
Forecasting at Scale

Sean J. Taylor∗†
Facebook, Menlo Park, California, United States

sjt@fb.com

and

Benjamin Letham†

Facebook, Menlo Park, California, United States
bletham@fb.com

Abstract

Forecasting is a common data science task that helps organizations with capacity
planning, goal setting, and anomaly detection. Despite its importance, there are
serious challenges associated with producing reliable and high quality forecasts –
especially when there are a variety of time series and analysts with expertise in
time series modeling are relatively rare. To address these challenges, we describe
a practical approach to forecasting “at scale” that combines configurable models
with analyst-in-the-loop performance analysis. We propose a modular regression
model with interpretable parameters that can be intuitively adjusted by analysts
with domain knowledge about the time series. We describe performance analyses
to compare and evaluate forecasting procedures, and automatically flag forecasts for
manual review and adjustment. Tools that help analysts to use their expertise most
effectively enable reliable, practical forecasting of business time series.

Keywords: Time Series, Statistical Practice, Nonlinear Regression

∗To whom correspondence should be addressed.
†The authors contributed equally to this work.

1

mailto:sjt@fb.com
mailto:bletham@fb.com

1 Introduction

Forecasting is a data science task that is central to many activities within an organization.

For instance, organizations across all sectors of industry must engage in capacity planning

to efficiently allocate scarce resources and goal setting in order to measure performance

relative to a baseline. Producing high quality forecasts is not an easy problem for either

machines or for most analysts. We have observed two main themes in the practice of

creating business forecasts. First, completely automatic forecasting techniques can be hard

to tune and are often too inflexible to incorporate useful assumptions or heuristics. Second,

the analysts responsible for data science tasks throughout an organization typically have

deep domain expertise about the specific products or services that they support, but often

do not have training in time series forecasting. Analysts who can produce high quality

forecasts are thus quite rare because forecasting is a specialized skill requiring substantial

experience.

The result is that the demand for high quality forecasts often far outstrips the pace

at which they can be produced. This observation is the motivation for the research we

present here – we intend to provide some useful guidance for producing forecasts at scale,

for several notions of scale.

The first two types of scale we address are that business forecasting methods should

be suitable for 1) a large number of people making forecasts, possibly without training

in time series methods; and 2) a large variety of forecasting problems with potentially

idiosyncratic features. In Section 3 we present a time series model which is flexible enough

for a wide range of business time series, yet configurable by non-experts who may have

domain knowledge about the data generating process but little knowledge about time series

models and methods.

The third type of scale we address is that in most realistic settings, a large number of

forecasts will be created, necessitating efficient, automated means of evaluating and com-

paring them, as well as detecting when they are likely to be performing poorly. When

hundreds or even thousands of forecasts are made, it becomes important to let machines

do the hard work of model evaluation and comparison while efficiently using human feed-

back to fix performance problems. In Section 4 we describe a forecast evaluation system

2

Figure 1: Schematic view of the analyst-in-the-loop approach to forecasting at scale, which

best makes use of human and automated tasks.

that uses simulated historical forecasts to estimate out-of-sample performance and iden-

tify problematic forecasts for a human analyst to understand what went wrong and make

necessary model adjustments.

It is worth noting that we are not focusing on the typical considerations of scale: com-

putation and storage. We have found the computational and infrastructure problems of

forecasting a large number of time series to be relatively straightforward – typically these

fitting procedures parallelize quite easily and forecasts are not difficult to store in relational

databases. The actual problems of scale we have observed in practice involve the complex-

ity introduced by the variety of forecasting problems and building trust in a large number

of forecasts once they have been produced.

We summarize our analyst-in-the-loop approach to business forecasting at scale in

Fig. 1. We start by modeling the time series using a flexible specification that has a

straightforward human interpretation for each of the parameters. We then produce fore-

casts for this model and a set of reasonable baselines across a variety of historical simulated

forecast dates, and evaluate forecast performance. When there is poor performance or other

aspects of the forecasts warrant human intervention, we flag these potential problems to

a human analyst in a prioritized order. The analyst can then inspect the forecast and

potentially adjust the model based on this feedback.

3

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●trend change

end of year dip

outliers

yearly cycle

weekly cycle

2013 2014 2015 2016

Date

N
um

be
r

of
 E

ve
nt

s
on

 F
ac

eb
oo

k

Weekday

●

●

●

●

●

●

●

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Figure 2: The number of events created on Facebook. There is a point for each day, and

points are color-coded by day-of-week to show the weekly cycle. The features of this time

series are representative of many business time series: multiple strong seasonalities, trend

changes, outliers, and holiday effects.

