3)<<14))

// Attribute 1, affine sprites
#define ATTR1 BUILD A(x, size, aff id) \
(((x)&511) | (((aff_id)&31)<<9) | (((size)&3)<<1l4))

Attribute 2
#define ATTR2 BUILD(id, pbank, prio) \
(((1d) &0x3FF) | (((pbank)&l5)<<12) | (((prio)&3)<<10))

Instead of doing ORring the bitflags together yourself, you can use these and perhaps save some typing. The order of arguments maybe
annoying to remember for some, and the amount of safety checking may be a bit excessive (gee, ya think?!?), but if the numbers you
give them are constants the operations are done at compile time so that's okay, and sometimes they really can be helpful. Or not : P.
Like I said, I'm not forcing you to use them; if you think they're wretched pieces of code (and I admit they are) and don't want to taint
your program with them, that's fine.

Note that with the exception of bpp, the arguments are all shifted by the macros, meaning that you should not use the #define flags
from the lists, just small values like you'd use if they were separate variables rather than bits in a variable.

8.6. Demo time

Now, to actually use the bloody things. The code below is part of the obj demo. It is the most complex I've shown yet, but if you take
it one step at a time you'll be fine. Essentially, this demo places the tiles of a boxed metroid in the VRAM allotted for objects and then
lets you screw around with various OBJ _ATTR bits like position and flipping flags. The controls are as follows:

D-pad Moves the sprite. Note that if you move far enough off-screen, it'll come up on the other side.
A,B Flips the sprite horizontally or vertically, respectively.
Select Make it glow. Well, makes it palette-swap, actually. Handy for damage-flashing.

Start Toggles between 1D and 2D mapping modes. Fig 8.2b and fig 8.2c should explain what happens. Since the sprite is in 1D mode,
there's really not much to see when you switch to 2D mapping, but I had a few buttons to spare, so I thought why not.

L,R Decreases or increase the starting tile, respectively. Again, I had a few keys to spare.

// Excerpt from toolbox.h

void oam init (OBJ ATTR *obj, uint count);
void oam_copy (OBJ_ATTR *dst, const OBJ ATTR *src, uint count);

INLINE OBJ ATTR *obj set attr (OBJ ATTR *obj, ul6t a0, ul6 al, ulé6 a2);
INLINE void obj set pos(OBJ ATTR *obj, int x, int y);

INLINE void obj hide (OBJ ATTR *oatr);

INLINE void obj unhide (OBJ ATTR *obj, ul6 mode);

// === INLINES ==

//! Set the attributes of an object.
INLINE OBJ ATTR *obj set attr (OBJ ATTR *obj, ul6t a0, ul6 al, ulé6 a2)
{

obj->attr0= al0; obj->attrl= al; obj->attr2= a2;

return obj;

}

//! Set the position of \a obj
INLINE void obj set pos(OBJ ATTR *obj, int x, int y)
{
BF SET (obj->attr0, y, ATTRO Y);
BF SET (obj->attrl, x, ATTR1l X);
}

//! Hide an object.
INLINE void obj hide (OBJ ATTR *obj)
{ BFisETZ(obj—>attrO, ATTROiHIDE, ATTROiMODE); }

//! Unhide an object.
INLINE void obj unhide (OBJ ATTR *obj, ul6 mode)
{ BF SET2 (obj->attr0, mode, ATTRO MODE); }

4

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 73/331

28-03-13 Tonc : GBA Programming in rot13

// toolbox.c

void oam init (OBJ ATTR *obj, uint count)
{

u32 nn= count;

u32 *dst= (u32*)obj;

// Hide each object

while (nn--)

{
*dst++= ATTROiHIDE;
*dst++= 0;

}

// init oam

ocam_copy (oam _mem, obj, count);

}

void oam copy(OBJ ATTR *dst, const OBJ ATTR *src, uint count)
{

// NOTE: while struct-copying is the Right Thing to do here,

// there's a strange bug in DKP that sometimes makes it not work
// If you see problems, Jjust use the word-copy version.
#if 1
while (count--)
*dst++ = *src++;
#else

u32 *dstw= (u32*)dst, *srcw= (u32*)src;
while (count--)

{

*dstw++ *srcwtt;
*dstw++ = *srcw++;
}
#endif

}

This is the basic utility code for the demo, and contains most of the things you'd actually like to have functions for. Note that the inline
functions make good use of the bitfield macros shown earlier; if I hadn't done that, the code would be a good deal longer.

Another point that I need to make is that if I'd put everything into toolbox . h, the file would be pretty big, around 700 lines or so.
And with future demos, it'd be a lot longer. With that in mind, I've started redistributing the contents a little: all the types go in types.h,
everything to do with the memory map goes into memmap . h, all the register defines go into memdef . h and the input inlines and
macros can be found in input .h. The rest is still in toolbox . h, but will find themselves redistributed in the end as well.

The two functions in toolbox. c need some more clarification as well I guess. In oam_init () I cast the objects to a word
pointer and use that for setting things; again, this is simply because it's a lot faster. Because it may be used to initialise something other
than the real OAM, I copy the initialized buffer to OAM just in case.

The other point concerns something of a very specific bug in the optimizer of the current compiler (DKP r19b). I expect this to be
fixed in a later addition and the basic version here should work, but just in case it isn't, set the #if expression to 0 if you see OAM get
corrupted. If you must know, the problem seems to be struct-copying of OBJ ATTRs in a for-loop. Yes, it's that specific. Even though
struct-copying is legal and fast if they're word aligned, it seems GCC gets confused with 8-byte blocks in loops and uses memcpy () for
each struct anyway, something that wouldn't work on OAM. Oh well.

#include <string.h>
#include "toolbox.h"
#include "metr.h"

OBJ ATTR obj buffer[128];
OBJ AFFINE *obj aff buffer= (OBJ AFFINE*)obj buffer;

void obj test()

{
int x= 96, y= 32;
u32 tid= 0, pb= 0; // (3) tile id, pal-bank
OBJ ATTR *metr= &obj buffer[0];

obj set attr(metr,
ATTRO_SQUARE, // Square, regular sprite

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 74/331

28-03-13 Tonc : GBA Programming in rot13

ATTR1 SIZE 64, // 64x64p,
ATTR2 PALBANK (pb) | tid); // palbank 0, tile 0

// (4) position sprite (redundant here; the real position
// is set further down
obj set pos(metr, x, y);

while (1)

{
vid vsync();
key_poll();

// (5) Do various interesting things
// move left/right

x += 2*key tri horz();

// move up/down

y += 2*key tri vert();

// increment/decrement starting tile with R/L
tid += bit tribool (key hit(-1), KI R, KI L);

// flip

if (key hit (KEY A)) // horizontally
metr->attrl ”~= ATTR1 HFLIP;

if (key hit (KEY B)) // vertically
metr->attrl "= ATTRl_VFLIP;

// make it glow (via palette swapping)
pb= key is down (KEY SELECT) ? 1 : O;

// toggle mapping mode
if (key hit (KEY START))
REG_DISPCNT “= DCNT OBJ_1D;

// Hey look, it's one of them build macros!
metr->attr2= ATTR2 BUILD(tid, pb, 0);
obj set pos(metr, x, y);

oam_ copy (oam mem, obj buffer, 1); // (6) Update OAM (only one now)

int main ()
{
// (1) Places the tiles of a 4bpp boxed metroid sprite
// into LOW obj memory (cbb == 4)
memcpy (&tile mem([4] [0], metr boxTiles, metr boxTilesLen);
memcpy (pal obj mem, metrPal, metrPalLen);

// (2) Initialize all sprites
ocam_init (obj buffer, 128);
REG_DISPCNT= DCNT OBJ | DCNT OBJ 1D;
obj test();

while (1) ;

return 0;

8.6.1. Setting up sprites

Before any sprites show up, there are three things you have to do, although not necessarily in this order. They are: copying sprite
graphics to VRAM, setting up OAM to use these graphics, and enabling sprites in the display control, REG_DISPCNT.

Display control

Starting with the last one, you enable sprites by setting bit 12 of REG_DISPCNT. Usually you'll also want to use 1D mapping, so set bit

6 as well. This is done at point (2) of the code.

Hiding all sprites
The other step performed here is a callto oam_init (). This isn't strictly necessary, but a good idea nonetheless. What

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

75/331

28-03-13 Tonc : GBA Programming in rot13

oam_init () does is hide all the sprites. Why is this a good idea? Well, because a fully zeroed out OAM does not mean the sprites
are invisible. If you check the attributes you'll see that this will mean that they're all 8x8 pixel sprites, using tile O for their graphics,
located at (0,0). If the first tile isn't empty, you'll start with 128 versions of that tile in the top-left corner, which looks rather strange. So,
make sure they're all invisible first. The demo also comes with obj hide () and obj unhide () functions, although they aren't
used here.

Loading sprite graphics
The first thing to do (point (1)) is to store the sprite graphics in object VRAM. As I've already said a few times now, these graphics
should be stored as 8x8 tiles, not as a flat bitmap. For example, my sprite here is 64x64p in size, so to store it I've had to convert this to
8x8 separate tiles first. If you do not do this, your sprites will look very strange indeed.

Exactly where you put these tiles is actually not all that relevant (apart from the obvious, like mapping mode, and tile alignment, of
course). Object VRAM works as a texture-pool and has nothing to do with the screen directly. You store the tiles that you want to be
available there, and it is by manipulating the OAM attributes that the system knows which tiles you want to use and where you want
them. There is no reason why sprite 0 couldn't start at tile 42, or why multiple sprites couldn't use the same tiles. This is also why
OAMData, which is sometimes used for object VRAM, is such a misnomer: object VRAM has nothing to do with OAM. Nothing! If
your headers use this name for 0601:0000, or even 0601 :4000, change it. Please. And be careful where you put things in the
bitmap modes, as you can't use tiles 0-512 there.

As 1 said, loading the sprites happens at point (1) in the code. If you paid attention to the overview, you'll remember that
tile mem([] [] is a two dimensional array, mapping charblocks and 4-bit tiles. You'll also remember that object VRAM is charblocks
4and5,s0 &tile mem([4] [0] points to the first tile in object VRAM. So I'm loading my boxed metroid into the first 64 tiles of
object VRAM.

I am also loading its palette into the sprite palette. That's sprite palette (0500 : 0200), not background palette. Load it to the wrong
place and you won't see anything.

{ N
Finding tile addresses

Use tile mem or a macro to find the addresses to copy your tiles too, it's much more readable and maintainable than

calculating them manually. You should not have any hard-coded VRAM addresses in your code, ever.
o

p
OAMData
Headers from other sites sometimes #define ‘OAMData’ as part of VRAM. It is not. Rename it.

\\

Setting attributes
Lastly, I'll set up one OBJ_ATTR so that it actually uses the metroid tiles. This is done at point (3), using the obj set attr ()
inline function. All it does is three assignments to the attributes of the first argument, by the way, nothing spectacular. This just saves
typing doing it this way rather than three separate statements. With this particular call, I tell this sprite that it's a 64x64 pixel (8x8 tile)
sprite, and its starting tile is tid, which is 0. This means that it'll use the 64 tiles, starting at tile 0.

Note that the sprite I'm setting is actually part of the OAM buffer, not the real OAM. This means that even after I set the attributes
there, nothing happens yet. To finalize the sprite I need to update the rea/ OAM, which is done by a callto cam copy () (point (6)).
This carries two arguments: an index and a count denoting how many sprites to update, and which sprite to start at. I also have
obJj copy (), which only copies attributes 0, 1 and 2, but not 3! This is necessary when you start using affine sprites, which may be
copied incorrectly otherwise.

The previous steps are enough to get the metroid sprite on-screen. The story doesn't end there, of course. Here are a few things that
you can do with sprites.

8.6.2. Sprite positioning
The first order of business is usually to place it at some position on screen, or even off screen. To do this you have to update the bits for
the y and x positions in attributes 0 and 1, respectively. One mistake I often seem to make is fill x into attr0 and y into attrl, when it
should be the other way around. If your sprite moves strangely, this might be why.

Note that these coordinates mark the top-left of the sprite. Also, the number of bits for the coordinates means we have 512 possible
x-values and 256 y-values. The coordinate ranges wrap around, so you could also say that these are signed integers, with the ranges x €
[-256, 255] and y € [-128, 127]. Yes, that would make the highest y-value smaller than the height of the screen, but thanks to the
wrapping it all works out. Well, almost. Anyway, thanks to the 2s-complement nature of integers, simply masking the x and y values by
0x01FF and 0x00FF, respectively, will give proper 9 and 8 bit signed values. You can do this manually, or use the obj set pos ()
function used at point (4).

Y ou might see code that clears the lower bits of the attributes and then directly ORRs in x and y. This is not a good idea, because
negative values are actually represented by upper half of a datatype's range. —1 for example is all bits set (OxFFFFFFFF). Without
masking off the higher bits, negative values would overwrite the rest of the attribute bits, which would be bad.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 76/331

file:///H:/dev/gba/proj/tonc/bak/objbg.htm#ssec-img-cbb
file:///H:/dev/gba/proj/tonc/bak/affobj.htm#ssec-wrap

28-03-13 Tonc : GBA Programming in rot13
{ N

Mask your coordinates

If you're making a sprite positioning function or use someone else's make sure you mask off the bits in x and y before you
insert them into the attributes. If not, negative values will overwrite the whole attribute.

This is bad

obj->attr0= (obj->attr0 &~ OxO00FF) | (y);
This is good:

obj->attr0= (obj->attr0 &~ O0xO00FF) | (y & Ox00FF);

\

Position variables and using tribools
Instead of using an OBJ_ATTR to store the sprite's position, it is better to keep them in separate variables, in this case x and y. This
avoids having to mask coordinate fields all the time, but more importantly, the positions can extend beyond the size of the screen. As
most game worlds aren't restricted to a single screen, this is an important point. Then, when the time is right, these are fed to
oam_set pos () toupdate the sprite.

Also, note the use of my tribool key functions to update the positions. Input processing often follows a pattern of “key X pressed:
increment, key opposite of Y pressed, decrement” The tribool functions bring that kind of code down from four lines to one, which
makes the code easier to read (once you get over the initial hurdle). For example, key tri horz () returns +1 if ‘right’ is pressed,
—1 if ‘left’ is pressed, and 0 if neither or both are pressed. key tri vert () does something similar for vertical movement and the
line withbit tribool () function makes a variant using key hit () and R and L to increment or decrement the tile index.

8.6.3. Other attrs

Sprite coordinates are only two of the many sprite attributes that can be controlled with via specific OAM bits, even while the sprite is
already active. Some of the obvious ones are flipping or mirroring it, which can be done using A and B here. Or, if you're using a 4bpp
sprite, you can swap palettes so that all the colors change. Pressing Select in the demo switches from palette bank 0 to 1, which happens
to have a grey to white gradient. Toggling between these palette banks quickly can make the sprite flash. You could also change the
priorities in which the sprites are rendered, or toggle alpha blending, although I haven't done those things here.

Now, these things don't really change the overall image of the sprite. What you should realize though is that it is possible to do that.
As I've already noted before, it's not true that the contents of VRAM are the sprite, rather that a sprite uses parts of VRAM to show
something, anything, on screen. You could, for example, change the starting tile t 1d that the sprite uses, which in this case can be done
using L and R. Not only is this legal, it's the standard practice for animation (although you can also overwrite VRAM for that — resetting
the tile index is just faster). Understanding this is one of the points of moving from a user to a developer perspective: the user only sees
the surface; the coder looks below it and sees what's really going on.

And that's it for regular sprites. Using multiple sprites isn't much different — seen one, seen them all. Basic animation shouldn't be
problematic either, until you run out of VRAM to put them in. There are still a few regions left untouched like blending and mosaic, but
I'll deal with those later.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 771331

file:///H:/dev/gba/proj/tonc/bak/keys.htm#ssec-adv-tri
file:///H:/dev/gba/proj/tonc/bak/gfx.htm

28-03-13 Tonc : GBA Programming in rot13

9. Regular tiled backgrounds

Tilemap introduction.
Background control.
¢ Regular background tile-maps.

Tilemap demos.
In conclusion.

9.1. Tilemap introduction

Tilemaps are the bread and butter for the GBA. Almost every commercial GBA game makes use of tilemodes, with the bitmap modes
seen only in 3D-like games that use ray-tracing. Everything else uses tiled graphics.

The reason why tilemaps are so popular is that they're implemented in hardware and require less space than bitmap graphics.
Consider fig 9.1a. This is a 512 by 256 image, which even at 8bpp would take up 131 kB of VRAM, and we simply don't have that. If
you were to make one big bitmap of a normal level in a game, you can easily get up to 1000x1000 pixels, which is just not practical. And
then there's the matter of scrolling through the level, which means updating all pixels each frame. Even when your scrolling code is fully
optimized that'd take quite a bit of time.

Now, notice that there are many repeated elements in this image. The bitmap seems to be divided into groups of 16x16 pixels. These
are the tiles. The list of unique tiles is the #ileset, which is given in fig 9.1b. As you can see, there are only 16 unique tiles making up the
image. To create the image from these tiles, we need a tilemap. The image is divided into a matrix of tiles. Each element in the matrix
has a tile index which indicates which tile should be rendered there; the tilemap can be seen in fig 9. 1c.

Suppose both the tileset and map used 8bit entries, the sizes are 16x(16x16) = 4096 bytes for the tileset and 32x16 = 512 bytes for
the tilemap. So that's 4.6 kB for the whole scene rather than the 131 kB we had before; a size reduction of a factor 28.

Fig 9.1a: image on screen.

The tile mapping process. Using the tileset of fig 9.1b, and the tile map of fig 9.1c, the end-result is

fig 9.1a.
olofofa]olo]olofa]olo]ofaloa]o]ofalo[a]ala]oaT1 1]0]0f1]1]2]0
olofofofalal2f1]2l1]2 o3]2}34][2}3[33[1]1]273{2/3]0]0 3]1]2]3]
[5/3/afale|7/ale/4/al6/3/3/0[ofofofofo]o]7}al3[4/3/3/3/3/3]3][4]|3]
‘s/g/8(8lolo]ojojo[alo[4/3]o]o]ofo]o[o]ofo[of3][o|7 6 0]0][7|6]0[4]
9l1]8]o]o]ojo]o[of[o]o]o[3]oo[ofo[o]o[o]o]o][o]10/11]0 [0 0 0 [1|10]0
9/8l8lolo[ojo]o[of[o]o]o]4]o]8]12/12]8]0]0|0]0]0|11/8]0][0]0]0|B]11]0
‘g8]9]o|olofofo/ojo]o[o][o]ofo]1]a]9|o]o]o]o]oB]9]0]0o]0o]0][a]9]0
f1is8lofofojofoofofo[ofo[o|e}8]2]9]0fo]o]o]o[a[a]ol0]0]o[a]a]0]
‘389000000000003@319930000880000880
[2ls8]oofo]o]olo]o]o[o]o]o}8]8]|1]2]9]0[0]o]o]0][o]o]o]o]0]o]0]0
t3lo/8]o]olo]o]o/13/o]o[o]oo|o|afa]|s|8]o]o]o]o]o]o]o]o]o]o]o]o]0
[1]9/8]o[o|o]o]o[14[o]o]o]o]o]o|8]a|8]a]o]o]o]o]o]o]o[o]o]o]|0]0]0
‘8!8/8]0]o1313/0 /90 13/13[0 00|00 o|o|o]o]0]0 [13/13[13 0 0 13[13[13]0
1.8 8151151511515 3 8 151515 8 | 8 |15/15/15/15/15/15/15/15 13 131131313 13/13/13/15
ololo|s|s|1]|2/8]1]8/8/8]1]1]8|8|2!8]s|8|8]1]1/2 88 8/1/8]8]1]8]
o/ofojojojo|o[o[o[o]o[o][o]o]o]o]o]0]0]0 o[o[ojofo]o]o]o]o]0

Fig 9.1b: || Fig 9.1c: the tile map (with the proper tiles as a backdrop).

the tile

set.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 78/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-ctrl
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-map
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-conc

28-03-13 Tonc : GBA Programming in rot13

That's basically how tilemaps work. You don't define the whole image, but group pixels together into tiles and describe the image in
terms of those groups. In the fig 9.1, the tiles were 16x16 pixels, so the tilemap is 256 times smaller than the bitmap. The unique tiles are
in the tileset, which can (and usually will) be larger than the tilemap. The size of the tileset can vary: if the bitmap is highly variable, you'll
probably have many unique tiles; if the graphics are nicely aligned to tile boundaries already (as it is here), the tileset will be small. This is
why tile-engines often have a distinct look to them.

[[ref:ssec-intro-gba] Tilemaps for the GBA
In the tiled video-modes (0, 1 and 2) you can have up to four backgrounds that display tilemaps. The size of the maps is set by the
control registers and can be between 128x128 and 1024x1024 pixels. The size of each tile is always 8x8 pixels, so fig 9.1 isn't quite the
way it'd work on the GBA. Because accessing the tilemaps is done in units of tiles, the map sizes correspond to 16x16 to 128x128 tiles.

Both the tiles and tilemaps are stored in VRAM, which is divided into charblocks and screenblocks. The tileset is stored in the
charblocks and the tilemap goes into the screenblocks. In the common vernacular, the word “tile” is used for both the graphical tiles and
the entries of the tilemaps. Because this is somewhat confusing, I'll use the term screen entry (SE for short) as the items in the
screenblocks (i.e., the map entries) and restrict tiles to the tileset.

64 kB of VRAM is set aside for tilemaps (0600:0000h-0600 : FFFFh). This is used for both screenblocks and charblocks. You
can choose which ones to use freely through the control registers, but be careful that they can overlap (see table 9.1). Each screenblock
is 2048 (800h) bytes long, giving 32 screenblocks in total. All but the smallest backgrounds use multiple screenblocks for the full
tilemap. Each charblock is 16 kB (4000h bytes) long, giving four blocks overall.

Memory 0600:0000/0600:4000(0600:8000|0600:C000
charblock 0 1 2 3

screenblock |0 ... 7 (8 ... 15 |16 ... 23|24 ... 31
Table 9.1: charblock and screenblock overlap.

Tiles vs ‘tiles’

Both the entries of the tilemap and the data in the tileset are often referred to as ‘tiles’, which can make conversation

confusing. I reserve the term ‘tile’ for the graphics, and ‘screen(block) entry’ or ‘map entry’ for the map's contents.
\

{ N
Charblocks vs screenblocks

Charblocks and screenblocks use the same addresses in memory. When loading data, make sure the tiles themselves don't
overwrite the map, or vice versa.

\\

Size was one of the benefits of using tilemaps, speed was another. The rendering of tilemaps in done in hardware and if you've ever
played PC games in hardware and software modes, you'll know that hardware is good. Another nice point is that scrolling is done in
hardware too. Instead of redrawing the whole scene, you just have to enter some coordinates in the right registers.

As I said in the overview, there are three stages to setting up a tiled background: control, mapping and image-data. I've already covered
most of the image-data in the overview, as well as some of the control and mapping parts that are shared by sprites and backgrounds
alike; this chapter covers only things specific to backgrounds in general and regular backgrounds in particular. I'm assuming you've read
the overview.

()
Essential tilemap steps

e Load the graphics: tiles into charblocks and colors in the background palette.

e Load a map into one or more screenblocks.

¢ Switch to the right mode in REG _DISPCNT and activate a background.

« Initialize that background's control register to use the right CBB, SBB and bitdepth.

\

9.2. Background control

9.2.1. Background types

Just like sprites, there are two types of tiled backgrounds: regular and affine; these are also known as text and rotation backgrounds,
respectively. The type of the background depends of the video mode (see table 9.2). At their cores, both regular and affine backgrounds
work the same way: you have tiles, a tile-map and a few control registers. But that's where the similarity ends. Affine backgrounds use

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 79/331

file:///H:/dev/gba/proj/tonc/bak/objbg.htm

28-03-13 Tonc : GBA Programming in rot13

more and different registers than regular ones, and even the maps are formatted differently. This page only covers the regular
backgrounds. I'll leave the affine ones till after the page on the affine matrix.

mode (BG0|BG1|BG2|BG3
0 |reg | reg | reg | reg

1 reg | reg | aff | -

2 - - aff | aff
Table 9.2: video modes and
background type

9.2.2. Control registers

All backgrounds have 3 primary control registers. The primary control register is REG_BGxCNT, where x indicates the backgrounds 0
through 3. This register is where you say what the size of the tilemap is, and which charblock and screenblock it uses. The other two are
the scrolling registers, REG_BGxHOFS and REG_BGxVOFS.

Each of these is a 16it register. REG_BGOCNT can be found at 0400 : 0008, with the other controls right behind it. The offsets are
paired by background, forming coordinate pairs. These start at 0400: 0010

Register length address
REG_BGxCNT |2 0400:0008h + 2-x
REG_BGxHOFS|2 0400:0010h + 4-x

REG_BGxVOFS |2 0400:0012h + 4-x
Table 9.3: Background register addresses

The description of REG BGxCNT can be found in table 9.4. Most of it is pretty standard, except for the size: there are actually two lists
of possible sizes; one for regular maps and one for affine maps. The both use the same bits you may have to be careful that you're using
the right #defines.

REG_BGxCNT @ 0400:0008 + 2x

FE[D|CBAY9S8|7 6 |54|132|10

Sz |Wr SBB CM|Mos| - |CBB| Pr
bits name define description
0-1 Pr BG_PRIO# Priority. Determines drawing order of backgrounds.

2-3 CBB BG _CBB# Character Base Block. Sets the charblock that serves as the base for character/tile
indexing. Values: 0-3.

Mos BG_MOSAIC Mosaic flag. Enables mosaic effect.

CM BG 4BPP, Color Mode. 16 colors (4bpp) if cleared; 256 colors (8bpp) if set.
BG 8BPP

8-C SBB BG_SBB# Screen Base Block. Sets the screenblock that serves as the base for screen-entry/map
indexing. Values: 0-31.

D Wr BG_WRAP Affine Wrapping flag. If set, affine background wrap around at their edges. Has no
effect on regular backgrounds as they wrap around by default.

E-F Sz BG_SIZE#, Background Size. Regular and affine backgrounds have different sizes available to
see below them. The sizes, in tiles and in pixels, can be found in table 9.5.
Sz-flag define (tiles) | (pixels) Sz-flag define (tiles) | (pixels)
00 |BG_REG 32x32|32x32|256x256 00 | BG_AFF 16x16 | 16x16 | 128x128
01 |BG_REG 64x32|64x32|512x256 01 BG_AFF 32x32 | 32x32 | 256x256
10 |BG_REG 32x64|32x64 |256x512 10 | BG_AFF 64x64 | 64x64 | 512x512
11 |BG_REG_64x64| 64x64 |512x512 11 |BG_AFF 128x128|128x128|1024x1024
Table 9.5a: regular bg sizes Table 9.5b: affine bg sizes

Each background has two 16bit scrolling registers to offset the rendering (REG_BGxHOFS and REG_BGxVOFS). There are a number
of interesting points about these. First, because regular backgrounds wrap around, the values are essentially modulo mapsize. This is not
really relevant at the moment, but you can use this to your benefit once you get to more advanced tilemaps. Second, these registers are
write-only! This is a little annoying, as it means that you can't update the position by simply doing REG BGOHOFS++' and the like.
And now the third part, which may be the most important, namely what the values actually do. The simplest way of looking at them
is that they give the coordinates of the screen on the map. Read that again, carefully: it's the position of the screen on the map. It is not
the position of the map on the screen, which is how sprites work. The difference is only a minus sign, but even something as small as a

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 80/331

file:///H:/dev/gba/proj/tonc/bak/affbg.htm
file:///H:/dev/gba/proj/tonc/bak/affine.htm

28-03-13 Tonc : GBA Programming in rot13
sign change can wreak havoc on your calculations.

dx

Fig 9.2a: Scrolling offset dx sets is the position of the screen on the map. In this case, dx = (192, 64).

So, if you increase the scrolling values, you move the screen to the right, which corresponds to the map moving /eft on the screen. In

mathematical terms, if you have map position p and screen position q, then the following is true:

q+dx=p

9.1
©-1) q =p—dx

Direction of offset registers

The offset registers REG BGxHOFS and REG_BGxVOFS indicate which map location is mapped to the top-left of the

screen, meaning positive offsets scroll the map left and up. Watch your minus signs.
\

p
Offset registers are write only

The offset registers are write-only! That means that direct arithmetic like ‘+=" will not work.

\\

9.2.3. Useful types and #defines

Tonc's code has several useful extra types and macros that can make life a little easier.
// === Additional types (tonc_ types.h) ======s===============s=========

//! Screen entry conceptual typedef
typedef ulé SCR_ENTRY;

//! Affine parameter struct for backgrounds, covered later
typedef struct BG AFFINE
{
sl6 pa, pb;
sl6 pc, pd;
s32 dx, dy;
} ALIGN4 BG AFFINE;

//! Regular map offsets
typedef struct BG POINT
{

slée x, y;
} ALIGN4 BG_POINT;
//! Screenblock struct
typedef SCR_ENTRY SCREENBLOCK([10247];

// === Memory map #defines (tonc memmap.h) ============================

//! Screen-entry mapping: se mem[y][x] is SBB y, entry x
#define se mem ((SCREENBLOCK*) MEM VRAM)

//! BG control register array: REG BGCNT [x] is REG BGxCNT
#define REG_BGCNT ((vul6*) (REG_BASE+0x0008))

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

81/331

28-03-13 Tonc : GBA Programming in rot13

//! BG offset array: REG BG OFS[n].x/.y is REG_BGnHOFS / REG_BGnVOFS
#define REG BG OFS ((BG_POINT*) (REG_BASE+0x0010))

//! BG affine params array
#define REG BG AFFINE ((BG_AFFINE*) (REG BASE+0x0000))

Strictly speaking, making a SCREEN_ENTRY typedef is not necessary, but makes its use clearer. se _mem works much like

tile mem:it maps out VRAM into screenblocks screen-entries, making finding a specific entry easier. The other typedefs are used to
map out arrays for the background registers. For example, REG BGCNT is an array that maps out all REG_BGxCNT registers.
REG_BGCNT [0] is REG_BGOCNT, etc. The BG_POINT and BG_AFFINE types are used in similar fashions. Note that
REG_BG_OFS still covers the same registers as REG_ BGxHOFS and REG_BGxVOFS do, and the write-only-ness of them has not
magically disappeared. The same goes for REG_BG_AFFINE, but that discussion will be saved for another time.

In theory, it is also useful create a sort of background API, with a struct with the temporaries for map positioning and functions for
initializing and updating the registers and maps. However, most of tonc's demos are not complex enough to warrant these things. With
the types above, manipulating the necessary items is already simplified enough for now.

9.3. Regular background tile-maps

The screenblocks form a matrix of screen entries that describe the full image on the screen. In the example of fig 9.1 the tilemap entries
just contained the tile index. The GBA screen entries bahave a little differently.

For regular tilemaps, each screen entry is 16bits long. Besides the tile index, it contains flipping flags and a palette bank index for
4bpp / 16 color tiles. The exact layout can be found in table 9.7. The affine screen entries are only 8 bits wide and just contain an 8bit tile
index.

Screen entry format for regular
backgrounds

FEDC|B|A|9876543210

PB |VF |HF TID
bits name define description
0-9 TID SE_ID# Tile-index of the SE.
A-B HF,VF SE HFLIP, Horizontal/vertical flipping flags.
SE_VFLIP.
SE FLIP#

C-F PB SE PALBANKH# Palette bank to use when in 16-color mode. Has no effect for 256-color bgs
(REG_BGxCNT{6} is set).

9.3.1. Map layout

VRAM contains 32 screenblocks to store the tilemaps in. Each screenblock is 800h bytes long, so you can fit 32x32 screen entries into
it, which equals one 256x256 pixel map. The bigger maps simply use more than one screenblock. The screenblock index set in
REG_BGxCNT is the screen base block which indicates the start of the tilemap.

Now, suppose you have a tilemap that's twxzh tiles/SEs in size. You might expect that the screen entry at tile-coordinates (zx, 1)
could be found at SE-number n = tx+y-tw, because that's how matrices always work, right? Well, you'd be wrong. At least, you'd be
partially wrong.

Within each screenblock the equation works, but the bigger backgrounds don't simply use multiple screenblocks, they're actually
accessed as four separate maps. How this works can be seen in table 9.8: each numbered block is a contingent block in memory. This
means that to get the SE-index you have to find out which screenblock you are in and then find the SE-number inside that screenblock.

32x32 | 64x32 |32x64 | 64x64

0 0 1

1 2 3

Table 9.8: screenblock layout

of regular backgrounds.
This kind of nesting problem isn't as hard as it looks. We know how many tiles fit in a screenblock, so to get the SBB-coordinates, all we
have to do divide the tile-coords by the SBB width and height: sbx=tx/32 and sby=ty/32. The SBB-number can then be found with the
standard matrix—array formula. To find the n-SBB SE-number, we have to use %32 and #y%32 to find the in-SBB coordinates, and
then again the conversion from 2D coords to a single element. This is to be offset by the SBB-number tiles the size of an SBB to find
the final number. The final form would be:

//! Get the screen entry index for a tile-coord pair
// And yes, the div and mods will be converted by the compiler
uint se index(uint tx, uint ty, uint pitch)

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 82/331

28-03-13 Tonc : GBA Programming in rot13

uint sbb= (ty/32)* (pitch/32) + (tx/32);
return sbb*1024 + (ty%32)*32 + tx%32;
}

The general formula is left as an exercise for the reader — one that is well worth the effort, in my view. This kind of process crops up in
a number of places, like getting the offset for bitmap coordinates in tiles, and tile coords in 1D object mapping.

If all those operations make you queasy, there's also a faster version specifically for a 2x2 arrangement. It starts with calculating the
number as if it's a 32x32t map. This will be incorrect for a 64t wide map, which we can correct for by adding 0x0400—0x20 (i.e.,
tiles/block — tiles per row). We need another full block correction is the size is 64x64t.

//! Get the screen entry index for a tile-coord pair.

/*! This is the fast (and possibly unsafe) way.

* \param bgcnt Control flags for this background (to find its size)
*/

uint se index fast(uint tx, uint ty, ul6 bgcnt)
{
uint n= tx + ty*32;
if(tx >= 32)
n += 0x03EO0;
if(ty >= 32 && (bgcnt&BG REG 64x64)==BG REG 64x64)
n += 0x0400;
return n;

}

I would like to remind you that » here is the SE-number, not the address. Since the size of a regular SE is 2 bytes, you need to multiply n
by 2 for the address. (Unless, of course, you have a pointer/array of ul 6s, in which case n will work fine.) Also, this works for regular
backgrounds only; affine backgrounds use a linear map structure, which makes this extra work unnecessary there. By the way, both the
screen-entry and map layouts are different for affine backgrounds. For their formats, see the map format section of the affine
background page.

9.3.2. Background tile subtleties

There are two additional things you need to be aware of when using tiles for tile-maps. The first concerns tile-numbering. For sprites,

numbering went according to 4bit tiles (s-tiles); for 8bit tiles (d-tiles) you'd have use multiples of 2 (a bit like ul6 addresses are always
multiples of 2 in memory). In tile-maps, however, d-tiles are numbered by the d-tile. To put it in other words, for sprites, using index id
indicates the same tile for both 4 and 8bit tiles, namely the one that starts at id-20h. For tile-maps, however, it starts at id-20h for 4bit

tiles, but at id-40h for 8bit tiles.

memory offset|000h|020h|{040h|060h|080h|100h]|...
4bpp tile 0 1 2 3 4 5

8bpp tile 0 1 2
Table 9.9: tile counting for backgrounds, sticks to its bit-depth.

The second concerns, well, also tile-numbering, but more how many tiles you can use. Each map entry for regular backgrounds has 10
bits for a tile index, so you can use up to 1024 tiles. However, a quick calculation shows that a charblock contains 4000h/20h= 512 s-
tiles, or 4000h/40h= 256 d-tiles. So what's the deal here? Well, the charblock index you set in REG_BGxCNT is actually only the block
where tile-counting starts: its character base block. You can use the ones after it as well. Cool, huh? But wait, if you can access
subsequent charblocks as well; does this mean that, if you set the base charblock to 3, you can use the sprite blocks (which are basically
blocks 4 and 5) as well?

The answer is: yes. And NO!

The emulators I've tested on do allow you to do this. However, a real GBA doesn't. It does output something, though: the screen-
entry will be used as tile-data itself, but in a manner that simply defies explanation. Trust me on this one, okay? Of the current tonc
demos, this is one of the few times that VBA gets it wrong.

Available tiles

For both 4bpp and 8bpp regular bgs, you can access 1024 tiles. The only caveat here is that you cannot access the tiles in the
object charblocks even if the index would call for it.

Another thing you may be wondering is if you can use a particular screenblock that is within a currently used charblock. For example, is
it allowed to have a background use charblock 0 and screenblock 1. Again, yes you can do this. This can be useful since you're not likely
to fill an entire charblock, so using its later screenblocks for your map data is a good idea. (A sign of True Hackerdom would be if you
manage to use the same data for both tiles and SEs and still get a meaningful image (this last part is important). If you have done this,
please let me know.)

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 83/331

file:///H:/dev/gba/proj/tonc/bak/affbg.htm#sec-map

28-03-13 Tonc : GBA Programming in rot13

{ N
Tilemap data conversion via CLI
A converter that can tile images (for objects), can also create a tileset for tilemaps, although there will likely be many
redundant tiles. A few converters can also reduce the tileset to only the unique tiles, and provide the tilemap that goes with it.
The Brinstar bitmap from fig 9.1 is a 512%256 image, which could be tiled to a 64x32 map with a 4bpp tileset reduced for
uniqueness in tiles, including palette info and mirroring.

gfx2gba

(C array; u8 foo Tiles[], ul6 foo Mapl[],

ul6 master Palette[]; foo.raw.c, foo.map.c, master.pal.c)
gfx2gba -fsrc -cl6 -t8 -m foo.bmp

grit
(C array; u32 fooTiles[], ul6e fooMap[], ulé6e fooPal[]; foo.c, foo.h)
grit foo.bmp -gB4 -mRtpf

Two notes on gfx2gba: First, it merges the palette to a single 16-color array, rearranging it in the process. Second, while it lists
metamapping options in the readme, it actually doesn't give a metamap and meta-tileset, it just formats the map into different
blocks.

\

9.4. Tilemap demos

There are four demos in this chapter. The first one is brin demo, which is very, very short and shows the basic steps of tile loading
and scrolling. The next ones are called sbb_reg and cbb_demo, which are tech demos, illustrating the layout of multiple
screenblocks and how tile indexing is done on 4bpp and 8bpp backgrounds. In both these cases, the map data is created manually
because it's more convenient to do so here, but using map-data created by map editors really isn't that different.

9.4.1. Essential tilemap steps: brin_demo
As I've been using a 512x256 part of Brinstar throughout this chapter, I thought I might as well use it for a demo.

There are a few map editors out there that you can use. Two good ones are Nessie's MapEd or Mappy, both of which have a
number of interesting features. I have my own map editor, mirach, but it's just a very basic thing. Some tutorials may point you to
GBAMapEditor. Do not use this editor as it's pretty buggy, leaving out half of the tilemaps sometimes. Tilemaps can be troublesome
enough for beginners without having to worry about whether the map data is faulty.

In this cause, however, | haven't used any editor at all. Some of the graphics converters can convert to a tileset-+tilemap — it's not the
standard method, but for small maps it may well be easier. In this case ['ve used Usenti to do it, but grit and gfx2gba work just as well.
Note that because the map here is 64x32 tiles, which requires splitting into screenblocks. In Usenti this is called the ‘sbb’ layout, in grit
it's “-mLs’ and for gfx2gba you'd use ‘-mm 32’ ... I think. In any case, after a conversion you'd have a palette, a tileset and a tilemap.

const unsigned short brinMap[2048]=

{
// Map row 0
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x3001,0x3002,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x3001,0x3002,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x3001,0x3002,0x0000,0x0000,0x3001,0x3002,0x0000,0x0000,

// Map row 1

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x3003,0x3004,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x3003,0x3004,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x3003,0x3004,0x0000,0x0000,0x3003,0x3004,0x0000,0x0000,

// Map row 2
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x3001,0x3002,0x3005,0x3006,0x3007,0x3008,

// ... etc

Fig 9.3b: brin demo tileset.

In fig 9.3 you can see the full palette, the tileset and part of the map. Note that the tileset of fig 9.3b is not the same as that of fig 9.1b
because the former uses 8x8 tiles while the latter used 16x16 tiles. Note also that the screen entries you see here are either O (i.e., the
empty tile) or of the form 0x3xxx. The high nybble indicates the palette bank, in this case three. If you'd look to the palette (fig 9.3a)
you'd see that this gives bluish colors.

Now on to using these data. Remember the essential steps here:

¢ Load the graphics: tiles into charblocks and colors in the background palette.
¢ Load a map into one or more screenblocks.
¢ Switch to the right mode in REG_DISPCNT and activate a background.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 84/331

http://nessie.gbadev.org/
http://www.tilemap.co.uk/mappy.php
http://www.coranac.com/projects/#mirach

28-03-13 Tonc : GBA Programming in rot13
¢ Initialize that background's control register to use the right CBB, SBB and bitdepth.

