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channels kernel size dilation

fully connected 128

conv1D 128 5 2
conv1D 128 5 4
conv1D 128 5 6
conv1D 128 5 2
conv1D 128 5 4
conv1D 128 5 6

avg pool
fully connected 128

Table 1. Audio encoder architecture.

1. Network Architecture Details

We provide details about the network architectures in
this supplementary material. The activation functions used
in all networks are leaky ReLUs.

1.1. Audio Encoder

The audio encoder first transforms the raw waveform
into a Mel spectrogram with 80 frequency bins. We use
an FFT size of 2, 048, window length of 800 samples, and
a hop length of 160 samples, resulting in one new feature
vector every 10ms. The network is a 1D temporal convo-
lutional network with the architecture outlined in Table 1.
We use skip connections between each layer and a dropout
probability of 0.2.

1.2. Expression Encoder

The expression encoder flattens its T ×V ×3 input mesh
sequence to T × V · 3 and uses a fully connected layer to
project the vertices from V · 3 to 256 dimensions. This is
followed by a second fully connected layer, mapping the
representation further down to 128 dimensions. A single
LSTM layer with 128 hidden units learns temporal infor-
mation along the animated input mesh. The final expres-
sion code is a linear projection of the LSTM output to a 128
dimensional code.

Figure 1. Decoder architecture.

1.3. Fusion Model

Audio and expression codes are concatenated and fused
with three fully connected layers. The final output size of
the fusion network is T ×H × C, where T is the sequence
length, H is the number of latent classification heads (H =
64), and C is the number of categories (C = 128). Cat-
egorization is achieved by a Gumbel softmax over the last
dimension, such that the encoder output is a T ×H tensor
containing a categorical label in each component.

1.4. Decoder

The decoder (Figure 1) maps the template mesh to a 128-
dimensional representation via three fully connected layers.
This representation is concatenated with a one-hot repre-
sentation of the categorical latent embedding and mapped
back to 128 dimensions using a fully connected layer. Two
LSTM layers with 128 hidden units each model temporal
dependencies that arise from the latent embeddings. Fi-
nally, the representation is reprojected to the full V × 3-
dimensional vertex space. Note that all skip connections
are purely additive to enforce that template mesh informa-
tion can not be ignored.
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1.5. Autoregressive Model

The autoregressive model is a temporal convolutional
network with four layers, kernel size 2 in each layer, and
temporal dilations of 1, 2, 4, and 8. Each layer has 64 chan-
nels per categorical head. Convolutions are masked such
that only past temporal information and information from
previous categorical heads is visible in each layer. Each
layer is conditioned on an audio embedding that is concate-
nated to the remaining layer input. The audio embedding
is obtained from the previously trained audio encoder (Ta-
ble 1). We keep the audio encoder fix and do not fine-tune
it when we train the autoregressive model.
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