2 Features of Business Time Series

There is a wide diversity of business forecasting problems, however there are some features

common to many of them. Fig. 2 shows a representative Facebook time series for Facebook

Events. Facebook users are able to use the Events platform to create pages for events, invite

others, and interact with events in a variety of ways. Fig. 2 shows daily data for the number

of events created on Facebook. There are several seasonal effects clearly visible in this time

series: weekly and yearly cycles, and a pronounced dip around Christmas and New Year.

These types of seasonal effects naturally arise and can be expected in time series generated

by human actions. The time series also shows a clear change in trend in the last six months,

which can arise in time series impacted by new products or market changes. Finally, real

datasets often have outliers and this time series is no exception.

This time series provides a useful illustration of the difficulties in producing reasonable

forecasts with fully automated methods. Fig. 3 shows forecasts using several automated

4

procedures from the forecast package in R, described in Hyndman et al. (2007). Forecasts

were made at three points in the history, each using only the portion of the time series up

to that point to simulate making a forecast on that date. The methods in the figure are:

auto.arima, which fits a range of ARIMA models and automatically selects the best one;

ets, which fits a collection of exponential smoothing models and selects the best (Hyndman

et al. 2002); snaive, a random walk model that makes constant predictions with weekly

seasonality (seasonal naive); and tbats, a TBATS model with both weekly and yearly

seasonalities (De Livera et al. 2011).

The methods in Fig. 3 generally struggle to produce forecasts that match the char-

acteristics of these time series. The automatic ARIMA forecasts are prone to large trend

errors when there is a change in trend near the cutoff period and they fail to capture any

seasonality.1 The exponential smoothing and seasonal naive forecasts capture weekly sea-

sonality but miss longer-term seasonality. All of the methods overreact to the end-of-year

dip because they do not adequately model yearly seasonality.

When a forecast is poor, we wish to be able to tune the parameters of the method to

the problem at hand. Tuning these methods requires a thorough understanding of how

the underlying time series models work. The first input parameters to automated ARIMA,

for instance, are the maximum orders of the differencing, the auto-regressive components,

and the moving average components. A typical analyst will not know how to adjust these

orders to avoid the behavior in Fig. 3 – this is the type of expertise that is hard to scale.

3 The Prophet Forecasting Model

We now describe a time series forecasting model designed to handle the common features

of business time series seen in Fig. 2. Importantly, it is also designed to have intuitive

parameters that can be adjusted without knowing the details of the underlying model.

This is necessary for the analyst to effectively tune the model as described in Fig. 1.

Our implementation is available as open source software in Python and R, called Prophet

1ARIMA models are capable of including seasonal covariates, but adding these covariates leads to

extremely long fitting times and requires modeling expertise that many forecasting novices would not

have.

5

auto.arim
a

ets
snaive

tbats

2013 2014 2015 2016

Date

N
um

be
r

of
 E

ve
nt

s
on

 F
ac

eb
oo

k

Weekday

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Figure 3: Forecasts on the time series from Fig. 2 using a collection of automated forecast-

ing procedures. Forecasts were made at three illustrative points in the history, each using

only the portion of the time series up to that point. Forecasts for each day are grouped

and colored by day-of-week to visualize weekly seasonality. We removed the outliers during

plotting to allow for more vertical space in the figure.

6

(https://facebookincubator.github.io/prophet/).

We use a decomposable time series model (Harvey & Peters 1990) with three main

model components: trend, seasonality, and holidays. They are combined in the following

equation:

y(t) = g(t) + s(t) + h(t) + εt. (1)

Here g(t) is the trend function which models non-periodic changes in the value of the

time series, s(t) represents periodic changes (e.g., weekly and yearly seasonality), and

h(t) represents the effects of holidays which occur on potentially irregular schedules over

one or more days. The error term εt represents any idiosyncratic changes which are not

accommodated by the model; later we will make the parametric assumption that εt is

normally distributed.

This specification is similar to a generalized additive model (GAM) (Hastie & Tibshirani

1987), a class of regression models with potentially non-linear smoothers applied to the

regressors. Here we use only time as a regressor but possibly several linear and non-linear

functions of time as components. Modeling seasonality as an additive component is the

same approach taken by exponential smoothing (Gardner 1985). Multiplicative seasonality,

where the seasonal effect is a factor that multiplies g(t), can be accomplished through a

log transform.

The GAM formulation has the advantage that it decomposes easily and accommodates

new components as necessary, for instance when a new source of seasonality is identified.

GAMs also fit very quickly, either using backfitting or L-BFGS (Byrd et al. 1995) (we prefer

the latter) so that the user can interactively change the model parameters.

We are, in effect, framing the forecasting problem as a curve-fitting exercise, which

is inherently different from time series models that explicitly account for the temporal

dependence structure in the data. While we give up some important inferential advantages

of using a generative model such as an ARIMA, this formulation provides a number of

practical advantages:

– Flexibility: We can easily accommodate seasonality with multiple periods and let the

analyst make different assumptions about trends.