If you do it correctly, you should have something showing on screen. If not, go to the tile/map/memory viewers of your emulator; they'll
usually give you a good idea where the problem is. A common one is having a mismatch between the CBB and SBB in REG BGxXCNT
and where you put the data, which most likely would leave you with an empty map or empty tileset.

The full code of brin demo is given below. The three calls to memcpy () load up the palette, tileset and tilemap. For some
reason, it's become traditional to place the maps in the last screenblocks. In this case, that's 30 rather than 31 because we need two
blocks for a 64x32t map. For the scrolling part, I'm using two variables to store and update the positions because the scrolling registers
are write-only. I'm starting at (192, 64) here because that's what I used for the scrolling picture of fig 9.2 earlier.

#include <string.h>

#include "toolbox.h"
#include "input.h"
#include "brin.h"

int main ()
{
// Load palette
memcpy (pal bg mem, brinPal, brinPalLen);
// Load tiles into CBB 0
memcpy (&tile mem([0] [0], brinTiles, brinTilesLen);
// Load map into SBB 30
memcpy (&se mem[30] [0], brinMap, brinMapLen);

// set up BGO for a 4bpp 64x32t map, using

// using charblock 0 and screenblock 31

REG_BGOCNT= BG_CBB(0) | BG_SBB(30) | BG_4BPP | BG REG 64x32;
REG_DISPCNT= DCNT MODEO | DCNT_BGO;

// Scroll around some
int x= 192, y= 64;
while (1)
{
vid vsync();
key_poll();

x += key tri horz();
y += key tri vert();

REG_BGOHOFS= x;
REG_BGOVOFS= y;
}

return 0;

Fig 9.4a: brin demo at dx=(192, 64). Fig 9.4b: brin demo at dx=(0, 0).

Interlude: Fast-copying of non sbb-prepared maps
This is not exactly required knowledge, but should make for an interesting read. In this demo I use a multi-sbb map that was already
prepared for that. The converter made sure that the left block of the map came before the right block. If this weren't the case then you

couldn't load the whole map in one go because the second row of the left block would use the first row of the right block and so on (see
fig 9.5).

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 85/331

28-03-13 Tonc : GBA Programming in rot13

Fig 9.5 brin demo without blocking out into SBB's first.

There are few simple and slow ways and one simple and fast way of copying a non sbb-prepared map to a multiple screenblocks. The
slow way would be to perform a double loop to go row by row of each screenblock. The fast way is through struct-copies and pointer
arithmetic, like this:

typedef struct { u32 datal[8]; } BLOCK;

int iy;

BLOCK *src= (BLOCK*)brinMap;
BLOCK *dst0= (BLOCK*)se mem[30];
BLOCK *dstl= (BLOCK*)se mem[31];

for (iy=0; 1y<32; iy++)
{
// Copy row iy of the left half
*dst0++= *src++; *dst0++= *src++;

// Copy row iy of the right half
*dstl++= *src++; *dstl++= *src++;

}

A BLOCK struct-copy takes care of half a row, so two takes care of a whole screenblock row (yes, you could define BLOCK as a 16-
word struct, but that wouldn't work out anymore. Trust me). At that point, the src pointer has arrived at the right half of the map, so we
copy the next row into the right-hand side destination, dst1. When done with that, src points to the second row of the left side. Now
do this for all 32 lines. Huzzah for struct-copies, and pointers!

9.4.2. Ascreenblock demo

The second demo, sbb reg uses a 64x64t background to indicate how multiple screenblocks are used for bigger maps in more detail
While the brin demo used a multi-sbb map as well, it wasn't easy to see what's what because the map was irregular; this demo uses
a very simple tileset so you can clearly see the screenblock boundaries. It'll also show how you can use the REG_BG_OF'S registers for
scrolling rather than REG BGxHOFS and REG BGxVOFS.

#include "toolbox.h"
#include "input.h"

#define CBB_0 0
#define SBB 0 28

#define CROSS_TX 15
#define CROSS TY 10

BG_POINT bg0 pt= { 0, 0 };
SCR_ENTRY *bg0 map= se mem[SBB 0];

uint se index(uint tx, uint ty, uint pitch)
{
uint sbb= ((tx>>5)+ (ty>>5)* (pitch>>5));
return sbb*1024 + ((tx&31)+(ty&31l)*32);
}

void init map ()

{

int ii, 33;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 86/331

28-03-13 Tonc : GBA Programming in rot13

// initialize a background
REG BGOCNT= BG CBB(CBB 0) | BG SBB(SBB 0) | BG REG 64x64;

REG_BGOHOFS= 0;
REG_BGOVOFS= 0;

// (1) create the tiles:
const TILE tiles|[2

{
{{Ox11111111,
0x01111111,
{{0x00000000,
0x00011000,

1=

0x01111111,
0x01111111,
0x00100100,
0x01100110,

basic tile and a

0x01111111,
0x01111111,
0x01100110,
0x00100100,

Cross

0x01111111,
0x00000001}1},
0x00011000,
0x00000000} 1},

}i
tile mem[CBB 0] [0]= tiles[0];
tile mem[CBB 0] [1]= tiles[1];

// (2) create a palette

pal bg bank[0] [1]= RGB15 (
pal bg bank[1][1]= RGB15 (
pal bg bank[2][1]= RGB15(
pal bg bank[3][1]= RGB15 (

31, 0, O
0, 31, 0
0, 0, 31
16, 16, 16
// (3) Create a map: four contingent blocks of
// 0x0000, 0x1000, 0x2000, 0x3000.
SCR_ENTRY *pse= bg0 map;
for(ii=0; 1ii<4; ii++)
for (jj=0; JJj<32*32; Jjj++)
*pse++= SE_PALBANK (ii) | 0;

int main ()

init map();
REG _DISPCNT= DCNT MODEO | DCNT BGO | DCNT OBJ;

u32 tx, ty, se curr, se prev= CROSS TY*32+CROSS TX;

bg0 map[se prev]++; // initial position of cross
while (1)
{

vid vsync();
key_poll();

// (4) Moving around
bg0 pt.x += key tri horz();
bg0 pt.y += key tri vert();

// (5) Testing se index

// If all goes well the cross should be around the center
// the screen at all times.

tx= ((bg0 pt.x>>3)+CROSS TX) & O0x3F;

ty= ((bg0 pt.y>>3)+CROSS TY) & 0x3F;

se curr= se index(tx, ty, 64);
if(se curr != se prev)
{

bg0 map[se prev]--;

bg0 map[se curr]++;

se _prev= se_ curr;

REG BG OFS[0]= bg0 pt; // write new position
}

return O;

of

The init map () contains all of the initialization steps: setting up the registers, tiles, palettes and maps. Unlike the previous demo, the
tiles, palette and the map are all created manually because it's just easier in this case. At point (1), I define two tiles. The first one looks
a little like a pane and the second one is a rudimentary cross. You can see them clearly in the screenshot (fig 9.6). The pane-like tile is

loaded into tile 0, and is therefore the ‘default’ tile for the map.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

87/331

28-03-13 Tonc : GBA Programming in rot13

The palette is set at point (2). The colors are the same as in table 9.8: red, green, blue and grey. Take note of which palette entries
I'm using: the colors are in different palette banks so that I can use palette swapping when I fill the map. Speaking of which ...

Loading the map itself (point (3)) happens through a double loop. The outer loop sets the palette-bank for the screen entries. The
inner loop fills 1024 SEs with palette-swapped tile-0's. Now, if big maps used a flat layout, the result would be a big map in four colored

bands. However, what actually happens is that you see blocks, not bands, proving that
indeed regular maps are split into screenblocks just like table 9.8 said. Yes, it's annoying, but
that's just the way it is.

That was creating the map, now we turn to the main loop inmain (). The keys (point (4))
let you scroll around the map. The RIGHT button is tied to a positive change in x, but the
map itself actually scrolls to the lef#! When I say it like that it may seem counter-intuitive,
but if you look at the demo you see that it actually makes sense. Think of it from a
hypothetical player sprite point of view. As the sprite moves through the world, you need to
update the background to keep the sprite from going off-screen. To do that, the
background's movement should be the opposite of the sprite's movement. For example, if
the sprite moves to the right, you have to move the background to the /eft to compensate.

Finally, there's one more thing to discuss: the cross that appears centered on the map.

Fig 9.6: sbb_reg. Compare table 9.8, 64x64t
background. Note the little cross in the top left
corner.

To do this as you scroll along, I keep track of the screen-entry at the center of the screen via a number of variables and the
se_index () function. Variables tx and ty are the tile coordinates of the center of the screen, found by shifting and masking the
background pixel coordinates. Feeding these to se index () gives me the screen-entry offset from the screen base block. If this is
different than the previous offset, I repaint the former offset as a pane, and update the new offset to the cross. That way, the cross
seems to move over the map; much like a sprite would. This was actually designed as a test for se _index () ; if the function was

flawed, the cross would just disappear at some point. But it doesn't. Yay me ~

9.4.3. The charblock demo

The third demo, cbb_demo covers some of the details of charblocks and the differences in 4bpp and 8bpp tiles. The backgrounds in
question are BG 0 and BG 1. Both will be 32x32t backgrounds, but BG 0 will use 4bpp tiles and CBB 0 and BG 2 uses 8bpp tiles and
CBB 2. The exact locations and contents of the screenblocks are not important; what is important is to load the tiles to the starts of all 6

charblocks and see what happens.

#include <toolbox.h>
#include "cbb ids.h"

#define CBB 4 0
#define SBB 4 2

N

#define CBB_8
#define SBB_8

i

void load tiles()
{

int ii;
TILE *tl= (TILE*)ids4Tiles;
TILE8 *tl8= (TILE8*)ids8Tiles;

// Loading tiles. don't get freaked out on how it looks
// 4-bit tiles to blocks 0 and 1

tile mem[0][1]= t1[1];
tile mem([1][0]= t1[3];
// and the 8-bit

tile mem[0] [2]= t1[2];
tile mem([1][1]= t1[4];

tiles to blocks 2 though 5

tile8 mem([2] [1]= t18[1]; tile8 mem[2] [2]= tl18[2];
tile8 mem[3][0]= t18[3]; tile8 mem[3][1]= t18[4];
tile8 mem([4][0]= t18[5]; tile8 mem([4][1]= tl8[6];
tile8 mem([5] [0]= t18[7]; tile8 mem[5] [1]= t18([8];
// And let's not forget the palette (yes, obj pal too)
ul6 *src= (ul6*)idsdPal;
for(ii=0; ii<l6; ii++)
pal bg mem[ii]= pal obj mem[ii]= *src++;

}

void init maps ()

{
// sed and se8 map coords: (0,2) and (0,8)

SB_ENTRY *sed= &se mem[SBB 4] [2*32],

// show first tiles of char-blocks available to bg0

// tiles 1, 2 of char-block CBB 4
sed [0x01]= 0x0001;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

sed4 [0x02]= 0x0002;

*se8= &se mem[SBB 8] [8*32];

88/331

28-03-13 Tonc : GBA Programming in rot13

// tiles 0, 1 of char-block CBB 4+1
sed [0x20]= 0x0200; sed [0x21]= 0x0201;

// show first tiles of char-blocks available to bgl
// tiles 1, 2 of char-block CBB 8 (== 2)
se8[0x01]= 0x0001; se8[0x02]= 0x0002;

// tiles 1, 2 of char-block CBB_ 8+1
se8[0x20]= 0x0100; se8[0x21]= 0x0101;

// tiles 1, 2 of char-block CBB 8+2 (== CBB_OBJ LO)
se8[0x40]= 0x0200; se8[0x41]1= 0x0201;

// tiles 1, 2 of char-block CBB 8+3 (== CBB _OBJ HI)
se8[0x60]= 0x0300; se8[0x61]= 0x0301;

int main ()

load tiles();
init maps();

// init backgrounds
REG BGOCNT= BG CBB(CBB 4) | BG SBB(SBB 4) | BG 4BPP;
REG BGICNT= BG _CBB(CBB 8) | BG _SBB(SBB 8) | BG 8BPP;
// enable backgrounds
REGiDISPCNT: DCNTiMODEO | DCNTiBGO | DCNTiBGl | DCNTioBJ,‘

while (1) ;

return 0;

}

The tilesets can be found in cbb ids. c. Each tile contains two numbers: one for the charblock I'm putting it and one for the tile-index
in that block. For example, the tile that [want in charblock 0 at tile 1 shows ‘01, CBB 1 tile 0 shows ‘10°, CBB 1, tile 1 has ‘11, etc. I
have twelve tiles in total, 4 s-tiles to be used for BG 0 and 8 d-tiles for BG 1.

Now, I have six pairs of tiles and I intend to place them in the first tiles of each of the 6 charblock (except for CBBs 0 and 2, where
tile 0 would be used as default tiles for the background, which I want to keep empty). Yes six, I'm loading into the sprite charblocks as
well. I could do this by hand, calculating all the addresses manually (0600 : 0020 for CBB 0, tile 1, etc) and hope I don't make a
mistake and can remember what I'm doing when revisiting the demo later, or I can just use my tile memand tile8 mem memory
map matrices and get the addresses quickly and without any hassle. Even better, C allows struct assignments so I can load the individual
tiles with a simple assignment! That is exactly what I'm doing in 1oad tiles (). The source tiles are cast to TILE and TILES arrays
for 4bpp and 8bpp tiles respectively. After that, loading the tiles is very simple indeed.

The maps themselves are created in init maps (). The only thing I'm interested in for this demo is to show how and which
charblocks are used, so the particulars of the map aren't that important. The only thing I want them to do is to be able to show the tiles
that I loaded in 1oad tiles (). The two pointers I create here, se4 and se8, point to screen-entries in the screenblocks used for
BG 0 and BG 1, respectively. BG 0's map, containing s-tiles, uses 1 and 512 offsets; BG 1's entries, 8bpp tiles, carries 1 and 256 offsets.
If what I said before about tile-index for different bitdepths is true, then you should see the contents of all the loaded tiles. And looking at
the result of the demo (fig 9.7), it looks as if I did my math correctly: background tile-indices follow the bg's assigned bitdepth, in contrast
to sprites which always counts in 32 byte offsets.

There is, however, one point of concern: on hardware, you won't see the tiles that are actually in object VRAM (blocks 4 and 5).
While you might expect to be able to use the sprite blocks for backgrounds due to the addresses, the actual wiring in the GBA seems to
forbid it. This is why you should test on hardware is important: emulators aren't always perfect. But if hardware testing is not available
to you, test on multiple emulators; if you see different behaviour, be wary of the code that produced it.

Fig 9.7a: cbb_demo on VBA (and Boycott Adv || Fig 9.7b: cbb demo on hardware. Spot the
and Mappy well, almost)). differences!

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 89/331

28-03-13 Tonc : GBA Programming in rot13

9.4.4. Bonus demo: the 'text' in text bg and introducing tonclib
Woo, bonus demo! This example will serve a number of purposes. The first is to introduce tonclib, a library of code to make life on
the GBA a bit easier. In past demos, I've been using toolbox.h/c to store useful macros and functions. This is alright for very small
projects, but as code gets added, it becomes very hard to maintain everything. It's better to store common functionality in libraries that
can be shared among projects.

The second reason is to show how you can output text, which is obviously an important ability to have. Tonclib has an extensive list
of options for text rendering — too much to explain here — but its interface is pretty easy. For details, visit the Tonc Text Engine chapter.

Anyway, here's the example.

#include <stdio.h>
#include <tonc.h>

int main ()

{
REG_DISPCNT= DCNT MODEO | DCNT BGO;

// Init BG 0 for text on screen entries.
tte init se default (0, BG CBB(0) |[BG SBB(31));

tte write("#{P:72,64}"); // Goto (72, 64).
tte write("Hello World!"); // Print "Hello world!"
while (1) ;

return 0;

4+, —, B Ao6 s8] F2==
TJKIMNOPORETUVMXYZ [

iiklnnoparstuvwxyz {13~

hello

world!

Fig 9.8b: tileset of the hello demo.

Fig 9.8a: hello
demo.

Yes, it is indeed a “hello world” demo, the starting point of nearly every introductory C/C++ tutorial. However, those are usually for
meant for PC platforms, which have native console functionality like printf () or cout. These do not exist for the GBA. (Or
“didn't”, I should say; there are ways to make use of them nowadays. See tte:conio for details.)

Tonc's support for text goes through tte functions. In this case, tte init se default () sets up background O for tile-
mapped text. It also loads the default 8x8 font into charblock 0 (see fig 9.8b). After that, you can write to text with tte write. The
sequence # {P: x, y} is the formatting command that TTE uses to position the cursor. There are a number of these, some of which
you'll also see in later chapters.

From this point on, I'll make liberal use of tonclib's text capabilities in examples for displaying values and the like. This will mostly happen
without explanation, because that won't be part of the demo. Again, to see the internals, go to the TTE chapter.

Creating and using code libraries
Using the functions themselves is pretty simple, but they are spread out over multiple files and reference even more. This makes it a
hassle to find which files you need to add to the list of sources to compile a project. You could add everything, of course, but that's not a
pleasant prospect either. The best solution is to pre-compile the utility code into a library.
Libraries are essentially clusters of object files. Instead of linking the objects into an executable directly, you archive them with
arm-none-eabi-ar. The command is similar to the link step as well. Here is how you can create the library 1ibfoo. a from
objects foo.o,bar.oand baz.o.

archive rule
libfoo : foo.o bar.o baz.o

arm-none-eabi-ar -crs libfoo.a foo.o bar.o baz.o
shorthand rule: $(AR) rcs $Q@ $°

The three flags stand for create archive, replace member and create symbol table, respectively. For more on these and other archiving
flags, I will refer you to the manual, which is part of the binutils toolset. The flags are followed by the library name, which is followed by
all the objects (the ‘members’ you want to archive).

To use the library, you have to link it to the executable. There are two linker flags of interest here: -1, and —1. Upper- and

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 90/331

http://en.wikipedia.org/wiki/Library_(computing)
file:///H:/dev/gba/proj/tonc/bak/tte.htm
file:///H:/dev/gba/proj/tonc/bak/tte.htm#ssec-misc-conio
file:///H:/dev/gba/proj/tonc/bak/tte.htm
http://www.gnu.org/software/binutils/manual/html_mono/binutils.html

28-03-13 Tonc : GBA Programming in rot13

lowercase ‘L’. The former, -1, adds a library path. The lowercase version, —1, adds the actual library, but there is a twist here: only
need the root-name of the library. For example, to link the library 1ibfoo.a,use ‘~1foo’. The prefix 1ib and extension . a are
assumed by the linker.

using libfoo (assume it's in ../lib)
S (PROJ) .elf : $(OBJS)
$(LD) $~ $(LDFLAGS) -L../lib -1foo -0 s@

Of course, these archives can get pretty big if you dump a lot of stuff in there. Y ou might wonder if all of it is linked when you add a
library to your project. The answer is no, it is not. The linker is smart enough to use only the files which functions you're actually
referencing. In the case of this demo, for example, I'm using various text functions, but none of the affine functions or tables, so those
are excluded. Note that the exclusion goes by file, not by function. If you only have one file in the library (or #included everything,
which amounts to the same thing), everything will be linked.

I intend to use tonclib in a number of later demos. In particular, the memory map, text and copy routines will be present often. Don't
worry about what they do for the demo; just focus on the core content itself. Documentation of tonclib can be found in the tonclib folder
(tonc/code/libtonc) and at http//www.coranac.com/man/tonclib/.

4)
Better copy and fill routines: memcpy16/32 and memset16/32

Now that I am using tonclib as a library for its text routines, I might as well use it for its copy and fill routines as well. Their
names are memcpyl6 () and memcpy32 () for copies and memset16 () and memset32 () for fill routines. The 16
and 32 denote their preferred datatypes: halfwords and words, respectively. Their arguments are similar to the traditional
memcpy () and memset (), with the exception that the size is the number of items to be copied, rather than in bytes.

void memsetl6 (void *dest, ul6 hw, uint hwcount);
void memcpyl6 (void *dest, const void *src, uint hwcount);

void memset32(void *dest, u32 wd, uint wcount) IWRAM CODE;
void memcpy32 (void *dest, const void *src, uint wcount) IWRAM CODE;

These routines are optimized assembly so they are fast. They are also safer than the dma routines, and the BIOS routine

CpuFastSet (). Basically, I highly recommend them, and I will use them wherever I can.
\

{ N

Linker options: object files before libraries

In most cases, you can change the order of the options and files freely, but in the linker's case it is important the object files of
the projects are mentioned before the linked libraries. If not, the link will fail. Whether this is standard behaviour or if it is an
oversight in the linker's workings I cannot say, but be aware of potential problems here.

\\

9.5. In conclusion

Tilemaps are essential for most types of GBA games. They are trickier to get to grips with than the bitmap modes or sprites because
there are more steps to get exactly right. And, of course, you need to be sure the editor that gave you the map actually supplied the data
you were expecting. Fool around with the demos a little: run them, change the code and see what happens. For example, you could try to
add scrolling code to the brin_demo so you can see the whole map. Change screen blocks, change charblock, change the bitdepth,
mess up intentionally so you can see what can go wrong, so you'll be prepared for it when you try your own maps. Once you're
confident enough, only then start making your own. I know it's the boring way, but you will benefit from it in the long run.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 91/331

file:///H:/dev/gba/proj/tonc/bak/affine.htm
http://www.coranac.com/man/tonclib/
file:///H:/dev/gba/proj/tonc/bak/text.htm#ssec-demo-se2
file:///H:/dev/gba/proj/tonc/bak/dma.htm#sec-func
file:///H:/dev/gba/proj/tonc/bak/swi.htm
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-demo-brin

28-03-13 Tonc : GBA Programming in rot13

10. The Affine Transformation Matrix (a.k.a. P)

¢ About this page.

o Texture mapping and affine transformations.

+ "Many of the truths we cling to depend greatly upon our own point of view.".
o Finishing up.

e Tonc's affine functions.

10.1. About this page

As you probably know, the GBA is capable of applying geometric transformations like rotating and/or scaling to sprites and backgrounds.
To set them apart from the regular items, the transformable ones are generally referred to as Rot/Scale sprites and backgrounds. The
transformations are described by four parameters, pa, pb, pc and pd. The locations and exact names differ for sprites and
backgrounds but that doesn't matter for now.

There are two ways of interpreting these numbers. The first is to think of each of them as individual offsets to the sprite and
background data. This is how the reference documents like GBATek and CowBite Spec describe them. The other way is to see them as
the elements of a 2x2 matrix which I will refer to as P. This is how pretty much all tutorials describe them. These tutorials also give the
following matrix for rotation and scaling:

s cos(a) s, -sin(o
do1) P {pa pb}[ceos(@) s, sin)J
P, Py —s,sin(a) sy-cos(a)
Now, this is indeed a rotation and scale matrix. Unfortunately, it's also the wrong one! Or at least, it probably does not do what you'd
expect. For example, consider the case with a scaling of s = 1.5, 5= 1.0 and a rotation of a=45. You'd probably expect something like

fig 10.1a, but what you'd actually get is 10.1b. The sprite has rotated, but in the wrong direction, it has shrunk rather than expanded and
there's an extra shear as well. Of course, you can always say that you meant for this to happen, but that's probably not quite true.

Fig 10.1a: when you say ‘rotate || Fig 10.1b: but with P from
and scale’, you probably expect |[eq 10.1, this is what you get.
this ...

Unfortunately, there is a lot of incorrect or misleading information on the transformation matrix around; the matrix of eq 10.1 is just one
aspect of it. This actually starts with the moniker “Rot/Scale”, which does not fit with what actually occurs, continues with the fact that
the terms used are never properly defined and that most people often just copy-paste from others without even considering checking
whether the information is correct or not. The irony is that the principle reference document, GBATek, gives the correct descriptions of
each of the elements, but somehow it got lost in the translation to matrix form in the tutorials.

In this chapter, I'll provide the correct interpretation of the P-matrix; how the GBA uses it and how to construct one yourself. To do
this, though, I'm going into full math-mode. If you don't know your way around vector and matrix calculations you may have some
difficulties understanding the finer points of the text. There is an appendix on linear algebra for some pointers on this subject.

This is going to be a purely theoretical page: you will find nothing that relates directly to sprites or backgrounds here; that's what the next
two sections are for. Once again, we will be assisted by the lovely metroid (keep in cold storage for safe use). Please mind the direction
of the y-axis and the angles, and do not leave without reading the finishing up paragraph. This contains several key implementation
details that will be ignored in the text preceding it, because they will only get in the way at that point.

Be wary of documents covering affine parameters

It's true. Pretty much every document I've seen that deals with this subject is problematic in some way. A lot of them give
the wrong rotate-scale matrix (namely, the one in eq 10.1), or misname and/or misrepresent the matrix and its elements.

10.2. Texture mapping and affine transformations.
10.2.1. General 2D texture mapping

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 92/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-texmap
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-pov
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-finish
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-aff-fun
http://nocash.emubase.de/gbatek.htm
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm
file:///H:/dev/gba/proj/tonc/bak/matrix.htm
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-finish

28-03-13 Tonc : GBA Programming in rot13

What the GBA does to get sprites and tiled backgrounds on screen is very much like texture mapping. So forget about the GBA right
now and look at how texture mapping is done. In fig 10.2a, we see a metroid texture. For convenience 1 am using the standard Cartesian
2D coordinate system (y-axis points up) and have normalised the texture, which means that the right and top side of the texture
correspond precisely with the unit-vectors e and e (which are of length 1). The texture mapping brings p (in texture space) to a point g
(in screen space). The actual mapping is done by a 2x2 matrix A:

qg=A-p.

So how do you find A? Well, that's actually not that hard. The matrix is formed by lining up the transformed base vectors, which are u
and v (this works in any number of dimensions, btw), so that gives us:

u,6 v
A=l Tx x
y 'y

Fig 10.2a: a texture. Fig 10.2b: a texture
mapped

A forward texture mapping via affine matrix A.

10.2.2. Affine transformations

The transformations you can do with a 2D matrix are called affine transformations. The technical definition of an affine transformation
is one that preserves parallel lines, which basically means that you can write them as matrix transformations, or that a rectangle will
become a parallelogram under an affine transformation (see fig 10.2b).

Affine transformations include rotation and scaling, but also shearing. This is why I object to the name “Rot/Scale”: that term only
refers to a special case, not the general transformation. It is akin to calling colors shades of red: yes, reds are colors too, but not all
colors are reds, and to call them that would give a distorted view of the subject.

As I said, there are three basic 2d transformations, though you can always describe one of these in terms of the other two. The
transformations are: rotation (R), scaling (S) and shear (H). Table 10.1 shows what each of the transformations does to the regular
metroid sprite. The black axes are the normal base vectors (note that y points down!), the blue axes are the transformed base vectors
and the cyan variables are the arguments of the transformation. Also given are the matrix and inverse matrix of each transformation.
Why? You'll see.

oy A= at=_L [47
c d ad —bc| —¢ a

Table 10.1: transformation matrices and their inverses.

Identity Rotation Scaling Shear

| cos(0) —sin(6) s, O 1Ay
R(e)_[sm(e) cos(e):| S(Sx’sy)_[o s)] H(hx’hy)_[hy 1]

S1(s, . 5,) = H'(h h)=
S(1/s,, 1/s) [H(-h_—h)/(1-hh)

=1 R () = R(-0)

We can now use these definitions to find the correct matrix for enlargements by s _and Sy followed by a counter-clockwise rotation by
o (=0), by matrix multiplication.

file://H:/devig ba/proj/tonc/bak/tonc-chrome.htm 93/331

http://en.wikipedia.org/wiki/Affine

28-03-13 Tonc : GBA Programming in rot13
(10.3) A=R(-0) - (s, .5,) =[scos(a) s, "sin(c)]

—s sin(a) sy-cos(a)

... ermm, wait a sec ... I'm having this strange sense of déja-vu here ...

p
Clockwise vs counterclockwise

clockwise one? Well, traditionally R is given as that particular matrix, in which the angle runs from the x-axis towards the y-
axis. Because y is downward, this comes down to clockwise. However, the affine routines in BIOS use a counter-clockwise
rotation, and I thought it'd be a good idea to use that as a guideline for my functions.

It's a minor issue, but I have to mention it. If the definition of R uses a clockwise rotation, why am I suddenly using a counter-

Nomenclature: Affine vs Rot/Scale

The matrix P is not a rotation matrix, not a scaling matrix, but a general affine transformation matrix. Rotation and scaling
may be what the matrix is mostly used for, but that does not mean they're the only things possible, as the term ‘Rot/Scale’
would imply.

To set them apart from regular backgrounds and sprites, I suppose ‘Rotation’ or ‘Rot/Scale’ are suitable enough, just not
entirely accurate. However, calling the P-matrix by those names is simply wrong.

\

10.3. “Many of the truths we cling to depend greatly upon our own point of view.”

As you must have noticed, eq 10.3 is identical to eq 10.1, which I said was incorrect. So what gives?
Well, if you enter this matrix into the pa-pd elements you do indeed get something different than what
you'd expect. Only now I've proven what you were supposed to expect in the first place (namely a
scaling by s_and Sy followed by a counter-clockwise rotation by). The real question is of course, why
doesn't this work? To answer this I will present two different approaches to the 2D mapping process.

10.3.1. Human point of view
“Hello, I am Cearn's brain. I grok geometry and can do matrix- transformations in my head. Well, his
head actually. When it comes to texture mapping I see the original map (in texture space) and then
visualize the transformation. I look at the original map and look at where the map's pixels end up on

Fig 10.3: Mapping process as
seen by humans. u and v are the
columns of A (in screen space).

screen. The transformation matrix for this is A, which ties texel p to screen pixel q via q= A - p. The
columns of A are simply the transformed unit matrices. Easy as m.”

10.3.2. Computer point of view

“Hello, am Cearn's GBA. I'm a lean, mean gaming machine that fits in your pocket, and I can push
pixels like no one else. Except perhaps my owner's GeForce 4 Ti4200, the bloody show-off. Anyway, one
of the things I do is texture mapping. And not just ordinary texture-mapping, I can do cool stuff like
rotation and scaling as well. What I do is fill pixels, all I need to know is for you to tell me where I should
get the pixel's color from. In other words, to fill screen pixel q, [need a matrix B that gives me the proper
texel p via p =B - q. I'll happily use any matrix you give me; I have complete confidence in your ability
to supply me with the matrix for the transformation you require.”

I hope you spotted the crucial difference between the two points of view. A maps from texture space f0 | B and are mapped to the

screen space, while B does the exact opposite (i.e., B = A™1). I think you know which one you should principle axes in screen space.

Fig 10.4: Mapping process as

. seen by computers. u and v (in
10.3.3. Resolution texture space) are the columns of

give the GBA by now. That's right: P = B, not A. This one bit of information is the crucial piece of the
affine matrix puzzle.

So now you can figure out P's elements in two ways. You can stick to the human POV and invert the matrix at the end. That's why
I gave you the inverses of the affine transformations as well. You could also try to see things in the GBA's way and get the right matrix
directly. Tonc's main affine functions (tonc_video.h,tonc obj affine.cand tonc bg affine.c) do things the GBA
way, setting P directly; but inverted functions are also available using an " inv" affix. Mind you, these are a little slower. Except for

when scaling is involved; then it's a lof slower.
In case you're curious, the proper matrix for scale by (s,, s,) and counter-clockwise rotation by a. is:

A=R(—a) S(s,, sy)
P=A"

= (R(=0)"S(s,,5,))"
=8(s,,5,) " R(-o)"!

Using the inverse matrices given earlier, we find

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

94/331

28-03-13 Tonc : GBA Programming in rot13
(10.4) P— Py Py |_ Cf)S((l)/SX —sin(a) / s,
Do P4 sm(a)/sy cos(a)/sy

4)
Just to make it perfectly clear:

The affine matrix P maps from screen space fo texture space, not the other way around!

In other words:

p, : texture x-increment / pixel
D, - texture x-increment / scanline
D, : texture y-increment / pixel

Py - texture y-increment / scanline
\

10.4. Finishing up

Knowing what the P-matrix is used for is one thing, knowing how to use them properly is another. There are three additional points you
need to remember when you're going to deal with affine objects/backgrounds and the affine matrices.

1. Datatypes
2. Luts
3. Initialisation

10.4.1. Data types of affine elements
Affine transformations are part of mathematics and, generally speaking, math numbers will be real numbers. That is to say, floating point
numbers. However, if you were to use floating points for the P elements, you'd be in for two rude surprises.

The first one is that the matrix elements are not floats, but integers. The reason behind this is that the GB A has no floating point
unit! All floating-point operations have to be done in software and without an FPU, that's going to be pretty slow. Much slower than
integer math, at any rate. Now, when you think about this, it does create some problems with precision and all that. For example, the
(co)sine and functions have a range between —1 and 1, a range which isn't exactly large when it comes to integers. However, the range
would be much greater if one didn't count in units of 1, but in fractions, say in units of 1/256. The [—1, +1] range then becomes [—256,
+256],

This strategy of representing real numbers with scaled integers is known as fixed point arithmetic, which you can read more about
in this appendix and on wikipedia. The GBA makes use of fixed point for its affine parameters, but you can use it for other things as
well. The P-matrix elements are 8.8 fixed point numbers, meaning a halfword with 8 integer bits and 8 fractional bits. To set a matrix to
identity (1s on the diagonals, Os elsewhere), you wouldn't use this:

// Floating point == Bad!!
pa= pd= 1.0;
pb= pc= 0.0;

but this:
// .8 Fixed-point == Good
pa= pd= 1<<8;
pb= pc= 0;

In a fixed point system with Q fractional bits, ‘1’ (‘one”) is represented by 22 or 1<<Q, because simply that's how fractions work.

Now, fixed point numbers are still just integers, but there are different types of integers, and it is important to use the right ones. 8.8f
are 16bit variables, so the logical choice there is short. However, this should be a signed short: s16, not ul 6. Sometimes is doesn't
matter, but if you want to do any arithmetic with them they'd better be signed. Remember that internally the CPU works in words, which
are 32bit, and the 16bit variable will be converted to that. You really want, say, a 16bit "-1" (OxFFFF) to turn into a 32bit "—1"
(0OxFFFFFFFTF), and not "65535" (0x0000FFFF), which is what happens if you use unsigned shorts. Also, when doing fixed point
math, it is recommended to use signed ints (the 32bit kind) for them, anything else will slow you down and you might get overflow
problems as well.

Use 32-bit signed ints for affine temporaries
Of course you should use 32bit variables for everything anyway (unless you actually want your code to bloat and slow down).
If you use 16bit variables (short or s16), not only will your code be slower because of all the extra instructions that are
added to keep the variables 16bit, but overflow problems can occur much sooner.
Only in the final step to hardware should you go to 8.8 format. Before that, use the larger types for both speed and
accuracy.

\

10.4.2. LUTs

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 95/331

file:///H:/dev/gba/proj/tonc/bak/fixed.htm
http://en.wikipedia.org/wiki/Fixed-point_arithmetic

28-03-13
So fixed point math is used because floating point math is just to slow for efficient

Tonc : GBA Programming in rot13

use. That's all fine and good for your own math, but

what about mathematical functions like sin() and cos()? Those are still floating point internally (even worse, doub1es!), so those are

going to be ridiculously slow.

Rather than using the functions directly, we'll use a time-honored tradition to weasel our way out of using costly math functions:
we're going to build a look-up table (LUT) containing the sine and cosine values. There are a number of ways to do this. If you want an
easy strategy, you can just declare two arrays of 360 8.8f numbers and fill them at initialization of your program. However, this is a poor

way of doing things, for reasons explained in the section on LUTs in the appendix.

Tonclib has a single sine lut which can be used for both sine and cosine values
of 512 4.12f entries (12 fractional bits), created by my excellut Iut creator. In ton
retrieve sine and cosine values:

//! Look-up a sine and cosine values

/*! \param theta Angle in [0,FFFFh] range

* \return .12f sine value

*/

INLINE s32 lu sin(uint theta)

{ return sin lut[(theta>>7)&0x1FF]; }
INLINE s32 lu cos(uint theta)

{ return sin lut[((theta>>7)+128) &0x1FF]; }

. The lutis called sin lut,a const short array

c_math.h you can find two inline functions that

Now, note the angle range: 0-10000h. Remember you don't zave to use 360 degrees for a circle; in fact, on computers it's better to
divide the circle in a power of two instead. In this case, the angle is in 2! parts for compatibility with BIOS functions, which is brought

down to a 512 range inside the look-up functions.

10.4.3. Initialization

When flagging a background or object as affine, you must enter at least some values into pa-pd. Remember that these are zeroed out
by default. A zero-offset means it'll use the first pixel for the whole thing. If you get a single-colored background or sprite, this is
probably why. To avoid this, set P to the identity matrix or any other non-zero matrix.

10.5. Tonc's affine functions

Tonclib contains a number of functions for manipulating the affine parameters of objects and backgrounds, as used by the

OBJ AFFINE and BG AFFINE structs. Because the affine matrix is stored differently in both structs you can't set them with the
same function, but the functionality is the same. In table 10.2 you can find the basic formats and descriptions; just replace foo with
obj afforbg aff and FOO with OBJ or BG for objects and backgrounds, respectively. The functions themselves can be found in
tonc_obj affine.c for objects, tonc _bg affine.c for backgrounds, and inlines for both in tonc_video.h ...

somewhere.

Function

Description

void foo_copy(FOO_AFFINE *dst, const FOO_AFFINE *src, uint count);

Copy affine parameters

void foo_identity(FOO_AFFINE *oafY);

P=1I

void foo_postmul(FOO_AFFINE *dst, const FOO _AFFINE *src);

Post-multiply: D =D-S

void foo _premul(FOO_AFFINE *dst, const FOO AFFINE *src);

Pre-multiply: D = S-D

void foo_rotate(FOO_AFFINE *aff, ul6 alpha);

Rotate counter-clockwise by o-7/8000h.

void foo_rotscale(FOO_AFFINE *aff, FIXED sx, FIXED sy, ul6 alpha);

Scale by 1/s_and 1/s_, then rotate counter-clockwise
by a-/8000h.

void foo_rotscale2(FOO_AFFINE *aff, const AFF_SRC *as);

As foo rotscale (), but input stored in an
AFF SRC struct.

void foo_scale(FOO _AFFINE *aff, FIXED sx, FIXED sy);

Scale by 1/s, and l/sy

void foo _set(FOO_AFFINE *aff, FIXED pa, FIXED pb, FIXED pc, FIXED
pd);

Set P's elements

void foo_shearx(FOO_AFFINE *aff, FIXED hx);

Shear top-side right by /_

void foo_sheary(FOO_AFFINE *aff, FIXED hy);

Shear left-side down by hy

Table 10.2: affine functions

10.5.1. Sample rot/scale function

My code for a object version of the scale-then-rotate function (a la eq 10.4) is given below. Note that it is from the computer's point of
view, so that sx and sy scale down. Also, the alpha alpha uses 10000h/circle (i.e., the unit of a is 7/8000h = 0.096 mrad, or
180/8000h = 0.0055°) and the sine lut is in .12f format, which is why the shifts by 12 are required. The background version is identical,
except in name and type. If this were C++, templates would have been mighty useful here.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

96/331

file:///H:/dev/gba/proj/tonc/bak/fixed.htm#sec-lut
http://www.coranac.com/projects/#excellut

28-03-13 Tonc : GBA Programming in rot13

void obj aff rotscale(OBJ AFFINE *oaff, int sx, int sy, ul6 alpha)
{

int ss= lu sin(alpha), cc= lu cos(alpha);

oaff->pa= cc*sx>>12; oaff->pb=-ss*sx>>12;
oaff->pc= ss*sy>>12; oaff->pd= cc*sy>>12;
}

With the information in this chapter, you know most of what you need to know about affine matrices, starting with why they should be
referred to affine matrices, rather than merely rotation or rot/scale or the other names you might see elsewhere. You should now know
what the thing actually does, and how you can set up a matrix for the effects you want. You should also know a little bit about fixed
point numbers and luts (for more, look in the appendices) and why they're Good Things; if it hadn't been clear before, you should be
aware that the choice of the data types you use actually matters, and you should not just use the first thing that comes along.

What has not been discussed here is how you actually set-up objects and backgrounds to use affine transformation, which is what
the next two chapters are for. For more on affine transformations, try searching for ‘linear algebra’

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 97/331

file:///H:/dev/gba/proj/tonc/bak/fixed.htm

28-03-13 Tonc : GBA Programming in rot13

11. Affine sprites

Affine sprite introduction.

Affine sprite initialization.
Graphical artifacts.

A very (af)fine demo.
Off-center reference points and object combo's.

11.1. Affine sprite introduction

Essentially, affine sprites are still sprites. The difference with regular sprites is that you can perform an affine transformation (hence
the name) on them before the rendering stage by setting the right bits in the object attributes and filling in the P matrix. You can read
about affine transformations and the P matrix here. It is required reading for this section, as are the sprite and background overview and
the regular sprite page.