7

– Unlike with ARIMA models, the measurements do not need to be regularly spaced,

and we do not need to interpolate missing values e.g. from removing outliers.

– Fitting is very fast, allowing the analyst to interactively explore many model specifi-

cations, for example in a Shiny application (Chang et al. 2015).

– The forecasting model has easily interpretable parameters that can be changed by

the analyst to impose assumptions on the forecast. Moreover, analysts typically do

have experience with regression and are easily able to extend the model to include

new components.

Automatic forecasting has a long history, with many methods tailored to specific types

of time series (Tashman & Leach 1991, De Gooijer & Hyndman 2006). Our approach is

driven by both the nature of the time series we forecast at Facebook (piecewise trends,

multiple seasonality, floating holidays) as well as the challenges involved in forecasting at

scale.

3.1 The Trend Model

We have implemented two trend models that cover many Facebook applications: a satu-

rating growth model, and a piecewise linear model.

3.1.1 Nonlinear, Saturating Growth

For growth forecasting, the core component of the data generating process is a model for

how the population has grown and how it is expected to continue growing. Modeling growth

at Facebook is often similar to population growth in natural ecosystems (e.g., Hutchinson

1978), where there is nonlinear growth that saturates at a carrying capacity. For example,

the carrying capacity for the number of Facebook users in a particular area might be the

number of people that have access to the Internet. This sort of growth is typically modeled

using the logistic growth model, which in its most basic form is

g(t) =
C

1 + exp(−k(t−m))
, (2)

with C the carrying capacity, k the growth rate, and m an offset parameter.

8

There are two important aspects of growth at Facebook that are not captured in (2).

First, the carrying capacity is not constant – as the number of people in the world who

have access to the Internet increases, so does the growth ceiling. We thus replace the fixed

capacity C with a time-varying capacity C(t). Second, the growth rate is not constant.

New products can profoundly alter the rate of growth in a region, so the model must be

able to incorporate a varying rate in order to fit historical data.

We incorporate trend changes in the growth model by explicitly defining changepoints

where the growth rate is allowed to change. Suppose there are S changepoints at times sj,

j = 1, . . . , S. We define a vector of rate adjustments δ ∈ RS, where δj is the change in

rate that occurs at time sj. The rate at any time t is then the base rate k, plus all of the

adjustments up to that point: k +
∑

j:t>sj
δj. This is represented more cleanly by defining

a vector a(t) ∈ {0, 1}S such that

aj(t) =

1, if t ≥ sj,

0, otherwise.

The rate at time t is then k+ a(t)ᵀδ. When the rate k is adjusted, the offset parameter m

must also be adjusted to connect the endpoints of the segments. The correct adjustment

at changepoint j is easily computed as

γj =

(
sj −m−

∑
l<j

γl

)(
1−

k +
∑

l<j δl

k +
∑

l≤j δl

)
.

The piecewise logistic growth model is then

g(t) =
C(t)

1 + exp(−(k + a(t)ᵀδ)(t− (m+ a(t)ᵀγ)))
. (3)

An important set of parameters in our model is C(t), or the expected capacities of the

system at any point in time. Analysts often have insight into market sizes and can set these

accordingly. There may also be external data sources that can provide carrying capacities,

such as population forecasts from the World Bank.

The logistic growth model presented here is a special case of generalized logistic growth

curves, which is only a single type of sigmoid curve. Extensions of this trend model to

other families of curves is straightforward.

9

3.1.2 Linear Trend with Changepoints

For forecasting problems that do not exhibit saturating growth, a piece-wise constant rate

of growth provides a parsimonious and often useful model. Here the trend model is

g(t) = (k + a(t)ᵀδ)t+ (m+ a(t)ᵀγ), (4)

where as before k is the growth rate, δ has the rate adjustments, m is the offset parameter,

and γj is set to −sjδj to make the function continuous.

3.1.3 Automatic Changepoint Selection

The changepoints sj could be specified by the analyst using known dates of product launches

and other growth-altering events, or may be automatically selected given a set of candidates.

Automatic selection can be done quite naturally with the formulation in (3) and (4) by

putting a sparse prior on δ.

We often specify a large number of changepoints (e.g., one per month for a several

year history) and use the prior δj ∼ Laplace(0, τ). The parameter τ directly controls the

flexibility of the model in altering its rate. Importantly, a sparse prior on the adjustments

δ has no impact on the primary growth rate k, so as τ goes to 0 the fit reduces to standard

(not-piecewise) logistic or linear growth.