You may wonder whether this is really worth a separate section. The short answer is yes. A longer answer is yes, because using
affine sprites involves a lot more math than regular sprites and I didn't want to freak out the, erm, ‘mathematically challenged’. The
section on regular sprites can stand on its own and you can use it in blissful ignorance of the nasty math that it required for affine sprites.

In this chapter we'll see how to set-up object to use affine transformations. This in itself is rather easy. Also discussed are a number
of potential graphical problems you might run into sooner or later —one of them almost immediately, actually— and how to correct the
sprite's position to make it seem like the transformation's origin is at an arbitrary point. And, as usual, there will be demo-code illustrating
the various topics raised in this chapter.

11.2. Affine sprite initialization

To turn a regular sprite into an affine sprite you need to do two things. First, set OBJ ATTR.attr0{8} to indicate this is a affine
sprite. Second, put a number between 0 and 31 into OBJ_ ATTR.attr1{8-C}. This number indicates which of the 32 Object Affine
Matrices (OBJ_AFFINE structures) should be used. In case you've forgot, the OBJ AFFINE looks like this:

typedef struct OBJ AFFINE
{
ule £1110[3];
sl6 pa;
ule £i111([3];
sl6 pb;
ule £i112([3];
sl6 pc;
ule £i1l13([3];
sl6 pd;
} ALIGN4 OBJ AFFINE;

The signed 16bit members pa, pb, pc and pd are 8.8 fixed point numbers that form the actual matrix, which I will refer to as P, in
correspondence with the elements' names. For more information about this matrix, go to the affine matrix section. Do so now if you
haven't already, because I'm not going to repeat it here. If all you are after is a simple scale-then-rotate matrix, try this: for a zoom by s_
and s, followed by a counter-clockwise rotation by a, the correct matrix is this:

p— Py Py |_ cos(a) /s, —sin(a)/s,
D. Dy sin(a) /sy cos(a) /sy

Note that the origin of the transformation is center of the sprite, not the top-left corner. This is worth remembering if you want to align
your sprite with other objects, which we'll do later.

()
Essential affine sprite steps
e Set-up an object as usual: load graphics and palette, set REG_DISPCNT, set-up an OAM entry.
¢ Set bit 8 of attribute 0 to enable affinity for that object, and choose an object affine matrix to use (attribute 1, bits 8-
12).
¢ Set that obj affine matrix to something other than all zeroes, for example the identity matrix.

11.3. Graphical artifacts

11.3.1. The clipping and discretization artifacts
The procedure that the GBA uses for drawing sprites is as follows: the sprite forms a rectangle on the screen defined by its size. To

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 98/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-init
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-artifact
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-combo
file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/objbg.htm
file:///H:/dev/gba/proj/tonc/bak/regobj.htm
file:///H:/dev/gba/proj/tonc/bak/regobj.htm
file:///H:/dev/gba/proj/tonc/bak/affine.htm

28-03-13 Tonc : GBA Programming in rot13

paint the screen pixels in that area (q) uses texture-pixel p, which is calculated via:

(111 p-p,=P - (q—q),

where p, and q, are the centers of the sprite in texture and screen space, respectively. The code below is essentially what the hardware
does; it scans the screen-rectangle between plus and minus the half-width and half-height (half-sizes because the center is the reference
point), calculates the texture-pixel and plots that color.

// pseudocode for affine objects
hwidth= width/2; // half-width of object screen canvas
hheight= hheight/2; // half-height of object screen canvas
for (iy=-hheight; iy<hheight; iy++)
{

for (ix=-hwidth; ix<hwidth; ix++)

{

px= (pa*ix + pb*iy)>>8; // get x texture coordinate
py= (pc*ix + pd*iy)>>8; // get y texture coordinate
color= GetPixel (px0+px, pyO+py); // get color from (px,py)
SetPixel (gx0+ix, qyO+iy, color); // set color to (gx, qy)

}

This has two main consequences, the clipping artifact and a discretization artifact.

The clipping artifact is caused by scanning only over the rectangle on-screen. But almost all
transformations will cause the texture pixels to exceed that rectangle, and the pixels outside the rectangle
will not be rendered. Fig 11.1 shows the screen rect (grey, blue border) and a rotated object (inside the
red border). The parts that extend the blue borderlines will not be cut off.

As this is an obvious flaw, there is of course a way around it: set the sprite's affine mode to double-
sized affine (ATTRO AFF DBL,0BJ ATTR.attr0{89}). This wil double the screen range of valid
q coordinates, so you'd have + and — the width and height to play with instead of the half-sizes. This
double (well quadruple, really) area means that you can safely rotate a sprite as the maximum distance
from the center is /4V2 = 0.707. Of course, you can still get the clipping artifact if you scale up beyond
the doubled ranges. Also, note that the sprites' origin is shifted to the center of this rectangle, so that q,, is | Fig 11.1: a partially defanged
now one full sprite-size away from the top-left corner. metroid, since the parts outside

The double-size flag also has a second use. Or perhaps I should say misuse. If you set it for a regular | the Plue square are clipped off.
sprite, it will be hidden. This is an alternative way to hide unused sprites.

The second artifact, if you can call it that, is a discretization artifact. This is a more subtle point than the clipping artifact and you might
not even ever notice it. The problem here is that the transformation doesn't actually take place at the center of the object, but at the
center pixel, rounded up. As an example, look at fig 11.2. Here we have a number-line from 0 to 8; and in between them 8 pixels from
0 to 7. The number at the center is 4, of course. The central pixel is 4 as well, however its location is actually halfway between numbers
4 and 5. This creates an unbalance between the number of pixels on the left and on the right.

The center pixel is the reference point of the transformation algorithm, which has indices (ix, iy) = (0, 0). Fill that into the equations
and you'll see that this is invariant under the transformation, even though mathematically it should not. This has consequences for the
offsets, which are calculated from the pixel, not the position. In fig 11.2, there are 4 pixels on the left, but only 3 on the right. A mirroring
operation that would center on pixel 4 would effectively move the sprite one pixel to the right.

Fig 11.3 shows how this affects rotations. It displays lines every grey gridlines every 8 pixels and a 16x16 sprite of a box. Note that
at the start the right and left sides do not lie on the gridlines, because the sprite's width and height is 16, not 17. The other figures are
rotations in increments of 90°, which gives nice round numbers in the matrix. When rotating, the center pixel (the red dot in the middle)
stays in the same position, and the rest rotate around it, and this process will carry the edges out of the designated 16x16 box of the
sprite (the dashed lines).

0° 90° 180" 270°

Fig 11.3: Rotations in 90° increments.

F 3

4 ' 3

Fig 11.2: pixels are between, not on, coordinates.

L J

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 99/331

28-03-13 Tonc : GBA Programming in rot13

The offsets measure distance from the center pixel, not center position.

The offsets that are calculated from the affine matrix use the distances from the center pixel (w/2, 4/2), not the center point.
As such, there is a half a pixel deviation from the mathematical transformation, which may result in a +pixel offset for the
sprite as a whole and lost texture edges.

11.3.2. The wrapping artifact

Apart from the clipping artifact, there seems to be another; one that I have actually never seen mentioned anywhere. It's what I call the
wrapping artifact. As you know, the position for sprites is given in a 9bit x-value and an 8bit y-value, which values wrap around the
screen. For x, you can just interpret this as having the [-256, 255] range. For y values, you can't really do that because the top value for
a signed 8bit integer is 127, which would mean that you'd never be able to put a sprite at the bottom 32 lines. But since the values wrap
around, it all works out in the end anyway. With one exception.

There's never any trouble with regular sprites, and hardly any for affine sprites; the one exception is when you have a 64x64 or
32x64 affine sprite with the double size flag switched on. Such a sprite has a bounding box of 128x128. Now there are three different
ways of interpreting the meaning of y > 128:

1. Full-wrap: the top of the sprite would show at the bottom of the screen, and vice versa.

2. Positive precedence: consider the [128, 159] range as indicative of the bottom of the screen, and forget the wrap.

3. Negative precedence: if y value would make the sprite appear partially at the top, consider it to be negative, again neglecting
the wrap.

As it happens, the GBA uses the third interpretation. In other words, it uses
// pseudo code

if (oam.y + bbox height > 256)
oam.y -= 256;

Note, by the way, that VBA and BoycottAdvance both use interpretation #2, which may seem more logical, but is incorrect. As you can
tell, it can only happen with a 32x64 or 64x64, double-sized sprite, and even then you'll only notice it under very specific conditions,
namely if the transformed sprite has visible pixels inside the top 32 lines of the bounding box. In the case that you have this problem, as
far as I can tell the only way to get the sprite showing at the bottom of the screen is if you reduce the height to 32 for the time being.

11.4. A very (af)fine demo

I have a really interesting demo for you this time called obj aff. It features a normal (boxed) metroid, which can be scaled, rotated
and scaled. Because these transformations are applied to the current state of the matrix, you can end up with every kind of affine
matrix possible by concatenating the different matrices. The controls are as follows:

L,R Rotates the sprite CCW and CW, respectively.
D-pad Shears the sprite.
pa(]l?l-Sel Moves sprite around.
A,B Expands horizontally or vertically, respectively.
A,B+Sel Shrinks horizontally or vertically, respectively. (I ran out of buttons, so had to do it like this).

Toggles double-size flag. Note that a) the corners of a rotated sprite are no longer clipped and b) the position
shifts by 1/2 sprite size.

Start+SelResets P to normal
Select Control button (see A, B and Start).

Start

The interesting point of seeing the transformations back to back is that you can actually see the difference between, for example, a
scaling followed by a rotation (A=S-R), and a rotate-then-scale (A=R-S). Figs 11.4 and 11.5 show this difference for a 45° rotation and
a 2x vertical scale. Also, note that the corners are cut off here: the clipping artifact at work — even though I've already set the double-
size flag here.

Fig 11.4: obj aff, via S(1,2), then R(45°) Fig 11.5: obj aff, via R(45°), then S(1,2)

The full source code for the obj aff demo is given below. It's quite long, mostly because of the amount of code necessary for
managing the different affine states that can be applied. The functions that actually deal with affine sprites are init metr (),

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 100/331

28-03-13 Tonc : GBA Programming in rot13

get aff new () and part of the game loop in objaff test (); the restis essentially fluff required to making the whole thing
work.

// obj aff.c

#include <tonc.h>
#include <stdio.h>

#include "metr.h"

OBJ ATTR obj buffer[128];
OBJ AFFINE *obj aff buffer= (OBJ AFFINE*)obj buffer;

// affine transformation constants and variables
enum eAffState
{
AFFiNULL:O, AFFﬁROTATE, AFF7$CALE7X, AFF78CALE7Y,
AFF SHEAR X, AFF SHEAR Y, AFF COUNT
}i

// 'speeds' of transformations

const int aff diffs[AFF COUNT]= { O, 128, 4, 4, 4, 4 };
// keys for transformation direction

const int aff keys[AFF COUNT]=

{ 0, KEY L, KEY SELECT, KEY SELECT, KEY RIGHT, KEY UP };
int aff state= AFF NULL, aff value= 0;

void init metr ()

{
// Places the tiles of a 4bpp metroid sprite into LOW obj VRAM
memcpy32 (tile mem[4], metr boxTiles, metr_boxTilesLen/4);
memcpy32 (pal obj mem, metrPal, metrPallen/4);

// Set up main metroid
obj set attr(obj buffer,

ATTRO_ SQUARE | ATTRO_AFF, // Square affine sprite
ATTR1_SIZE 64 | ATTR1_AFF_ID(0), // 64x64, using obj aff[0]
01 0); // palbank 0, tile 0

obj set pos(obj buffer, 96, 32);
obj_aff identity(&obj_aff buffer[0]);

// Set up shadow metroid
obj set attr(&obj buffer([l],

ATTRO_ SQUARE | ATTRO_AFF, // Square affine sprite
ATTR1 SIZE 64 | ATTR1 AFF ID(31), // 64x64, using obj aff[0]
ATTR2_ PALBANK (1) | 0); // palbank 1, tile 0

obj set pos(&obj buffer[l], 96, 32);
obj aff identity(&obj aff buffer[31]);

ocam update all();

int get aff state()

if (key is down(KEY L | KEY R))
return AFF ROTATE;
if (key is down (KEY A))
return AFF SCALE X;
if (key is down (KEY B))
return AFF SCALE Y;
if (key is down (KEY LEFT | KEY RIGHT))
return AFF SHEAR X;
if (key is down (KEY UP
return AFF SHEAR Y;
return AFF NULL;

KEY DOWN))

void get aff new(OBJ AFFINE *oa)

{
int diff= aff diffs[aff state];

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 101/331

28-03-13 Tonc : GBA Programming in rot13
aff value += (key is down(aff keys[aff state]) ? diff : -diff);

switch(aff state)

{

case AFF ROTATE: // L rotates left, R rotates right
aff value &= SIN MASK;
obj aff rotate(oa, aff value);

break;

case AFF SCALE X: // A scales x, +SELECT scales down
obj aff scale inv(oa, (1<<8)-aff value, 1<<8);
break;

case AFF SCALE Y: // B scales y, +SELECT scales down
obj aff scale inv(oa, 1<<8, (1<<8)-aff value);
break;

case AFF_SHEAR X: // shear left and right
obj aff shearx(oa, aff value);
break;

case AFF SHEAR Y: // shear up and down
obj aff sheary(oa, aff value);
break;

default: // shouldn't happen

obj aff identity(oa);

void objaff test()
{
OBJ ATTR *metr= &obj buffer[0], *shadow= &obj buffer[l];
OBJ AFFINE *oaff curr= &obj aff buffer([0];
OBJ AFFINE *oaff base= &obj aff buffer([1l];
OBJ AFFINE *oaff new= &obj aff buffer([2];

int x=96, y=32;
int new state;

// oaff curr = oaff base * oaff new

// oaff base changes when the aff-state changes
// oaff new is updated when it doesn't

obj aff identity(caff curr);

obj aff identity(caff base);

obj aff identity(ocaff new);

while (1)
{
key poll();

// move sprite around
if(key is down (KEY SELECT) && key is down (KEY DIR))
{

// move

x += 2*key tri horz();

y += 2*key tri vert();

obj set pos(metr, x, y);
obj set pos(shadow, x, y);
new_state= AFF NULL;
}
else // or do an affine transformation
new state= get aff state();

if (new_state != AFF_NULL) // no change
{
if (new state == aff state) // increase current transformation
{
get aff new(oaff new);
obj aff copy(ocaff curr, obj aff base, 1);
obj aff postmul (oaff curr, oaff new);
}
else // switch to different transformation type
{
obj aff copy(ocaff base, ocaff curr, 1);
obj aff identity(ocaff new);
aff value= 0;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

102/331

28-03-13 Tonc : GBA Programming in rot13
}

aff state= new state;

}

// START: toggles double-size flag
// START+SELECT: resets obj aff to identity
if (key _hit (KEY START))
{
if (key is down (KEY SELECT))
{
obj aff identity(oaff curr);
obj aff identity(caff base);
obj aff identity(ocaff new);
aff value= 0;
}
else

{
metr->attr0 ~= ATTRO DBL BIT;
shadow->attr0 ~= ATTRO DBL BIT;

}
vid vsync();

// we only have one OBJ ATTR, so update that
obj copy(obj mem, obj buffer, 2);

// we have 3 OBJ AFFINEs, update these separately
obj aff copy(obj aff mem, obj aff buffer, 3);

// Display the current matrix

tte printf("#{es;P:8,136}P = "
"#{y:=7;Ps}| $04X\t%04X#{Pr;x:72}|"
"§#{Pr;y:12}| %04X\t%04X#{Pr;p:72,12}|",
(ul6)oaff curr->pa, (ul6)oaff curr->pb,
(ule)oaff curr->pc, (ul6)oaff curr->pd);

}

int main ()

{
REG_DISPCNT= DCNT BGO | DCNT OBJ | DCNT OBJ 1D;

cam_init (obj buffer, 128);
init metr();

tte init chr4 b4 default (0, BG CBB(2) |[BG SBB(28));
tte init con();
tte set margins (8, 128, 232, 160);

objaff test();

return 0;

}

Making the metroid an affine sprite is all done inside init metr (). As you've seen how bits are set a number of times by now, it
should be understandable. That said, do note that I am filling the first OBJ AFFINE (the one that the sprite uses) to the identity matrix I.
If you keep this fully zeroed-out, you'll just end up with a 64x64-pixel rectangle of uniform color. Remember that P contains pixel offsets;
if they're all zero, there is no offset and the origin's color is used for the whole thing. In essence, the sprite is scaled up to infinity.

To be frank though, calling obj aff identity () isn't necessary after a callto oam init (), as that initializes the matrices
as well. Still, you need to be aware of potential problems.

That's the set-up, now for how the demo does what it does. At any given time, you will have some transformation matrix, P. By pressing
a button (or not), a small transformation of the current state will be performed, via matrix multiplication.

_ .1
l)new_Pold D ’

where D is either a small rotation (R), scaling (S) or shear (H). Or a no-op (I). However, there is a little hitch here. This would work
nice in theory, but in practice, it won't work well because the fixed point matrix multiplications will result in unacceptable round-off
errors very very quickly. Fortunately, all these transformations have the convenient property that

D(a)-D(b) = D(c).

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 103/331

28-03-13 Tonc : GBA Programming in rot13

That is to say, multiple small transformations work as one big one. All you have to do is keep track of the current chosen transformation
(the variable aff state,inget aff state ()), modify the state variable (aff value), then calculate full transformation
matrix (get aff new ()) and apply that (with obj aff postmul ()). When a different transformation type is chosen, the
current matrix is saved, the state value is reset and the whole thing continues with that state until yet another is picked. The majority of
the code is for keeping track of these changes; it's not pretty, but it gets the job done.

11.5. Off-center reference points and object combos

As mentioned earlier, affine sprites always use their centers as affine origins, but there are
times when one might want to use something else to rotate around — to use another point as
the reference point. Now, you can't actually do this, but you can make it look as if youcan. | | Ty
To do this, I need to explain a few things about what I like to call anchoring. The anchor is (RN
the position that is supposed to remain ‘fixed’; the spot where the texture (in this case the ;
object) is anchored to the screen. ; =
For anchoring, you actually need one set of coordinates for each coordinate-space N
you're using. In this case, that's two: the texture space and the screen space. Let's call
these points p, and q, respectively. Where these actually point from is largely immaterial,
but for convenience' sake let's use the screen and texture origins for this. These points are
only the start. In total, there are seven vectors that we need to take into account for the full
procedure, and they are all depicted in fig 11.6. Their meanings are explained in the table below.

Screen Texture

Fig 11.6: rotation of object around an off-center
point.

point description
P, q, Anchorsintexture and screen space.
€€, Object centers in texture and screen space. With the object sizes, s=(w,h), we have cpzl/zs and ¢, ms, where m
is ¥4 or 1, depending on the double-size flag.

r,r, Distances between object centers and anchors. By definition, r,= P’rq

X Desired object coordinates.
Yes, it is a whole lot of vectors, but funnily enough, most are already known. The center points (cp and cq) can be derived from the
objects size and double-size status, the anchors are known in advance because those are the input values, and r_and r_ fit the general
equation for the affine transformation, eq 1, so this links the two spaces. All that's left now is to write down and solve the set of
equations.

+e¢ +r =
xte, tro=q,
+ =
11.2) cp rp Py
r =Pr
p q

Three equations with three unknowns, means it is solvable. I won't post the entire derivation because that's not all that difficult; what you
see in eq 11.3 is the end result in the most usable form.

(11.3) x=q,—ms— P! (p,— Ys)

The right-hand side here has three separate vectors, two of which are part of the input, a scaling flag for the double-size mode, and the
inverted affine matrix. Yes, I did say inverted. This is here because the translations to position the object correctly mostly take place in
screen-space. The whole term using it is merely r, the transformed difference between anchor and center in texture space, which you
need for the final correction.

Now, this matrix inversion means two things. First, that you will likely have to set-up two matrices: the affine matrix itself, and its
inverse. For general matrices, this might take a while, especially when considering that if you want scaling, you will have to do a division
somewhere. Secondly, because you only have 16bits for the matrix elements, the inverse won't be the exact inverse, meaning that
aligning the objects exactly will be difficult, if not actually impossible. This is pretty much guaranteed by the hardware itself and I'll return
to this point later on. For now, let's look at a function implementing eq 11.3 in the case of a 2-way scaling followed by a rotation.

// === 1in tonc_types.h ===

// This is the same struct that's used in BgAffineSet,

// where it 1is called BGAffineSource, even though its uses go
// beyond just backgrounds.

typedef struct tagAFF SRC EX

{

s32 tex x, tex y; // vector pO: anchor in texture space (.8f)
sl6é scr_x, src y; // vector g0: anchor in screen space (.0f)
s1l6 sx, sy; // scales (Q.8)

ul6 alpha; // CCW angle (integer in [0, 0xFFFF])

} AFF SRC_EX;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 104/331

28-03-13 Tonc : GBA Programming in rot13

// === in tonc_core.c ===
// Usage: oam_sizes[shape] [size] 1is (w,h)
const u8 oam sizes[3][4][2]=
{
{ {8, 8}, {16,116}, {32,32}, {64,064} 1},
{ {16, 8}, {32, 8}, {32,106}, {64,32} 1},
{ { 8,16}, { 8,32}, {16,32}, {32,064} 1},
}i

// === in tonc_obj affine.c ===
void obj rotscale ex(OBJ ATTR *obj, OBJ AFFINE *oa, AFF SRC EX *asx)
{

int sx= asx->sx, Sy= asx->sy;

int sina= lu sin(asx->alpha)>>4, cosa= lu cos(asx->alpha)>>4;

// (1) calculate P
oa->pa= sx*cosa>>8; oa->pb= -sx*sina>>8;
oa->pc= sy*sina>>8; oa->pd= sy*cosa>>8;

// (2) set-up and calculate A= P"-1
// sx = 1/sx, sy = 1/sy (.12f)
sx= Div (1<<20, sx):

if(sx != sy)
sy= Div (1<<20, sy);
else
Sy= sX;
FIXED aa, ab, ac, ad; // .8f
aa= sx*cosa>>12; ab= sy*sina>>12;
ac= -sx*sina>>12; ad= sy*cosa>>12;

// (3) get object size
sx= oam_sizes[obj->attr0>>14] [obj->attrl>>14][0];
sy= oam_sizes[obj->attr0>>14] [obj->attrl>>14][1];

// (4) calculate dx = g0 - ms - A* (p0-s/2)

int dx= asx->src_x, dy= asx->src_y; // .0f

if (obj->attr0&ATTRO DBI, BIT)

{ dx -= sx; dy -=sy; }

else

{ dx -= sx>>1; dy -= sy>>1; }

sx= asx->tex x - (sx<<7); // .8f

sy= asx->tex_y - (sy<<7); // .8f

dx -= (aa*sx + ab*sy)>>16; // .0 - (.8f*.8f/.16f)
dy -= (ac*sx + ad*sy)>>16; // .0 - (.8f*.8f/.16f)

// (5) update OBJ ATTR
obj set pos(obj, dx, dy):;
}

The AFF SRC_EX struct and oam sizes arrays are supporting entities of the function that does the positioning, which is
obj rotscale ex (). This creates the affine matrix (pa-pd), and carries out all the necessary steps for eq 11.3, namely create
the inverse matrix A (aa-ad), calculate all the offsets and correcting for the sizes, and finally updating the OBJ ATTR. Note that the

fixed point accuracy varies a lot, so it is important to comment often on this

As 1 said, this is not a particularly fast function; it takes roughly a scanline worth of cycles. If you need more speed, I also have a

thumb-asm version which is about 40% faster.

11.5.1. Affine object combo demo
The demo for this section, cacombo, will display three versions of essentially the same object, namely the circle of 11.7.
The difference between them is in how they are constructed

0. 1 32x32p object, full circle.
1. 2 32x16p objects, two semi-circles.
2. 4 16x16p objects, four quarter-circles.

The point of this demo will be to rotate them and position the components of the combined sprites (ebject combos) as if
they were a single sprite. This requires off-center anchors and therefore ties in nicely with the subject of this section. To
manage the combos, I make use of the following struct.

typedef struct OACOMBO
{

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

Fig 11.7:
object for

oacombo

105/331

28-03-13 Tonc : GBA Programming in rot13

OBJ ATTR *sub obj; // obj pointer for sub-objects
POINT *sub pos; // Local sub-object coords (.8f)
int sub_count; // Number of sub-objects
POINT pos; // Global position (.8f)
POINT anchor; // Local anchor (.8f)
sl6 sx, sy; // scales (.8f)
ul6 alpha; // CCW angle
} OACOMBO;

Each combo is composed of sub _count objects; sub_oe is a pointer to the array storing these objects, and sub_pos is a pointer to
the list of (top-left) coordinates of these objects, relative to the top-left of the full sprite. This global position is in pos. The anchor (in
anchor) is also relative to this position. The global screen-anchor would be at pos+anchor, and the texture-anchor of sub-object ii
at anchor-sub pos[ii].

The rotation will take place around the center of the circle, so that's an anchor of (16,16). Or, rather (16,16)*256 because they're .8
fixed point numbers, but that's not important right now. For the full circle, this will be the center of the object, but it'll still need to be
corrected for the double-size flag. For the other combos, the anchor will not be at the center of their sub-objects.

Because the sub-objects share the same P matrix, it'd be a waste to recalculate it the whole time, so I'm using a modified version of
it especially tailored to OACOMBO structs called oac rotscale (). The code is basically the same though. The cacs [] array forms
the three combos, which are initialized at definition because that makes things so much easier. The full circle is at (16,20), the semis at
(80,20) and the one composed of quarter circles is at (48,60). The obj data [] array contains the data for our seven objects, and is
copied to obj buffer in the initialization function. While it is generally true that magic numbers (such as using hex for OAM
attributes) are evil, it is also true that they really aren't central to this story and to spend a lot of space on initializing all of them in the
‘proper’ fashion may actually do more harm than good ... this time. I am still using #defines for the anchor and a reference point though,
because they appear multiple times in the rest of the code.

// oacombo.c

#include <stdio.h>
#include <ton.h>

#include "oac gfx.h"

#define AX (16<<8) // X-anchor

#define AY (16<<8) // Y-anchor

#define X0 120 // base X

#define YO 36 // base Y

// === GLOBALS =mmm==mmmmmmmmm oo e e e e e e e e e

OBJ ATTR obj buffer[128];
OBJ AFFINE *obj aff buffer=

// Obj templates

const OBJ ATTR obj datal[7]=

{
// obj[0] , oaff[0]: 1
{ 0x0300, 0x8200, 0x000
// obj[1-2], oaff[l]: 2
{ 0x4300, 0x8200, 0x000
{ 0x4300, 0x8200, 0x000

// obj[3-7], ocaff[l]: 4 16x16p double-affine quarter-circles

{ 0x0300, 0x4400, 0x001

{ 0x0300, 0x4400, 0x001

{ 0x0300, 0x4400, 0x001

{ 0x0300, 0x4400, 0x001
}i

POINT sub pos[7]=
{
{0,01},
{0,0},{0,AY},

(OBJ AFFINE*)obj buffer;

full 32x32p double-affine circle
0, 0x0000 },

32x16p double-affine semi-circles
0, 0x0000 },
8, 0x0000 },

0, 0x0000 1},
4, 0x0000 1},
8, 0x0000 1},
c, 0x0000 1},

(0,0}, {AX,0}, {0,AY}, {AX,AY},

}i

OACOMBO oacs[3]=
{
// full 32x32p double-a

ffine circle

{ &obj buffer([0], &sub pos([0], 1,

{ (X0-48)<<8, Y0<<8}

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

, {AX, AY}, 256, 256, 0 },

106/331

28-03-13 Tonc : GBA Programming in rot13

// 2 32x16p double-affine semi-circles
{ &obj buffer([l], &sub pos([l], 2,
{ (X0+16)<<8, Y0<<8}, {AX, AY}, 256, 256, 0 },
// 4 16x1l6p double-affine quarter-circles
{ &obj buffer([3], &sub pos([3], 4,
{(X0-16)<<8, (Y0+40)<<8}, {AX, AY}, 256, 256, 0 1},
}i

void oac_rotscale (OACOMBO *oac)
{
int alpha= oac->alpha;
int sx= oac->sx, sy= oac->sy;
int sina= lu_sin(alpha)>>4, cosa= lu cos(alpha)>>4;

// —--—- create P ---
OBJ AFFINE *oaff=
&obj aff buffer[BF GET(ocac->sub obj->attrl, ATTR1 AFF ID)];

oaff->pa= cosa*sx>>8; oaff->pb= -sina*sx>>8;
oaff->pc= sina*sy>>8; oaff->pd= cosa*sy>>8;
// --—- create A ---

// sx = 1/sx, sy = 1/sy (.12f)
sx= Div (1<<20, sx);

if(sx != sy)

sy= Div (1<<20, sy);
else

Sy= SX;
FIXED aa, ab, ac, ad;
aa= sx*cosa>>12; ab= sy*sina>>12; // .8f
ac= -sx*sina>>12; ad= sy*cosa>>12; // .8f
int 1ii;

OBJ ATTR *obj= oac->sub_ obj;

POINT *pt= ocac->sub pos;

// --- place each sub-object ---

for (ii=0; ii<oac->sub count; ii++)

{
int dx, dy; // all .8f
sx= oam_sizes[obj->attr0>>14] [obj->attrl>>14][0]<<7;
sy= oam_sizes[obj->attr0>>14] [obj->attrl>>14][1]<<7;

dx= oac->pos.x+oac->anchor.x - sx; // .8f
dy= oac->pos.y+oac->anchor.y - sy; // .8f

if (obj->attr0&ATTRO DBL BIT)
{ dx -= sx; dy -= sy; }

sx= oac->anchor.x - pt->x - sx;
sy= oac->anchor.y - pt->y - sy;

dx -=
dy -=
BF SET
BF SET

aa*sx + ab*sy)>>8; // .8f
ac*sx + ad*sy)>>8; // .8f
obj->attr0, dy>>8, ATTRO Y);
obj->attrl, dx>>8, ATTR1 X);

obj++; pt++;

void init main ()

{
memcpy32 (pal obj mem, oac_gfxPal, oac gfxPallLen/4);
memcpy32 (tile mem[4], oac gfxTiles, oac_gfxTilesLen/4);

// init objs and obj combos
cam _init();
memcpy32 (obj buffer, obj data, sizeof (obj data)/4);

REG_DISPCNT= DCNT BGO | DCNT OBJ | DCNT OBJ 1D;

tte init chrd4 b4 default (0, BG CBB(2) |[BG _SBB(28));
tte init con();

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

107/331

28-03-13 Tonc : GBA Programming in rot13

// Some labels
tte printf ("#{P:%d,%d}1 full #{P:%d,%d}2 semi #{P:%d,%d}4 quarts",
X0-48, Y0-16, X0+20, YO0-16, X0-20, YO0+74);

int main ()
init main();

int ii, alpha=0;
while (1)
{
vid vsync () ;
key_poll();
alpha -= 128*key tri shoulder();

for(1i1=0; 1i<3; 1i++)
{
oacs[ii].alpha= alpha;
ocac rotscale(&oacs[ii]);
}
oam_ copy (oam mem, obj buffer, 128);
}
return 0;

}

Fig 11.8 on the right shows a screenshot of the demo. There are three main things to
point out here. First, all three objects are indeed roughly the same shape, meaning that
the function(s) work. But this was never really much in doubt anyway, since it just
follows the math. The second point is that there appear to be gaps in the semi- and
quarter-circle combos. If you play with the demo yourself for a while, you'll see these
gaps appear and disappear seemingly at random. Meanwhile, the full-circle object
looks fine throughout. Well mostly anyway.

The cause of this is related to the third point. Compare the pixel clusters of all
three circles, in particular the smaller circles within each of them. Note that even
though they use the exact same P matrix, their formations are different! The reason
for this is that while we may have positioned the sub-objects to make them form a
bigger object, the pixel-mapping for each of them s#ill starts at their centers. This
means that the cumulative offsets that determine which source pixel is used for a given screen pixel will be different and hence you'll get
a different picture, which is especially visible at the seams.

If this is a little hard to visualize, try this: open a bitmap editor and draw a single-width diagonal line. Now duplicate this with a (1, 1)
pixel offset. Instead of a single thick line, you'll have two thin ones with a slit in between. The same thing happens here.

Fig 11.8: oacombo in action. Note the gaps.

The point is that getting affine objects to align perfectly at the seams will be pretty much impossible. Alright, I suppose in some simple
cases you might get away with it, and you could spend time writing code that corrects the textures to align properly, but generally
speaking you should expect a hardware-caused uncertainty of about a pixel. This will be a noticeable effect at the off-center reference
point, which will tend to wobble a bit, or at the seams of affine object combos, where you'll see gaps. A simple solution to the former
would be to rearrange the object's tiles so that the ref-point is not off-center (sounds cheap I know, but works beautifully), or to have
transparent pixels there — you can't notice something wobbling if it's invisible, after all. This would also work for the combo, which might
also benefit from having the objects overlap slightly, although I haven't tried that yet. It may be possible to gain some accuracy by adding
rounding terms to the calculations, but I have a hunch that it won't do that much. Feel free to try though.

Don't let all this talk of the pitfalls of affine objects get to you too much, I'm just pointing out that it might not be quite as simple as you
might have hoped. So they come with a few strings, they're still pretty cool effects. When designing a game that uses them, take the
issues raised in this chapter to heart and make sure your math is in order, it might save you a lot of work later on.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 108/331

28-03-13 Tonc : GBA Programming in rot13

12. Affine backgrounds

o Introduction.
o Affine background registers.
¢ Positioning and transforming affine backgrounds.

e Mapping format.
o sbb aff demo.

12.1. Introduction

This section covers affine backgrounds: the ones on which you can perform an affine transformation via the P matrix. And that's all it
does. If you haven't read — and understood! — the sprite/bg overview and the sections on regular backgrounds and the affine
transformation matrix, do so before continuing,

If you know how to build a regular background and have understood the concepts behind the affine matrix, you should have little
problems here. The theory behind an affine backgrounds are the same as for regular ones, the practice can be different at a number of
very crucial points. For example, you use different registers for positioning and both the map-layout and their format are different.

Of the four backgrounds the GBA has, only the last two can be used as affine backgrounds, and only in specific video modes (see
table 12.1). The sizes are also different for affine backgrounds. You can find a list of sizes in table 12.2.

mode| 0 | 1)2 Sz define (tiles) | (pixels)
bg0 |regjreg| - 00| BG_AFF_16x16 | 16x16 | 128x128
bgl |reg|reg| - 01| BG_AFF 32x32 | 32x32 | 256x256
bg2 |reg|aff | aff 10| BG_AFF 64x64 | 64x64 | 512x512
bg3 |reg| - |aff 11|BG_AFF_128x128|128x128[1024x1024

Table 12.1: video modes

Table 12.2: affine bg si
and background type ae atiine bg sizes

12.2. Affine background registers
Like their regular counterparts, the primary control for affine backgrounds is REG_BGxCNT. If you've forgotten what it does, you can
read a description here. The differences with regular backgrounds are the sizes, and that BG_ WRAP actually does something now. The
other important registers are the displacement vector dx (REG_BGxX and REG_BGxY), and the affine matrix P
(REG_BGxPA-REG_BGxPD). You can find their addresses in table 12.3.

Register length address
REG_BGxCNT |2 0400:0008h + 2-x
REG_BGxPA-PD|2 0400:0020h + 10h-(x-2)
REG BGxX |4 0400:0028h + 10h-(x-2)

REG BGxY |4 0400:002ch + 10h-(x-2)

Table 12.3: Affine background register addresses. Note that x
is 2 or 3 only!

There are a couple of things to take note of when it comes to displacement and transformation of affine backgrounds. First, the
displacement dx uses different registers than regular backgrounds: REG_BGxX and REG_BGxY instead of REG_BGxHOFS and
REG_BGxVOFS. A second point here is that they are 24.8 fixed numbers rather than pixel offsets. (Actually, they are 20.8 fixed
numbers but that's not important right now.)

I usually use the affine parameters via BG_AFFINE struct instead of REG_BGxPA, etc. The memory map in tonc_memmap.h
contains a REG_BG_AFFINE for this purpose. Setting the registers this way is advantageous at times because you'll usually have a
BG_AFFINE struct set up already, which you can then copy to the registers with a single assignment. An example of this is given
below.

The elements of the affine transformation matrix P works exactly like they do for affine sprites: 8.8 fixed point numbers that
describe the transformation from screen to texture space. However for affine backgrounds they are stored consecutively (2 byte offset),
whereas those of sprites are at an 8 byte offset. You can use the bg aff foo functions from tonc bg affine.c to set them to
the transformation you want.

typedef struct tagBG AFFINE

{
sl6 pa, pb;
sl6 pc, pd;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 109/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-regs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-aff-ofs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-map
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/objbg.htm
file:///H:/dev/gba/proj/tonc/bak/regbg.htm
file:///H:/dev/gba/proj/tonc/bak/affine.htm
file:///H:/dev/gba/proj/tonc/bak/regbg.htm#tbl-reg-bgxcnt

28-03-13 Tonc : GBA Programming in rot13

s32 dx, dy
} ALIGN4 BG_AFFINE;

//! BG affine params array
#define REG BG AFFINE ((BG_AFFINE*) (REG BASE+0x0000))

// Default BG_AFFINE data (tonc core.c)
const BG AFFINE bg aff default= { 256, 0, 0, 256, 0, 0 };

// Initialize affine registers for bg 2
REG BG AFFINE[2] = bg aff default;

Regular vs affine tilemap scrolling

Affine tilemaps use different scrolling registers! Instead of REG_ BGxHOFS and REG_BGxVOFS, they use REG_ BGxX
and REG BGxY. Also, these are 32bit fixed point numbers, not halfwords.

12.3. Positioning and transforming affine backgrounds

Now that we know what the displacement and transformation registers are, now let's look at what they do. This is actually a lot trickier
subject that you might think, so pay attention. Warning: this is gonna get mathematical again.

The displacement vector dx works the same as for regular backgrounds: dx contains the background-coordinates that are mapped to the
screen origin. (And not the other way around!) However, this time dx is in fixed number notation. Likewise, the affine transformation

matrix P works the same as for affine sprites: P describes the transformation from screen space to texture space. To put it
mathematically, if we define

T(dx)p:=p +dx

(2.12) 710 dx) = T(—dx)

(12.1b) P=A""
then

(12.2a) T(dx)q=1p

(12.2b) P-q=p

where
p is a point in texture space,
q is a point in screen space,
dx is the displacement vector (REG_BGxX and REG_BGXxY).

A is the transformation from texture to screen space,
P is the transformation screen from to texture space, (REG BGxPA-REG BGxPD).

The problem with eq 12.2 is that these only describe what happens if you use either a displacement or a transformation. So what
happens if you want to use both? This is an important question because the order of transformation matters (like we have seen in the
affine sprite demo), and this is true for the order of transformation and displacement as well. As it happens, translation goes first:

q =A-T(—dx) p
(12.3) Tdx) P -q=p
dx+P-q =p

Another way to say this is that the transformation always uses the top left of the screen as its origin and the displacement tells which
background pixels is put there. Of course, this arrangement doesn't help very much if you want to, say, rotate around some other point
on the screen. To do that you'll have to pull a few tricks. To cover them all in one swoop, we'll combine eq 12.3 and the general
coordinate transformation equation:

dx+P-q =p

P. — — — —
(12.4) (d=49)) =P~ Py

dx+P-q, =p,

dx =p,— P-q,

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 110/331

file:///H:/dev/gba/proj/tonc/bak/affobj.htm#sec-demo

28-03-13 Tonc : GBA Programming in rot13

So what the hell does that mean? It means that if you use this dx for your displacement vector, you perform your transformation around
texture point p,, which then ends up at screen point q,; the P-q, term is the correction in texture-space you have to perform to have the
rotation point at q,, instead of (0,0). So what the hell does #hat mean? It means that before you try to use this stuff you should think about
which effect you are actually trying to pull off and that you have two coordinate systems to work with, not one. When you do, the
meaning of eq 12.4 will become apparent. In any case, the function I use for this is bg rotscale ex (), which basically looks like
this:

typedef struct tagAFF SRC EX
{

s32 tex x, tex y; // vector pO: origin in texture space (24.8f)
slé scr_x, scr_ y; // vector g0: origin in screen space (16.0f)
sl6 sx, sy; // scales (8.8f)

ul6 alpha; // CCW angle (integer in [0,O0xFFFF])

} ALIGN4 AFF_SRC_EX;

void bg rotscale ex(BG AFFINE *bgaff, const AFF SRC EX *asx)
{

int sx= asx->sx, Sy= asx->sy;

int sina= lu sin(asx->alpha), cosa= lu cos(asx->alpha);

FIXED pa, pb, pc, pd;
pa= sx*cosa>>12; pb=-sx*sina>>12; // .8f
pc= sy*sina>>12; pd= sy*cosa>>12; // .8f

bgaff->pa= pa; Dbgaff->pb= pb;
bgaff->pc= pc; bgaff->pd= pd;

bgaff->dx= asx->tex x - (pa*asx->scr_x + pb*asx->scr_y);
bgaff->dy= asx->tex y - (pc*asx->scr x + pd*asx->scr y);
}

This is very similar to the obj rotscale ex () function covered in the off-center object transformation section. The math is
identical, but the terms have been reshuffled a bit. The background version is actually simpler because the affine offset correction can
be done in texture space instead of screen space, which means no messing about with P's inverse matrix. Or with sprite-size corrections,
thank IPU. For the record, yes you can apply the function directly to REG BG AFFINE.