3.1.4 Trend Forecast Uncertainty

When the model is extrapolated past the history to make a forecast, the trend will have a

constant rate. We estimate the uncertainty in the forecast trend by extending the generative

model forward. The generative model for the trend is that there are S changepoints over

a history of T points, each of which has a rate change δj ∼ Laplace(0, τ). We simulate

future rate changes that emulate those of the past by replacing τ with a variance inferred

from data. In a fully Bayesian framework this could be done with a hierarchical prior on τ

to obtain its posterior, otherwise we can use the maximum likelihood estimate of the rate

scale parameter: λ = 1
S

∑S
j=1 |δj|. Future changepoints are randomly sampled in such a

10

way that the average frequency of changepoints matches that in the history:

∀j > T,

δj = 0 w.p. T−S
T
,

δj ∼ Laplace(0, λ) w.p. S
T
.

We thus measure uncertainty in the forecast trend by assuming that the future will see the

same average frequency and magnitude of rate changes that were seen in the history. Once

λ has been inferred from the data, we use this generative model to simulate possible future

trends and use the simulated trends to compute uncertainty intervals.

The assumption that the trend will continue to change with the same frequency and

magnitude as it has in the history is fairly strong, so we do not expect the uncertainty

intervals to have exact coverage. They are, however, a useful indication of the level of

uncertainty, and especially an indicator of overfitting. As τ is increased the model has more

flexibility in fitting the history and so training error will drop. However, when projected

forward this flexibility will produce wide uncertainty intervals.

3.2 Seasonality

Business time series often have multi-period seasonality as a result of the human behaviors

they represent. For instance, a 5-day work week can produce effects on a time series that

repeat each week, while vacation schedules and school breaks can produce effects that

repeat each year. To fit and forecast these effects we must specify seasonality models that

are periodic functions of t.

We rely on Fourier series to provide a flexible model of periodic effects (Harvey &

Shephard 1993). Let P be the regular period we expect the time series to have (e.g.

P = 365.25 for yearly data or P = 7 for weekly data, when we scale our time variable in

days). We can approximate arbitrary smooth seasonal effects with

s(t) =
N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
a standard Fourier series2. Fitting seasonality requires estimating the 2N parameters β =

[a1, b1, . . . , aN , bN]ᵀ. This is done by constructing a matrix of seasonality vectors for each

2The intercept term can be left out because we are simultaneously fitting a trend component.

11

value of t in our historical and future data, for example with yearly seasonality and N = 10,

X(t) =

[
cos

(
2π(1)t

365.25

)
, . . . , sin

(
2π(10)t

365.25

)]
. (5)

The seasonal component is then

s(t) = X(t)β. (6)

In our generative model we take β ∼ Normal(0, σ2) to impose a smoothing prior on the

seasonality.

Truncating the series at N applies a low-pass filter to the seasonality, so increasing N

allows for fitting seasonal patterns that change more quickly, albeit with increased risk of

overfitting. For yearly and weekly seasonality we have foundN = 10 andN = 3 respectively

to work well for most problems. The choice of these parameters could be automated using

a model selection procedure such as AIC.

3.3 Holidays and Events

Holidays and events provide large, somewhat predictable shocks to many business time

series and often do not follow a periodic pattern, so their effects are not well modeled by

a smooth cycle. For instance, Thanksgiving in the United States occurs on the fourth

Thursday in November. The Super Bowl, one of the largest televised events in the US,

occurs on a Sunday in January or February that is difficult to declare programmatically.

Many countries around the world have major holidays that follow the lunar calendar. The

impact of a particular holiday on the time series is often similar year after year, so it is

important to incorporate it into the forecast.

We allow the analyst to provide a custom list of past and future events, identified by the

event or holiday’s unique name, as shown in Table 1. We include a column for country in

order to keep a country-specific list of holidays in addition to global holidays. For a given

forecasting problem we use the union of the global set of holidays and the country-specific

ones.

Incorporating this list of holidays into the model is made straightforward by assuming

that the effects of holidays are independent. For each holiday i, let Di be the set of past

and future dates for that holiday. We add an indicator function representing whether time

12

Holiday Country Year Date

Thanksgiving US 2015 26 Nov 2015

Thanksgiving US 2016 24 Nov 2016

Thanksgiving US 2017 23 Nov 2017

Thanksgiving US 2018 22 Nov 2018

Christmas * 2015 25 Dec 2015

Christmas * 2016 25 Dec 2016

Christmas * 2017 25 Dec 2017

Christmas * 2018 25 Dec 2018

Table 1: An example list of holidays. Country is specified because holidays may occur on

different days in different countries.

t is during holiday i, and assign each holiday a parameter κi which is the corresponding

change in the forecast. This is done in a similar way as seasonality by generating a matrix

of regressors

Z(t) = [1(t ∈ D1), . . . ,1(t ∈ DL)]

and taking

h(t) = Z(t)κ. (7)

As with seasonality, we use a prior κ ∼ Normal(0, ν2).

It is often important to include effects for a window of days around a particular holiday,

such as the weekend of Thanksgiving. To account for that we include additional parameters

for the days surrounding the holiday, essentially treating each of the days in the window

around the holiday as a holiday itself.

3.4 Model Fitting

When the seasonality and holiday features for each observation are combined into a matrix

X and the changepoint indicators a(t) in a matrix A, the entire model in (1) can be

expressed in a few lines of Stan code (Carpenter et al. 2017), given in Listing 1. For model

fitting we use Stan’s L-BFGS to find a maximum a posteriori estimate, but also can do

13

Listing 1: Example Stan code for our complete model.

model {

// Priors

k ∼ normal(0, 5);

m ∼ normal(0, 5);

epsilon ∼ normal(0, 0.5);

delta ∼ double_exponential(0, tau);

beta ∼ normal(0, sigma);

// Logistic likelihood

y ∼ normal(C ./ (1 + exp(-(k + A * delta) .* (t - (m + A * gamma)))) +

X * beta, epsilon);

// Linear likelihood

y ∼ normal((k + A * delta) .* t + (m + A * gamma) + X * beta, sigma);

}

full posterior inference to include model parameter uncertainty in the forecast uncertainty.

Fig. 4 shows the Prophet model forecast to the Facebook events time series of Fig. 3.

These forecasts were made on the same three dates as in Fig. 3, as before using only the

data up to that date for the forecast. The Prophet forecast is able to predict both the

weekly and yearly seasonalities, and unlike the baselines in Fig. 3, does not overreact to

the holiday dip in the first year. In the first forecast, the Prophet model has slightly overfit

the yearly seasonality given only one year of data. In the third forecast, the model has

not yet learned that the trend has changed. Fig. 5 shows that a forecast incorporating the

most recent three months of data exhibits the trend change (dashed line).

An important benefit of the decomposable model is that it allows us to look at each

component of the forecast separately. Fig. 6 shows the trend, weekly seasonality, and

yearly seasonality components corresponding to the last forecast in Fig. 4. This provides a

useful tool for analysts to gain insight into their forecasting problem, besides just producing

a prediction.

The parameters tau and sigma in Listing 1 are controls for the amount of regularization

14

2013 2014 2015 2016

Date

N
um

be
r

of
 E

ve
nt

s

Weekday

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Figure 4: Prophet forecasts corresponding to those of Fig. 3. As before, forecasts are

grouped by day-of-week to visualize weekly seasonality.

2013 2014 2015 2016 2017

Date

N
um

be
r

of
 E

ve
nt

s

Weekday

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Figure 5: Prophet forecast using all available data, including the interpolation of the his-

torical data. Solid lines are in-sample fit, dashed lines are out-of-sample forecast.

15

0.5
0.6
0.7
0.8
0.9
1.0

2013 2014 2015 2016 2017
Date

tre
nd

-0.2

-0.1

0.0

0.1

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Day of week

w
ee
kl
y

-0.2

-0.1

0.0

January 01 April 01 July 01 October 01 January 01
Day of year

ye
ar
ly

Figure 6: Components of the Prophet forecast in Fig. 5.

16

on the model changepoints and seasonality respectively. Regularization is important for

both of these to avoid overfitting, however there likely is not enough historical data to

select the best regularization parameters via cross-validation. We set default values that

are appropriate for most forecasting problems, and when these parameters need to be

optimized it happens with the analyst in the loop.

3.5 Analyst-in-the-Loop Modeling

Analysts making forecasts often have extensive domain knowledge about the quantity they

are forecasting, but limited statistical knowledge. In the Prophet model specification there

are several places where analysts can alter the model to apply their expertise and external

knowledge without requiring any understanding of the underlying statistics.

Capacities: Analysts may have external data for the total market size and can apply

that knowledge directly by specifying capacities.

Changepoints: Known dates of changepoints, such as dates of product changes, can

be directly specified.

Holidays and seasonality: Analysts that we work with have experience with which

holidays impact growth in which regions, and they can directly input the relevant

holiday dates and the applicable time scales of seasonality.

Smoothing parameters: By adjusting τ an analyst can select from within a range

of more global or locally smooth models. The seasonality and holiday smoothing

parameters (σ, ν) allow the analyst to tell the model how much of the historical

seasonal variation is expected in the future.