12.3.1. Internal reference point registers

There's one more important thing left to mention about the displacement and transformation registers. Quoting directly from GBA Tek
(except the bracketed parts):

The above reference points [the displacement registers] are automatically copied to internal registers during each vblank,
specifying the origin for the first scanline. The internal registers are then incremented by dmx [REG BGxPB] and dmy
[REG BGxPD] after each scanline.

Caution: Writing to a reference point register by software outside of the Vblank period does immediately copy the new
value to the corresponding internal register, that means: in the current frame, the new value specifies the origin of the
current scanline (instead of the topmost scanline).

Normally this won't matter to you, but if you try to write to REG_BGxY during an HBlank things, might not go as expected. As I learned
the hard way when I tried to get my Mode 7 stuff working. This only affects affine backgrounds, though; regular ones use other
registers.

12.4. Mapping format

Both the map layout and screen entries for affine backgrounds are very different from those of regular backgrounds. Ironically, they are
also a lot simpler. While regular backgrounds divide the full map into quadrants (each using one full screenblock), the affine backgrounds
use a flat map, meaning that the normal equation for getting a screenentry-number n works, making things a whole lot easier.

(12.5) n=tx+tytw

The screen entries themselves are also different from those of regular backgrounds as well. In affine maps, they are / byte long and
only contain the index of the tile to use. Additionally, you can only use 256 color tiles. This gives you access to all the tiles in the base
charblock, but not the one(s) after it.

And that's about it, really. No, wait there's one more issue: you have to be careful when filling or changing the map because VRAM
can only be accessed 16 or 32 bits at a time. So if you have your map stored in an array of bytes, you'll have to cast it to ul 6 or u32
first. Or use DMA. OK, now I'm done.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 111/331

file:///H:/dev/gba/proj/tonc/bak/affobj.htm#sec-combo
http://nocash.emubase.de/gbatek.htm#lcdiobgrotationscaling
file:///H:/dev/gba/proj/tonc/bak/dma.htm

28-03-13 Tonc : GBA Programming in rot13

Regular vs affine tilemap mapping differences

There are two important differences between regular and affine map formats. First, affine screen entries are merely one-byte
tile indices. Secondly, the maps use a linear layout, rather than the division into 32x32t maps that bigger regular maps use.

12.5. sbb_aff demo

sbb_aff is to affine backgrounds what sbb_reg was to regular ones, with a number of
extras. The demo uses a 64x64 tile affine background, shown in fig 12.1. This is divided into
16 parts of 256 bytes, each of which is filled with tiles of one color and the number of that
part on it. Now, if the map-layout for affine backgrounds was the same as regular ones,
each part would form a 16x16t square. If it is a flat memory layout, each part would be a
64x16t strip. As you can see in fig 12.1, it is the latter. You can also see that, unlike regular
backgrounds, this map doesn't wrap around automatically at the edges.

The most interesting thing about the demo are the little black and white crosshairs. The
white crosshairs indicates the rotation point (the anchor). As I said earlier, you cannot
simply pick a map-point p, and say that that is ‘the” rotation point. Well you could, but it
wouldn't give the desired effect. Simply using a map-point will give you a rotating map

Fig 12.1: sbb_aff demo.

around that point, but on screen it'll always be in the top-left corner. To move the map anchor to a specific location on the screen, you
need an anchor there as well. This is q,,. Fill both into eq 12.4 to find the displacement vector you need: dx = p,—P-q,. This dx is going

to be quite different from both p, and q,,. Its path is indicated by the black crosshairs.

The demo lets you control both p, and q,,. And rotation and scaling, of course. The full list of controls is.

D-pad move map rotation point, p,,
D-pad + A move screen rotation point, q,

L,R rotate the background.
B(+Se) scale up and down.
St Toggle wrapping flag.
St+Se Reset anchors and P

#include <stdio.h>
#include <tonc.h>
#include "nums.h"

#define MAP AFF SIZE 0x0100

//
// GLOBALS
//

OBJ ATTR *obj cross= &oam mem[O0];
OBJ ATTR *obj disp= &oam mem[1];

BG AFFINE bgaff;

//
// FUNCTIONS
//
void win textbox (int bgnr, int left,

{

int top, int right,
REG WINOH= left<<8 | right;

REG WINOV= top<<8 | bottom;

REG WINOCNT= WIN ALL | WIN BLD;

REG_WINOUTCNT= WIN ALL;

REG_BLDCNT= (BLD ALL&~BIT (bgnr)) |
REG_BLDY= bldy;

BLD BLACK;

REG DISPCNT |= DCNT WINO;

tte set margins(left, top, right, bottom);

}

void init cross ()

{
TILE cross=

{{

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

int bottom,

int bldy)

112/331

28-03-13

Tonc : GBA Programming in rot13
0x00011100, 0x00100010, 0x01022201, 0x01021201,
0x01022201, 0x00100010, 0x00011100, 0x00000000,

}Yi

tile mem[4][1]= cross;

pal obj mem[0x01]= pal obj mem[0Ox12]= CLR WHITE;
pal obj mem[0x02]= pal obj mem[0Ox11]= CLR BLACK;

obj cross->attr2= 0x0001;
obj disp->attr2= 0x1001;

void init map ()

{

int ii;

memcpy32 (&tile8 mem[0] [1], nums8Tiles, nums8TilesLen/4) ;
memcpy32 (pal bg mem, numsPal, numsPallen/4);

REG_BG2CNT= BG_CBB(0) | BG_SBB(8) | BG_AFF 64x64;
bgaff= bg aff default;

// fill per 256 screen entries (=32x4 bands)
u32 *pse= (u32*)se mem[8];
u32 ses= 0x01010101;
for (1i=0; ii<l6; ii++)
{
memset32 (pse, ses, MAP AFF SIZE/4);
pse += MAP AFF SIZE/4;
ses += 0x01010101;

void sbb_aff ()

{

AFF _SRC_EX asx=
{

32<<8, 64<<8, // Map coords.
120, 80, // Screen coords.
0x0100, 0x0100, O // Scales and angle.

bi

const int DX=256;
FIXED ss= 0x0100;

while (1)

{
vid vsync();
key_poll();

// dir + A : move map in screen coords
if (key is down (KEY A))
{
asx.scr_x += key tri horz();
asx.scr_y += key tri vert();

else // dir : move map in map coords

{
asx.tex x -= DX*key tri horz();
asx.tex y -= DX*key tri vert();

}

// rotate

asx.alpha -= 128*key tri shoulder();

// B: scale up ; B+Se : scale down

if (key is down (KEY B))
ss += (key is down (KEY SELECT) ? -1 : 1);

// St+Se : reset

// St : toggle wrapping flag.
if (key hit (KEY START))

{

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

113/331

28-03-13 Tonc : GBA Programming in rot13

if (key is down (KEY SELECT))
{
asx.tex x= asx.tex y= 0;
asx.scr x= asx.scr y= 0;
asx.alpha= 0;
ss= 1<<8;
}
else
REG_BG2CNT ~= BG_WRAP;

asx.sx= asx.sy= (1<<16)/ss;

bg rotscale ex(&bgaff, &asx);
REG BG AFFINE[2]= bgaff;

// the cross indicates the rotation point
// (== p in map-space; g in screen-space)
obj set pos(obj cross, asx.scr x-3, (asx.scr_y-3));

obj set pos(obj disp, (bgaff.dx>>8)-3, (bgaff.dy>>8)-3);

tte printf ("#{es;P}pO0\t: (%d, %d)\ngO\t: (%d, %d)\ndx\t:

asx.tex x>>8, asx.tex y>>8, asx.scr X, asx.scr_y,
bgaff.dx>>8, bgaff.dy>>8);

int main ()

{
init map();
init cross();
REG_DISPCNT= DCNT_MODEl | DCNT_BGO | DCNT_BG2 | DCNT_ OBJ;
tte init chrd4 b4 default (0, BG CBB(2) |[BG_SBB(28));
tte init con();
win textbox (0, 8, 120, 232, 156, 8);
sbb_aff();

return 0;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

114/331

28-03-13 Tonc : GBA Programming in rot13

13. Graphic Effects

e Mosaic.
Blending.
Windowing.
Conclusions.

So you know how to put sprites and backgrounds on screen, do ya? Now, how about some extra effects to liven up the place? When
discussing sprites and backgrounds, we left some flags untouched, namely the mosaic and blending flags. There will be covered here.
We'll also be looking into windowing, with which you can create regions to mask out backgrounds or sprites.

13.1. Mosaic

The best description of mosaic is that it makes sprites or tiles look blocky. A mosaic works in two dimensions with parameters w_ and
h,. These numbers divide your sprite or background into blocks of w, x &, pixels. The top-left pixel of each block is used to fill the rest
of that block, which makes it blocky. Fig 13.1 shows a 1x4 mosaic for a metroid sprite. The blue lines indicate the vertical block-
boundaries. The first line of each block is copied to the rest of the block, just like I said. Other examples of the mosaic effect are
Zelda:LTTP when you hit an electric baddie, or Metroid Fusion when an X changes shape.

Fig 13.1: a 1x4 mosaiced metroid.

13.1.1. Using mosaic: sprite/bg flags and REG_MOSAIC

To use mosaic you must do two things. First, you need to enable mosaic. For individual sprites, set OBJ ATTR.attr0{C}. For
backgrounds, set REGBGxCNT{7}. The set the mosaic levels through REG MOSAIC, which looks like this:

REG_MOSAIC @ 0400:004Ch

FEDC|BA98|7 654

3210

ov Oh

bits name define description

0-3 Bh MOS BH# Horizontal BG stretch.
4-7 Bv MOS BV# Vertical BG stretch.

8-B Oh MOS _OHf# Horizontal object stretch.
C-F Ov MOS_OV# Vertical object stretch.

Bv

Bh

The stretch is across how many pixels the base-pixel is stretched. This corresponds to w —1 or , ~1. With a nybble for each effect, you
have stretches between 0 and 15, giving mosaic widths and heights between 1 and 16.

Enabling mosaic

For backgrounds, set bit 7 of REG_BGXCNT. For sprites, set bit 12 in attribute 0. Then set the mosaic levels in

REG_MOSAIC.

13.1.2. A small mosaic demo

There is a demo called mos_demo that illustrates the use of mosaic for both objects and backgrounds.

// mos_demo.c
// bg 0, cbb 0, sbb 31, pb 0: text

file://H:/devig ba/proj/tonc/bak/tonc-chrome.htm

115/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-mos
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-blend
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-win
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-conc
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-mos
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-blend
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-win

28-03-13 Tonc : GBA Programming in rot13

// bg 1, cbb 1, sbb 30, pb 1: bg metroid
// oam 0: tile 0-63: obj metroid

#include <stdio.h>
#include <tonc.h>
#include "metr.h"

voild test mosaic()

{
tte printf ("#{P:48,8}0obj#{P:168,8}bg");
tte set margins(4, 130, 128, 156);

POINT pt obj={0,0}, pt bg={0,0};
POINT *ppt= &pt_obj;

while (1)

{

vid vsync();

// control the mosaic
key poll();

// switch between bg or obj mosaic

ppt= key is down (KEY A) ? &pt bg : &pt obj;

ppt->x += key tri horz(); // inc/dec h-mosaic
ppt->y -= key tri vert(); // inc/dec v-mosaic

ppt->x= clamp (ppt->x, 0, 0x80);
ppt->y= clamp (ppt->y, 0, 0x80);

REG_MOSAIC= MOS_BUILD (pt_bg.x>>3, pt_bg.y>>3, pt_obj.x>>3, pt_obj.y>>3);

tte printf("#{es;P}obj h,v: %$2d,%2d\n bg h,v: %2d,%2d4d",
pt _obj.x>>3, pt obj.y>>3, pt bg.x>>3, pt bg.y>>3);

void load metr ()

{

int ix, iy;

memcpy32 (&tile mem[1][0], metrTiles, metrTilesLen/4);
memcpy32 (&tile mem[4] [0], metrTiles, metrTilesLen/4);
memcpy32 (pal_ obj mem, metrPal, metrPalLen/4);

// create object: oel

OBJ ATTR *metr= &oam mem[O0];

obj_set_attr(metr, ATTRO_SQUARE | ATTRO_MOSAIC, ATTR1_SIZE 64, 0);
obj set pos(metr, 32, 24); // left-center

// create bg map: bgl, cbbl, sbb 31

for(ix=1; ix<16; ix++)
pal bg mem[ix+16]= pal obj mem[ix] ~ CLR WHITE;

SCR_ENTRY *pse= &se mem[30] [3*32+18]; // right-center
for (iy=0; 1y<8; iy++)
for (1ix=0; 1x<8; ix++)
psel[iy*32+ix]= (iy*8+ix) | SE PALBANK(1l);

REG BGICNT= BG CBB(1) | BG SBB(30) | BG_MOSAIC;

int main ()

// setup sprite

cam init (cam mem, 128);

load metr();

REG_DISPCNT= DCNT BGO | DCNT BGl | DCNT OBJ | DCNT OBJ 1D;

// set-up text: bg0, cbb0, sbb3l

tte init chrd4 b4 default (0, BG CBB(2) [BG _SBB(31));
tte init con();

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

116/331

28-03-13 Tonc : GBA Programming in rot13

test mosaic();
return 0;

}

I use two metroids in this demo. The sprite metroid is on the left, and the background
metroid with inverted colors is on the right. I've shown how to set-up sprites and
backgrounds before, so you should be able to follow the steps here because it's nothing
new. Well, except setting the mosaic flags in OBJ ATTR.attr0 and REG_BGOCNT,
which I've put in bold here.

The mosaic effect is regulated inside the test mosaic (). I use two 2d points to
keep track of the current level of mosaic. The D-pad is used to increase or decrease the
mosaic levels; just the D-pad sets the object's mosaic and holding down A sets that of the]
background. T:;I:': 30_'3

On a code design note, I could have used two if-blocks here, one for objects and one for
the background, but I can also switch the mosaic context via a pointer, which saves me
some code. Hurray for pointers. Also, the coordinates are in .3 fixed point format, which is how I slow down the changes in the mosaic
levels. Again, I could have used timer variables and more checks to see if they had reached their thresholds, but fixed-point timers are
much easier and in my view cleaner too.

You should really see the demo on hardware, by the way. Somehow both VBA and no$gba are both flawed when it comes to
mosaic. After VBA 1.7.2, it has a problem with horizontal sprite mosaic. I do believe I've seen inconsistencies between hardware and
scrolling mosaiced backgrounds, but can't remember where I saw it. As for no$gba, vertical mosaic appears to be disabled for both
sprites and backgrounds.

Fig 13.2: mos_demo.

Emulators and mosaic
VBA and no$gba, the most popular GBA emulators both have problems with mosaic. Watch your step.

13.2. Blending

If you're not completely new to gaming or graphics, you may have heard of alpha blending. 1t allows you to combine the color values
two overlapping layers, thus creating transparency (also known as semi-transparency, because something that's completely transparent
is invisible). Some bitmap types also come with an alpha channel, which indicates either the transparency or opacity of the pixel in
question.

The basic idea behind blending is this. You have two layers, A and B, that overlap each other. Consider A to be on top of B. The
color-value of the a pixel in this region is defined as

13.1) C=w, A+wy B,

where w, and w,, are the weights of the layers. The weights are generally normalised (between 0 and 1), with 0 being fully transparent

and 1 being fully visible. It is also convenient to think of color-components in this way. Here's a few things you can do with them:
effect

1 0 layer A fully visible (hides B; standard)

0 1 layer B fully visible (or A is invisible)

o 1

w

A W

B

—a Alpha blending. o is opacity in this case.

Note that in these examples the sum of the weights is 1, so that the final color C is between 0 (black) and 1 (white) as well. As we'll
see, there are instances where you can drop out of these ranges; if this happens the values will be clipped to the standard range.

13.2.1. GBA Blending

Backgrounds are always enabled for blending. To enable sprite-blending, set OBJ ATTR.attr0{a}. There are three registers that
control blending, which unfortunately go by many different names. The ones I use are REG_BLDCNT, REG_BLDALPHA and
REG_BLDY. Other names are REG_BLDMOD, REG_COLEV and REG_COLEY, and sometimes the ‘E’ in the last two is removed. Be
warned. Anyway, the first says how and on which layers the blend should be performed, the last two contain the weights. Oh, since the
GBA doesn't do floating point, the weights are fixed-point numbers in 1.4 format. Still limited by 0 and 1, of course, so there are 17 blend
levels.

REG_BLDCNT (REG BLDMOD) @ 0400:0050h

FE| D c B A 9 8 76| 5 4 3 2 1 0

- |bBD [bOBJ | bBG3 | bBG2 | bBG1 |bBGO | BM |aBD |aObj | aBG3 |aBG2 | aBG1l | aBGO

bits name define description
0-5 aBGO- BLD _TOP# The A (top) layers. BD, by the way, is the back drop, a solid plane of color 0. Set the
aBD bits to make that layer use the A-weights. Note that these layers must actually be in

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 117/331

file:///H:/dev/gba/proj/tonc/bak/fixed.htm

28-03-13

Tonc : GBA Programming in rot13
front of the B-layers, or the blend will fail.

6-7 BM BLD OFF, Blending mode.

gig_%?{m ¢ 00: blending is off.
BLD_BLACK, e 01:normal blend using the weights from REG_ALPHA.
BLD MoDE# * 10:blend A with white (fade to white) using the weight from REG_BLDY

e 11:blend A with black (fade to black) using the weight from REG BLDY

8-D bBGO- BLD BOT# The B (bottom) layers. Use the B-weights. Note that these layers must actually lie
bBD behind the A-layers, or the blend will not work.

The REG BLDALPHA and REG_BLDY registers hold the blending weights in the form of eva, evb and ey, all in 1.4 fixed-point format.

And no, I do not

know why they are called that; they just are.

REG_BLDALPHA (REG COLEV) @
0400:0052h

FED|ICBA98|765|43210

- evb - eva

bits name define description
0-4 cva BLD_EVA# Top blend weight. Only used for normal blending
8-C evb BLD_EVB# Bottom blend weight. Only used for normal blending

REG_BLDY (REG_COLEY) @ 0400:0054h

FEDCBAS98765/43210

- ey

bits name define description
0-4 ey BLDY# Top blend fade. Used for white and black fades.

13.2.2. Blending caveats
Blending is a nice feature to have, but keep these points in mind.

¢ The A layers must be in front of the B layers. Only then will the blend actually occur. So watch your priorities.

¢ In the alpha-blend mode (mode 1) the blend will only take place on the overlapping, non-transparent pixels of layer A and
layer B. Non-overlapping pixels will still have their normal colors.

o Sprites are affected differently than backgrounds. In particular, the blend mode specified by REG BLDCNT {6,7} is applied
only to the non-overlapping sections (so that effectively only fading works). For the overlapping pixels, the standard blend is

always in e

ffect, regardless of the current blend-mode.

¢ If you are using windows, you need to set the bits 5 and/or 13 in REG_WININ or REG_ WINOUT for the blending to work.

13.2.3. The
// bld_d

// bg
// bg
// bg
// oam

#include
#include
#include

void tes

{
tte

tte set margins (16, SCR H-4-4*12, SCR W-4, SCR H-4);

u32
// e
// e
u32

REG_BLDCNT= BLD_BUILD (

obligatory demo
emo.cC
0, cbb 0, sbb 31, pb 15: text

1, cbb 2, sbb 30, pb 1: metroid
2, cbb 2, sbb 29, pb 0: fence
0: tile 0-63: obj metroid

<stdio.h>
<tonc.h>
"../gfx/metr.h"

t blend()

printf ("#{P:48,8}obj#{P:168,8}bg");
mode=0;

va, evb and ey are .4 fixeds

va is full, evb and ey are empty
eva=0x80, evb= 0, ey=0;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 118/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-win

28-03-13 Tonc : GBA Programming in rot13
BLD OBJ | BLD_BGO, // Top layers

BLD_BG1, // Bottom layers
mode) ; // Mode
while (1)

{
vid vsync();
key_poll();

// Interactive blend weights
eva += key tri horz();
evb -= key tri vert();
ey += key tri fire();

mode += bit tribool(key hit(-1), KI R, KI L);
// Clamp to allowable ranges

eva = clamp(eva, 0, 0x81);
evb clamp (evb, 0, 0x81);
(
(

ey clamp(ey, 0, 0x81);
mode= clamp (mode, 0, 4);

tte printf ("#{es;P}mode :\t%2d\neva :\t%2d\nevb :\t%2d\ney :\t%2d",
mode, eva/8, evb/8, ey/8);

// Update blend mode
BFN_SET (REG_BLDCNT, mode, BLD_MODE) ;

// Update blend weights
REG_BLDALPHA= BLDA_BUILD(eva/B, evb/8) ;
REG_BLDY= BLDY_BUILD(ey/S);

void load metr ()

{
// copy sprite and bg tiles, and the sprite palette
memcpy32 (&tile mem[2] [0], metrTiles, metrTilesLen/4);
memcpy32 (&tile mem[4] [0], metrTiles, metrTilesLen/4) ;
memcpy32 (pal obj mem, metrPal, metrPalLen/4);

// set the metroid sprite

OBJ ATTR *metr= &oam mem[0]; // use the first sprite

obj set attr(metr, ATTRO SQUARE | ATTRO_BLEND, ATTR1 SIZE 64, 0);
obj set pos(metr, 32, 24); // mid-center

// create the metroid bg
// using inverted palette for bg-metroid
int ix, 1iy;
for (ix=0; 1ix<16; ix++)
pal bg mem[ix+16]= pal obj mem[ix] ~ CLR WHITE;

SCR_ENTRY *pse= &se mem[30][3*32+18]; // right-center
for (iy=0; iy<8; iy++)
for (ix=0; 1ix<8; ix++)
pse[iy*32+ix]= iy*8+ix + SE PALBANK(1);

REG_BGOCNT= BG_CBB(0) | BG_SBB(30);

// set-up the fence background
void load fence ()

{

// tile 0 / ' ' will be a fence tile

const TILE fence=

{{
0x00012000, 0x00012000, 0x00022200, 0x22220222,
0x11122211, 0x00112000, 0x00012000, 0x00012000,

|

tile mem[2] [64]= fence;

se fill(se mem[29], 64);

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

119/331

28-03-13 Tonc : GBA Programming in rot13

pal bg mem[0]= RGB15(16, 10, 20);
pal bg mem[1l]= RGB15(O, 0, 31);
pal bg mem[2]= RGB15(16, 16, 16);

REG BG2CNT= BG CBB(2) | BG SBB(29);

int main ()
ocam init (cam mem, 128);
load metr();

load fence();

tte init chr4 b4 default (0, BG CBB(0) |[BG SBB(31));
tte init con();

REG_DISPCNT= DCNT MODEO | DCNT BGO | DCNT BGl | DCNT BG2 |
DCNT OBJ | DCNT OBJ 1D;

test blend();

return 0;

}

As always, there's a demo that goes with all this stuff. b1d demo features 2 metroids (the
left one is a sprite, the right one (palette inverted) is on background 0) on a fence-like
background (bg 1 to be precise) and lets you modify the mode, and the 3 weights
independently. The mode, by the way, is given in the top left corner. The controls are:
left, right changes eva. Note that eva is at maximum initially.
down,up changes evb.
B,A Changes ey
L,R Changes mode.

el 10

The function of interest is test blend (). This is where the key handling takes place Fig 13.3: blend demo; mode=2, eva=0, evb=0,
and where the blend settings are altered. Similar to mos_demo, .3 fixeds are used for the |[&~1%
blend weight variables to slow the rate of change to more comfortable levels. To set the
blend registers themselves I'm using BUILD () macros and BF SET (), which work well enough for these purposes. It would be
trivially easy to write wrapper functions here of course. Most of the code is pretty standard; just play around with the blend modes and
weights and see what happens.

Do take note of how, like I said earlier, the sprite metroid is affected differently than the bg-metroid. The background-background
blend behaves exactly as the mode says it should; the sprite, on the other hand, always has a blend if they overlap with the fence's pixels,
and the rest obeys the mode, which is what I told you in the caveats.

13.3. Windowing

Windowing allows you to divide the screen into rectangular areas known as, well, windows. There are two basic windows: wirn0 and
winl. There's also a third type of window, the object window. This creates a window out of the visible pixels of the sprites. You can
enable the windows by setting REG DISPCNT {d,e.f}, respectively.

A rectangular window is defined by its lef?, right, top and bottom sides. Unless you're one of those people, who think it's funny to
say that a rectangle has only two sides: an inside and an outside. In fact, this is truer than you think. The union of win0 and win1 is the
inside window. There's also the outside window, which is everything else. In other words:

winln = win0 | winl
winOut = ~(winln)

wranCt

Fig 13.4b: win0 in red, winl in green,
winln is win0 | winl (blue edge),
winOut in grey.

Fig 13.4a: showing win0, winl and win_out
windows.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 120/331

28-03-13 Tonc : GBA Programming in rot13

13.3.1. Window boundaries

Both win0 and winl have 2 registers that define their boundaries. In order these are REG_WINOH (0400:0040h), REG_ WIN1H
(0400:0042h), REG_WINOV (0400:0044h) and REG_WIN1V (0400:0046h), which have the following layout:

REG WINxH and REG WINxV @ 0400:0040-

0400:0047h

reg FEDCBA98|76543210
REG_WINxH left right
REG_WINxV top bottom

bits name description
0-7 right Right side of window (exclusive)
8-F left Left side of window (inclusive)

0-7 bottom Bottom side of window (exclusive)

8-F top Top side of window (inclusive)

So you have one byte for each value. That's bytes as in unsigned chars. The contents of a window are drawn from starting at the top-
left up to, but not including, the bottom-right. What you have to realize is that this is also true when, say, the right value is lower than the
left value. In such a case, there's a wrap-around and everything on that line is inside the window, except the pixels between R and L. If
both R < L and B < T then you get a window in the shape of a cross.

13.3.2. Window content
The possible content for the windows are backgrounds 0-3 and objects. No suprise there, right? In total, we have regions: win0, winl,
winOut and winObj. REG_WININ (0400:0048h) controls win0 and winl, REG_WINOUT (0400 :004ah) takes care of winOut and
winObj. There's one bit for each content-type, plus one for blending, which you will need if you intend to use blending on the contents of
that particular window.

register FE| D C B A 9 8 |7 6| 5 4 3 2 1 0
bits - |Bld |Obj |BG3 |BG2 |BGl |BGO | - |Bld |Obj |BG3 |BG2 |BG1l |BGO
REG_WININ - winl - winO
REG_WINOUT | - winObj - winOut
bits name define description

0-5 BGx, WIN_BGx, Windowing flags. To be used with all bytes in REG_WININ and REG_WINOUT.
Obj, Bld WIN_OBJ,
WIN_ BLD,
WIN LAYER#

There is little in the way of macros or bit-defines here because they're not really necessary. Do have these in tonc _memdef.h
though:

#define WIN BUILD(low, high) \

(((high)<<8) | (low))
#define WININiBUILD(winO, winl) WINiBUILD(winO, winl)
#define WINOUT BUILD (out, obj) WIN BUILD(out, obj)

There are still a few things you should know about windows. First of all, when you turn on windowing in REG_DISPCNT, nothing will
show up. There are two reasons for this. Firstly, the boundary registers are all 0, so the whole screen is basically winOut. Secondly, and
this is really important: a background or object will only show up in the windows in which it is enabled! This means that unless at least
some bits have been set in REG_WININ or REG_WINOUT nothing will show. This presents you with an effective way of hiding stuff,
as we'll see in the demo. There is a third thing that you must remember, namely that win0 takes precedence over winl, which in turn
takes precedence over winOut. I'm not sure how winObj fits into this yet.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 121/331

28-03-13 Tonc : GBA Programming in rot13

{ N
Windowing necessities

To make windowing work for you, you need to do the following things:

¢ Enable windows in REG_ DISPCNT

e Indicate in which window you want things to show up by setting the appropriate bits in REG_WININ and
REG_WINOUT. You must set at least some bits here if you have windowing enabled, or nothing will show up at
all!

¢ Set the desired window sizes in REG_WINxH/V. If you don't, everything will be considered in the Out-window.

\\

13.3.3. Caveats

There's something really weird going on when either the top or bottom is outside of the screen. Multiple somethings in fact, see the demo
on hardware! for details.

o If the top is in the [-29, O[] range (i.e., [227, 255]), the window will no¢ be rendered at all. Likewise, if the bottom is inside this
range, the window covers the height of the screen. I cannot say exactly what the cause is, but since the VCount also stops at
227, that might have something to do with it.

¢ Also, if you move the bottom from, 161 to 160, the window will also cover the whole length, but only for a frame or so.

¢ The points mentioned above assume 7<B. If the top is bigger, then the effect is reversed.

Windowing weirdness not on emulators
This behaviour does not appear on the emulators I've tested on.
VBA clips the windows, like common sense would lead you to believe. (Of course, common sense also tells you that the Sun
orbits the Earth or that the stars are pinpricks on a large black canvas. Common sense is hardly common).
MappyVM and BoycottAdvance simply remove the window if any of the boundaries goes off the screen.

\\

13.3.4. Demo: there's a rocket in my pocket

In case you hadn't noticed yet, I like the Metroid series. I really like the Metroid series. If you have ever played Super Metroid chances
are that you've used the X-ray scope, which let's you see through the layers and find items and secret passages with much more ease.
Guess how that was done? Yup, windowing. The windowing demo win demo essentially does the same thing. There's a rocket-item
hidden behind the background layers and you have an X-ray rectangle which you can move around the screen so you can find it.

The controls are simple: use the D-pad to move the window around; START repositions the rocket. I've also added finer movement
(A + D-pad) so you can see the strange behaviour the windows seem to exhibit at certain positions.

dir Moves the rectangle.
A + dir Move rectangle by tapping for finer control.
start Randomly change the position of the rocket.

What follows below is the majority of the demo's code. I have removed the functions that set up the backgrounds and sprite because
there's nothing in them that you haven't seen before already. The earlier fig 13.4a is a screenshot of the demo in action.

// win demo.c

// bg 0, cbb 0, sbb 2, pb 0: numbered forground
// bg 1, cbb 0, sbb 3, pb 0: fenced background
// oam 0: tile 0-3: rocket

// win 0: objects
// win 1: bg 0
// win out : bg 1

#include <tonc.h>
#include "nums.h"
#include "rocket.h"

typedef struct tagRECT U8 { u8 11, tt, rr, bb; } ALIGN4 RECT US8;
// window rectangle regs are write only, so buffers are necessary
// Objects in win0O, BG 0 in winl
RECT U8 win[2]=

{ 36, 20, 176, 60 }, // winO: 40x40 rect

{ 12, 12 ,228, 148 } // winl: screen minus 12 margin.

// gfx loaders omitted for clarity
void init front map(); // numbers tiles

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 122/331

28-03-13 Tonc : GBA Programming in rot13

void init back_map () ; // fence
void init rocket(); // rocket

void win copy ()

{

REG WINOH= win([0].11<<8 | win[O0].rr;
REG WINIH= win[1].11<<8 | win[l].rr;
REG WINOV= win[0].tt<<8 | win[O0].bb;
REG WIN1V= win[1l].tt<<8 | win[1l].bb;
}
void test win()
{
win copy();
while (1)
{
key_poll();
vid vsync();
// key hit() or key is down() 'switch'
// A depressed: move on direction press (std movement)
// A pressed : moves on direction hit (fine movement)

int keys= key curr state();
if (key is down (KEY A))
keys &= ~key prev_state();

if (keys & KEY RIGHT)

{ win[0].11++; win[O0].rr++; }
else if (keys & KEY LEFT)

{ win[0].11--; win[0O] .rr—--; }
if (keys & KEY DOWN)

{ win[O0].tt++; win[O0] .bb++; }
else if (keys & KEY UP)

{ win[0].tt—--; win[0] .bb--; }

// (1) randomize rocket position
if (key_hit (KEY START))
obj set pos(&oam mem[0],
gran_range (0, 232), gran range(0, 152));

win_copy () ;

int main ()
{
// obvious inits
ocam_init();
init front map();
init back map();
init rocket();
// (2) windowing inits
REG DISPCNT= DCNT BGO | DCNT BGl | DCNT OBJ | DCNT OBJ 1D |
DCNT_WINO | // Enable win 0
DCNT_WIN1; // Enable win 1

REG_WININ= WININ BUILD(WIN OBJ, (WIN BGO);
REG WINOUT= WINOUT BUILD(WIN BG1l, 0);

win copy(); // Initialize window rects
test win();

return 0;

Initializing the windows is done at point 2: both win0 and winl in REG_DISPCNT, objects in win 0, bg 0 in win 1 and bgl in winOut. The
windows' sizes are set using win copy () ineach frame. I am using two rectangle variables to keep track of where the windows are,

because the window-rectangle registers themselves are write only. See fig 13.4 again for the result.

Usually, objects are shown in front of backgrounds. However, because objects are now only set to appear inside win 0, they are

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

123/331

28-03-13 Tonc : GBA Programming in rot13

effectively hidden everywhere else: you will only see the rocket or parts of it if the rocket and win 0's rectangle overlap. Furthermore,
you will notice that because only objects are set for win 0, the window itself is completely black.

The rest of the demo is rather uneventful. I could explain that the way mask the variable keys with the previous keystate when A is
held down lets me switch between the key hit () and key is down () functions, giving me the functionality I require to switch
between direct and fine motion for the X-ray window, but it's not all that interesting and quite besides the point of the demo. What's also
beside the point of the demo, but is interesting to mention, is the randomization of the rocket's position.

Random numbers
Random numbers on a computer is a somewhat quaint notion. The whole point of a computer is to have a reliable calculator, and random
numbers are pretty much the antithesis of that. Computer generated random numbers are also called pseudo-random, because they
aren't intrinsically random, just deterministically generated to seem that way. There are statistical tests to see if a given routine is
sufficiently random. However, this isn't nuclear physics we're talking about, this is game programming. We mostly need something that
can, say, make an enemy zig or zag without any discernable pattern; that it can kill a Monte Carlo simulation is totally irrelevant.

One class of generators are linear congruential generators, which follow the pattern N, | = (aN, + ¢)%m, with N.€[0, m_. With
properly picked parameters a, ¢ and m, the routine can be quite adequate. If you ever encounter a rand () function in any kind of
standard library, chances are it's one of these. Not only are these easy to implement, they are likely to be fast as well.

The following routine gran () is taken from my numerical methods book, Numerical Recipes, pp 275, where it is labelled a quick
and dirty generator, but an adequate one. Consisting of one addition and one multiply (m=2%2, so done automatically), it is very fast. The
actual number returned are the top 15 bits from N, because the upper bits are apparently more random than the lower, and also because
15 gives a [0,32767] range, which is something of an unofficial standard, AFAIK. Note that there is a second function, sgran () used
to seed the generator. Since the process itself is still deterministic, you need a seed to ensure that you don't get the same sequence every
time. Unless, that is, you actually want that to happen. This isn't such a strange idea if you think about it: you could use it to generate
maps, for example. Instead of storing the whole map so that it looks the same every time you load it, you just store the seed and you're
done. This is how the planetary terrains in Star Control 2 are made; I very much doubt it would have been possible to store bitmaps of all
the 1000+ planets it had. This is why sgran () also returns the current &V, so you can reset it later if necessary.

// from tonc core.h/.c
// A Quick (and dirty) random number generator and its seeder

int _ gran seed= 42; // Seed / rnd holder

// Seed routine

int sqgran(int seed)

{
int old= gran seed;
__gran_seed= seed;
return old;

}

//!' Quick (and very dirty) pseudo-random number generator
/*! \return random in range [0,8000h>
*/
INLINE int gran{()
{
__qgran_seed= 1664525* gran seed+1013904223;
return (__gran seed>>16) & Ox7FFE;
}

I'll say again, this is not a very advanced random generator, but it'll be enough for what I need. If you want a better (but slower) one, try
the Mersenne Twister. You can find a nice implementation on it on PERN's new sprite page.

Ranged random numbers
Getting a random number is one thing; getting a random number in a particular range is another. It seems simple enough, of course: for a
number between, say, 0 and 240 you'd use modulo 240. However, as the GBA doesn't have a hardware divide, it'll cost quite a number
of cycles. Fortunately, there is a simple way out of it.

I said that gran (), like stdlib's rand () has a range between 0 and 0x8000. You can also see this as a range between 0 and 1, if
you interpret them as .15 fixed point numbers. By multiplying with 240, you'll have the desired ranged random number, and it only costs a
multiplication and a shift. This technique works for every random number generator, as long as you pay attention to its maximum range
and integer overflow (which you should pay attention to anyway). Tonclib's version of this is called gran range ().

//! Ranged random number
/*! \return random in range [\a min, \a max>

* \note (max-min) must be lower than 8000h
*/

INLINE int gran range(int min, int max)

{ return (gran()* (max-min)>>15)+min; }

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 124/331

http://www.amazon.com/gp/product/0521431085/103-4874440-3995059
http://sc2.sourceforge.net/
http://en.wikipedia.org/wiki/Mersenne_twister
http://www.drunkencoders.com/tutorials/GBA/day_3.html

28-03-13 Tonc : GBA Programming in rot13

In the demo, I'm using gran_range () twice to keep the sprite position inside the screen at all times. While the position itself could be
predicted beforehand with some investigation, I don't think it'll be that easy. And if you really put that kind of effort in it, I'd say you
would deserve something for your troubles. If you reload the demo a few times, you will notice that the sequence of positions is always
the same. This is why they're called pseudo-random. To get a different sequence, the seed value should be different. I haven't even
seeded it once here because it's not really important for this, but the usual trick to seed it with something involving time: for example, the
number of frames or cycles before one actually starts a game, counted from the various intro screens that may precede it. Even a small
difference in the seed can produce wildly varying sequences.

13.4. Conclusions

Technically speaking you probably won't really need mosaic, blending or windowing in games, but they're great for subtle effects, like a
‘shock-hit” or spotlights. They're also of great use for various types of scene transitions; a fade to black can be easily implemented using
the blend registers. Also fun are various HBlank effects using windows, changing the rectangles every HBlank to give beams, side-way
wipes or circlular windows. However, to be able to do that you need to know how to work with interrupts. Or a special case of DMA
known as HDMA, which just happens to be up next.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 125/331

28-03-13

Tonc : GBA Programming in rot13

14. Direct Memory Access

e DMA ... que?.
o DMA registers.

Some DMA routines.

DMA demo : circular windows.

14.1. DMA ... que?

Direct Memory Access (DMA) is fast way of copying data from one place to another. Or, rather, a way of transferring data fast; as it
can be used for copying data, but also filling memory. When you activate DMA the so-called DMA controller takes over the hardware
(the CPU is actually halted), does the desired transfer and hands control back to the CPU before you even knew it was missing.
There are four DMA channels. Channel 0 has the highest priority; it is used for time-critical operations and can only be used with
internal RAM. Channels 1 and 2 are used to transfer sound data to the right sound buffers for playback. The lowest priority channel,
channel 3, is for general-purpose copies. One of the primary uses for this channel is loading in new bitmap or tile data.

14.2. DMA registers

Every kind of transfer routine needs 3 things: a source, a destination and the amount of data to copy. The whence, whither and how
much. For DMA, the source address is put into REG_DMAxSAD and destination address into REG_DMAxDAD. A third register,
REG_DMAxCNT, not only indicates the amount to transfer, but also controls other features possible for DMA, like when it should start
the transfer, chunk-size, and how the source and destination addresses should be updated after each individual chunk of data. All the
DMA registers are 32bits in length, though they can be divided into two 16bit registers if so desired. Those of channel O start
at0400 : 00BOh; subsequent channels start at an offset of 12 (see table 1).

reg

REG DMAxSAD source
REG_DMAxDAD destination 0400:00B4h + 0Ch'x

REG DMAxCNT control
Table 14.1: DM A register addresses

14.2.1. DMA controls

The use of the source and destination registers should be obvious. The control register needs some explaining. Although the
REG_DMAxCNT registers themselves are 32bits, they are often split into two separate registers: one for the count, and one for the actual

control bits.

bits
00-0F
15-16

17-18

19

1A
1C-1D

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

function

address
0400:00B0Oh + 0OCh'x

0400:00B8h + 0OCh-x

REG_DMAxCNT @ 0400:00B8+12x

1F [1E|1D 1c|1B|1A|19|18 17|16 15|14 13 12 11 10|FEDCBA 98 76 5432 10
En|{I| ™ |- |CS|R| sa DA - N
name define description
N Number of transfers.
DA DMA DST INC, Destination adjustment.
DMA_DST_DEC, ¢ 00: increment after each transfer (default)
DMA_DST_FIXED, ¢ 01: decrement after each transfer
DMA_ DST RELOAD) .
- - e 10:none; address is fixed
e 11:increment the destination during the transfer, and reset it so
that repeat DMA will always start at the same destination.
SA DMA_SRC INC, Source Adjustment. Works just like the two bits for the destination. Note
DMA_SRC_DEC, that there is no DMA SRC_ RESET; code 3 for source is forbidden.
DMA _SRC FIXED,
R DMA_REPEAT Repeats the copy at each VBIlank or HBlank if the DMA timing has been set
to those modes.
CS DMA _16,DMA 32 Chunk Size. Sets DMA to copy by halfword (if clear) or word (if set).
™ DMA_NOW, Timing Mode. Specifies when the transfer should start.

DMA_AT VBLANK,
DMA_AT HBLANK,

¢ 00: start immediately.
e 01:start at VBlank.

DMA_ AT REFRESH

126/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-regs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-func
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo

28-03-13 Tonc : GBA Programming in rot13

¢ 10: start at HBlank.

e 11:Never used it so far, but here's how I gather it works. For
DMAT and DMA2 it'll refill the FIFO when it has been emptied.
Count and size are forced to 1 and 32bit, respectively. For DMA3
it will start the copy at the start of each rendering line, but with a 2
scanline delay.

1E I DMA_IRQ Interrupt request. Raise an interrupt when finished.
IF En DMA ENABLE Enable the DMA transfer for this channel.

14.2.2. Source and destination addresses

The registers for source and destination addresses work just as you'd expect: just put in the proper addresses. Oh, I should tell you that
the sizes for the source and destination addresses are 28 and 27 bits wide, respectively, and not the full 32. This is nothing to worry about
though, you can't access addresses above 1000 : 0000h anyway. For destination addresses, you can't use the section above
0800:0000h. But then, being able to copy to ROM would be kind of strange, wouldn't it?

14.2.3. DMA flags

The REG DMAxCNT registers can be split in two parts: one with actual flags, and one for the number of copies to do. Either way will
work but you must be careful how the flags are defined: using 32-bit #defines for 16-bit registers or vice versa is not a good idea.

There are options to control what will be the next source and destination addresses when one chunk has been transferred. By
default, both will increment so that it works as a copier. But you could also keep the source constant so that it'd work more as a memory
fill

What goes into the lower half of REG DMAxCNT is the number of transfers. This is the number of chunks, not bytes! Best be
careful when using sizeof () or something similar here, missing a factor 2 or 4 is very easy. A chunk can be either 16 or 32 bit,
depending on bit 26.

14.2.4. More on DMA timing

What the immediate DMA does is easy to imagine, it works as soon as you enable the DMA. Well actually it takes 2 cycles before it'll
set in, but it's close enough. The other timing settings aren't that more difficult conceptually, but there is one point of confusion.

Consider the following situation: you want to do something cool to your otherwise standard backgrounds; specifically, you want to do
something that requires the background registers to be updated every scanline. I just said that you can copy data at every HBlank (via
the DMA AT HBLANK timing flag), which seems perfect for the job. If you think about it for a minute, however, you may ask yourself
the following question:

When you set the timing to, say, DMA AT HBLANK, does it do a/l the N copies at the next HBlank, or one copy at each
HBlank until the list is done?

There is a crucial difference between the two. The first option seems pointless because all copied would be done at once; if your
destination is fixed (like they are for background registers), all copies except the last would be lost. In the case of the second one, how
would you do more than one copy per HBlank? Clearly, something's amiss here. There is, on two counts.

For the record, I'm not 100% sure about what I'm going to say here, but I think it's pretty close to what's actually going on. The main
thing to realize is that as long as the channel is not enabled (REG DMAxCNT {1f} is cleared), that channel won't do squat; only after
REG DMAxCNT {1f} has been set will the DMA process be initiated. At the appropriate time (determined by the timing bits), DMA will
do all N copies and then shut itself off again.

Unless, that is, the repeat-bit (REG_DMAxCNT {19}) is set. In that case, it will keep doing the copies at the right time until you
disable the channel yourself.

14.3. Some DM A routines

While it's not that much trouble to set the three registers manually, it is preferable to hide the direct interaction in subroutines. Now, in
older code, you might come across something like this:

// Don't do this. Please.
void dma copy(int ch, void* src, void* dest, uint count, u32 mode)
{
switch (ch)
{
case 0:
// set DMA O
case 1:
// set DMA 1
// etc
}

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 127/331

28-03-13 Tonc : GBA Programming in rot13

This will work, but it's not a nice way of doing things. If your switch-cases differ by a single number, you can usually replace it by a
simpe lookup. There are a number of ways of fixing this, but the easiest is by mapping a struct array over the DMA registers, similar to
what I did for tile memory. After that, you can just select the channel with the channel variable and simply fill in the addresses and flags.

typedef struct DMA REC
{
const void *src;
void *dst;
u32 cnt;
} DMA REC;

#define REG DMA ((volatile DMA REC*)0x040000BO)

The following are my three of my DMA routines. First the DMA TRANSER () macro, which is the overall macro that can be used for
anything. Then two routines for general memory copies and fills using 32bit transfers with DMA 3.

// in tonc_core.h

//! General DMA transfer macro

#define DMA TRANSFER(dst, _src, count, ch, mode) \
do { \
REG DMA[ch].cnt= 0; \
REG DMA[ch].src= (const void*) (_src); \
REG_DMA[ch].dst= (void*) (_dst); \
REG DMA[ch].cnt= (count) | (mode); \
} while (0)

//! General DMA copier
INLINE void dma cpy(void *dst, const void *src, uint count, int ch, u32 mode)

{

REG DMA[3].cnt = 0; // shut off any previous transfer
REG DMA[3].src = src;

REG DMA[3].dst = dst;

REG DMA[3].cnt = count;

}

//! General DMA full routine
INLINE void dma fill(void *dst, volatile u32 src, uint count, int ch, u32 mode)
{

REG DMA[3].cnt = 0; // shut off any previous transfer
REG DMA[3].src = (const void*)é&src;

REG DMA[3].dst = dst;

REG_DMA[3].cnt = count | DMA SRC FIXED;

}

//! Word copy using DMA 3
INLINE void dma3 cpy(void *dst, const void *src, u32 size)
{ dma cpy(dst, src, size/4, 3, DMA CPY32); }

//' Word fill using DMA 3
INLINE void dma3 fill(void *dst, const void *src, u32 size)
{ dma fill(dst, src, size/4, 3, DMA CPY32); }

In all cases, I disable any previously operating transfers first. This may seem redundant if DMA stops the CPU, but remember that
DMA transfers can be timed as well — you wouldn't want it to start in the middle of setting the registers. After that, it's simply a matter
of filling the registers. Now, it so happens that there is a 2-cycle delay before any transfer really begins. This means that you could lose
a transfer if you ask for transfers in immediate succession. I'm not sure if this is very likely though: memory wait-states themselves
already take that much time so you should be safe.

Other notes on these routines: the DMA TRANSFER () macro's code sits betweena do {} while (0) ; loop. The problem with
macros is that when expanded multiple statements might break nesting-blocks. For example, calling it in the body of an i £ without
braces around it would have the first line as the body, but the rest fall outside it. This kind of loop is one of the ways of preventing that.
Another problem with macros is that if the arguments' names may hide other parts of the macro's code. Like the src and dst
members of the DMA REC struct; which is why they're underscored. The fill routines also have something remarkable going on, which
you can read about in the next subsection. Lastly, the dma3 inlines use word-transfers and take the byte-size as their last arguments,
making them very similar to the standard memcpy () and memset ().

I used to have the following macro for my transfers. It uses one of the more exotic capabilities of the preprocessor: the merging-
operator ‘##’°, which allows you to create symbol names at compile-time. It's scary, totally unsafe and generally unruly, but it does work.
The other macro I gave is better, but I still like this thing too.
)
file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 128/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-func-fill

28-03-13 Tonc : GBA Programming in rot13

#define DMA TRANSFER(dst, src, _count, ch, mode) \

REG DMA## ch##SAD = (u32) (_src), \
REG_DMA## ch##DAD = (u32) (_dst), \
REG DMA## ch##CNT = (_count) | (mode) \

As long as you are using a literal number for _ch it'll form the correct register names. And yes, those comma operators between the
statements actually work. They keep the statements separate, and also guard against wrongful nesting just like the do{} while (0)
construct does.

14.3.1. On DMA fills

DMA can be used to fill memory, but there are two problems that you need to be aware of before you try it. The first can be caught by
simply paying attention. DMA fills don't work quite in the same way as memset () does. What you put into REG_DMAxSAD isn't the
value you want to fill with, but its address!

“Very well, I'll put the value in a variable and use its address.” Yes, and that brings us to our second problem, a bug which is almost
impossible to find. If you try this, you'll find that it doesn't work. Well it fills with something, but usually not what you wanted to fill with.
The full explanation is somewhat technical, but basically because you're probably only using the variable's address and not its value, the
optimizer doesn't ever initialize it. There is a simple solution, one that we've seen before, make it volatile. Or you can use a (inline)
function like dma £i11 (), which has its source argument set as volatile so you can just insert a number just as you'd expect. Note
that if you remove the volatile keyword there, it'll fail again.

In short: DMA fills need addresses, not direct values. Globals will always work, but if you use local variables or arguments you'll need to
make them volatile. Note that the same thing holds true for the BIOS call CpuFastSet().

14.3.2. DMA; don't wear it out

DMA s fast, there's no question about that. It can be up to ten times as fast as array copies. However, think twice about using it for
every copy. While it is fast, it doesn't quite blow every other transfer routine out of the water. CpuFastSet() comes within 10% of it for
copies and is actually 10% faster for fills. The speed gain isn't that big a deal. Another problem is that it stops the CPU, which can
screw up interrupts, causing seemingly random bugs. It does have its specific uses, usually in conjunction with timers or interrupts, but
for general copies, you might consider other things as well. CpuFastSet() is a good routine, but tonclib also comes with

memcpyl6 () /32 () andmemset16 () /32 () routines that are safer than that, and less restrictions. They are assembly routines,
though, so you'll need to know how to assemble or use libraries.

14.4. DMA demo : circular windows

The demo for this chapter may seem a little complicated, but the effect is worth it. The
basic use of DMA transfers is so easy that it's hardly worth having a demo of. Use of
triggered DMA is another matter. In this case, we'll look at HBlank-triggered DMA, or
HDMA for short. We'll use it to update the window sized inside the HBlank to give a
circular window effect.

This is easier said than done, of course. The first step in the design is how to use
HDMA for this in the first place. Because we need to copy to REG WINOH each HBlank,
we need to keep the destination fixed. Technically, it needs to be reset to the original
destination, but with only one halfword to copy this means the same thing. For the source,
we'll keep track of the data that needs to be copied there in an array with one entry for
each scanline, and we'll progress through the array one scanline at a time (i.e, incrementing
source). And of course, the transfer has to occur at each scanline, so we set it to repeat. so basically we need this:

& = At

Fig 14.1: palette for dma_demo.

#define DMA HDMA (DMA_ENABLE | DMA REPEAT | DMA AT HBLANK | DMA DST RELOAD) J

As for the circle, we need a routine that can calculate the left and right edges of a circle. There are a couple of algorithms around that
can draw circles, for example Bresenham's version. We'll use a modified version of it because we only need to store the left and right
points instead of drawing a pixel there. Why left-right and not top-bottom? Because the array is scanline-based, so that indicates the y-
values already.

It doesn't really matter what you use actually, as long as you can find the edges. Once you have, all you need to do is setup the
DMA in the VBlank and you're done.

The end result will show something like fig 14.1. It's the Brinstar background (again) inside the window, and a striped bg outside. The
text indicates the position and radius of the window, which can be moved with the D-pad and scaled by A and B.

#include <stdio.h>
#include <tonc.h>

#include "brin.h"

// From tonc math.h

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 129/331

file:///H:/dev/gba/proj/tonc/bak/text.htm#ssec-demo-se2
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm
file:///H:/dev/gba/proj/tonc/bak/gfx.htm#sec-win
http://www.gamedev.net/reference/articles/article767.asp

28-03-13 Tonc : GBA Programming in rot13
//#define IN RANGE (x, min, max) ((x) >= (min) && (x) < (max))

// The source array
ul6é g_winh[SCREEN_ HEIGHT+1];

//! Create an array of horizontal offsets for a circular window.
/*! The offsets are to be copied to REG WINxH each HBlank, either

* by HDMA or HBlank isr. Offsets provided by modified

* Bresenham's circle routine (of course); the clipping code is not
* optional.

* \param winh Pointer to array to receive the offsets.

* \param x0 X-coord of circle origin.

* \param yO0 Y-coord of circle origin.

* \param rr Circle radius.

*/

void win circle(ul6 winh[], int x0, int yO0, int rr)
{

int x=0, y= rr, d= 1l-rr;

u32 tmp;

// clear the whole array first.
memsetl6 (winh, 0, SCREEN_ HEIGHT+1);

while(y >= x)

{
// Side octs
tmp = clamp(x0+y, 0, SCREEN WIDTH) ;
tmp += clamp (x0-y, 0, SCREEN WIDTH)<<8;

if (IN_RANGE (y0-x, 0, SCREEN HEIGHT)) // o4, o7
winh[y0-x]= tmp;
if (IN_RANGE (y0+x, 0, SCREEN_ HEIGHT)) // o0, o3

winh[y0+x]= tmp;

// Change in y: top/bottom octs

if(d >= 0)

{
tmp = clamp (x0+x, 0, SCREEN WIDTH) ;
tmp += clamp (x0-x, 0, SCREEN WIDTH)<<8;

if (IN_RANGE (y0O-y, 0, SCREEN_ HEIGHT)) // 05, o6
winh[y0O-y]= tmp;

if (IN_RANGE (yO+y, 0, SCREEN HEIGHT)) // ol, 02
winh[yO+y]= tmp;

d -= 2% (--y);

}
d += 2% (x++)+3;
}
winh [SCREEN HEIGHT]= winh[0];

void init main ()
{
// Init BG 2 (basic bg)
dma3_cpy(pal_bg mem, brinPal, brinPallen) ;
dma3 cpy(tile mem[0], brinTiles, brinTilesLen);
dma3 cpy(se mem[30], brinMap, brinMapLen);

REG _BG2CNT= BG_CBB(0) |BG_SBB(30) ;

// Init BG 1 (mask)
const TILE tile=
{{
O0xF2F3F2F3, Ox3F2F3F2F, O0xF3F2F3F2, O0x2F3F2F3F,
O0xF2F3F2F3, Ox3F2F3F2F, O0xF3F2F3F2, Ox2F3F2F3F
|

tile mem[0] [32]= tile;

pal bg bank[4][2]= RGB15(12,12,12);
pal bg bank[4][3]= RGB1S5(8, 8, 8);
pal bg bank[4][15]= RGB1S5(O, 0, 0);
se fill(se mem[29], 0x4020);

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

130/331

28-03-13 Tonc : GBA Programming in rot13

REG_BGICNT= BG_CBB(0) |BG_SBB(29) ;

tte init chr4 b4 default (0, BG CBB(2) |[BG SBB(28));
tte init con();
tte set margins (8, 8, 232, 40);

// Init window
REG7WINOH: SCREEN_WIDTH;
REG_WINOV= SCREEN_ HEIGHT;

// Enable stuff
REG_DISPCNT= DCNT_MODEO | DCNT_BGO | DCNT_BGl | DCNT_BG2 | DCNT_WINO;

REG_WININ= WIN BUILD(WIN BGO|WIN BG2, 0);
REG_WINOUT= WIN BUILD(WIN BGO|WIN BG1, 0);

int main ()
int rr=40, x0=128, y0=120;
init main();
while (1)
{
vid vsync();

key poll();

rr += key_ tri shoulder(); // size with B/A

x0 += key tri horz(); // move left/right
y0 += key tri vert(); // move up/down
if (rr<0)

rr= 0;

// Fill circle array
win circle(g_winh, x0, y0, rr);

// Init win-circle HDMA
DMA_TRANSFER (§REG_WINOH, &g _winh[1], 1, 3, DMA HDMA);

tte printf ("#{es;P} (%d,%d) | %d", x0, yO0, rr);
}

return 0;

}

The initialization function is mostly just fluff. Mostly, because there is one thing of interest: the calls to dma cpy to copy the Brinstar
palette, tiles and map. Aside from that, nothing to see here.

The main function itself is also pretty standard. Of interest here are the callto win circle (), which sets up the source-array,
and to DMA TRANSFER () to initialize the HDMA. Note that I'm actually making it start at g winh[1] instead of justg winh[0].
The reason for this is that the HBlank occurs after a given scanline, not before it, so we'll lag one otherwise. The g winh array is
actually 160+1 long, and both entry 0 and 160 describe the data for scanline 0. What's also important, but not exactly visible here, is that
HDMA only occurs on the visible HBlanks, not the ones in the VBlank. This saves up a whole lot of trouble determining how many
scanlines to correct for when setting it up.

And then there's win circle (). If you're aware of how the Bresenham circle algorithm work, you know it calculates an offset
for one octant and then uses it for the 7 others via symmetry rules. This happens here as well. What doesn't happen in the original
probably is all the clipping (the c1lamp () s and IN RANGE () s). However, these steps are absolutely vital here. Going out of bounds
horizontally would mean wrong windowing offsets which would make the window turn in on itself. Going out of bounds vertically means
going OOB on g_winh for all kind of horrible. Trust me, they are necessary.

Also, notice that I wipe the whole array clean first; this can be done inside the loop, but sometimes it's just faster to fill the whole
thing first and then only update the parts you need. Lastly, as mentioned before, the first scanline's data is copied to the final entry of the
array to account for the way HBlanks happen.

And here ends the chapter on DMA. The use of HDMA in this manner is great for all kinds of effects, not just circular windows. All
you need is an array containing scanline-data and a function that sets it up beforehand. Be careful you don't get your channels mixed up,
though.

DMA is the fastest method of copying, but as you block interrupts using memcpy32 () is probably safer. The speed difference is
only 10% anyway. DMA is also used for sound FIFO, in conjunction with timers. I can't really show you how to use it for sound, but I

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 131/331

28-03-13 Tonc : GBA Programming in rot13
can tell you how timers work, and will do so in the next chapter.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 132/331

28-03-13 Tonc : GBA Programming in rot13

15. Timers

¢ Timing is everything
e GBA Timers

e Timer demo : like clockwork

15.1. Timing is everything

Think of every time you've heard a joke ruined because the punch line came too late or too early; think of all the failed jumps in Super
Mario Bros (or any other platform game);all the occasions that you skidded at the start of a Mario Kart race for revving too soon; that
your invincibility wore off just before you got a red shell up your a[censored]s; that you didn't quite dodge that hail of bullets in old-skool
shooters because of a sudden slow-down. Think of all this and situations like them and you'll agree that in games, as in life, Timing Is
Everything.

Ironically, timers are of less importance. Throughout video-game history programmers have built their games around one timing
mechanism: the vertical refresh rate of the screen. In other words, the VBlank. This is a machine-oriented timer (you count frames)
rather than a human-oriented one (where you'd count seconds). For consoles, this works very well as the hardware is always the same.
(Except, of course, that some countries use NTSC televisions (@ 60 Hz) and others use PAL TVs (@ 50 Hz). Everyone living in the
latter category and has access to both kinds knows the difference and curses the fact that it's the NTSC countries that most games stem
from.) While the VBlank timer is pervasive, it is not the only one. The GBA has four clock timers at your disposal. This section covers
these timers.

15.2. GBA Timers

All conceivable timers work in pretty much the same way. You have something that oscillates with a certain fixed frequency (like a
CPU clock or the swing of a pendulum). After every full period, a counter is incremented and you have yourself a timer. Easy, innit?

The basic frequency of the GBA timers is the CPU frequency, which is 224 = 16.78 Mhz. In other words, one clock cycle of the
CPU takes 272* = 59.6 ns. Since this is a very lousy timescale for us humans, the GBA allows for 4 different frequencies (or, rather
periods): 1, 64, 256 and 1024 cycles. Some details of these frequencies are shown in table15.1. By clever use of the timer registers, you
can actually create timers of any frequency, but more on that later. It should be noted that the screen refreshes every 280,896 cycles,
exactly.

#cycles | frequency | period
1 16.78 MHz|59.59 ns
64 262.21 kHz|3.815 pus
256 65.536 kHz|15.26 ps
1024 [16.384 kHz|61.04 ps

Table 15.1: Timer frequencies

15.2.1. Timer registers
The GBA has four timers, timers 0 to 3. Each of these has two registers: a data register (REG TMxD) and a control register
(REG_TMxCNT). The addresses can be found in table 15.2.
reg function address
REG TMxD data 0400:0100h + 04h-x

REG_TMxCNT control 0400:0102h + 04h'x
Table 15.2: Timer register addresses

15.2.2. REG_TMxCNT

REG_TMxCNT @ 0400:0102 + 4x

FEDCBAS98| 7 |6|543|2|10

- En |I - CM| Fr

bits name define description
0-1 Fr TM_FREQ_y Timer frequency. 0-3 for 1, 64, 256, or 1024 cycles, respectively. y in the define is the
number of cycles.

2 CM TM_CASCADE Cascade mode. When the counter of the preceding (x—1) timer overflows
(REG_TM(x-1) D= 0xffff), this one will be incremented too. A timer that has this
bit set does not count on its own, though you still have to enable it. Obviously, this
won't work for timer 0. If you plan on using it make sure you understand exactly what

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 133/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-tmr
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo

28-03-13 Tonc : GBA Programming in rot13
I just said; this place is a death-trap for the unwary.
I ™ IRQ Raise an interrupt on overflow.
En TM _ENABLE Enable the timer.

15.2.3. REG_TMxD
The data register REG_TMxD is a 16-bit number that works a little bit differently than you might expect at first, but in the end it makes
sense. The number that you read from the register is the current timer-count. So far, so good. However, the number that you write to
REG_TMxD is the initial value that the counter begins at when the timer is either enabled (via TM ENABLE) or overflows. This has
number of ‘interesting” consequences. To make things a little easier, define variables # of the initial value (the write-number) and ¢ for
the current count (the read number).

First of all, when you set an n (of, say, c000h) like this:

REG_TM2D= 0xc000; J

you will not have set the current timer-count ¢ to n (=c000h). In fact, if the timer is disabled, then c= 0. However, as soon as you do
enable the counter, then ¢ = n and proceeds from there. And when the timer overflows, it will reset to this value as well. By the way,
because 7 is only the starting value it is important to set first, and enable the timer afterwards.

Secondly, ask yourself this: what happens when you disable the timer again? Well, the counter retains its current value. However,
when you enable it afterwards, ¢ will reset to n again. This is a bit of a drag if you want to disable the timer for a while (during a game-
pause for instance) and then pick up where it left of. Well, yeah, but there is a way to make it happen. How? By turning it into a
cascade timer via TM CASCADE! Having that bit set in the REG_TMxCNT will cause the timer to be increased only when the
preceding one overflows. If you prevent that from ever happening (if it's disabled for instance) then you will have effectively disabled
your timer.

Lastly, given a certain n, then the timer will overflow after 7= 1000 0h—» increments. Or, thanks to the wonders of two's
complement, just 7= —n. Combined with a cascade timer (or interrupts) you can build timers of any frequency, which is what you want
from a timer.

Writing to REG_TMxD is weird
Writing into REG_ TMxD may not do what you think it does. It does not set the timer value. Rather, it sets the initial value
for the next timer run.

15.3. Timer demo : like clockwork
In today's demo, I'm going to show how to make a simple digital clock with the timers. To do this, we'llneed a 1 Hz timer. As that's not
available directly, I'm going to set up a cascading timer system with timers 2 and 3. Timer 3 will be set to cascade mode, which is
updated when timer 2 overflows. It is possible to set the overflow to happen at a frequency of exactly one Hertz. The clock frequency is
224 or 1024*0x4000. By setting timer 2 to TM FREQ 1024 and to start at —0x4000, the cascading timer 3 will effectively be a 1 Hz
counter.

Whenever timer 3 is updated, the demo turns the number of seconds into hours, minutes and
seconds and prints that on screen (see fig 15.1). Yes, I am using divisions and moduli here
because it is the simplest procedure and I can spare the cycles in this particular demo.

The demo can be (un)paused with Select and Start. Start disables timer 2, and thus
timer 3 too. Select turns timer 2 into a cascade timer as well, and since timer 1 is disabled,
doing this also stops timer 2 (and 3). The difference is what happens when you unpause. By
disabling a timer, it will start again at the initial value; but stopping it with a cascade actually
keeps the timer active and it will simply resume counting once the cascade is removed. The
difference is a subtle one, but the latter is more appropriate.

Fig 15.1: tmr_demo.

// Using a the "Berk" font from headspins font collection.

#include <stdio.h>
#include <tonc.h>
#include "berk.h"

vold tmr test ()

{
// Overflow every ~1 second:
// 0x4000 ticks @ FREQ 1024

REG_TM2D= -0x4000; // 0x4000 ticks till overflow
REG_TM2CNT= TM_FREQ 1024; // we're using the 1024 cycle timer

// cascade into tm3

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 134/331

28-03-13 Tonc : GBA Programming in rot13
REG TM3CNT= TM ENABLE | TM CASCADE;

u32 sec= -1;

while (1)

{
vid vsync();
key_poll();

if (REG_TM3D != sec)
{
sec= REG_TM3D;
tte printf ("#{es;P:24,60}%02d:%02d:%024d",
sec/3600, (sec%3600)/60, sec%60);

if (key hit (KEY_ START)) // pause by disabling timer
REGiTM2CNT N= TM ENABLE;

if (key hit (KEY SELECT)) // pause by enabling cascade
REG_TM2CNT "= TM CASCADE;

int main ()
// set-up berk font
tte init se (0, BG CBB(0) [|BG sBB(31), 1, 0, 0, &berkFont,
tte init con();
memcpyl6 (pal bg mem, berkPal, berkPallLen/4);
REG_DISPCNT= DCNT MODEO | DCNT BGO;

tmr test ()

return 0;

se drawg) ;

This was a rather simple use of timers. Of course, I could have just as easily used the VBlank to keep track of the seconds, which is

how it's usually done anyway. The hardware timers are usually reserved for timed DMA's, which are used in sound mixers, not for

game timers. There is one other use that comes to mind, though, namely profiling: examining how fast your functions are. One of the text

system demos uses that to check the speeds of a few copying routines.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

135/331

http://deku.gbadev.org/
file:///H:/dev/gba/proj/tonc/bak/text.htm#ssec-demo-se2

28-03-13 Tonc : GBA Programming in rot13

16. Interrupts

Introduction

Interrupts registers

Interrupt Service Routines
Creating an interrupt switchboard

Finally, an interrupt demo!

16.1. Introduction

Under certain conditions, you can make the CPU drop whatever it's doing, go run another function instead, and continue with the original
process afterwards. This process is known as an inferrupt (two ‘r’s, please). The function that handles the interrupt is an interrupt
service routine, or just interrupt; triggering one is called raising an interrupt.

Interrupts are often attached to certain hardware events: pressing a key on a PC keyboard, for example, raises one. Another PC
example is the VBlank (yes, PCs have them too). The GBA has similar interrupts and others for the HBlank, DMA and more. This last
one in particular can be used for a great deal of nifty effects. I'll give a full list of interrupts shortly.

Interrupts halt the current process, quickly do ‘something’, and pass control back again. Stress the word “quickly”: interrupts are
supposed to be short routines.

16.2. Interrupts registers

There are three registers specifically for interrupts: REG_IE (0400:0200h), REG_IF (0400:0202h) and REG IME
(0400:0208h). REG_IME is the master interrupt control; unless this is set to ‘1°, interrupts will be ignored completely. To enable a
specific interrupt you need to set the appropriate bit in REG IE. When an interrupt occurs, the corresponding bit in REG IF will be set.
To acknowledge that you've handled an interrupt, the bit needs to be cleared again, but the way to do that is a little counter-intuitive to
say the least. To acknowledge the interrupt, you actually have to set the bit again. That's right, you have to write 1 to that bit (which is
already 1) in order to clear it.

Apart from setting the bits in REG_IE, you also need to set a bit in other registers that deal with the subject. For example, the
HBlank interrupt also requires a bit in REG_DISPSTAT. I think (but please correct me if I'm wrong) that you need both a sender and
receiver of interrupts; REG IE controls the receiver and registers like REG DISPSTAT control the sender. With that in mind, let's
check out the bit layout for REG IE and REG_IF.

REG IE @ 0400:0200 and REG IF @ 0400:0202

FE|D|C|BAS 8| 7 6543 2 1 0

- |C|K Dma Com Tm Vct |Hbl | Vbl

bits name define description
0 Vbl IRQ_VBLANK VBlank interrupt. Also requires REG DISPSTAT{3}

1 Hbl IRQ_HBLANK HBIlank interrupt. Also requires REG DISPSTAT {4} Occurs after the HDraw, so
that things done here take effect in the next line.

2 Vet IRQ_VCOUNT VCount interrupt. Also requires REG DISPSTAT{S}. The high byte of
REG DISPSTAT gives the VCount at which to raise the interrupt. Occurs at the
beginning of a scanline.

3-6 Tm IRQ_TIMERx Timer interrupt, 1 bit per timer. Also requires REG TMxCNT {6}. The interrupt will
be raised when the timer overflows.

7 Com IRQ_COM Serial communication interrupt. Apparently, also requires REG SCCNT{E}. To be
raised when the transfer is complete. Or so I'm told, I really don't know squat about
serial communication.

8B Dma IRQ DMAXx DMA interrupt, 1 bit per channel. Also requires REG DMAxCNT {1E}. Interrupt will
be raised when the full transfer is complete.

C K IRQ_KEYPAD Keypad interrupt. Also requires REG_KEYCNT{E}. Raised when any or all or the
keys specified n REG_KEYCNT are down.
D C IRQ_GAMEPAK Cartridge interrupt. Raised when the cart is removed from the GBA.

16.3. Interrupt Service Routines

You use the interrupt registers described above to indicate which interrupts you want to use. The next step is writing an interrupt service
routine. This is just a typeless function (void func (void)); a C-function like many others. Here's an example of an HBlank

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 136/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-regs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-isr
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-switch
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo

28-03-13 Tonc : GBA Programming in rot13
interrupt.

void hbl pal invert()

{
pal bg mem[0] "= Ox7FFF;
REG _IF = IRQ HBLANK;

}

The first line inverts the color of the first entry of the palette memory. The second line resets the HBlank bit of REG IF indicating the
interrupt has been dealt with. Since this is an HBlank interrupt, the end-result is that that the color changes every scanline. This shouldn't
be too hard to imagine.

If you simply add this function to an existing program, nothing would change. How come? Well, though you have an isr now, you still

need to tell the GBA where to find it. For that, we will need to take a closer look at the interrupt process as a whole.

(“
On acknowledging interrupts correctly

To acknowledge that an interrupt has been dealt with, you have to set the bit of that interrupt in REG _IF, and only that bit.
That means that ‘REG_IF = IRQ x is usually the correct course of action, and not ‘REG_IF |= IRQ x’.The |=
version acknowledges all interrupts that have been raised, even if you haven't dealt with them yet.

Usually, these two result in the same thing, but if multiple interrupts come in at the same time things will go bad. Just pay
attention to what you're doing.

"

16.3.1. The interrupt process

The complete interrupt process is kind of tricky and part of it is completely beyond your control. What follows now is a list of things that
you, the programmer, need to know. For the full story, see GBATek : irq control.

1.
2.
3.
4.

S.

Interrupt occurs. Some black magic deep within the deepest dungeons of BIOS happens and the CPU is switched to IRQ
mode and ARM state. A number of registers (rO-r3, r12, 1r)are pushed onto the stack.

BIOS loads the address located at 0300 : 7FFC and branches to that address.

The code pointed to by 0300 : 7FFC is run. Since we're in ARM-state now, this must to be ARM code!

After the isr is done, acknowledge that the interrupt has been dealt with by writing to REG _ TF, then return from the isr by
issuing a bx 1r instruction.

The previously saved registers are popped from stack and program state is restored to normal.

Steps 1, 2 and 5 are done by BIOS; 3 and 4 are yours. Now, in principle all you need to do is place the address of your isr into address
0300:7FFC. To make our job a little easier, we will first create ourselves a function pointer type.

typedef void (*fnptr) (void);
#define REG ISR MAIN * (fnptr*) (0x03007FFC)

// Be careful when using it like this, see notes below
void foo ()
{
REG_ISR MAIN= hbl pal invert; // tell the GBA where my isr is

REG_DISPSTAT |= VID HBL IRQ; // Tell the display to fire HBlank interrupts
REG_IE |= IRQ HBLANK; // Tell the GBA to catch HBlank interrupts
REG_IME= 1; // Tell the GBA to enable interrupts;

}

Now, this will probably work, but as usual there's more to the story.

First, the code that REG_ ISR MAIN jumps to rmust be ARM code! If you compile with the ~mthumb flag, the whole thing
comes to a screeching halt.

What happens when you're interrupted inside an interrupt? Well, that's not quite possible actually; not unless you do some
fancy stuff we'll get to later. You see, REG IME is not the only thing that allows interrupts, there's a bit for irgs in the
program status register (PSR) as well. When an interrupt is raised, the CPU disables interrupts there until the whole thing is
over and done with.

hbl pal invert () doesn't check whether it has been activated by an HBlank interrupt. Now, in this case it doesn't
really matter because it's the only one enabled, but when you use different types of interrupts, sorting them out is essential.
That's why we'll create an interrupt switchboard in the next section.

Lastly, when you use BIOS calls that require interrupts, you also need to acknowledge them in REG_ IFBIOS (=
0300:7FF8). The use is the same as REG_IF.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 137/331

http://nocash.emubase.de/gbatek.htm#interruptcontrol
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-switch
file:///H:/dev/gba/proj/tonc/bak/swi.htm

28-03-13 Tonc : GBA Programming in rot13

{ N

On section mirroring

GBA's memory sections are mirrored ever so many bytes. For example IWRAM (0300: 0000) is mirrored every 8000h
bytes, so that 0300 : 7FFC is also 03FF: FFFC, or 0400 : 0000—4. While this is faster, I'm not quite sure if this should be
taken advantage of. no$gba v2.2b marks it as an error, even though this was apparently a small oversight and fixed in v2.2c.
Nevertheless, consider yourself warned.

16.4. Creating an interrupt switchboard

The hbl pal invert () functionis an example of a single interrupt, but you may have to deal with multiple interrupts. You may
also want to be able to use different isr's depending on circumstances, in which case stuffing it all into one function may not be the best
way to go. Instead, we'll create an interrupt switchboard.

An interrupt switchboard works a little like a telephone switchboard: you have a call (ie., an interrupt, in REG _ IF) coming in, the
operator checks if it is an active number (compares it with REG IE) and if so, connects the call to the right receiver (your isr).

This particular switchboard will come with a number of additional features as well. It will acknowledge the call in both REG IF and
REG_IFBIOS), even when there's no actual ISR attached to that interrupt. It will also allow nested interrupts, although this requires a
little extra work in the ISR itself.

16.4.1. Design and interface considerations

The actual switchboard is only one part of the whole; I also need a couple of structs, variables and functions. The basic items I require
are these.

e isr table[]. Aninterrupt table. This is a table of function pointers to the different isr's. Because the interrupts should
be prioritized, the table should also indicate which interrupt the pointers belong to. For this, we'lluse an TRQ REC struct.

e irq init() /irq_set master (). Setmasterisr. irq init () initializes the interrupt table and interrupts
themselves as well

e irq enable() /irq_disable (). Functions to enable and disable interrupts. These will take care of both REG IE and
whatever register the sender bit is on. I'm keeping these bits in an internal table called irg senders[] and to be able to
use these, the input parameter of these functions need to be the index of the interrupt, not the interrupt flag itself. Which is
why I have IT foo counterparts for the IRQ foo flags.

e irq set() /irq_add() /irq_delete (). Function to add/delete interrupt service routines. The first allows full
prioritization of ist's; 1rg_add () will replace the current irs for a given interrupt, or add one at the end of the list;
irg delete () wil delete one and correct the list for the empty space.

All of these functions do something like this: disable interrupts (REG IME=0), do their stuff and then re-enable interrupts. It's a good
idea to do this because being interrupted while mucking about with interrupts is not pretty. The functions concerned with service routines
will also take a function pointer (the fnptr type), and also return a function pointer indicating the previous isr. This may be useful if you
want to try to chain them.

Below you can see the structs, tables, and the implementation of irg enable () and irg_add (). In both functions, the
__irg senders[] array is used to determine which bit to set in which register to make sure things send interrupt requests. The
irg add () function goes on to finding either the requested interrupt in the current table to replace, or an empty slot to fill. The other
routines are similar. If you need to see more, look in tonc_irg.h/.c in tonclib.

//! Interrups Indices

typedef enum elrglIndex

{
II VBLANK=0, II HBLANK, II VCOUNT, II TIMERO,
IT TIMERI, II TIMER2, II TIMER3, II SERIAL,
II_DMAO, II_DMAl, II_DMA2, II_DMA3,
IT KEYPAD, ITI GAMEPAK,II MAX

} eIrgIndex;

//! Struct for prioritized irqg table
typedef struct IRQ REC

{
u32 flag; //!'< Flag for interrupt in REG_IF, etc
fnptr isr; //!< Pointer to interrupt routine

} IRQ REC;

// === PROTOTYPES ===
IWRAM CODE void isr master nest();

void irg init (fnptr isr);
fnptr irq set master (fnptr isr);

fnptr irg add(enum eIrgIndex irqg id, fnptr isr);
fnptr irg delete(enum elrglIndex irqg id);

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 138/331

28-03-13 Tonc : GBA Programming in rot13

fnptr irg set (enum elIrgIndex irqg id, fnptr isr, int prio);
void irg enable(enum elIrgIndex irqg id);
void irqg disable(enum eIrglIndex irq id);

// IRQ Sender information
typedef struct IRQ SENDER
{
ul6 reg ofs; //!'< sender reg - REG_BASE
ule flag; //!< irg-bit in sender reg
} ALIGN4 IRQ SENDER;

// === GLOBALS ==

// One extra entry for guaranteed zero
IRQ REC _ isr table[II MAX+1];

static const IRQ SENDER irg senders[] =
{

{ 0x0004, 0x0008 1}, // REG_DISPSTAT, DSTAT VBL_ IRQ
{ 0x0004, 0x0010 1}, // REG_DISPSTAT, DSTAT VHB IRQ
{ 0x0004, 0x0020 }, // REG_DISPSTAT, DSTAT VCT_ IRQ
{ 0x0102, 0x0040 }, // REG_TMOCNT, TM IRQ
{ 0x0106, 0x0040 }, // REG_TMICNT, TM IRQ
{ 0x010A, 0x0040 }, // REG_TM2CNT, TM IRQ
{ 0x010E, 0x0040 }, // REG_TM3CNT, TM IRQ
{ 0x0128, 0x4000 }, // REG_SCCNT L BIT (14) // not sure
{ 0x00BA, 0x4000 }, // REG_DMAOCNT H, DMA IRQ>>16
{ 0x00C6, 0x4000 }, // REG_DMAICNT H, DMA IRQ>>16
{ 0x00D2, 0x4000 }, // REG_DMA2CNT H, DMA IRQ>>16
{ 0xO00DE, 0x4000 }, // REG DMA3CNT H, DMA IRQ>>16
{ 00132, 0x4000 }, // REG_KEYCNT, KCNT_IRQ
{ 0x0000, 0x0000 1}, // cart: none
}s
// === FUNCTIONS ==

//! Enable irq bits in REG_IE and sender bits elsewhere
void irg enable(enum elIrgIndex irqg id)
{

ul6 ime= REG IME;

REG_IME= 0;

const IRQ SENDER *sender= & 1irq senders[irqg id];
(ul6) (REG_BASE+sender->reg ofs) |= sender->flag;

REG_IE |= BIT(irqfid);
REG IME= ime;

//' Add a specific isr
fnptr irg add(enum eIrgIndex irqg id, fnptr isr)
{

ul6 ime= REG_ IME;

REG_IME= 0;

int ii;

ul6e irqg flag= BIT(irg id);
fnptr old isr;

IRQ REC *pir= isr table;

// Enable irg

const IRQ SENDER *sender= & 1irq senders[irqg id];
(ul6) (REG_BASE+sender->reg ofs) |= sender->flag;
REG IE |= irq flag;

// Search for previous occurance, or empty slot
for(1ii=0; pir[ii].flag; 1ii++)
if(pirf[ii].flag == irg flag)
break;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

139/331

28-03-13 Tonc : GBA Programming in rot13
old isr= pir[ii].isr;
pir[ii].isr= isr;
pir[ii].flag= irqg flag;

REG _IME= ime;
return old isr;

16.4.2. The master interrupt service routine

The main task of the master ISR is to seek out the raised interrupt in isr table,and acknowledge it in both REG IF and

REG_IFBIOS. If there is an irq-specific service routine, it should call it; otherwise, it should just exit to BIOS again. In C, it would look

something like this.