With good visualization tools, analysts can use these parameters to improve the model

fit. When the model fit is plotted over historical data, it is quickly apparent if there were

changepoints that were missed by the automatic changepoint selection. The τ parameter

is a single knob that can be turned to increase or decrease the trend flexibility, and σ is

a knob to increase or decrease the strength of the seasonality component. Visualization

provides many other opportunities for fruitful human intervention: linear trend or logistic

17

growth, identifying time scales of seasonality, and identifying outlying time periods that

should be removed from fitting are a few. All of these interventions can be made without

statistical expertise, and are important ways for analysts to apply their insights or domain

knowledge.

The forecasting literature often makes the distinction between statistical forecasts,

which are based on models fit to historical data, and judgmental forecasts (also called

managerial forecasts), which human experts produce using whatever process they have

learned tends to work well for a specific time series. Each of these approaches has their

advantages. Statistical forecasts require less domain knowledge and effort from human

forecasters, and they can scale to many forecasts very easily. Judgmental forecasts can

include more information and be more responsive to changing conditions, but can require

intensive work by analysts (Sanders 2005).

Our analyst-in-the-loop modeling approach is an alternative approach that attempts to

blend the advantages of statistical and judgmental forecasts by focusing analyst effort on

improving the model when necessary rather that directly producing forecasts through some

unstated procedure. We find that our approach closely resembles the “transform-visualize-

model” loop proposed by Wickham & Grolemund (2016), where the human domain knowl-

edge is codified in an improved model after some iteration.

Typical scaling of forecasting would rely on fully automated procedures, but judgmental

forecasts have been shown to be highly accurate in many applications (Lawrence et al.

2006). Our proposed approach lets analysts apply judgment to forecasts through a small

set of intuitive model parameters and options, while retaining the ability to fall back on

fully automated statistical forecasting when necessary. As of this writing we have only

anecdotal empirical evidence for possible improvements to accuracy, but we look forward

to future research which can evaluate the improvements analysts can have in a model-

assisted setting.

The ability to have an analyst-in-the-loop at scale relies critically on automatic eval-

uation of forecast quality and good visualization tools. We now describe how forecast

evaluation can be automated to identify the most relevant forecasts for analyst input.

18

4 Automating Evaluation of Forecasts

In this section we outline a procedure for automating forecast performance evaluation, by

comparing various methods and identifying forecasts where manual intervention may be

warranted. This section is agnostic to the forecasting method used and contains some best-

practices we have settled on while shipping production business forecasts across a variety

of applications.

4.1 Use of Baseline Forecasts

When evaluating any forecasting procedure it is important to compare to a set of baseline

methods. We prefer using simplistic forecasts that make strong assumptions about the

underlying process but that can produce a reasonable forecast in practice. We have found

it useful to compare simplistic models (last value and sample mean) as well as the automated

forecasting procedures described in Section 2.

4.2 Modeling Forecast Accuracy

Forecasts are made over a certain horizon, which we denote H. The horizon is the number

of days in the future we care about forecasting – this is typically 30, 90, 180, or 365

days in our applications. Thus for any forecast with daily observations, we produce up

to H estimates of future states that will each be associated with some error. We need to

declare a forecasting objective to compare methods and track performance. Additionally,

understanding how error-prone our forecasting procedure is can allow consumers of the

forecasts in a business setting to determine whether to trust it at all.

Let ŷ(t|T) represent a forecast for time t made with historical information up to time

T and d(y, y′) be a distance metric such as mean absolute error, d(y, y′) = |y − y′|. Choice

of a distance function should be problem-specific. De Gooijer & Hyndman (2006) review

several such error metrics – in practice we prefer mean absolute percentage error (MAPE)

for its interpretability. We define the empirical accuracy of a forecast of h ∈ (0, H] periods

ahead of time T as:

φ(T, h) = d(ŷ(T + h|T), y(T + h)).

19

In order to form an estimate of this accuracy and how it varies with h, it is common

to specify a parametric model for the error term and to estimate its parameters from data.

For instance if we were using an AR(1) model, y(t) = α + βy(t − 1) + ν(t), we would

assume that ν(t) ∼ Normal(0, σ2
ν) and focus on estimating the variance term σ2

ν from the

data. Then we could form expectations using any distance function through simulation or

by using an analytic expression for the expectation of the sum of the errors. Unfortunately

these approaches only give correct estimates of error conditional on having specified the

correct model for the process – a condition that is unlikely to hold in practice.

We prefer to take a non-parametric approach to estimating expected errors that is

applicable across models. The approach is similar to applying cross-validation to estimate

out-of-sample error for models making predictions on i.i.d. data. Given a set of historical

forecasts, we fit a model of the expected error we would make at different forecast horizons

h:

ξ(h) = E[φ(T, h)]. (8)

This model should be flexible but can impose some simple assumptions. First, the func-

tion should be locally smooth in h because we expect any mistakes we make on consecutive

days to be relatively similar. Second, we may impose the assumption that the function

should be weakly increasing in h, although this need not be the case for all forecast mod-

els. In practice, we use a local regression (Cleveland & Devlin 1988) or isotonic regression

(Dykstra 1981) as flexible non-parametric models of error curves.

In order to generate historical forecast errors to fit this model, we use a procedure we

call simulated historical forecasts.

4.3 Simulated Historical Forecasts

We would like to fit the expected error model in (8) to perform model selection and eval-

uation. Unfortunately it is difficult to use a method like cross validation because the

observations are not exchangeable – we cannot simply randomly partition the data.

We use simulated historical forecasts (SHFs) by producing K forecasts at various cutoff

points in the history, chosen such that the horizons lie within the history and the total error

20

can be evaluated. This procedure is based on classical “rolling origin” forecast evaluation

procedures (Tashman 2000), but uses only a small sequence of cutoff dates rather than

making one forecast per historical date. The main advantage of using fewer simulated

dates (rolling origin evaluation produces one forecast per date) is that it economizes on

computation while providing less correlated accuracy measurements.

SHFs simulate the errors we would have made had we used this forecasting method at

those points in the past. The forecasts in Figs. 3 and 4 are examples of SHFs. This method

has the advantage of being simple, easy to explain to analysts and decision makers, and

relatively uncontroversial for generating insight into forecast errors. There are two main

issues to be aware of when using the SHF methodology to evaluate and compare forecasting

approaches.

First, the more simulated forecasts we make, the more correlated their estimates of error

are. In the extreme case of a simulated forecast for each day in the history, the forecasts

are unlikely to have changed much given an additional day of information and the errors

from one day to the next would be nearly identical. On the other hand, if we make very few

simulated forecasts then we have fewer observations of historical forecasting errors on which

to base our model selection. As a heuristic, for a forecast horizon H, we generally make a

simulated forecast every H/2 periods. Although correlated estimates do not introduce bias

into our estimation of model accuracy, they do produce less useful information and slow

down forecast evaluation.

Second, forecasting methods can perform better or worse with more data. A longer

history can lead to worse forecasts when the model is misspecified and we are overfitting

the past, for example using the sample mean to forecast a time series with a trend.

Fig. 7 shows our estimates of the function ξ(h), the expected mean absolute percentage

error across the forecast period using LOESS, for the time series of Figs. 3 and 4. The

estimate was made using nine simulated forecast dates, one per quarter beginning after

the first year. Prophet has lower prediction error across all forecast horizons. The Prophet

forecasts were made with default settings, and tweaking the parameters could possibly

further improve performance.

When visualizing forecasts, we prefer to use points rather than lines to represent histor-

21

●

●

●

●
● ●

0%

10%

20%

30%

40%

50%

60%

70%

30 60 90 120 150 180

Forecast Horizon (days)

M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or

● auto.arima ets prophet snaive tbats

Figure 7: Smoothed mean absolute percentage errors for the forecasting methods and time

series of Figs. 3 and 4. Prophet forecasts had substantially lower prediction error than the

other automated forecast methods.

ical data, inasmuch as these represent precise measurements that are never interpolated.

We then overlay lines with the forecasts. For SHFs, it is useful to visualize the errors the

model has made at various horizons, both as a time series (as in Fig. 3) and aggregated

over SHFs (as in Fig. 7).

Even for a single time series SHFs require many forecasts to be computed, and at scale

we may want to forecast many different metrics at many different levels of aggregation.

SHFs can be computed independently on separate machines as long as those machines

can write to the same data store. We store our forecasts and associated errors in Hive or

MySQL depending on their intended use.

4.4 Identifying Large Forecast Errors

When there are too many forecasts for analysts to manually check each of them, it is impor-

tant to be able to automatically identify forecasts that may be problematic. Automatically

identifying bad forecasts allows analysts to use their limited time most effectively, and to

use their expertise to correct any issues. There are several ways that SHFs can be used to

identify likely problems with the forecasts.

- When the forecast has large errors relative to the baselines, the model may be mis-

22

specified. Analysts can adjust the trend model or the seasonality, as needed.

- Large errors for all methods on a particular date are suggestive of outliers. Analysts

can identify outliers and remove them.

- When the SHF error for a method increases sharply from one cutoff to the next, it

could indicate that the data generating process has changed. Adding changepoints

or modeling different phases separately may address the issue.

There are pathologies that cannot be easily corrected, but most of the issues that we have

encountered can be corrected by specifying changepoints and removing outliers. These

issues are easily identified and corrected once the forecast has been flagged for review and

visualized.