// This is mostly what tonclib's isr master does, but
// you really need asm for the full functionality
IWRAM CODE void isr master c()
{

u32 ie= REG_IE;

u32 ieif= ie & REG_IF;

IRQ REC *pir;

// (1) Acknowledge IRQ for hardware and BIOS.
REG_IF = ieif;
REG_IFBIOS |= ieif;

// (2) Find raised irg

for(pir= _ isr table; pir->flag!=0; pir++)
if (pir->flag & ieif)
break;

// (3) Just return if irg not found in list or has no isr.

if(pir->flag == || pir->isr == NULL)
return;
// —--- If we're here have an interrupt routine ---

// (4a) Disable IME and clear the current IRQ in IE
u32 ime= REG IME;

REG IME= 0;

REG_IE &= ~ieif;

// (5a) CPU back to system mode

//> *(--sp_irqg)= lr irgqg;

//> *(--sp_irqg)= spsr

//> cpsr &= ~(CPU MODE_MASK | CPU IRQ OFF);
//> cpsr |= CPU_MODE SYS;

//> *(--sp_sys) = lr sys;

pir->isr(); // (6) Run the ISR
REG_IME= 0; // Clear IME again (safety)

// (5b) Back to irg mode

//> lr sys = *sp sys++;

//> cpsr &= ~(CPU_MODE MASK | CPU_IRQ OFF);
//> cpsr |= CPU MODE IRQ | CPU IRQ OFF;
//> spsr = *sp_ irgt++

//> lr irg = *sp irg++;

// (4b) Restore original ie and ime
REG IE= ie;
REG_IME= ime;

Most of these points have been discussed already, so I won't repeat them again. Do note the difference is acknowledging REG IF and
REG_IFBIOS: the former uses a simple assignment and the latter an |=. Steps 4, 5 and 6 only execute if the current IRQ has its own
service routine. Steps 4a and 5a work as initialization steps to ensure that the ISR (step 6) can work in CPU mode and that it can't be

interrupted unless it asks for it. Steps 4b and 5b unwind 4a and 5Sa.

This routine would work fine in C, were it not for items 5a and 5b. These are the code to set/restore the CPU mode to system/irq
mode, but the instructions necesasry for that aren't available in C. Another problem is that the link registers (these are used to hold the

return addresses of functions) have to be saved somehow, and these definitely aren't available in C.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

140/331

28-03-13

Tonc : GBA Programming in rot13

Note: I said registers, plurall Each CPU mode has its own stack and link register, and even though the names are the same (1r and
sp), they really aren't identical. Usually a C routine will save 1r on its own, but since you need it twice now it's very unsafe to leave
this up to the compiler. Aside from that, you need to save the saved program status register spsr, which indicates the program status

when the interrupt occurred. This is another thing that C can't really do. As such, assembly is required for the master ISR.

So, assembly it is then. The function below is the assembly equivalent of irs master c (). Itis almost a line by line translation,
although I am making use of a few features of the instruction set the compiler wont't or can't. I don't expect you to really understand
everything written here, but with some imagination you should be able to follow most of it. Teaching assembly is way beyond the scope
of this chapter, but worth the effort in my view. Tonc's assembly chapter should give you the necessary information to understand most

of it and shows where to go to learn more.

.file "tonc_ isr master.s"

.extern isr table;

/*! \fn IWRAM CODE void isr master ()
\brief Default irg dispatcher (no automatic nesting)

*/
.section .iwram, "ax", S%$progbits
.arm
.align
.global isr master
@ --- Register list ---
@ r0 : ®_IE
@ rl : isr table / isr
@ r2 : IF & IE
@ r3 : tmp
@ ip : (IF<<16 | IE)
isr master:
@ Read IF/IE
mov r0, #0x04000000
ldr ip, [r0, #0x200]!
and r2, ip, ip, lsr #16 @ irg= IE & IF

@ (1) Acknowledge irg in IF and for BIOS

strh r2, [r0, #2]

ldr r3, [r0, #-0x208]
orr r3, r3, r2

str r3, [r0, #-0x208]

@ (2) Search for irqg.

ldr rl, = 1isr table

.Lirg search:

ldr r3, [rl],
tst r3, r2
bne .Lpost search @ Found one, break off search
cmp r3, #0
bne .Lirg search @ Not here; try next irg
@ (3) Search over : return if no isr, otherwise continue.

.Lpost_search:

ldrne rl, [rl, #-4] @ isr= _ isr table[ii-1].isr
cmpne rl, #0

bxeq 1r @ If no isr: quit

@ -——- If we're here, we have an isr ---

@ (4a) Disable IME and clear the current IRQ in IE

1dr r3, [r0, #8]
strb r0, [x0, #8]
bic r2, ip, r2
strh r2, [r0]

mrs r2, spsr

stmfd sp!, {r2-r3, ip,

@ (5a) Set mode to sys

mrs r3, cpsr
bic r3, r3, #0xDF
orr r3, r3, #0x1F

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

@ Read IME
@ Clear IME

@ Clear current irg in IE

1r} @ sprs, IME, (IE,IF), lr irqg

141/331

file:///H:/dev/gba/proj/tonc/bak/asm.htm

28-03-13 Tonc : GBA Programming in rot13

msr cpsr, r3

@ (6) Call isr

stmfd sp!, {r0,1lr} @ ® IE, 1lr sys
mov lr, pc

bx rl

ldmfd sp!, {r0,1lr} @ ® _IE, 1lr sys
@ --- Unwind ---

strb r0, [x0, #8] @ Clear IME again (safety)
@ (5b) Reset mode to irqg

mrs r3, cpsr

bic r3, r3, #0xDF

orr r3, r3, #0x92

msr cpsr, r3

@ (4b) Restore original spsr, IME, IE, lr irqg

ldmfd sp!, {r2-r3, ip, 1lr} @ sprs, IME, (IE,IF), lr irg
msr spsr, r2

strh ip, [rO0]

str r3, [r0, #8]

bx 1lr

Nested irgs are nasty

Making a nested interrupt routine work is not a pleasant exercise when you only partially know what you're doing. For
example, that different CPU modes used different stacks took me a while to figure out, and it took me quite a while to realize
that the reason my nested isrs didn't work was because there are different link registers too.

The isr master nest is largely based on libgba's interrupt dispatcher, but also borrows information from GBATek
and A. Bilyk and DekuTree's analysis of the whole thing as described in forum:4063. Also invaluable was the home-use
debugger version of no$gba, hurray for breakpoints.

If you want to develop your own interrupt routine, these sources will help you immensely and will keep the loss of sanity

down to somewhat acceptable levels.
\\

p
Deprecation notice
I used to have a different master service routine that took care of nesting and prioritizing interrupts automatically. Because it
was deemed too complicated, it has been replaced with this one.
Nested interrupts are still possible, but you have to indicate interruptability inside the isr yourself now.

16.5. Nested interrupt demo
Today's demo shows a little bit of everything described above:
o [t'lldisplay a color gradient on the screen through the use of an HBlank interrupt.
« It will allow you to toggle between two different master isrs: The switchboard isr master which routes the program flow

to an HBlank isr, and an isr in C that handles the HBlank interrupt directly. For the latter to work, we'll need to use ARM-
compiled code, of course, and I'll also show you how in a minute.

¢ Finally, having a nested isr switchboard doesn't mean much unless you can actually see nested interrupts in action. In this case,

we'll use two interrupts: VCount and HBlank. The HBlank isr creates a vertical color gradient. The VCount isr will reset the
color and tie up the CPU for several scanlines. If interrupts don't nest, you'll see the gradient stop for a while; if they do nest,
it'll continue as normal.

¢ And just for the hell of it, you can toggle the HBlank and VCount irgs on and off.

The controls are as follows:
A Toggles between asm switchboard and C direct isr.
B Toggles HBlank and VCount priorities.

L,R Toggles VCount and HBlank irgs on and off.

#include <stdio.h>
#include <tonc.h>

IWRAM CODE void isr master();
IWRAM CODE void hbl grad direct();

void vect _wait();
void vct wait nest();

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

142/331

http://forum.gbadev.org/viewtopic.php?t=4063

28-03-13

CSTR strings|[]=
{

Tonc : GBA Programming in rot13

"asm/nested", "c/direct",

"HBlank", "VCount"
}i

// Function pointers to mast
const fnptr master isrs[2]=
{
(fnptr)isr master,
(fnptr)hbl grad direct
}i

// VCount interrupt routines
const fnptr vct isrs[2]=
{

vet wait,

vct wait nest

}i

// (1) Uses tonc isr master.
void hbl grad routed()
{
u32 clr= REG_VCOUNT/8;
pal bg mem[0]= RGB15 (clr

// (2a) VCT is triggered at
void vct wait ()
{
pal bg mem[0]= CLR RED;
while (REG_VCOUNT<120) ;

er isrs.

s' isr master () as a switchboard

, 0, 31-clr);

line 80; this waits 40 scanlines

// (2b) As vct wait (), but interruptable by HBlank

void vct wait nest()

{
pal bg mem[0]= CLR RED;
REG_TIE= IRQ HBLANK;
REG_IME= 1;
while (REG_VCOUNT<120) ;

int main ()
u32 bDirect=0, bVctPrio=

tte_init chr4 b4 default

// Allow nested hblanks

0;

(0, BG_CBB(2) |BG_SBB(28));

tte set drawg((fnDrawg)chr4 drawg bdcts fast);

tte init con();
tte set margins(8, 8, 12

REG_DISPCNT= DCNT MODEO

// (3) Initialize irgs;

8, 64);

| DCNT BGO;

add HBL and VCT isrs

// and set VCT to trigger at 80

irqg init (master isrs[0])

’

irq add(II_ HBLANK, hbl grad routed);

BFN SET (REG DISPSTAT, 80

(
irg add(II_VCOUNT, vct wait);
(

irg add(IT_VBLANK, NULL)

while (1)

{
//vid _vsync();
VBlankIntrWait () ;
key _poll();

// Toggle HBlank irqg

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

, DSTAT VCT) ;

’

143/331

28-03-13 Tonc : GBA Programming in rot13

if (key_hit (KEY R))
REG_IE "= IRQ HBLANK;

// Toggle Vcount irqg
if (key hit(KEY L))
REG IE "= IRQ VCOUNT;

// (4) Toggle between
// asm switchblock + hbl gradient (red, descending)
// or purely hbl isr in c¢ (green, ascending)
if (key hit (KEY A))
{
bDirect *= 1;
irqg set master (master isrs[bDirect]);

}

// (5) Switch priorities of HBlank and VCount
if (key hit (KEY B))
{
//irq_set(II_VCOUNT, vct wait, bVctPrio);
bVctPrio *= 1;
irg add(II_VCOUNT, vct isrs[bVctPriol]);
}

tte printf ("#{es;P}IRS#{X:32}: %$s\nPrio#{X:32}: $s\nIE#{X:32}: %04X",
strings[bDirect], strings[2+bVctPrio], REG IE);
}

return 0;

}

The code listing above contains the main demo code, the HBlank, and VCount isrs that will be routed and some sundry items for
convenience. The C master isr called hbl grad direct () is in another file, which will be discussed later.

First, the contents of the interrupt service routines (points 1 and 2). Both routines are pretty simple: the HBlank routine
(hbl grad routed()) uses the value of the scanline counter to set a color for the backdrop. At the top, REG_VCOUNT is 0, so the
color will be blue; at the bottom, it'll be 160/8=20, so it's somewhere between blue and red: purple. Now, you may notice that the first
scanline is actually red and not blue: this is because a) the HBlank interrupt occurs affer the scanline (which has caused trouble before
in the DMA demo) and b) because HBlanks happen during the VBlank as well, so that the color for line 0 is set at REG_ VCOUNT=227,
which will give a bright red color.

The VCount routines activate at scanline 80. They set the color to red and then waits until scanline 120. The difference between the
two is that vet wait () just waits,but vet wait nest () enables the HBlank interrupt. Remember that isr master disables
nterrupts before calling an service routine, so the latter Vcount routine should be interrupted by hbl grad routed (), but the
former would not. As you can see from fig 16.1a and fig 16.1b, this is exactly what happens.

Point 3 is where the interrupts are set up in the first place. The callto irg init () clears the isr table and sets up the master isr.
Its argument can be NULL, in which case the tonc's default master isr is used. The calls to irg add () initialize the HBlank and
VCount interrupts and their service routines. If you don't supply a service routine, the switchboard will just acknowledge the interrupt
and return. There are times when this is useful, as we'll see in the next chapter. irq add () already takes care of both REG IE and
the IRQ bits n REG_DISPSTAT; what it doesn't do yet is set the VCount at which the interrupt should be triggered, so this is done
separately. The order of irqg add () doesn't really matter, but lower orders are searched first so it makes sense to put more frequent
nterrupts first.

You can switch between master service routines with irq set master (), as is done at point 4. Point 5 chooses between the
nested and non-nested VCount routine.

Fig 16.1a: Gradient; nested Fig 16.1b: Gradient; non-nested Fig 16.1c: Gradient; HBlank in master
vct wait nested. vet wait. ISR in C.

This explains most of what the demo can show. For Real Life use, irg_init () and irg add () are pretty much all you need, but
the demo shows some other interesting things as well. Also interesting is that the result is actually a little different for VBA, no$gba and
hardware, which brings up another point: interrupts are time-critical routines, and emulating timing is rather tricky. If something works on

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 144/331

file:///H:/dev/gba/proj/tonc/bak/dma.htm#sec-demo

28-03-13 Tonc : GBA Programming in rot13

an emulator but not hardware, interrupts are a good place to start looking.
This almost concludes demo section, except for one thing: the direct HBlank isr in C. But to do that, we need it in ARM code and to
make it efficient, it should be in IWRAM as well. And here's how we do that.

16.5.1. Using ARM + IWRAM code

The master interrupt routines have to be ARM code. As we've always compiled to THUMB code, this would be something new. The
reason that we've always compiled to THUMB code is that the 16bit buses of the normal code sections make ARM-code slow there.
However, what we could do is put the ARM code in IWRAM, which has a 32bit bus (and no waitstates) so that it's actually beneficial to
use ARM code there.

Compiling as ARM code is actually quite simple: use —marm instead of —-mthumb. The IWRAM part is what causes the most
problems. There are GCC extensions that let you specify which section a function should be in. Tonclib has the following macros for
them:

#define EWRAM DATA attribute ((section(".ewram")))

#define IWRAM DATA attribute ((section(".iwram")))

#define EWRAM BSS attribute ((section(".sbss")))

#define EWRAM CODE attribute ((section(".ewram"), long call))
#define IWRAM CODE attribute ((section(".iwram"), long call))
// --- Examples of use: ---

// Declarations
extern EWRAM DATA u8 datal];
IWRAM CODE void foo();

// Definitions
EWRAM DATA u8 data[8]= { ... };

IWRAM CODE void foo ()
{

}

The EWRAM/IWRAM things should be self-explanatory. The DATA IN x things allow global data to be put in those sections. Note
that the default section for data is IWRAM anyway, so that may be a little redundant. EWRAM BSS concerns uninitialized globals. The
difference with initialized globals is that they don't have to take up space in ROM: all you need to know is how much space you need to
reserve in RAM for the array.

The function variants also need the 1ong call attribute. Code branches have a limited range and section branches are usually too
far to happen by normal means and this is what makes it work. You can compare them with ‘far’ and ‘near’ that used to be present in
PC programming,

It should be noted that these extensions can be somewhat fickle. For one thing, the placement of the attributes in the declarations and
definitions seems to matter. I think the examples given work, but if they don't try to move them around a bit and see if that helps. A
bigger problem is that the long_call attribute doesn't always want to work. Previous experience has led me to believe that the
long call is ignored unless the definition of the function is in another file. If it's in the same file as the calling function, you'll get a
‘relocation error’, which basically means that the jump is too far. The upshot of this is that you have to separate your code depending on
section as far as functions are concerned. Which works out nicely, as you'll want to separate ARM code anyway.

So, for ARM/IWRAM code, you need to have a separate file with the routines, use the TWRAM CODE macro to indicate the
section, and use -marm in compilation. It is also a good idea to add -mlong-calls too, in case you ever want to call ROM functions
from IWRAM. This option makes every call a long call. Some toolchains (including DKP) have set up their linkscripts so that files with
the extension . iwram. c automatically go into IWRAM, so that TWRAM CODE is only needed for the declaration.

In this case, that'd be the file called isr . iwram. c. This contains a simple master isr in C, and only takes care of the HBlank and
acknowledging the interrupts.

#include <tonc.h>
IWRAM CODE void hbl grad direct();

// an interrupt routine purely in C
// (make SURE you compile in ARM mode!!)
void hbl grad_direct ()
{
u32 irgs= REG_IF & REG IE;

REG IFBIOS |= irgs;
if(irgs & IRQ HBLANK)

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 145/331

28-03-13 Tonc : GBA Programming in rot13

u32 clr= REG_VCOUNT/8;
pal bg mem[0]= RGB15(0, clr, 0);

REG IF= irgs;

Flags for ARM+IWRAM compilation
Replace the ‘-mthumb’ in your compilation flags by ‘-marm -mlong-calls’. For example:

CBASE := $(INCDIR) -02 -Wall

ROM flags

RCFLAGS := $(CBASE) -mthumb-interwork -mthumb
IWRAM flags
ICFLAGS := $(CBASE) -mthumb-interwork -marm -mlong-calls

For more details, look at the makefile for this project.

\

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

146/331

28-03-13 Tonc : GBA Programming in rot13

17. BIOS Calls

o Introduction

e The BIOS functions

o Using BIOS calls

e Demo graphs

¢ Vsyncing part [1, VBlankIntrWait
¢ Final thoughts

17.1. Introduction

Apart from hardware interrupts, like HBlank and cartridge interrupts, there are also things called software interrupts, also known as
BIOS calls. The software interrupts work very much like ordinary functions: you set-up input, call the routine, and get some output
back. The difference lies in how you reach the code; for normal functions you just, well, jump to the routine you want. Software
interrupts use the swi instruction, which diverts the program flow to somewhere in BIOS, carries out the requested algorithm and then
restores the normal flow of your program. This is similar to what hardware interrupts do, only now you raise the interrupt
programmatically. Hence: software interrupt.

The GBA BIOS has 42 software interrupts, with basic routines for copying, math (division, square root), affine transformations for
sprites and backgrounds, decompression among others. There are also some very special functions like the Int rWait routines, which
can stop the CPU until a hardware interrupt occurs. The VBlank variant is highly recommended, which is what makes this chapter
important.

Using software interrupts isn't too hard if it weren't for one thing: the swi instruction itself. This again requires some assembly.
However, not much assembly, and it's easy to write C wrappers for them, which we'll also cover here.

17.2. The BIOS functions

Calling the BIOS functions can be done via the ‘swi n’ instruction, where 7 is the BIOS call you want to use. Mind you, the exact
numbers you need to use depends on whether your code is in ARM or THUMB state. In THUMB the argument is simply the # itself,
but in ARM you need to use n<<16. Just like normal functions, the BIOS calls can have input and output. The first four registers (r0-r3)
are used for this purpose; though the exact purpose and the number of registers differ for each call.

Here's a list containing the names of each BIOS call. I am not going to say what each of them does since other sites have done that
already and it seems pointless to copy their stuff verbatim. For full descriptions go to GBATek, for example. I will give a description of a
few of them so you can get a taste of how they work.

17.2.1. Full list

id Name id Name
0x00 SoftReset 0x08 Sqrt
0x01 RegisterRamReset 0x09 ArcTan
0x02 Halt 0x0A ArcTan2
0x03 Stop 0x0B CPUSet
0x04 IntrWait 0x0C CPUFastSet
0x05 VBlankIntrWait 0x0D BiosChecksum
0x06 Div 0xOE BgAffineSet
0x07 DivArm 0xOF ObjAffineSet
0x10 BitUnPack 0x18 Diff16bitUnFilter
0x11 LZ77UnCompWRAM 0x19 SoundBiasChange
0x12 LZ77UnCompVRAM 0xIA SoundDriverInit
0x13 HuffUnComp 0xIB SoundDriverMode
0x14 RLUnCompWRAM 0x1C SoundDriverMain
0x15 RLUnCompVRAM 0xID SoundDriverVSync
0x16 Diff8bitUnFiterWRAM 0x1E SoundChannelClear
0x17 Diff8bitUnFilter VRAM 0x1F MIDIKey2Freq
0x20 MusicPlayerOpen 0x28 SoundDriverVSyncOff

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 147/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-funs
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-usage
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-vsync2
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-concs
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm
http://nocash.emubase.de/gbatek.htm

28-03-13 Tonc : GBA Programming in rot13
0x21 MusicPlayerStart 0x29 SoundDriverVSyncOn
0x22 MusicPlayerStop 0x2A GetJumpList
0x23 MusicPlayerContinue
0x24 MusicPlayerFadeOut
0x25 MultiBoot
0x26 HardReset
0x27 CustomHalt

17.2.2. Div, Sqrt, Arctan2 and ObjAffineSet descriptions

0x06: Div
Input:
r0: numerator
rl: denominator
Output:
r0: numerator / denominator
rl: numerator % denominator

r3: abs(numerator / denominator)
Note: do NOT divide by zero!

0x08: Sqrt
Input:
r0: num, a unsigned 32-bit integer
Output:
rl: sqrt(num)

0x0a: ArcTan2
Input:
r0: x, a signed 16bit number (s16)
rl: y, a signed 16bit number (s16)
Output:
r0: x>0 : 6= arctan(y/x) V x<0 : 6= sign(y)*(n — arctan(|y/x|).
This does the full inverse of y = x*tan(6). The problem with the tangent is that the domain is a semi-circle, as is the range of arc

tangent. To get the full circle range, both x and y values are required for not only their quotient, but their signs as well. The
mathematical range of 8 is [—x, m[], which corresponds to [-0x8000, 0x8000C] (or [0, 2x[] and [0, OXFFFF] if you like)

0x0f: ObjAffineSet
Input:
r0: source address
rl: destination address
r2: number of calculations

r3: Offset of P matrix elements (2 for bgs, 8 for objects)

The source address points to an array of AFF_SRC structs (also known as ObjAffineSource, which is a bit misleading since you
can use them for backgrounds as well). The AFF_SRC struct consist of two scales s_, sy and an angle o, which again uses the range
[0, OXFFFF] for 2. The resulting P:

(a7.1) P :|:sx-cos(a) —sx'sin(a):|

Sy sin(a) sy'cos((x)

By now you should know what this does: it scales horizontally by 1/s_, vertically by l/sy followed by a counter-clockwise rotation by a.
ObjAffineSet () does almost exactly what obj aff rotscale() andbg aff rotscale () do,except that
ObjAffineSet () can also set multiple matrices at once.

The source data is kept in ObJjAffineSource (Le., AFF SRC) structs. Now, as the routine sets affine matrices, you might think
that the destinations are either OBJ AFFINE or ObJjAffineDest structs. However, you'd be wrong. Well, partially anyway. The
problem is that the destination always points to a p -element, which is not necessarily the first element in struct. You will make the
mistake of simply supplying an OBJ AFFINE pointer when you try to use it to fill those. Don't say I didn't warn you.

Two other things need to be said here as well. First, once again we have a bit of a misnomer: ObjAffineSet doesn't really have much
to do with objects per se, but can be used in that capacity by setting r3 to 8 instead of 2. The second is that the routine can also be used
to set up multiple arrays via r2. However, be careful when you do this with devkitPro 19. ObjAffineSet () expects its source
structs to be word-aligned, which they won't be unless you add the alignment attributes yourself.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 148/331

file:///H:/dev/gba/proj/tonc/bak/bitmaps.htm#ssec-data-align

28-03-13 Tonc : GBA Programming in rot13

// Source struct. Note the alignment!
typedef struct AFF SRC
{
sl6 sx, sy;
ulé alpha;
} ALIGN4 AFF SRC, ObjAffineSource;

// Dst struct for background matrices
typedef struct Aff DST
{
sl6 pa, pb;
sl6 pc, pd;
} ALIGN4 AFF DST, ObjAffineDest;

// Dst struct for objects. Note that rl should be
// the address of pa, not the start of the struct
typedef struct OBJ AFFINE

{

ule £1110[37]:; slé pa;
ulée £i111([3]; sl6 pb;
ule £1i112[3]; sl6 pc;
ule £i113[3]; sl6 pd;

} ALIGN4 OBJ AFFINE;

17.3. Using BIOS calls
17.3.1. Assembly for BIOS calls

You might think this whole discussion was rather pointless since you can't access the registers and the swi instruction unless you use
assembly, which will be pretty tough, right? Well, no, yes and no. The necessary assembly steps for BIOS calls are actually rather
simple, and are given below.

@ In tonc bios.s

@ at top of your file
.text @ aka .section .text
.code 16 @ aka .thumb

@ for each swi (like division, for example)
.align 2 @ aka .balign 4
.global Div
.thumb_func
Div:
swi 0x06
bx 1r

This is assembly code for the GNU assembler (GAS); for Goldroad or ARM STD the syntax is likely to be slightly different. The first
thing you need to do is give some directives, which tells some details about the following code. In this case, we use the “. text’ to put
the code in the text section (ROM or EWRAM for multiboot). We also say that the code is THUMB code by using ‘. code 16’ or
‘. thumb’. If you place these at the top of the file, they'll hold for the rest of the thing. For each BIOS call, you'll need the following 6
1tems.

¢ Word-alignment. Or at least halfword alignment, but words are probably preferable. There are two directives for this,
.align nand .balign m. The former aligns to 2” so requires ‘.align 2’;the latter aligns to m so you can just use
‘balign m’. Note that both will only work on the next piece of code or data and no further, which is why it's best to add it
for each function.

e Scope. The .global name directive makes a symbol out of name, which will then be visible for other files in the project
as well. A bit like extern or, rather, an anti-static.

¢ Thumb indicator It would seem that . code 16 alone isn't enough, you also need . thumb_ func. In fact, if I read the
manual correctly this one also implies . code 16, which would make that directive redundant.

¢ Label. ‘name:’ marks where the symbol name starts. Obviously, to use a function it must actually exist.

¢ BIOS call To actually activate the BIOS call, use ‘swin’, with n the BIOS call you want.

¢ Return And we're practically done already, all we have to do now is return to the caller with ‘bx Ir’.

See? It's really not that complicated. Sometimes you might want a little more functionality than this, but for the most part you only need
two measly instructions.

17.3.2. The Arm Architecture Procedure Call Standard

That's all fine and good, but that still leaves the questions of a) how do I combine this with C code and b) where'd all the input and output
go? The answer to the first is simple: just add a function declaration like usual:

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 149/331

28-03-13 Tonc : GBA Programming in rot13

// In tonc bios.h

int Div(int num, int denom) ;

Mkay, but that still doesn't explain where my input and output went. Well actually ... it does.
“I am not sure how clouds get formed. But the clouds know how to do it, and that is the important thing”

Found that quote long ago in one of those Kids on Science lists, and I'm always reminded of it when programming. The thing about
computers is that they don't think in terms of input, output, text, pictures etc. Actually, they don't think at all, but that's another story. All
a computer sees is data; not even code and data, just data since code is data too. Of course, you may not see it that way because you're
used to C or VB or whatever, but when all is said and done, it's all just ones and zeros. If the ones and zeros come to the CPU via the
program counter (PC register, r15) it's code, otherwise it's data.

So how does that explain the input/output? Well, it doesn't do it directly, but it points to how you should be looking at the situation.
Consider you're the compiler and you have to convert some bloke's C code into machine code (or assembly, which is almost the same
thing) that a CPU can actually use. You come across the line “g= Div (x,y) ;”. What does Div () do? Well, if there's no symbol in
the C-file for that name (and there isn't, as it's in tonc_bios. s), you wouldn't know. Technically, you don't even know what it is. But
Div knows, and that's the important thing. At least, that's almost how it works. The compiler should still need to know what sort of
critter Div is to avoid confusion: A variable? A macro? A function? That's what the declarations are for. And the declaration above
says that Div is a function that expects two signed integers and returns one too. As far as the compiler's concerned, it ends there.

Of course, that still doesn't explain how the compiler knows what do to. Well, it simply follows the ARM Architecture Procedure Call
Standard, AAPCS for short. This states how functions should pass arguments to each other. This PDF document can be found here
and if you're contemplating assembly is a very worthwhile download.

For now, here's what you need to know. The first four arguments are placed in the first four registers r0-r3, every one after that is
placed on the stack. The output value is placed in 0. As long as you take the argument list of the BIOS call as the list in the
declaration, it should work fine. Note that the declaration also takes care of any casting that needs to be done. It is important that you
realize just what the declaration means here: it determines how the function is called, not the actual definition assembly function. Or
even C function. Things can go very wrong if you mess up the declaration.

Another thing the AAPCS tells you is that register r0-r3 (and r12) are so-called scratch registers. This means that the caller expects
the called function to mess these up. After the function returns their contents are to be considered undefined — unless you're the one
writing both asm functions, in which case there may be certain ... allowances. Having these as scratch registers means that a function
can use them without needing to push and pop the originals on and off the stack, thus saving time. This does not hold for the other
registers, though: r4-r11, r13, r14 must be returned in the way the calling function got them. The last one, r15, is exempt from this, as you
shouldn't screw around with the program counter.

17.3.3. Inline assembly

Actually, you don't even need a full assembly file for BIOS calls: you could use inline assembly. With inline assembly, you can mix C
code and assembly code. Since the functions are usually rather simple, you could use something like

// In a C file
int Div(int num, int denom)
{ asm("swi 0x06™); }

This does exactly the same thing as the assembly version of Div. However, you need to be careful with inline assembly because you
can't see the code around it and might accidentally clobber some registers that you shouldn't be messing with, thus ruining the rest of the
code. For the full rules on inline assembly, see the GCC manual. You can also find a short faq on inline assembly use at devrs.com. The
‘proper’ syntax of inline assembly isn't the friendliest in the world, mind you, and there are other problems as well. Consider the C
function given above. Since it doesn't really do anything itself, the optimiser may be tempted to throw it away. This will happen with -03
unless you take appropriate precautions. Also, the compiler will complain that the function doesn't return anything, even though it should.
It has a point, of course, considering that part is taken care of inside the assembly block. There are probably a few other problems that
I'm not aware of at present; in the end it's easier to use the full-assembly versions so you know what's happening.

17.3.4. The swi_call macro

On the other hand, there are also BIOS calls that use no arguments, which can be run via a mere macro. The swi call (x) macro
will run the BIOS call x, and can be found in swi . h, and in Wintermute's libgba, which is where I got it from. It's a little more refined
than the Div function given above. First, it uses the volatile keyword, which should keep your optimizer from deleting the function
(just like we did for all the registers). Secondly, it uses a clobber list (after the triple colons). This will tell the compiler which registers
are used by the inline assembly. Thirdly, it will take care of the THUMB/ARM switch automatically. If you use the -mthumb compiler
option, the compiler will define thumb_ for us, which we will now use to get the right swi-number. Clever, eh?

#ifndef (__thumb)

#define swi call (x) asm volatile ("swilt"#x ::: "rO", "rl"™, "r2", "r3m)
#else
#define swi call (x) asm volatile ("swilt"#x"<<16" ::: "rO", "ri1", "r2", "r3")

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 150/331

http://www.arm.com/miscPDFs/8031.pdf
http://www.gnu.org/manual/manual.html
http://www.devrs.com/gba/
http://www.devkitpro.org/

28-03-13 Tonc : GBA Programming in rot13
#endif J

By the way, if you want more information about assembly, you can find a number of tutorials on ARM assembly at gbadev.org. Another
nice way to learn is by using the —S compiler flag, which will give you a compiler-generated assembly file of your code. This will show
you exactly what the compiler does to your code, including optimisation steps and use of the AAPCS. Really, you should see this at least
once.

It may also help to use —fverbose-asm, which will write out the original variable names and operations in comments. Usually in
the right place too. Also handy is the ASM CMT () macro shown below. This will give you some hints as to where specific blocks of
code are. But again, not all the time.

#define ASM CMT (str) asm volatile("@ " str)

//In code. Outputs "@ Hi, I'm here!"™ in the generated asm
ASM CMT("Hi, I'm here!");

17.4. Demo graphs

To illustrate the use of BIOS calls I am using Div, Sqrt, ArcTan and ObjAffineSet to create
graphs if a hyperbole, square root, sine and cosine. I've scaled them in such a way so that
they fit nicely on the 240x160 screen. The definitions are

division y=2560/x

square root y= 160*sqrt(x/240)

arctan y= 80 + 64*(2/m)*(arctan(x-120)/16))

sine y= 1*¥sy*sin(2zm-x/240) ; sy= 80

cosine y= 80*sx*cos(2m-x/240) ;sx=1
and these functions have been plotted in fig 1. If you're wondering how I got the sine and Fig 1: div, sqrt, arctan2, sin and cos graphs,
cosine values, as there are no calls for those, take a look at eq 1 again. The P matrix has courtesy of BIOS.

them. I've used p, for the cosine and p_ for the sine. Note that the graphs appear instantly;

there is no sense of loading time while the graphs are plotted. An earlier version of the mode 7 demo (or PERNs mode 7 demo) used
calls to the actual division, sine and cosine functions to build up the LUTs. Even with the symmetry rules of trigonometry, sin () and
cos () are still noticeably slower than the BIOS equivalent.

#include <stdio.h>
#include <tonc.h>

// === swi calls ==
// Their assembly equivalents can be found in tonc bios.s

void VBlankIntrWait ()
{ swi call(0x05); }

int Div(int num, int denom)
{ swi call(0x06); }

u32 Sqgrt (u32 num)
{ swi call (0x08); }

sl6 ArcTan2(sl6 x, sl6 vy)
{ swi call(0x0a); }

void ObjAffineSet (const AFF SRC *src, void *dst, int num, int offset)
{ swi call (0x0f); }

// === swl demos ==

// NOTE!

// To be consistent with general mathematical graphs, the
// y-axis has to be reversed and the origin moved to the
// either the bottom or mid of the screen via

// "iy = H - y"

// or
// "iy — H/2 _ yn
//

// functions have been scaled to fit the graphs on the 240x160 screen

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 151/331

28-03-13 Tonc : GBA Programming in rot13

// y= 2560/x
void div_demo ()

{

int ix, y;

for (ix=1; 1ix<SCREEN WIDTH; ix++)
{
y= Div (0x0a000000, ix)>>16;
if(y <= SCREEN_HEIGHT)
m3 plot(ix, SCREEN HEIGHT - y, CLR RED);

}
tte printf ("#{P:168,132;ci:%d}div", CLR RED);

// y= 160*sqrt (x/240)
void sqgrt demo ()
{
int ix, vy;
for (ix=0; 1x<SCREEN WIDTH; ix++)
{
y= Sqgrt (Div (320*ix, 3));
m3_plot(ix, SCREEN HEIGHT - y, CLR LIME);
}
tte printf ("#{P:160,8;ci:%d}sqgrt", CLR_LIME);

// vy = 80 + tan((x-120)/16) * (64)*2/pi
void arctan2 demo ()
{
int ix, y;
int ww= SCREEN7WIDTH/2, hh= SCREENiHEIGHT/Z;
for (ix=0; ix < SCREEN WIDTH; ix++)
{
y= ArcTan2 (0x10, ix-ww);
m3 plot(ix, hh - y/256, CLR _MAG);
}
tte printf ("#{P:144,40;ci:%d}atan", CLR MAG);

// wX= 1, wY= 80

// cc= 80*sx*cos (2*pi*alpha/240)

// ss= 1l*sy*sin(2*pi*alpha/240)

void aff demo ()

{
int ix, ss, cc;
ObjAffineSource af src= {0x0100, 0x5000, 0}; // sx=1, sy=80, alpha=0
ObjAffineDest af dest= {0x0100, 0, 0, 0x0100}; // =I (redundant)

for (ix=0; 1x<SCREEN WIDTH; ix++)
{
ObjAffineSet (&af src, &af dest, 1, BG AFF OFS);
cc= 80*af dest.pa>>8;
ss= af dest.pc>>8;
m3 plot(ix, 80 - cc, CLR_YELLOW);
m3 plot(ix, 80 - ss, CLR CYAN);
// 0x010000/0xf0 = 0x0111.111...
af src.alpha += 0x0111;

tte printf ("#{P:48,38;ci:%d}cos", CLR_YELLOW);
tte printf("#{P:72,20;ci:%d}sin", CLR_CYAN);

// === main ==========================s=====—==—=======================

int main ()

{

REG DISPCNT= DCNT MODE3 DCNT BGZ2;

tte init bmp default (3);
tte init con();

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

152/331

28-03-13 Tonc : GBA Programming in rot13

div_demo () ;
sqrt_demo () ;
aff demo () ;
arctan2 demo () ;

while (1) ;

return 0;

17.5. Vsyncing part II, VBlankIntrWait

Until now, all demos used the function vid vsync to synchronize the action to the VBlank (see the graphics introduction). What this
did was to check REG_VCOUNT and stay in a while loop until the next VBlank came along. While it works, it's really a pretty poor way

of doing things for two reasons. First, because of the potential problem when you are in a VBlank already, but that one had been

covered. The second reason is more important: while you're in the while loop, you're wasting an awful lot of CPU cycles, all of which

slurp battery power.

There are a number of BIOS calls that can put the CPU into a low power mode, thus
sparing the batteries. The main BIOS call for this is Halt (#2), but what we're currently
interested in is VBlankIntrWait (#5). This will set things up to wait until the next VBlank
mterrupt. To use it, you have to have interrupts switched on, of course, in particular the
VBlank interrupt. As usual, the VBIlank isr will have to acknowledge the interrupt by writing
to REG_IF. Butit also has to write to its BIOS equivalent, REG IFBIOS. This little bit of
information is a little hard to find elsewhere (in part because few tutorials cover BIOS
calls); for more info, see GBATek, BIOS Halt Functions. Fortunately for us, the
switchboard presented in the interrupts section has this built in.

To show you how to set it up, see the swi_vsync demo. The most important code is
given below; a screen shot can be found in fig 2. What it does is give a rotating metroid

Fig 2: swi_vsync demo

sprite with an angular velocity of « rad/s (this corresponds to AB = 0x10000/4/60= 0x0111). The basic steps for interrupt handling should
be familiar, except the fact that there's no real VBlank isr because the switchboard already takes care of acknowledging the interrupt.
After that it's pretty simple: we use ObjAffineSet () to calculate the required affine matrix and VBlankIntrWait puts the CPU

on Halt until the next VBlank interrupt.

// inside main, after basic initialisations

AFF SRC as= { 0x0100, 0x0100, 0 };
OBJ AFFINE oaff;

// enable isr switchboard and VBlank interrupt
irg init (NULL);
irq add(II_VBLANK, NULL);

while (1)
{
VBlankIntrWait () ;

// Full circle = 10000h

// 10000h/4/60= 111h -> 1/4 rev/s = 1 passing corner/s
as.alpha += 0x0111;

ObjAffineSet (&as, &oaff.pa, 1, 8);

obj aff copy(obj aff mem, &oaff, 1);

Prefer VBlankIntrWait() over vid_vsync()

Waiting for the VBlank via vid vsync () (or its functional equivalent) is not a good idea: it wastes too much battery
power. The recommended procedure is using VBlankIntrWait () to halt the processor, to be woken again on the
VBlank interrupt.

\\

p
Acknowledging Intr Wait routines

VBlankIntrWait () is only one of the BIOS's IntrWait () routines that can stop the CPU until an interrupt has been

raised. However, it doesn't look at REG_IF but at REG_IFBIOS (0300:7FF8) for the acknowledgement of the interrupt. If

your game locks up after trying VBlankIntrWait (), this may be why. Note that you may find the address under other

names, as there isn't really an official one for it.

\

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

153/331

file:///H:/dev/gba/proj/tonc/bak/video.htm#sec-vsync1
http://nocash.emubase.de/gbatek.htm#bioshaltfunctions
file:///H:/dev/gba/proj/tonc/bak/interrupts.htm#sec-switch

28-03-13 Tonc : GBA Programming in rot13
17.6. Final thoughts

Now that you know how to use them, I should warn you that you shouldn't go overboard with them. It appears that the BIOS routines
have been designed for space, not speed, so they aren't the fastest in the world. Not only that, there's an overhead of at least 60 cycles
for each one (mind you, normal functions seem to have a 30 cycle overhead). If speed is what you're after then the BIOS calls may not
be the best thing; you can probably find faster routines on the web ... somewhere. This doesn't mean that the BIOS routines can't be

useful, of course, but if you have alternative methods, use those instead. Just remember that that's an optimisation step, which you
shouldn't do prematurely.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 154/331

28-03-13 Tonc : GBA Programming in rot13

18. Beep! GBA sound introduction

Introduction to GBA sound
Sound and Waves

GBA sound

Demo time

18.1. Introduction to GBA sound

Apart from graphics and interaction, there is one other sense important to games: audio. While graphics may set the scene, sound sets
the mood, which can be even more important that the graphics. Try playing Resident Evil with, say, Weird Al Yankovic playing: it simply
doesn't work, the atmosphere is lost.

The GBA has six sound channels. The first four are roughly the same as the original GameBoy had: two square wave generators
(channels 1 and 2), a sample player (channel 3) and a noise generator (channel 4). Those are also referred to as the DMG channels.
New are two Direct Sound channels A and B (not to be confused with Microsoft's Direct Sound, the DirectX component). These are
8bit digital channels.

I should point out that I really know very little about sound programming, mostly because I'm not able to actually put together a piece of
music (it's kinda hard to do that when you already have music playing). If you want to really learn about sound programming, you should
look at Belogic.com, where almost everybody got their information from, and deku. gbadev.org, which shows you how to build a sound
mixer. Both of these sites are excellent.

I may not know much about sound creation/programming, but at its core sound is a wave in matter; waves are mathematical critters,
and I do know a thing or two about math, and that's kind of what I'll do here for the square wave generators.

18.2. Sound and Waves

Consider if you will, a massive sea of particles, all connected to their neighbours with little springs. Now give one of them a little push. In
the direction of the push, the spring compresses and relaxes, pushing the original particle back to its normal position and passing on the
push to the neighbour; this compresses the next spring and relays the push to its neighbour, and so on and so on.

This is a prime example of wave behaviour. Giving a precise definition of a wave that covers all cases is tricky, but in essence, a
wave is a transferred disturbance. There are many kinds of waves; two major classes are longitudinal waves, which oscillate in the
direction of travel, and transverse waves, which are perpendicular to it. Some waves are periodic (repeating patterns over time or
space), some aren't. Some travel, some don't.

18.2.1. Waves

The canonical wave is the harmonic wave. This is any function y(x) that's a solution to eq 18.1. The name of the variable doesn't really
matter, but usually it's either spatial (x, y, z) or temporal (), or all of these at the same time. The general solution can be found in

eq 18.2. Or perhaps I should say solutions, as there are many ways of writing them down. They're all equivalent though, and you can go
from one to the other with some trickery that does not concern us at this moment.

d2
(18.1) &\p(x) +kyx)=0

General solution(s):

y(x) = A-cos(kx) + B-sin(kx)
— Celkr 4 Dok
(18.2) = E-sin(kr + ¢,)

A full wave can be described by three things. First, there's the amplitude A, which gives half-

distance between the minimum and maximum. Second, the wavelength)\, which is the length * ———+

after which the wave repeats itself (this is tied to wave-number k= 2n/A). Then there's phase qi /;‘T N, /\\X__It
constant ¢, which defines the stating point. If the wave is in time, instead of a wavelength you / \/ R
have period T, frequency f=1/T (and angular frequency w= 2nf= 2n/T). You can see what each || 4 e

of these parameters is in fig 18.1.

One of the interesting things about the wave equation is that it is a linear operation on .
What that means is that any combination of solutions is also a solution; this is the superposition principle. For example, if you have two
waves y, and y,, then ¥ = ay, + by, is also a wave. This may sound like a trivial thing but I assure you it's not. The fact that non-linear

Fig 18.1: a harmonic wave

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 155/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-sndwav
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-gbasnd
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
http://www.belogic.com/
http://deku.gbadev.org/

28-03-13 Tonc : GBA Programming in rot13
equations (and they exist too) tend to make scientists cringe a little should tell you something about the value of linear equations.

18.2.2. Sound waves

Sound is also a wave. In fact, it is a longitudinal pressure wave in matter and pretty much works as the system of particles on springs
mentioned earlier with whole sets of molecules moving back and forth. In principle, it has both spatial and temporal structure and you
can things can get hideously complex if you want to deal with everything. But I'll keep it easy and only consider two parts: amplitude A4
and period and frequency T and f. As you probably know, the tone of a sound is related to the frequency. Human hearing has a range
between 20 Hz and 20 kHz, and the higher the frequency (i.e., the more compressed the wave), the higher the tone. Most sounds are
actually a conglomeration of different waves, with different amplitudes and frequencies — the superposition principle at work. The funny
thing about this is that if you added all those components up to one single function and plot it, it wouldn't look like a sine wave at all
anymore. What's even funnier is that you can also reverse the process and take a function —any function— and break it up into a
superposition of sine and cosine waves, and so see what kind of frequencies your sound has. This is called Fourier Transformation, and
we'll get to that in a minute.

18.2.3. Musical scale

While the full range between 20 Hz and 20 kHz is audible, only a discrete set of frequencies are used for music, which brings us to the
notion of the musical scale. Central to these are octaves, representing a frequency doubling. Each octave is divided into a number of
different notes; 12 in Western systems, ranging from A to G, although octave numbering starts at C for some reason. Octave 0 starts at
the central C, which has a frequency of about 262 Hz (see also table 18.1. And yes, I know there are only 7 letters between A and G,
the other notes are flats and sharps that lie between these notes. The ‘12’ refers to the number of half-notes in an octave. The musical
scale is logarithmic; each half-note being 2"/!? apart. Well, almost anyway: for some reason, some notes don't quite fit in exactly.

half-note| 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | (12)
name C |C#t| D |D#| E F |F#| G |Gt A |A# | B ©
freq (Hz)|261.7(277.21293.7|311.2{329.7|349.3|370.0{392.0{415.3|440.0|466.2|493.9| (523.3)

Table 18.1: notes & frequencies of octave 0

18.2.4. Fourier transforms and the square wave

Fourier transformations are a way of going describing a function in the time domain as a distribution of frequencies called a spectrum.
They're also one of the many ways that professors can scare the bejebus out of young, natural-science students. Don't worry, I'm sure
you'll get through this section unscathed >:) . For well- to reasonably-behaved functions, you can rewrite them as series of very well-
behaved functions such as polynomials, exponentials and also waves. For example, as a Fourier series, a function may look like eq 18.3.

(18.3) f(r)="A,+ 2 A _cos(mot)+X _ B sin(meor)

Of course, the whole thing relies on being able to find the coefficients 4, and B,_. While it is fairly straightforward to derive the
equations for them, I'll leave that as an exercise for the reader and just present the results in the form of eq 18.4. I should mention that
there are actually a few ways of defining Fourier transforms. For example, there are versions that don't integrate over [0,7], but over
[-'4T, '2T); or use the complex exponential instead of sines and cosines, but in the end they're all doing the same thing.

2
A= T '[O,T f(¢) cos(mwt) dt
(18.4)
_2 [:
B_= Tlor f(¢) sin(mot) dt

As an example, let's take a look at a square wave see fig 18.2. A square wave is on (1) for a

certain time (parameter /), then off (0) for the rest of the cycle.It's still a periodic wave, so it "% 1
doesn't really matter where we place the thing along the #-axis. I centered it on the peak for | I r—l 5 ﬂ
convenience: doing so makes it a symmetrical wave which has the nice properly of removing a// A

the anti-symmetrical sine waves. 4 =h/T because it's the average of the function and the rest of ,,_h ,, h
the 4_'s follow from eq 18.4. T

Fig 18.2: a square wave

(185) A = 2 ‘ sin(tm A/T) _ 2T. sin(mwh/T m)
. vom m h nh/Tm

A_ 18 a sinc function: sin(x)/x. For high m it approaches zero (as it should, since higher terms should be relatively less important), but also
interesting is that of the higher terms some will also vanish because of the sine. This will happen whenever m is a multiple of 7/.

18.3. GBA sound
18.3.1. Sound registers

For graphics, you only had to deal with one register to get a result; for sound, you have to cover a lot of registers before you get

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 156/331

28-03-13

Tonc : GBA Programming in rot13

anything. The DMG channels each have 2 or 3 registers — some with similar functionality, some not. Apart from that, there are four

overall control registers.

The register nomenclature seems particularly vexed when it comes to sound. There are basically two sets of names that you can
find: one consisting of REG_SOUNDxCNT followed by I, Hand X in a rather haphazard manner; the other one uses a REG_SGxy
and REG_SGCNTYy structure (x=1, 2, 3 or 4 and y=0 or 1). I think the former is the newer version, which is funny because the older is
more consistent. Oh well. In any case, I find neither of them very descriptive and keep forgetting which of the L/H/X or 0/1 versions
does what, so I use a third set of names based on the ones found in tepples' pin8gba . h, which IMHO makes more sense than the

other two.
offset function old new tonc
60h |channel 1 (sqr) sweep REG SGIO SOUNDICNT L |REG_SNDISWEEP
62h |channel 1 (sqr) len, duty, env - SOUNDICNT H|REG SNDICNT
64h |channel 1 (sqr) freq, on REG _SGl11 SOUNDICNT_X|REG _SNDIFREQ
68h |channel 2 (sqr) len, duty, env |REG_SG20 SOUND2CNT L |REG SND2CNT
6Ch |channel 2 (sqr) freq, on REG SG21 SOUND2CNT_H|REG_SNDIFREQ
70h |channel 3 (wave) mode REG SG30 SOUND3CNT_L |[REG_SND3SEL
72h |channel 3 (wave) len, vol - SOUND3CNT_H|REG SND3CNT
74h |channel 3 (wave) freq, on REG SG31 SOUND3CNT_X|REG_SND3FREQ
78h |channel 4 (noise) len, vol, env|REG SG40 SOUND4CNT L |[REG_SND4CNT
7Ch |channel 4 (noise) freq, on REG SG41 SOUNDA4CNT_H|REG_SND4FREQ
80h |DMG master control SOUNDCNT L [REG SNDDMGCNT
82h |DSound master control REG_SGCNTO SOUNDCNT H |REG SNDDSCNT
84h |sound status REG _SGCNT1|SOUNDCNT X |REG SNDSTAT
88h |bias control REG SGBIAS |[SOUNDBIAS REG SNDBIAS

Table 18.2: Sound register nomenclature.

“Oh great. This is going to be one of ‘tegel’” things isn't it? Where you think you've got something nice but different going, then later you
revert to the standard terminology to conform with the rest of the world. Right?”’
No, I'll stick to these names. Probably. Hopefully. ... To be honest, I really don't know : P. This is not really a big deal, though: you
can easily switch between names with a few defines or search & replaces. Anyway, REG SNDxFREQ contains frequency information
and REG_SNDxCNT things like volume and envelope settings; in some cases, the bit layouts are even exactly the same. Apart from the
sweep function of channel 1, it is exactly the same as channel 2.

18.3.2. Master sound registers

REG_SNDDMGCNT, REG_SNDDSCNT and REG_SNDSTAT are the master sound controls; you have to set at least some bits on each
of these to get anything to work.

REG_SNDDMGCNT
0400:0080h

(SOUNDCNT L / SGCNTO L) @

F E D C

B | A 9 8

716 5413|121

R4 [R3 |R2 |R1

bits name define

0-2 LV

46 RV

8B LI-L4 SDMG LSQRI,
SDMG_LSQR2,
SDMG_LWAVE,
SDMG_LNOISE

C-F RI- SDMG RSQRI,

R4 SDMG RSQR2,
SDMG_RWAVE,
SDMG_RNOISE

L4 |L3|L2|L1

description
Left volume
Right volume
Channels 1-4

Channels 1-4

on left

on right

- RV - Lv

REG_SNDDMGCNT controls the main volume of the DMG channels and which ones are enabled. These controls are separate for the
left and right speakers. Below are two macros that make manipulating the register easier. Note that they don 't actually set the register,

just combine the flags.

0x01

#define SDMG_SQRI1

#define SDMG SQR2 0x02

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 157/331

http://www.pineight.com/

28-03-13 Tonc : GBA Programming in rot13

#define SDMG_WAVE 0x04
#define SDMG NOISE 0x08

#define SDMG BUILD(lmode, rmode, 1lvol, rvol) \
(((_1vol)s&7) | (((rvol)e&7)<<4) | ((lmode)<<8) | ((_rmode)<<12))

#define SDMG_BUILD LR(mode, vol) SDMG BUILD(mode, mode, vol, vol)

REG_SNDDSCNT (SOUNDCNT H / SGCNTO_H) @ 0400:0082h

F|l|E|(D|C|B|A 9 8 17654|3 2 10

BF |BT |BL |BR | AF |AT |AL | AR - BV | AV | DMGV
bits name define description
0-1 DMGV SDS DMGQG25, DMG Volume ratio.
SDS DMG50, e 00:25%
SDS DMGI100 . 01:50%
e 10:100%
e 11: forbidden
2 AV SDS AS50, DSound A volume ratio. 50% if clear; 100% of set
SDS_A100
3 BV SDS B50, DSound B volume ratio. 50% if clear; 100% of set
SDS B100
8-9 AR,AL SDS AR,SDS AL DSound A enable Enable DS A on right and left speakers
A AT SDS ATMRO, Dsound A timer. Use timer O (if clear) or 1 (if set) for DS A
SDS ATMRI1

B AF SDS ARESET FIFO reset for Dsound A. When using DMA for Direct sound, this will cause
DMA to reset the FIFO buffer after it's used.

C-F BR,BL, SDS BR, SDS_BL, As bits 8-B, but for DSound B
BT,BF SDS_BTMRO,
SDS_BTMRI,
SDS_BRESET

Don't know too much about REG_SNDDSCNT, apart from that it governs DirectSound, but also has some DMG sound bits for some
reason. REG SNDSTAT shows the status of the DMG channels and enables all sound. If you want to have any sound at all, you need
to set bit 7 there.

REG_SNDSTAT (SOUNDCNT X / SGCNT1) @
0400:0084h

FEDCBAZSS 7 6 54| 3 2 1 0

- MSE| - |4a|3a|2a|1aA
bits name define description
0-3 1A-4A SSTAT SQRI, Active channels. Indicates which DMA channels are currently playing. They do
SSTAT SQR2, not enable the channels; that's what REG_ SNDDMGCNT is for.
SSTAT _WAVE,

SSTAT NOISE

7 MSE SSTAT DISABLE, Master Sound Enable. Must be set if any sound is to be heard at all. Set this
SSTAT_ENABLE pefore you do anything else: the other registers can't be accessed otherwise, see
GBATek for details.

Sound register access

Emulators may allow access to sound registers even if sound is disabled (REG SNDSTAT{7} is clear), but hardware doesn't.
Always enable sound before use.

18.3.3. GBA Square wave generators

The GBA has two square sound generators, channels 1 and 2. The only difference between them is channel 1's firequency sweep,
which can make the frequency rise or drop exponentially as it's played. That's all done with REG_SND1SWEEP. REG_SNDxCNT
controls the wave's length, envelope and duty cycle. Length should be obvious. The envelope is basically the amplitude as function of
time: you can make it fade in (attack), remain at the same level (sustain) and fade out again (decay). The envelope has 16 volume

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 158/331

28-03-13 Tonc : GBA Programming in rot13

levels and you can control the starting volume, direction of the envelope and the time till the next change. The duty refers to the ratio of
the ‘on’ time and the period, in other words D = A/T.

Of course, you can control the frequency as well, namely with REG_ SNDxFREQ. However, it isn't the frequency that you enter in
this field. It's not exactly the period either; it's something I'll refer to as the rate R. The three quantities are related, but different in subtle
ways and chaos ensues when they're confused — and they often are in documentation, so be careful. The relation between frequency f
and rate R is described by eq 18.6; if the rate goes up, so does the frequency. Since R € [0, 2047], the range of frequencies is [64
Hz, 131 kHz]. While this spans ten octaves, the highest ones aren't of much use because the frequency steps become too large (the
denominator in eq 18.6 approaches 0).

17

18.6 R)=—"—H——
862 fIR) = SR

(18.6b) R(f) = 2048 —217/f

18.3.4. Square sound registers

Both square-wave generators have registers REG_ SNDxCNT for evelope/length/duty control and REG_ SNDxFREQ for frequency
control. Sound 1 also has sweep control in the form of REG_ SND1SWEEP.Look in table 18.2 for the traditional names; note that in
traditional nomenclature the suffixes for control and frequency are different for channels 1 and 2, even though they have exactly the
same function.

REG_SNDICNT (SOUNDICNT _H / SG10_H)
@ 0400:0062h

and

REG_SND2CNT (SOUND2CNT L / SG20 L)
@ 0400:0068h

FEDC|B|[A98|76|543210

EIV |ED| EST | D L
bits name define description
0-5 L SSQR_LEN# Sound Length. This is a write-only field and only works if the channel is timed

(REG_SNDxFREQ{E}). The length itself is actually (64—L)/256 seconds for a [3.9,
250] ms range.

67 D SSQR_DUTY1_8, Wave duty cycle. Ratio between on and of times of the square wave. Looking back
SSQR_DUTY1_4, at eq 18.2, this comes down to D=h/T. The available cycles are 12.5%, 25%, 50%,
SSQR_DUTY1_2, and 75% (one eighth, quarter, half and three quarters).

SSQR_DUTY3 4,
SSQR DUTY#
8-A EST SSQR_TIME# Envelope step-time. Time between envelope changes: At = EST/64 s.

B ED SSQR_DEC, Envelope direction. Indicates if the envelope decreases (default) or increases with
SSQR_INC each step.

C-F EIV SSQR _IVOL# Envelope initial value. Can be considered a volume setting of sorts: 0 is silent and
15 is full volume. Combined with the direction, you can have fade-in and fade-outs;
to have a sustaining sound, set initial volume to 15 and an increasing direction. To
vary the real volume, remember REG SNDDMGCNT.

2 sin(nD m) "1 g
Am - P \ o
TT m " —— 0125
0.6 1 —=-oas
Some more on the duty cycle. Remember we've done a Fourier analysis of the us t,h 235 1
square wave so we could determine the frequencies in it. Apart from the base ' " \
fre quency, there are also overtones of frequencies mf. The spectrum (see ks \
fig 18.3) gives the amplitudes of all these frequencies. Note that even though 0.3
the figure has lines, only integral values of m are allowed. The base frequency 0 4——__:___
at m=1 has the highest significance and the rest falls off with 1/m. The ' ;\
interesting part is when the sine comes into play: whenever m-D is an integer, 0.1 :‘:”"_—'5—-—-—..“_._‘.
that component vanishes! With a fractional duty number —like the ones we 0.0 r e SV
have— this happens every time m is equal to the denominator. For the 50% duty, | ° £ Ae S m
. . . . o Fig 18.3: Square wave spectrum. (integer m only)
every second overtone disappears, leaving a fairly smooth tone; for 12.5%, only

every eighth vanishes and the result is indeed a noisier sound. Note that for
both 's and ¥ duties every fourth vanishes so that they should be indistinguishable. I was a little surprised about this result, but sure
enough, when I checked they really did sound the same to me.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 159/331

28-03-13 Tonc : GBA Programming in rot13

REG_SND1FREQ (SOUNDICNT X / SG11) @
0400:0062h

and

REG_SND2FREQ (SOUND2CNT H / SG21) @
0400:006Ch

FIEIDCB|A98 7 6543210

Re |T| - R
bits name define description
0-A R SFREQ_ RATE# Sound rate. Well, initial rate. That's rate, not frequency. Nor period. The relation

between rate and frequency is £= 217/(2048-R). Write-only field.

E T SFREQ_HOLD, Timed flag. If set, the sound plays for as long as the length field (REG SNDxCNT {0-
SFREQ_TIMED 5}) indicates. If clear, the sound plays forever. Note that even if a decaying envelope
has reached 0, the sound itself would still be considered on, even if it's silent.

E Re SFREQ RESET Sound reset. Resets the sound to the mitial volume (and sweep) settings. Remember
that the rate field is in this register as well and due to its write-only nature a simple | =
SFREQ RESET’ will not suffice (even though it might on emulators).
REG SND1SWEEP (SOUNDICNT L /
SG10 L) @ 0400:0060h
FEDCBA987|654(3[210
- T (M| N
bits name define description
0-2 N SSW_SHIFT# Sweep number. Not the number of sweeps; see the discussion below.
3 M SSW_INC, Sweep mode. The sweep can take the rate either up (default) or down (if set).
SSW_DEC
46 T SSW_TIME# Sweep step-time. The time between sweeps is measured in 128 Hz (not kHz!): At =

77128 ms = 7.8T ms; if 7=0, the sweep is disabled.

I'm reasonably confident that the exact workings of shifts are explained without due care in most documents, so here are a few more
things about it. Sure enough, the sweep does make the pitch go up or down which is controlled by bit 3, and the step-time does change
the pitch after that time, but exactly what the sweep-shift does is ambiguous at best. The information is in there, but only if you know
what to look for. The usual formula given is something like:

T'=T+T2m

That's what belogic gives and if you know what the terms are you'll be fine. Contrary to what you may read, the sweep does not apply
to the frequency (f). It does not apply to the period (7, see above). It applies to the rate (R). If you look in emulators, you can actually
see the rate-value change.

Second, the 7 in the exponent is nof the current sweep index that runs up to the number of sweep shifts. It is in fact simply the
sweep shift number, and the sweeps continue until the rate reaches 0 or the maximum of 2047.

The formulas you may see do say that, but it's easy to misread them. I did. Eq 18.7 holds a number of correct relations. R is the rate,
n is the sweep shift (18.7c explains why it's called a shift (singular, not plural)), and j is the current sweep index. You can view them in
a number of ways, but they all boil down to exponential functions, that's what ‘dy(x) = a-y(x)dx’ means, after all. For example, if n=1,
then you get 1%4 and %4 behaviour for increasing and decreasing sweeps, respectively; with n=2 it's 1% and %, etc. The higher the shift,
the slower the sweep.

(18.72) AR = 27™R

R =R +R 20"
j -1 -1
(18.7b) = j_1(1 £271)

= R0 (1 i2_n)J
(18.7¢) R += R>>n;

18.3.5. Playing notes

Even though the rates are equal, some may be considered more equal than others. I've already given a table with the frequencies for the
standard notes (table 18.1 of octave 0. You can of course convert those to rates via eq 18.6b and use them as such. However, it might
pay to figure out how to play the notes of all octaves.

To do this, we'll use some facts I mentioned in section 18.2.3. about the make-up of the musical scale. While I could make use of

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 160/331

28-03-13 Tonc : GBA Programming in rot13

the logarithmic relation between successive notes (Af=2"12-), I'll restrict myself to the fact that notes between octaves differ by a
factor of two. We'll also need the rate-frequency relation (obviously). That's the basic information you need, I'll explain more once we
get through all the math. Yes, it's more math, but it'll be the last of this page, I promise.

The equations we'll start with are the general frequency equation and the rate-frequency relation. In these we have rate R,
frequency f'and octave ¢. We also have a base octave C and frequency F in that base octave.

AE,)
R(F, c)

F.2ch
211 =217/ fF, ¢)

And now for the magic. And you are expected to understand this.

R(F, c)

211 =217/ fF, ¢)
211__217/ (FK2C*C)

211 _ 217+C—C/F
211__1/F~.217+C+m7@+m)

211 _ { 217+C+m/F} . 2*(c+m)

(18.8)

Right, and now for why this thing's useful. Remember that the GBA has no hardware division or floating-point support, so we're left with
integers and (if possible) shifts. That's why the last term in the last step of eq 18.8 was separated. The term with F' gives a rate offset
for the base octave, which we need to divide (read: shift) by the octave offset term for the different octaves. Remember that integer
division truncates, so we need a big numerator for the most accuracy. This can be done with a large C and by adding an extra term m.
Baseically, this makes it an mf fixed point division. The workable octave range is —2 to 5, so we take C=5. The value for m is almost
arbitrary, but needs to be higher than two because of the minimum octave is —2, and a shift can never be negative. m=4 will suffice.

Note that there is s#il/ a division in there. Fortunately, there are only twelve values available for F, so might just as well store the
whole term in a look-up table. The final result is listing 18.1 below.

// Listing 18.1: a sound-rate macro and friends

typedef enum
{

NOTE C=0, NOTE CIS, NOTE D, NOTE DIS,
NOTE E, NOTE F, NOTE FIS, NOTE G,
NOTE GIS, NOTE A, NOTE BES, NOTE B

} eSndNotelId;
// Rates for traditional notes in octave +5
const u32 snd rates[12]=

{

8013,
6362,
5048,

7566,
6005,
4766,

7144,
5666,
4499,

6742,
5346,
4246

D#
F#, G
A#, B

// Cc, C#, D,
// B , F,
// G#, A,

}i

#define SND RATE (note, oct) (2048-(_ snd rates[note]>>(4+(oct))))

// sample use: note A, octave 0

REG_SND1FREQ= SFREQ RESET | SND_RATE (NOTE A, 0);

Here you have a couple of constants for the note-indices, the LUT with rate-offsets snd rates and a simple macro that gives you
what you want. While snd rates is constant here, you may consider a non-const version to allow tuning. Not that a square wave
is anything worth tuning, but I'm just saying ... y'’know.

One possible annoyance is that you have to splice the note into a note and octave part and to do that dynamically you'd need division
and modulo by 12. Or do you? If you knew a few things about division by a constant is multiplication by its reciprocal, you'd know what
to do. (Hint: c=(N*43>>9)—2, with N the total note index between 0 and 95 (octave —2 to +5).)

18.4. Demo time

I think I've done about enough theory for today, don't you dear reader?
3 @_@ 2

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 161/331

file:///H:/dev/gba/proj/tonc/bak/fixed.htm#sec-rmdiv

28-03-13

Tonc : GBA Programming in rot13

I'll take that as a yes. The demo in question demonstrates the use of the various macros of this chapter, most notably SND RATE. It
also shows how you can play a little song — and I use the term lightly — with the square wave generator. I hope you can recognize which
one.

#include <stdio.h>
#include <tonc.h>

u8 txt scrolly= 8;

const char *names[]=

{

//

"e vv, HC#H’ "D n, "D#"’ "E ", " vv, "F#", "G vv, HG#H, "A n, HA#H, "B

=== FUNCTIONS ====================================—==—==—=——=—=—=—=—====

// Show the octave the next note will be in
void note prep(int octave)

{

char str[32];
siprintf (str, "I[%$+2d]", octave);
se puts (8, txt scrolly, str, 0x1000);

// Play a note and show which one was played
voild note play(int note, int octave)

{

char str[32];

// Clear next top and current rows
SBB_CLEAR ROW (31, (txt scrolly/8-2)&31);
SBB_CLEAR ROW (31, txt scrolly/8);

// Display note and scroll
siprintf(str, "%02s%+2d", names|[note], octave);
se puts(l6, txt scrolly, str, 0);

txt scrolly -= 8;
REG BGOVOFS= txt scrolly-8;

// Play the actual note
REG_SND1FREQ = SFREQ RESET | SND_RATE (note, octave);

// Play a little ditty
void sos ()

{

int

const u8 lens[6]= { 1,1,4, 1,1,4 };
const u8 notes[6]= { 0x02, 0x05, 0x12, O0x02, 0x05, 0x12 };
int ii;
for (ii=0; 1i<6; ii++)
{
note play(notes[ii]&l5, notes[ii]>>4);
VBlankIntrDelay (8*lens[ii]);

main ()
REG_DISPCNT= DCNT_MODEO | DCNT_BGO;

irg init (NULL);
irq_add(II_VBLANK, NULL) ;

txt init std();
txt_init se (0, BG_CBB(0) | BG_SBB(31), 0, CLR _ORANGE, 0);
pal bg mem[0Ox11]= CLR GREEN;

int octave= 0;

// turn sound on

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

162/331

28-03-13 Tonc : GBA Programming in rot13

REG_SNDSTAT= SSTAT_ENABLE;

// sndl on left/right ; both full volume
REG_SNDDMGCNT = SDMG_BUILD_ LR (SDMG_SQR1l, 7);
// DMG ratio to 100%

REG_SNDDSCNT= SDS_DMG100;

// no sweep

REG_SND1SWEEP= SSW_OFF;

// envelope: vol=12, decay, max step time (7) ; 50% duty
REG_SND1CNT= SSQR_ENV_BUILD (12, 0, 7) | SSQR DUTY1l 2;
REG_SNDIFREQZ 0;

sos ()7

while (1)

{
VBlankIntrWait () ;
key poll():;

// Change octave:

octave += bit tribool(key hit(-1), KI R, KI L);
octave= wrap (octave, -2, 6);

note prep (octave) ;

// Play note
if (key_hit (KEY DIR|KEY A))
{
if (key hit (KEY UP))
note play (NOTE D, octave+l);
if (key hit (KEY LEFT))
note play (NOTE B, octave);
if (key hit (KEY RIGHT))
note play (NOTE A, octave);
if (key hit (KEY DOWN))
note play (NOTE F, octave);
if (key hit (KEY A))
note play(NOTE D, octave);
}

// Play ditty
if (key hit (KEY B))
sos ()
}
return 0;

}

The bolded code nmain () initializes the sound register; nothing fancy, but it has to be done before you hear anything at all. It is
important to start with REG_SNDSTAT bit 7 (SSTAT ENABLE), i.e., the master sound enable. Without it, you cannot even access the
other registers. Setting volume to something non-zero is a good idea too, of course. Then we turn off the sweep function and set sound 1
to use a fading envelope with a 50% duty. And that's where the fun starts.

I'll explain what sos () in a little while, first something about the controls of the demo. You can play notes with the D-pad and A
(hmm, there's something familiar about that arrangement). The octave ¢ you're working in can be changed with L and R; the
background color changes with it. B plays sos () again.

A / D-pad Play a note
1 :D (next octave)
—:B
— A
| :F
A :D
L /R Decrease / Increase current octave ([-2, 5], wraps around)
B Play a little tune.
The D-pad and A select a note to play, which is handled by note play (). The bolded line there plays the actual note, the rest is

extra stuff that writes the note just played to the screen and scrolls along so you can see the history of what's been played. The code for
this is kinda ugly, but is not exactly central to the story so that's fine.

18.4.1. Playing a little ditty

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 163/331

28-03-13

So what is sos () all about then? Let's take another look.

void sos()
{
{1,1,4,

const u8 lens[6]=
[6]= { 0x02,

const u8 notes
int 1ii;
for (ii=0; 1ii<6; 1ii++)
{
note play(notes[ii]&l5,

}

Tonc

}i
0x12,

: GBA Programming in rot13

0x02,

notes[ii]>>4);
VBlankIntrDelay (8*lens[ii]);

0x05,

0x12 };

There are two arrays here, notes and lens, and a loop over all elements. We take a byte from notes and use the nybbles for

octave and note information, play the note, then wait a while —the length is indicated by the 1ens array— before the next note is played.
Basically, we're playing music. Hey, if the likes of Schnappi and Crazy Frog can make it into the top 10, I think I'm allowed to call this

music too, alright? Alright.

The point I'm trying to make is that it's very well possible to play a tune with just the tone generators, technically you don't need

digitized music and all that stuff to play something. Of course, it'll sound better if you do, but if you just need a little jingle the tone

generators may be all you need. Just define some notes (the nybble format for octaves and notes will do) and some lengths and you have
the basics already. You could even use more than one channel for different effects.

If you understood that, then get this: the note+length+channel idea is pretty much what tracked music (mod, it, xm, etc) does, only
they use a more sophisticated wave than a square wave. But the principle is the same. Getting it to work takes a little more effort, but

that's what Deku's sound mix tutorial is for.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

164/331

http://deku.gbadev.org/

28-03-13 Tonc : GBA Programming in rot13

19. Text systems

¢ Introduction
e Text system internals

e Bitmap text
o Tilemap text

o Sprite text
e Some demos

e Other considerations

Deprecation notice

This chapter has been superceded by TTE. Information from this chapter can still be useful, but for serious work, TTE should
be preferred.

19.1. Introduction

#include <stdio.h>

int main ()

{
printf ("Hello World");
return 0;

}

Aaah, yes, “Hello world”: the canonical first example for every C course and system. Except for consoles. While printing text on a PC is
the easiest thing in the world, it is actually a little tricky on a console. It's not that there's no printf () function, but rather that there is

nowhere for it to write to or even a font to write with (and that's hardly the full list of things to consider). Nope, if you want to be able to
display text, you'll have to build the whole thing from scratch yourself. And you do want to be able to write text to the screen,

So, what do we need for a text system? Well, that's actually not a simple question. Obviously, you need a font. Just a bitmap with the
various characters here, no need to depress ourselves with vector-based fonts on a GBA. Second, you need a way of taking specific
characters and show them on the screen.

But wait a minute, which video mode are we using? There's tilemaps, bitmap modes and sprites to choose from, all of which need to
be dealt with in entirely different ways. Are we settling for one of them, or create something usable for all? Also, what is the font we're
using, and what are the character sizes? Fixed width or variable width? Variable width and sizes aren't much of a problem for the bitmap
modes, but it's a bitch to splice them for tiles. Also, just for tiles, do we keep the full font in VRAM? If so, that's a lot of tiles, especially
considering you'll hardly be using all of them at the same time. It would be more VRAM efficient to only copy in the glyphs that you're
using at that time. This will take some management, though.

Just with these items, you'd have enough options for over 20 different text system implementations, all incompatible in very subtle
ways. At the very least you'll need putc () and puts () for each. And then perhaps a printf () -like function too; for each text-
type, mind you, because glyph placement goes on the inside. Maybe a screen clear too; or how about scrolling functionality. Well, you
get the idea.

I suppose it's possible to create a big, complicated system, tailoring to every need anyone could possibly have. But I'm not going to.
Firstly, because it's a bit waste of time: the chances you'll need the ability to run, say, bitmap and tilemap modes concurrently are
virtually —if not actually— nil. Most of the time, you'll use a single video mode and stick to that. Spending time (and space) for allow every
variation imaginable, when hardly any will ever be used is probably not worth the trouble. Besides, writing tons of code that is almost
identical except for some small detail in the heart of the routine is just plain bleh.

The point of this chapter is to show how to build and use a set of simple, lightweight text writers. Don't expect the mother of all text
systems, I'm mainly interested in getting the essential thing done, namely getting the characters of a string on the screen. This is a core
text system, with the following features:

¢ Bitmap (mode 3, 4, 5), regular tilemap (mode 0, 1) and sprite support.

o There willbe a xxx_puts () for showing the string, and a xxx_clrs () to wipe it. Their arguments will a string, the
position to plot to, and some color information. If you want scrolling and/or format specifiers, I'll leave that up to you.

¢ The font is a fixed width, monochrome font with one 8x8 tile per character. The glyphs can be smaller than 8x8, and I'll even
leave in hooks that allow variable widths, but things just get horrible if I'd allowed for multi-tile fonts.

e A variable character map. This is a great feature if you plan on using only a small set of characters, or non-ascii glyph orders.

This arrangement allows for the most basic cases and allows for some variations in set-up, but very little on the side. However, those
extras would probably be very game specific anyway, and might be ill suited for a general text system. If you want extras, it shouldn't be

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 165/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-intro
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-in
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-bm
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-tile
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-obj
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-demo
file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#sec-misc
file:///H:/dev/gba/proj/tonc/bak/tte.htm

28-03-13 Tonc : GBA Programming in rot13
too hard to write them yourself.

4 N\
No printf(). O rly?
I said that there is no printf () on the GBA, but this isn't quite true; not anymore, anyway. It is possible to hook your own

[0-system to the standard IO-routines, which is done in 1 ibgba.
\§

{ N
Semi-obsolete
I have another text system here that is much more powerful (as in, really working on every video mode and has a printf too)
than what's described in this page. However, it's rather large, not completely finished and it would take some time to write the
description page and alter the text to fit the demos again. A tonclib version that has the relevant changes can be found at
http://www.coranac.com/files/misc/tonclib-1.3b.rar.

19.2. Text system internals
19.2.1. Variables

For keeping track of the text-system's state, we'll need a couple of variables. The obvious variables are a font and a character map.
Because I like to keep things flexible, I'll also use two pointers for these so that you can use your own font and char-map if you want.
You also need to know where it is you want to write to, which is done via a base-destination pointer. As extras, I'll also have character
size variables for variable glyph spacing, and even a pointer to a char-width array, for a possible variable-width font.

I'll use a struct to store these, partially because it's easier for me to maintain, but also because the CPU and compiler can deal with
them more efficiently. I'll also leave a few bytes empty for any eventual expansion. Finally, an instance of this struct, and a pointer to it
so you can switch between different systems if you ever need to (which is unlikely, but still). Yes, I am wasting a few bytes, but if you
max out IWRAM over this, I dare say you have bigger problems to worry about.

// In text.h
typedef struct tagTXT BASE
{

ulé *dstO; // writing buffer starting point

u32 *font; // pointer to font used

u8 *chars; // character map (chars as in letters, not tiles)
u8 *cws; // char widths (for VWF)

u8 dx,dy; // letter distances

ulée flags; // for later

u8 extral[l2]; // ditto
} TXT BASE;

extern TXT BASE txt base, *gptxt;

// In text.c

TXT BASE txt base; Main TXT BASE instance
TXT BASE *gptxt= & txt base; and a pointer to it
19.2.2. The font

Fig 19.1: Default tonc font: mini-ascii, monochrome, 8x8 pixels per glyph.

Fig 19.1 shows the font I'll be using. This particular font is monochrome and each of the glyphs fits into an 8x8 box. The 96 glyphs
themselves a subset of the full ASCII that I'll refer to as mini-ascii. It's the lower ascii half that contains the majority of the standard
ASCII table, but leaves out ASCII 0-31 because they're escape codes and not really part of the printable characters anyway.

It is possible to use a different font with another glyph order, but the functions I'll present below rely on one tile per glyph, and in tile
layout. I need this arrangement because I intend to use it for all modes, and non single-tile formats would be hell in tile modes.

Another restriction is that the font must be bitpacked to 1bpp. I have a couple of reasons for this. First, there is the size
consideration. A 96 glyph, 16bit font (for modes 3/5) would take up 12kB. Pack that to 1bpp and it's less that one kB! Yes, you're
restricted to monochrome, but for a font, that's really not much of a problem. Often fonts are monochrome anyway and using 16 bits
where you only need one seems a bit of a waste. Secondly, how would you get a 16bpp font to work for 4bpp or 8bpp tiles? Going from
a low bpp to a higher one is just a lot easier. Of course, if you don't like this arrangement, feel free to write your own functions.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 166/331

http://www.coranac.com/files/misc/tonclib-1.3b.rar

28-03-13

As for the font data itself, here is the whole thing.

const unsigned int toncfontTiles[192]=

{
0x00000000,
0x3C067C18,
0x0C0C1830,
0x00000000,
0x7TE76663C,
0x33363C38,
0x3C66663C,
0x06186000,

0x5A5A663C,
0x6666361E,
0x7E666666,
0x06060606,
0x3E66663E,
0x1818187E,
0x183C66C3,
0x180C0603,

0x00301818,
0x667C6060,
0x663E0606,
0x18181818,
0x663E0000,
0x0C3E0COC,
0x36630000,
0x18181818,
}i

0x00000000,
0x00183E60,
0x0030180C,
0x0C181800,
0x003C666E,
0x0030307F,
0x003C6666,
0x00006018,

0x003C067A,
0x001E3666,
0x00666666,
0x007E0606,
0x00060606,
0x00181818,
0x00C3663C,
0x00C06030,

0x00000000,
0x007C6666,
0x00666666,
0x00301818,
0x06063E66,
0x00380cocC,
0x0063361C,
0x00181818,

0x18181818,
0x1B356600,
0x3030180cC,
0x7E000000,
0x181E1C18,
0x603E067E,
0x7C66663C,
0x007E0000,

0xTE66663C,
0x1E06067E,
0x1818183C,
0x6B7F7763,
0x3333331E,
0x66666666,
0x183C66C3,
0x3030303C,

0x603C0000,
0x663C0000,
0x18180018,
0x7F370000,
0x667C0000,
0x66660000,
0x66660000,
0x3018180cC,

Tonc : GBA Programming in rot13

0x00180018,
0x0033566C,
0x000C1830,
0x00000000,
0x00181818,
0x003C6660,
0x001C3060,
0x0000007E,

0x00666666,
0x007E0606,
0x003C1818,
0x00636363,
0x007E3B33,
0x003C6666,
0x00181818,
0x003C3030,

0x007Ce667C,
0x003C067E,
0x00301818,
0x0063636B,
0x60607C66,
0x007C6666,
0x0C183C66,
0x000C1818,

0x00003636,
0x6E16361C,
0xFF3C6600,
0x00000000,
0x3060663C,
0x3E060C38,
0x00181800,
0x60180600,

0x3E66663E,
0x1E06067E,
0x60606060,
0x7B6F6763,
0x3E66663E,
0x66666666,
0x0C18307F,
0x00663C18,

0x663E0606,
0x0C3E0C38,
0x30300030,
0x663E0000,
0x663E0000,
0x66660000,
0x307E0000,
0x003B6EOO,

0x00000000,
0x00DE733B,
0x0000663C,
0x00181800,
0x007E0C18,
0x003C6666,
0x00181800,
0x00000618,

0x003E6666,
0x00060606,
0x003C6660,
0x00636373,
0x00666636,
0x00183C3cC,
0x007F0306,
0x00000000,

0x003E6666,
0xo0o00cococ,
0x1E303030,
0x00666666,
0x00060606,
0x00183C66,
0x007E0C18,
0x00000000,

0x367F3636,
0x000C1818,
0x7E181800,
0x183060C0,
0x3860663C,
0x3060607E,
0x00181800,
0x3060663C,

0x06060C78,
0x7606663C,
0x0F1B3363,
0x6666663C,
0x3COE663C,
0x6B636363,
0x0C0C0C3C,
0x00000000,

0x063C0000,
0x667C0000,
0x36660606,
0x663C0000,
0x063C0000,
0x63630000,
0x0C181830,
0x00000000,

0x0036367F,
0x00000000,
0x00001818,
0x0003060C,
0x003C6660,
0x00181818,
0x0C181800,
0x00180018,

0x00780C06,
0x007C6666,
0x0063331B,
0x003C6666,
0x003C6670,
0x0063777F,
0x003C0C0C,
0x003F0000,

0x003C0606,
0x3C607C66,
0x0066361E,
0x003C6666,
0x003E603C,
0x00367F6B,
0x00301818,
0x00000000,

Yes, this is the entire font, fitting nicely on one single page. This is what bitpacking can do for you but, like any compression method, it
may be a little tricky seeing that it is indeed the font given earlier, so here's a little explanation of what you got in front of you.