5 Conclusion

A major theme of forecasting at scale is that analysts with a variety of backgrounds must

make more forecasts than they can do manually. The first component of our forecasting

system is the new model that we have developed over many iterations of forecasting a variety

of data at Facebook. We use a simple, modular regression model that often works well with

default parameters, and that allows analysts to select the components that are relevant to

their forecasting problem and easily make adjustments as needed. The second component

is a system for measuring and tracking forecast accuracy, and flagging forecasts that should

be checked manually to help analysts make incremental improvements. This is a critical

component which allows analysts to identify when adjustments need to be made to the

model or when an entirely different model may be appropriate. Simple, adjustable models

and scalable performance monitoring in combination allow a large number of analysts to

forecast a large number and a variety of time series – what we consider forecasting at scale.

6 Acknowledgements

We thank Dan Merl for making the development of Prophet possible and for suggestions and

insights throughout the development. We thank Dirk Eddelbuettel, Daniel Kaplan, Rob

23

Hyndman, Alex Gilgur, and Lada Adamic for helpful reviews of this paper. We especially

thank Rob Hyndman for insights connecting our work to judgemental forecasts.

References

Byrd, R. H., Lu, P. & Nocedal, J. (1995), ‘A limited memory algorithm for bound

constrained optimization’, SIAM Journal on Scientific and Statistical Computing

16(5), 1190–1208.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M. A., Guo, J., Li, P. & Riddell, A. (2017), ‘Stan: A probabilistic programming language’,

Journal of Statistical Software 76(1).

Chang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. (2015), shiny: Web Application

Framework for R. R package version 0.11.

URL: http://CRAN. R-project. org/package= shiny

Cleveland, W. S. & Devlin, S. J. (1988), ‘Locally weighted regression: an approach to

regression analysis by local fitting’, Journal of the American Statistical Association

83(403), 596–610.

De Gooijer, J. G. & Hyndman, R. J. (2006), ‘25 years of time series forecasting’, Interna-

tional Journal of Forecasting 22(3), 443–473.

De Livera, A. M., Hyndman, R. J. & Snyder, R. D. (2011), ‘A state space framework for

automatic forecasting using exponential smoothing methods’, Journal of the American

Statistical Association 106(496), 1513–1527.

Dykstra, R. L. (1981), ‘An isotonic regression algorithm’, Journal of Statistical Planning

and Inference 5(4), 355–363.

Gardner, E. S. (1985), ‘Exponential smoothing: the state of the art’, Journal of Forecasting

4, 1–28.

24

Harvey, A. C. & Shephard, N. (1993), Structural time series models, in G. Maddala, C. Rao

& H. Vinod, eds, ‘Handbook of Statistics’, Vol. 11, Elsevier, chapter 10, pp. 261–302.

Harvey, A. & Peters, S. (1990), ‘Estimation procedures for structural time series models’,

Journal of Forecasting 9, 89–108.

Hastie, T. & Tibshirani, R. (1987), ‘Generalized additive models: some applications’, Jour-

nal of the American Statistical Association 82(398), 371–386.

Hutchinson, G. E. (1978), ‘An introduction to population ecology’.

Hyndman, R. J., Khandakar, Y. et al. (2007), Automatic time series for forecasting: the

forecast package for R, number 6/07, Monash University, Department of Econometrics

and Business Statistics.

Hyndman, R. J., Koehler, A. B., Snyder, R. D. & Grose, S. (2002), ‘A state space framework

for automatic forecasting using exponential smoothing methods’, International Journal

of Forecasting 18(3), 439–454.

Lawrence, M., Goodwin, P., O’Connor, M. & Önkal, D. (2006), ‘Judgmental forecasting: a

review of progress over the last 25 years’, International Journal of Forecasting 22(3), 493–

518.

Sanders, N. (2005), ‘When and how should statistical forecasts be judgementally adjusted?’,

Foresight 1(1), 5–7.

Tashman, L. J. (2000), ‘Out-of-sample tests of forecasting accuracy: an analysis and re-

view’, International journal of forecasting 16(4), 437–450.

Tashman, L. J. & Leach, M. L. (1991), ‘Automatic forecasting software: a survey and

evaluation’, International Journal of Forecasting 7, 209–230.

Wickham, H. & Grolemund, G. (2016), ‘R for data science’.

25

	Introduction
	Features of Business Time Series
	The Prophet Forecasting Model
	The Trend Model
	Nonlinear, Saturating Growth
	Linear Trend with Changepoints
	Automatic Changepoint Selection
	Trend Forecast Uncertainty

	Seasonality
	Holidays and Events
	Model Fitting
	Analyst-in-the-Loop Modeling

	Automating Evaluation of Forecasts
	Use of Baseline Forecasts
	Modeling Forecast Accuracy
	Simulated Historical Forecasts
	Identifying Large Forecast Errors

	Conclusion
	Acknowledgements