Bitpacking
Bitpacking isn't hard to understand. Data is little more a big field of bits. In bitpacking, you simply
drop bits at regular intervals and tie the rest back together. Our font is monochrome, meaning we big 0x01020304
only have one bit of information. Now, even in the smallest C datatype, bytes, this would leave 7 u32
bits unused if you were to use one byte per pixel. However, you could also cram eight pixels into big
one byte, and thus save a factor 8 in space. For the record, that's a compression level of 88%, ulé 0x0102 0x0304
re ood I'd say. Of course, if you read all the other pages already, you'd have alread

rpecggrl%zed instanZe,S of bitpacking: 4bpp tiles are bitpaclriefl with 2 pii](e}l/s/byte. So this stlz,ff u8 [0x01]0x02|0x03)0x04
shouldn't be completely new. little | o o 0x0403

Bitpacking can save a lot of room, and in principle, it's easy to do, as it's just a matter of ul6
masking and shifting. There is one major catch, however: endianness. You already seen one little 0x04030201
incarnation of this in other data-arrays: the word 0x01234567 would actually be stored as the u32
byte-sequence 0x67, 0x45, 0x23, 0x01 on ARM (and intel) systems. This is called little- Table 19.1: Big endian vs little endian
endian, because the little end (the lower bytes of a multi-byte type) of the word are stored in the interpretation of byte-sequence 01h,
lower addresses. There is also big-endian, which stores the most significant bytes first. You can 02h, 03h, 04h

see the differences in table 19.1. Some hex editors or memory viewers (in VBA for example)
allow you to switch viewing data as bytes, halfwords or words, so you can see the differences interactively there. Please remember that
the data itself does not change because of this, you just look at it in a different way.

For bitpacking, you also have to deal with endianness at the bit level. The font data is packed in a consistent bit-little and byte-little
format for three reasons. First, this is how GBA bitpacked stuff works anyway, so you can use the BIOS BitUnpack routine for it.
Second, it is a more natural form in terms of counting: lower bits come first. Third, because you can shift down all the time and discard
covered bits that way, masking is easier and faster. Now, big-endian would be more natural visually due to the fact we write numbers
that way too, so bitmaps are often bit-little as well. Windows BMP files, for example, these have their leftmost pixels in the most
significant bits, making them bit-big. However, Windows runs on Intel architecture, which is actually bye little-endian, for maximum
confusion. Sigh. Oh well.

In case it's still a bit hazy, fig 19.2 shows how the ‘F’ is packed from 8x8 pixels into 2 words. All 64 pixels are numbered 0 to 63.
These correspond to the bit-numbers. Each eight successive bits form a byte: 0-7 make up byte 0, 8-15 form byte 1, etc. Note how the
bits seem to mirror horizontally, because we generally write numbers big-endian. So try to forget about that and think of bits in memory
to walk through from 0 to 63. You can also view the bits as words, bits 0-31 for word 0 and 32-63 for word 1.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 167/331

28-03-13 Tonc : GBA Programming in rot13

pixels bits bytes words
[76543210 | L
00 [01 [02 [03 [04 [05 08 [07 - -
01111110 Ox7E
08 |09 |OA (OB (OC (0D (OE (OF
10 |11 |12 [13 [14 [15 [16 |17 00000110 0x06
00000110
18 [19 [1a [18 [1c [1D [1E [1F | —— —_— 0x06 —_—>
20 |21 |22 |23 |24 |25 |28 |27 00011110 0x1E06067E
28 |25 |2A 2B |2C 2D |2E |2F 00000110 _OXIE_ 0x00060606
30 (31 [32 [33 [34 [35 (36 [a7 00000110 0x06
38 |39 [aA [3B [ac [aD [3E [3F 00000110 0x06
OOOOOOOO 0x06
0x00
Fig 19.2: ‘F’, from 8x8 tile to 1bpp bit-little, byte-little words.

19.2.3. Character map

Having the mini-ascii font is nice and all but as strings are full-ascii, this may present a problem. Well, not really, but there are several
ways of going about the conversion.

First, you can create a giant switch-block that converts, say, ‘A’ (ascii 65) into glyph-index 33. And do that for all 96 glyphs. It
should be obvious that this is a dreadful way of going about things. Well it should, but apparently it's not because code like that is out
there; I only mention it here so you can recognize it for what it is and stay to far, far away from it. Simply put, if you have a switch-block
where the only difference between the cases is returning a different offset —and a fixed offset at that— you're doing something very,
very wrong.

A second method which is an enormous improvement in every way is to simply subtract 32. That's how mini-ascii was defined after
all. Quick, short, and to the point.

However, I kinda like the third option: look-up tables. We've already seen how useful LUTs can be for mathematics, but you can use
them for a lot more than that. In this case, the lut is a charcter map, containing the glyph-index for each ascii character. This has almost
all the benefits of the simple subtract (a look-up may be a few cycles slower), but is much more flexible. For example, you can have
non-ascii charmaps or alias the cases, things like that. Another ‘interesting’ thing is that you don't really need the font to be text as such,
it can be any kind of mapped image data; with a lut you could easily use the text system for drawing borders, as long as you have a
border ‘font’ for it. The ut I'm using is 256 bytes long. This may not be enough for Unicode (sorry Eastern dudes), but it's enough to suit
my purposes.

General design

The first thing to do code-wise is to initialize the members of the text-base. That means attach the font, set the glyph sizes, and initialize
the Iut. This can be done with txt init std().

u8 txt lut[256];

// Basc initializer for text state
void txt init std()
{

gptxt->dx= gptxt->dy= 8;

gptxt->dst0= vid mem;
gptxt->font= (u32*)toncfontTiles;
gptxt->chars= txt lut;
gptxt->cws= NULL;

int 1ii;
for (1i=0; 1i<96; ii++)
gptxt->chars[ii+32]= ii;
}

Depending on the type of text, you may need more specialized initializers, which we'll get to when the time comes. As for writing a
string, the basic structure can bee seen below. It's actually quite simple and very general, but unfortunately the fact that xxx putc ()
is in the inner loop means that you have to have virtually identical wrappers around each char-plotter for each text method. I also have
functions called xxx_clrs () that clear the string from the screen (they don't wipe the whole screen). They are almost identical to
their puts () siblings in form and also rather simple, so I won't elaborate on them here.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 168/331

28-03-13 Tonc : GBA Programming in rot13

// Pseudo code for xxx puts
void xxx puts(int x, int y, const char *str, [[more]])

{

[[find real writing start]]

while (c=*str++) // iterate through string
{

switch (c)

{

case [[special chars ('\n' etc)]]:

[[handle speciall]]

case [[normal chars]]:
[[xxx putc(destination pointer, lut([c])]]
[[advance destination]]

19.3. Bitmap text

Bitmap text concerns modes 3, 4 and 5. If you can do mode 3, you pretty much have mode 5 as well, as the two differ only by the pitch
and, perhaps, the starting point. Mode 4 is different, not only because it's 8bpp, but also because this means we have to do 2 pixels at
once.

19.3.1. Internal routines

I tend to do bitmap related functions in two parts: there are internal 16bit and 8bit functions that take an address and pitch as their
arguments, and then inline interface functions with coordinates that call these. The internal 16bit writer is given in below, with an
explanation of the main parts below that.

void bml6 puts(ul6 *dst, const char *str, COLOR clr, int pitch)
{

int ¢, x=0;

while ((c=*str++) != 0) // (1) for each char in string
{
// (2) real char/control char switch
if(c == '"\n"'") // line break
{
dst += pitch*gptxt->dy;
x=0;
}
else // normal character
{
int ix, iy;
u32 row;
// (3) point to glyph; each row is one byte
u8 *pch= (u8*)&gptxt->font[2*gptxt->chars[c]];
for (iy=0; 1y<8; iy++)
{
row= pchliy];
// (4) plot pixels until row-byte is empty
for (ix=x; row>0; row >>= 1, ix++)
if (rowé&l)
dst[iy*pitch+ix]= clr;
}
X += gptxt->dx;

}

1. Traditional way to loop through all characters in a string. ¢ will be the character we have to deal with, unless it's the delimiter
("\0"), then we'll stop.

2. Normal char/control char switch. Control characters like '\n"' and '\t ' should be taken care of separately. I'm only
checking for the newline right now, but others could easily be added.

3. This is where it gets interesting. What this line does is first use the lut to look up the glyph index in the font, look up the actual
glyph in the font (multiply by 2 because there are 2 words/glyph), and then set-up a byte-pointer pch to point to the glyph.
A couple of things come together here. First, because all glyphs are exactly 8 bytes apart, finding the glyph data is very easy.
If you create your own text system with your own fonts, I'd advise using constant offsets, even if it wastes pixels like you
would for small characters like ‘I’. Second, because of the 1bpp tiled format, each row is exactly one byte long, and all the
glyphs bits are in consecutive bytes, so you don't have to jump around for each new row. This is a good thing.

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 169/331

28-03-13 Tonc : GBA Programming in rot13

4. The ix loop is even more interesting. First, we read the actual row of pixels into the (word) variable row. To test whether we
need to write a pixel, we simply check for a given bit. However, because the packing is /ittle endian, this allows for two
shortcuts.

The first one is that looping through the bits goes from low to high bits, meaning that we can simply shift-right on each iteration
and test bit 0. The corollary to this is that the bits we've already done are thrown away, and this means that when row is 0,
there will be no more pixels, and we're done for that row. As this short-circuit happens inside the inner of a triple loop, the
speed-up can be substantial.

This function only does the bare essentials to get a string on screen. It plots the non-zero pixels only (transparent characters), there is no
wrapping at the side and no scrolling. The only non-trivial feature is that it can do line-breaks. When those happen, the cursor returns to
the original x-position on screen.

The 8bit function is almost identical to this one, ‘almost’ because of the no-byte-write rule for VRAM. The obvious ones are that the
pitch and character spacing need to be halved. I'm also making it re quire ment that the start of each character needs to be on an even
pixel boundary. By doing so, you can have an almost identical inner loop as before; it just does two pixels in it instead of one. Yes, it's a
hack; no, I don't care.

void bm8 puts(ul6 *dst, const char *str, u8 clrid)

{
int ¢, x=0, dx= gptxt->dx >> 1;

while ((c=*str++) != 0)
{
// <snip char-switch and iy loop>
for (ix=x; row>0; row >>= 2, ix++)
{
pxs= dst[iy*120+ix];

if (rowé&l)
pxs= (pxs&0xFF00) | clrid;
if (rowé&?2)
pxs= (pxs&0x00FF) | (clrid<<8);

dst[iy*120+ix]= pxs;
}
// <snip>

19.3.2. Interface functions
The interface functions are straightforward. All they have to do is set-up the destination start for the internal routines, and for the 16bit
versions, provide a pitch. Mode 3 uses vid mem as its base, and mode 4 and 5 use vid page to make sure it works with page
flipping. m4 puts () also ensures that the characters start at even pixels, and please remember that this routine uses a color-index,
rather than a true color.

// Bitmap text interface. Goes in text.h
INLINE void m3 puts(int x, int y, const char *str, COLOR clr)
{ bml6 puts(&vid mem([y*240+x], str, clr, 240); }

INLINE void m4 puts(int x, int y, const char *str, u8 clrid)
{ bm8 puts (&vid page[(y*240+x)>>1], str, clrid); }

INLINE void m5 puts(int x, int y, const char *str, COLOR clr)
{ bml6 puts(&vid pagel[y*160+x], str, clr, 160); }

19.3.3. Clearing text
Doing a text clear is almost the same as writing out a string. The only functional difference is that you're always putting a space (or
rather, a solid filled rectangle) instead of the original characters. You still need the full string you tell you how long the line goes on, and
how many lines there are.

With that in mind, the bm16 clrs () function below shouldn't be that hard to understand. The whole point of it is to read the string
to find out the length in pixels of each line in the string (nx*gptxt->dx), then fill the rectangle spanned by that length and the height
of the characters (gptxt->dy). There's some bookkeeping to make sure it all goes according to plan, but in the end that's all it does.
The same goes for the clear routines of the other text-types, so I'm not going to show those.

void bml6é clrs(ul6 *dst, const char *str, COLOR clr, int pitch)
{

int ¢, nx=0, ny;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 170/331

28-03-13

Tonc : GBA Programming in rot13

while (1)

{
c= *str++;
if (c=="\n" ||
{

c=="'\0")

if (nx>0)
{
nx *= gptxt->dx;
ny= gptxt->dy;
while (ny--)
{
memsetl6 (dst,
dst += pitch;

clr, nx);

}

nx=0;
}
else

dst += gptxt->dy*pitch;
if (c=="'\0")

return;

else
nx++;

19.4. Tilemap text

In some ways, text for tile-modes is actually easier than for bitmaps, as you can just stuff the font into a charblock and then you don't
need any reference to the font itself anymore. That is, unless you want to have a variable width font, in that case you'll be in bit-shifting
hell. But I'm sticking to a fixed width, single tile font, which keeps things very simple indeed.

19.4.1. Tile initialisation

The first order of business is to be able to unpack the font to either 4 or 8 bit. The easiest way of doing this is to just setup a call to
BitUnpack () and be done with it. However, VBA's implementation of it isn't (or wasn't, they may have fixed it by now) quite
correct for what I had planned for it, so I'm going to roll my own. Arguments dstv and srcv are the source and destination addresses,
respectively; 1en is the number of source bytes and bpp is the destination bitdepth. base serves two purposes. Primarily, it is a
number to be added to all the pixels if bit 31 is set, or to all except zero values if it is clear. This allows a greater range of outcomes than
just the 0 and 1 that a source bitdepth of one would supply; and an other cute trick that I'll get to later.

// Note,
void txt bup 1ltoX(void *dstv,

{

the BIOS BitUnpack does exactly the same thing!
const void *srcv, u32 len,

u32 *src= (u32*)srcv;

u32 *dst= (u32*)dstv;

len= (len*bpp+3)>>2; // # dst words

u32 bBaselO= bases& (1<<31); // add to 0 too?
base &= ~(1<<31);

u32 swd, ssh=32; // src data and shift

u32 dwd, dsh;
while (len--)

{

// dst data and shift

if (ssh >= 32)
{

swd= *src++;

ssh= 0;

}

dwd=0;

for (dsh=0; dsh<32; dsh += bpp)

{
u32 wd= swdé&l;
if(wd || bBasel)

wd += base;

dwd |= wd<<dsh;
swd >>= 1;
ssh++;

}

*dst++= dwd;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

int bpp, u32 base)

171/331

28-03-13 Tonc : GBA Programming in rot13

}

The actual map-text initialization is done by txt init se (). Its first two arguments are exactly what you'd expect: the background
that the system should use for text and the control-flags that should go there (charblock, screenblock, bitdepth, all that jazz). The third
argument, se0, indicates the ‘base’ for palette and tile indexing, similar to the base for unpacking. The format is just like normal screen
entries: se0{0-9} indicate the tile offset, and se0{C-F} are for the 16 color palette bank. c1rs contains the color for the text, which
will go into the palette indicated by the sub-palette and the fifth argument, base, the base for bit-unpacking.

For now, ignore the second color in c1rs, and the extra palette write for 4 bpp. In all likelihood, you don't want to know. I'm going
to tell you about them later anyway, though.

void txt init se(int bgnr, ul6 bgcnt, SB ENTRY se0, u32 clrs, u32 base)
{

bg cnt mem[bgnr]= bgcnt;

gptxt->dst0= se mem[BF GET (bgcnt, BG SBB)];

// prep palette
int bpp= (bgcnt&BG _8BPP) ? 8 : 4;
if (bpp == 4)
{
COLOR *palbank= &pal bg mem[BF GET(se0, SE PALBANK)<<4];
palbank|[(base+l) &15]= clrs&0xFFFF;
palbank|[(base>>4)&15]= clrs>>16;
}
else
pal bg mem[(base+l) &255]= clrs&OxFFFE;

// account for tile-size difference
se0 &= SE ID MASK;
if (bpp == 8)

se0 *= 2;

// Bitunpack the tiles
txt bup ltoX(&tile mem[BF GET (bgcnt, BG CBB)][se0],
toncfontTiles, toncfontTilesLen, bpp, base);

}

If you don't want to deal with all kinds of offsets, you can just leave the third and fifth arguments zero. It's probably not a good idea to
leave the others zero, but for those two it's not a problem.

19.4.2. Screen entry writer

This is arguably the most simple of the text writers. As there is one glyph per screen entry, all you have to do is write a single halfword
to the screenblock in the right position and you have a letter. Repeat this for a whole string.

There are a few things to note about this implementation, though. First, like before, no kind of wrapping or scrolling. If you want that,
you'll have to do all that yourself. Also, the x and y coordinates are still in pixels, not tiles. I've done this mainly for consistency with the
other writers, nothing more. Oh, in case you hadn't noticed before, gptxt->dst0 is initialized to point to the start of the background's
screenblock in txt init se (). Lastly, se0 is added to make up the actual screen entry; if you had a non-zero se0 in initialization,
chances are you'd want to use it here too.

void se puts(int x, int y, const char *str, SB ENTRY seO)
{

int c¢;

SB_ENTRY *dst= &gptxt->dstO[(y>>3)*32+ (x>>3)];

x=0;

while ((c=*str++) != 0)

{
if(c == '"\n") // line break
{ dst += (x&~31) + 32; x=0; }
else

dst[x++] = (gptxt->chars[c]) + se0;

19.5. Sprite text

Sprite text is similar to tilemap text, only you use OBJ ATTRs now instead of screen entries. You have to set the position manually
(attributes 0 and 1), and attribute 2 is almost the same as the screen entry for regular tilemaps. The initializer txt init obj () is
similar to txt_init se (), except that the tilemap details have been replaced by their OAM counterparts. Instead of a screenblock,

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 172/331

file:///H:/dev/gba/proj/tonc/bak/tonc-chrome.htm#ssec-demo-se1

28-03-13 Tonc : GBA Programming in rot13

we point to a base OBJ_ATTR 0e0, and attr2 works in much the same way as se0 did. The code is actually simpler because we
can always use 4bpp tiles for the objects that we use, without upsetting the others.

// OAM text initializer
void txt init obj (OBJ ATTR *oel, ul6 attr2, u32 clrs, u32 base)

{
gptxt->dst0= (ul6*)oel;

COLOR *pbank= &pal obj mem[BF GET (attr2, ATTR2 PALBANK)<<4];
pbank|[(base+l) &15]= clrs&OxFFFE;
pbank[(base>>4) &15]= clrs>>16;

txt bup ltoX(&tile mem[4] [attr2&ATTR2 ID MASK], toncfontTiles,
toncfontTilesLen, 4, base);

// OAM text writer
void obj puts(int x, int y, const char *str, ul6 attr2)
{

int ¢, x0= x;

OBJ ATTR *oe= (OBJiATTR*)gptxt—>dSt0;

while ((c=*str++) != 0)
{
if(c == '"\n'") // line break
{ y += gptxt->dy; x= x0; }
else
{
if(c !'= ' ') // Only act on a non-space

oe->attr0= y & ATTRO Y MASK;
oe->attrl= x & ATTR1 X MASK;
oe->attr2= gptxt->chars([c] + attr2;
oe++;

}

X += gptxt->dx;

}

The structure of the writer itself should feel familiar now. The attr2 again acts as a base offset to allow palette swapping and an
offset tile start. Note that I'm only entering the position in attributes 0 and 1, and nothing else. I can do this because the rest of the things
are already set to what I want, namely, 8x8p sprites with 4bpp tiles and no frills. Yes, this may screw things up for some, but if I did
mask out everything properly, it'd screw up other stuff. This is a judgement call, feel free to disagree and change it.

That writer always starts at a fixed OBJ_ATTR, overwriting any previous ones. Because that might be undesirable, I also have a
secondary sprite writer, obj puts2, which takes an OBJ_ATTR as an argument to serve as the new base.

INLINE void obj puts2(int x, int y, const char *str, ul6 attr2, OBJ ATTR *oe0)
{

gptxt->dst0= (ul6*)oe0;

obj puts(x, y, str, attr2);
}

There are some side notes on memory use that I should mention. Remember, there are only 128 OBJ_ATTRs, and at one entry/glyph it
may become prohibitively expensive if used extensively. In the same vein, 1024 tiles may seem like a lot, but you can run out quickly if
you have a couple of complete animations in there as well. Also, remember that you only have 512 tiles in the bitmap modes: a full
ASCII character set in bitmap modes would take up Zalf the sprite tiles!

If you're just using it to for a couple of characters you're not likely to run into trouble, but if you want screens full of text, you might
be better of with something else. There are ways to get around these things, of course; quite simple ways, even. But because they're
really game-specific, it's difficult to give a general solution for it.

19.6. Some demos

19.6.1. Bitmap text demo

I suppose I could start with “Hello world”, but as that's pretty boring I thought I'd start with something more interesting. The txt bm
demo does something similar to bm modes: namely show something on screen and allow switching between modes 3, 4 and 5 to see
what the differences are. Only now, we're going to use the bitmap puts () versions to write the actual strings indicating the current

mode. Because that's still pretty boring, I'm also going to put a movable cursor on screen and write out its coordinates. Here's the full

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 173/331

28-03-13 Tonc : GBA Programming in rot13
code:

#include <stdio.h>
#include <tonc.h>

#define CLR BD 0x080F

const TILE cursorTile=
{{ 0x0, 0x21, 0x211, 0x2111, 0x21111, 0x2100, 0x1100, 0x21000

void base init()
{

vid page= vid mem;

// init interrupts
irg init (NULL);
irq_add(II_VBLANK, NULL) ;

// init backdrop

pal bg mem[0]= CLR MAG;

pal bg mem[CLR BD>>8]= CLR BD;
pal bg mem[CLR BD&255]= CLR BD;
m3 fill (CLR_BD);

// init mode 4 pal
pal bg mem[1l]= CLR LIME;
pal bg mem[255]= CLR WHITE;

// init cursor

tile mem[5] [0]= cursorTile;
pal obj mem[1]= CLR WHITE;
pal obj mem[2]= CLR GRAY;

int main ()
base init();
txt init std();

// (1) print some string so we know what mode we're at
m3 puts(8, 8, "mode 3", CLR CYAN);

m4 puts(l2, 32, "mode 4", 1);

m5 puts (16, 40, "mode 5", CLR YELLOW);

// init variables
u32 mode=3, bClear=0;
OBJ ATTR cursor= { 80, 120, 512, 0 };

// init video mode
REG_DISPCNT= DCNT BG2 | DCNT OBJ | 3;

// init cursor string
char str[32];
siprintf (str,

o %$3d,%3d", cursor.attrl, cursor.attr0);

while (1)

{
VBlankIntrWait () ;
oam mem[0]= cursor;
key poll();

if (key _hit (KEY START))
bClear "= 1;

// move cursor
cursor.attrl += key tri horz();
cursor.attr0 += key tri vert();

// adjust cursor (-string) only if necessary

if (key is down (KEY ANY))
{

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

|

174/331

28-03-13 Tonc : GBA Programming in rot13

// (2) clear previous coords
if (bClear)
bm clrs (80, 112, str, CLR BD);

cursor.attr0 &= ATTRO_Y MASK;

cursor.attrl &= ATTR1 X MASK;

// (3) update cursor string

siprintf(str, "%c %3d,%3d", (bClear ? 'c' : 'o"),
cursor.attrl, cursor.attr0);

}

// switch modes
if (key hit (KEY L) && mode>3)

mode--;
else if (key hit (KEY R) && mode<5)
mode++;
REG_DISPCNT &= ~DCNT MODE MASK;
REG_DISPCNT |= mode;

// (4) write coords
bm puts (80, 112, str, CLR WHITE);
}

return 0;

}

Controls:
D-pad Moves cursor.
Start Toggles string clearing.
L, R Decrease or increase mode.

Many things here should be either self explanatory or fairly irrelevant. The interesting things
are indicated by numbers, so let's go through them, shall we?

1. Mode indicators. This is where we write three strings to VRAM, indicating the modes.
Note that the interfaces are nearly identical; the only real difference is that the fourth Fig 19.3: txt_bm demo.
argument for m4 _puts () is a palette index, rather than a real color.

2. Clear previous cursor-string. The cursor string keeps track of the cursor as you move across the screen. The first thing you'll
notice is that the string turns into a horrible mess because the bitmap writers only write the non-zero pixels of the font. In other words, it
does not clear out the rest of the space allotted for that glyph. Essentially mx puts () are transparent string writers.

Sure, I could have added a switch that would erase the whole glyph field to the writers. Quite easily, actually, it only takes an extra
else clause. However, the current way is actually more practical. For one thing, what if you actually want transparency? You'd have
to write another routine just for that. The method I've chosen is to have an extra clearing routine (which you'd probably need anyway).
To overwrite the whole glyphs, simply callmx clrs () first; which is what I'm doing here. Well, as long as the bClear variable is set
(toggle with Start).

A second reason is that this method is just so much faster. Not only because I wouldn't be able to use my premature breaking from
the ix-loop if I had to erase the whole field and the mere presence of an extra branch adds more cycles (inside a triple loop), but
plotting individual characters will always be slower than to do it by whole blocks at a time. mx _clrs () uses memset16 (), which is
basically CpuFastSet () plus safeties, and will be faster after just a mere half a dozen pixels.

Oh, in case you're wondering why I'm talking about mx_clrs () when the code mentions bm_clrs (), the latter function is
merely a function that uses a switch-block with the current bitmap mode to call the correct mode-specific string clearer.

3. Updating the cursor string. As the writers don't have format specification fields, how can we write numbers? Simple, use
sprintf () to prepare a string first, and then use that one instead. Or rather, use siprintf (). This is an integer-only version of
sprintf (), which is better suited to GBA programming since you're not supposed to use floating point numbers anyway. It should be
relatively simple to create functions to wrap around siprintf () and mx puts (), but I'm not sure it's worth the effort.

I should perhaps point out that using siprintf and other routines that can turn numbers into strings use division by 10 to do so,
and you know what that means. And even if you do not ask it to convert numbers, it calls a dozen or so routines from the standard
library, which adds around 25kb to your binary. This isn't much for ROM, but for multiboot things (256kb max) it may become
problematic. With that in mind, I'd like you to take a look at posprintf by Dan Posluns. This is hand-coded assembly using a special
algorithm for the decimal conversion. It may not be as rich in options as siprintf (), but it's both faster and smaller by a very large
margin, so definitely worth checking out.

4. Write cursor string. This writes the current cursor string to position (80, 120). Like in the cases of wiping the string, I'm using a
bm puts () function that switches between the current mode writers.

19.6.2. Sprite text; Hello world!
Yes! Hello world! Now, in principle, all you have to dois call txt init (),txt init obj () andthen obj puts () with the

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 175/331

http://www.danposluns.com/

28-03-13 Tonc : GBA Programming in rot13

right parameters, but again that's just boring, so I'll add some interesting things as well. The txt ob7j demo shows one of the things

best performed with sprites: individual letter animation. The letters of the phrase “hello world!” will fall from the top of the screen,

bouncing to a halt on the floor (a green line halfway across the screen).

#include <tonc.h>
// === CONSTANTS & STRUCTS ==

#define POSO (80<<8)
#define GRAV 0x40
#define DAMP 0xDO
#define HWLEN 12

const char hwstr[]= "Hello world!";

typedef struct
{
u32 state;
int tt;
FIXED fy;
FIXED fvy;
} PATTERN;

// === FUNCTIONS ===================================c==—=c=============

void pat bounce (PATTERN *pat)
{
if (pat->tt <= 0) // timer's run out: play pattern
{
pat->fvy += GRAV;
pat->fy += pat->fvy;

// touched floor: bounce
if (pat->fy > POSO0)
{
// damp if we still have enough speed
// otherwise kill movement
if (pat->fvy > DAMP)
{
pat->fy= 2*POSO-pat->fy;
pat->fvy= DAMP-pat->fvy;
}
else
{
pat->fy= POSO;
pat->fvy= 0;

}

else // still in waiting period
pat->tt--;

int main ()
REGiDISPCNT: DCNTiMODE3 | DCNTiBGZ | DCNTiOBJ;

irg init (NULL);
irq add(II VBLANK, NULL);
memsetl6 (&vid mem[88*240], CLR GREEN, 240);

// (1) init sprite text

txt init std();

txt init obj (&oam mem[0], O0xF200, CLR YELLOW, OxEE);
// (2) 12 px between letters

gptxt->dx= 12;

// (3) init sprite letters
OBJ ATTR *oe= oam mem;
obj puts2 (120-12*HWLEN/2, 8, hwstr, 0xF200, oe);

int ii;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

176/331

28-03-13 Tonc : GBA Programming in rot13
PATTERN pats[HWLEN];

for (ii=0; 1i<HWLEN; ii++)
{
// init patterns

pats[ii].state=0;
pats[ii].tt= 3*ii+1;
pats[ii].fy= -12<<8;
pats[ii].fvy= O;

// init sprite position
oe[ii].attr0 &= ~ATTRO Y MASK;
oe[ii]l.attr0 |= 160;

}

while (1)
{
VBlankIntrWait () ;

for (11=0; 1i<HWLEN; 1i++)
{

pat bounce (&pats[ii]);

oe[ii].attr0 &= ~ATTRO Y MASK;
oel[ii].attr0 |= (pats[ii].fy>>8)& ATTRO Y MASK;

}

return 0;

}

Very little of this code is actually concerned with the string itself, namely the items 1, 2 and
3. There'sacallto txt init std() for the basic initialization and a call to the sprite
text initializer, txt init obj (). The second argument is the base for attribute 2 (if you
don't remember what attribute 2 is, see the chapter on sprites again); 0xF200 means I'm
using the sub-palette 15 and start the character tiles at tile-index 512 (because of the bitmap
mode). The font color will be yellow, and out at index 255. That's 240 from the pal-bank,
0x0E=14 from the unpacking and 1 for the actual 1bpp pixels 240+14+1=255. After this
call, I'm also setting the horizontal pixel offset to 12 to spread out the letters a little bit. After
that, I just call obj puts2 () to set up the first few sprites of OAM so that they show
“hello world!” centered at the top of the screen.

I could have stopped there, but the demo is actually just beginning. The thing about using
sprites as glyphs is that they can still act as normal sprites; obj puts () just sets them up to use letters instead of graphics that are
more sprite-like.

Fig 19.4: txt obj demo.

Bouncy, bouncy, bouncy

The goal here is to let the letters drop from the top of the screen, the bounce up again when it hits a floor, but with a little less speed than
before due to friction and what not. Physically, the falling part is done using a constant acceleration, g. Acceleration is the change in
velocity, so the velocity is linear; velocity is the change in position, so the height is parabolic. At the bounce, we do an inelastic collision;
in other words, one where energy is lost. In principle, this would mean that the difference between the squares of the velocities before
and after the collision differ by a constant (|Vom|2 - v, [*= Q). However, this would require a square root to find the new velocity, and I
don't care for that right now so I'm just going to scrap the squares here. I'm sure there are situations where this is actually quite valid

: P. As a further simplification, I'm doing a first-order integration for the position. With this, the basic code for movement becomes very
simple

// 1D inelastic reflections
// vy, vy, ay: position, velocity, acceleration.
// Q: inelastic collision coefficient.
vy t= ay;
y 4= vy;
if (y>ymay) // collision
{
if ((ABS (vy)>Q)
{
vy= - (vy-SGN(vy)*Q); // lower speed, switch direction
y= 2*ymay-y; // Mirror y at r: y= r-(y-r)= 2r-y
}
else // too slow: stop at ymay
{ vy= 0; y= ymay; }

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm 177/331

file:///H:/dev/gba/proj/tonc/bak/regobj.htm#ssec-obj-attr2

28-03-13 Tonc : GBA Programming in rot13
}

J

This could be replaced by the following, more accurate code, using second-order integration and ‘proper’ recoil, but you hardly notice

anything from the improved integration. I actually prefer the look of the simple, linear recoil over the square root though.

// accelerate
k= vx+GRAV;
// Trapezium integration rule:

// x[i+1]= x[1i] + (v[il+v[i+1l])/2;
x += (vx+k)/2;

vx= k;

if (x>xmax) // collision

{

if (vx*vx > Q2)

{ vx= -3qrt (vx*vx-Q2); x= 2*xmax-x; }
else
{ vx= 0; X= Xmax; }

19.6.3. Map text : colors and borders

Next up is the first of two map text demos. The official name for what I call a regular background is “text background”, and they're
called that for a reason: in most cases when there is text, it's done using regular backgrounds. Of course, in most cases everything else is
also done with those, so strictly speaking associating them with “text” is a misnomer, but we'll let that one slide for today. The first demo
is about how you can use the text functions for a variety of effects. Apart from simply showing text (boring), you'll see palette swapping
and framing text, and how you can easily use different fonts and borders concurrently. Because of the way I've designed my functions,

all this takes is a change in a parameter. Cool huh.

The demo will also feature adding shading to a monochrome font, and adding an opaque background for it. Now, the way I'm going
about this will probably reserve me a place in the Computer Science Hell, but, well, the coolness of the tricks will probably keep me from

burning up there.

#include <tonc.h>
#include "border.h"

// === CONSTANTS & STRUCTS ==
#define TID_FRAMEO 96
#define TID_FRAMEl 105
#define TID FONT 0
#define TID FONT2 128
#define TID FONT3 256
#define TXT PID SHADE OxEE
#define TXT PID BG 0x88
// === FUNCTIONS =========m===omoecooom oo e e e e e o

void init ()
{
int 1ii;
REG_DISPCNT= DCNT_MODEO | DCNT_BGO;

irg init (NULL);
irg add(II_VBLANK, NULL);

txt init std();

// (la) Basic se text initialization
txt init se (0, BG_CBB(0) | BG_SBB(31), 0x1000, CLR RED, 0x0E);

// (1lb) again, with a twist
txt init se(0, BG_CBB(0) | BG SBB(31), 0xF000|TID_FONT2,
CLR_YELLOW | (CLR MAG<<16), TXT PID SHADE);

// (lc) and once more, with feeling!

txt init se(0, BG CBB(0) | BG SBB(31), 0xE000|TID FONT3,
0, TXT PID SHADE);

u32 *pwd= (u32*)&tile mem([O] [TID FONT3];

for (1i=0; 11<96*8; 1ii++)
*pwd++ |= quad8 (TXT PID BG);

// extra border initialisation

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

178/331

28-03-13

Tonc : GBA Programming in rot13

memcpy32 (pal bg mem, borderPal, borderPallLen/4);
memcpy32 (&tile mem[0] [TID FRAMEO], borderTiles, borderTilesLen/4) ;

// (2) overwrite /\ T[]

oe

N

~ to use border tiles

/NN
/1T #]
/!
const u8 bdr lut([9]= "/ \\[#] \'";

for(ii=0; 1i<9; 1ii++)

gptxt->chars([bdr lut[ii]]= TID FRAMEO+ii;

// (3) set some extra colors

pal bg mem[0Ox1F]= CLR RED;

pal bg mem[0x2F]= CLR GREEN;

pal bg mem[0x3F]= CLR BLUE;

pal bg mem[0xE8]= pal bg mem[0x08]; // bg

pal bg mem[0xEE]= CLR_ ORANGE;

// shadow

pal bg mem[0xEF]= pal bg mem[0x0F]; // text

void txt se frame(int 1, int t,

{

int

int ix, iy;
u8 *lut= gptxt->chars;

int r, int b, ul6 se0l)

ul6 *pse= (ul6*)gptxt->dstO;

pse += t*32 + 1;
r -= (1+1);
b -= (t+1);

// corners

pse[32*0 + 0] = seO+lut['/
pse[32*0 + r] = seO+lut['\
pse[32*b + 0] = se0+lut['"
psel[32*b + r] = sel0+lut['\'
// horizontal
for(ix=1; ix<r; 1ix++)
{

pse[32*0+ix]= seO+lut([’

pse[32*b+ix]= seO+lut([’
}
// vertical + inside
pse += 32;
for(iy=1; iy<b; iy++)
{
pse[0]= seO+lut['['];
psel[r]= selO+lut[']"'];
for(ix=1; ix<r; 1ix++)

Sk

'l

pselix]= seO+lut['#'];

pse += 32;

main ()

init () ;

// (4a) red, green, blue text

se puts(8, 16, "bank 1l:\n
se puts (8, 40, "bank 2:\n
se puts (8, 72, "bank 3:\n

red", 0x1000) ;

green", 0x2000);
blue",

0x3000) ;

// (4b) yellow text with magenta shadow

se puts (8, 96, "bank 15:\n yellow,

// (5a) framed text, vl
txt se frame (10, 2, 29, 9,

se puts(88, 24, "frame 0:"

se puts (104, 32, "/"\\[#]"

0);
, 0);
', 0)

\nwith mag \nshadow",

O0xFOO0O|TID FONT2);

se puts(88, 40, "bank O:Tn basic text,\n transparent bg", 0);

// (5b) framed text, v2

txt se frame (10, 11, 29, 18, TID FRAME1-TID FRAMEOQ) ;

file:///H:/devigbalproj/tonc/bakitonc-chrome.htm

179/331

28-03-13 Tonc : GBA Programming in rot13

se puts(88, 96, "frame 1:", O0xEOQOO|TID FONT3) ;
se puts (104, 104, "/ \\[#] _'", 9);
se puts(88, 112, "bank 14:\n shaded text\n opaque bg", 0xEO00|TID FONT3) ;

while (1)
VBlankIntrWait () ;
return 0;

basic text Lk | ET sy Z=2
transparenf bg MAOPORS T BONX T2 w1~
mnopgrstuvuxyz{l 3~

I l"—f‘

123456789 : @ <===7
MNDPERSTUUNXYZE\]
rmnopqrstuvuaxe=4{1}
gt =
shaded text 1
opaque bg 3

Fig 19.5a: First map text demo.

Code rundown

Fig 19.5 shows what this code produces. All the actual text drawing is done in the main function, and I'll go by them one by one. The
first three things are red, green and blue text (point 4a), done using palette swapping. I've loaded up red, green and blue to palette indices
0x1F, 0x2F and 0x3F (point 3), and can switch between them with the last parameter of se puts (), which you will recall is added
to each of the screen entries. The values 0x1000, 0x2000 and 0x3000 indicate that we'll use palette banks 1, 2 and 3, respectively.

If you look closely, you'll see that fourth text (point 4b) is yellow with a magenta (no it's not pink, it's magenta) shading on the right
edge of each letter. At least part of this is done with the se0 parameter, which is now 0xF080. The reason it's shaded is because of
the last part: I'm actually using a slightly different font, one that starts at tile 128. I'll repeat, the reason I can do all this with the same
function is because of that offset parameter of se _puts ().

Points (5a) and (5b) are for framing, and the text inside it. The function txt se frame () draws my border. It takes a rectangle
as its input, and draws a frame on it. Note that the frame includes the top-left, but excludes the bottom-right. Again, I have one extra
se0 parameter as an offset. This is how the second border is actually done; I just offset the thing by the difference between border
tiles.

The borders themselves are actually drawn pretty much as if they were text. In init () I've reassigned nine characters in the
character lut to use the tile indices for the primary border tileset (point 2). There is no particular reason I'm doing this, other than the
mere fact that I can. Just illustrating the things you can do with a text writer and some clever lut manipulation.

The texts inside the frames are an interesting story as well. As you can see from the text in the first frame, the standard text doesn't
quite work. The problem is that the main tileset I'm using is transparent, but the frame's background isn't. Mix the two and they'll clash.
So how to solve that? Well, you create another font, one that does not have 0 as its background color. There are a number of ways to
do that, one of them being adding 1<<31 to the bit-unpacking flag. But I'm opting for another method, which I'll get into later. Note that
whatever I'm doing, it does work: the text in the second frame is opaque after all. Note that I'm writing that text using pal-bank 14, and
am now using a third tileset for the fonts.

Now, up to this point it's all been pretty easy. The usage of se puts () and txt se frame () I mean. I hope you understood all of
the above, because the rest is going to be pretty interesting. Not quite “oh god, oh god, we're all gonna die”-interesting, but still a mite
hairy for some.

Bit fiddling fun
I'v