
Modern C++
Programming

12. C++ Ecosystem

Federico Busato

2022, v3.16

Table of Context

1 Debugging
Assertion

Execution Debugging (gdb)

2 Memory Debugging
valgrind

Stack Protection
3 Sanitizers

Address Sanitizer

Leak Sanitizer

Memory Sanitizers

Undefined Behavior Sanitizer 1/93

Table of Context

4 Debugging Summary
5 Code Checking and Analysis

Compiler Warnings
Static Analyzers

6 Code Testing
Unit Test
Code Coverage
Fuzz Testing

7 Code Quality
clang-tidy

2/93

Table of Context

8 CMake
ctest

9 Code Documentation
doxygen

10 Code Statistics
Count Lines of Code
Cyclomatic Complexity Analyzer

3/93

Table of Context

11 Other Tools
Code Formatting - clang-format

Compiler Explorer

Code Transformation - CppInsights

Code Autocompletion - GitHub CoPilot, TabNine, Kite

Local Code Search - ripgrep

Code Search Engine - searchcode, grep.app

Code Benchmarking - Quick-Bench

Font for Coding

4/93

Feature Complete

5/93

Debugging

Is this a bug?

for (int i = 0; i <= (2ˆ32) - 1; i++) {

from: John Regehr (on Twitter)
6/93

Program Errors

A program error is a set of conditions that produce an incorrect result or unexpected
behavior

We can distinguish between two kind of errors:

Recoverable Conditions that are not under the control of the program. They
indicates “exceptional” run-time conditions. e.g. file not found, bad
allocation, wrong user input, etc.

Unrecoverable It is a synonym of a bug. The program must terminate. e.g.
out-of-bound, division by zero, etc.

7/93

Dealing with Program Errors and Bugs

Software defects can be identifies by:

Dynamic Analysis A mitigation strategy that acts on the runtime state of a program.
Techniques: Print, run-time debugging, sanitizers, fuzzing, unit test support
Limitations: Infeasible to cover all program states

Static Analysis A proactive strategy that examines the source code for (potential)
errors.

Techniques: Warnings, static analysis tool, compile-time checks
Limitations: Turing’s undecidability theorem, exponential code paths

How programmers make sure that their software is correct 8/93

https://lemire.me/blog/2022/01/03/how-programmers-make-sure-that-their-software-is-correct/

Unrecoverable Errors and Assertions

Unrecoverable errors cannot be handled. They should be prevented by using assertion
for ensuring pre-conditions and post-conditions

An assertion is a statement to detect a violated assumption. An assertion represents
an invariant in the code

It can happen both at run-time (assert) and compile-time (static assert).
Run-time assertion failures should never be exposed in the normal program execution
(e.g. release/public)

9/93

Assertion

include <cassert> // <-- needed for "assert"
include <cmath> // std::is_finite
include <type_traits> // std::is_arithmetic_v

template<typename T>
T sqrt(T value) {

static_assert(std::is_arithmetic_v<T>, // precondition
"T must be an arithmetic type");

assert(std::is_finite(value) && value >= 0); // precondition
int ret = ... // sqrt computation
assert(std::is_finite(value) && ret >= 0 && // postcondition

(ret == 0 || ret == 1 || ret < value));
return ret;

}

Assertions may slow down the execution. They can be disable by define the NDEBUG
macro
define NDEBUG // or with the flag "-DNDEBUG" 10/93

Execution Debugging (gdb)

How to compile and run for debugging:

g++ -O0 -g [-g3] <program.cpp> -o program
gdb [--args] ./program <args...>

-O0 Disable any code optimization for helping the debugger. It is implicit for most
compilers

-g Enable debugging
- stores the symbol table information in the executable (mapping between assembly

and source code lines)
- for some compilers, it may disable certain optimizations
- slow down the compilation phase and the execution

-g3 Produces enhanced debugging information, e.g. macro definitions. Available for
most compilers. Suggested instead of -g 11/93

gdb - Breakpoints/Watchpoints

Command Abbr. Description

breakpoint <file>:<line> b insert a breakpoint in a specific line

breakpoint <function name> b
insert a breakpoint in a specific
function

breakpoint <ref > if <condition> b
insert a breakpoint with a
conditional statement

delete d delete all breakpoints or watchpoints
delete <breakpoint number> delete a specific breakpoint
clear [function name/line number] delete a specific breakpoint
enable/disable <breakpoint number> enable/disable a specific breakpoint

watch <expression>

stop execution when the value of
expression changes (variable,
comparison, etc.) 12/93

gdb - Control Flow

Command Abbr. Description

run [args] r run the program
continue c continue the execution
finish f continue until the end of the current function
step s execute next line of code (follow function calls)
next n execute next line of code

until <program point>
continue until reach line number,
function name, address, etc.

CTRL+C stop the execution (not quit)
quit q exit
help [<command>] h show help about command

13/93

gdb - Stack and Info

Command Abbr. Description

list l print code
list <function or #start,#end> l print function/range code
up u move up in the call stack
down d move down in the call stack
backtrace bt prints stack backtrace (call stack)
backtrace <full> bt print values of local variables

info <args/locals/variables>
print current function arguments/local
variables/all variables

info <breakpoints/watchpoints/registers>
show information about program
breakpoints/watchpoints/registers

14/93

gdb - Print

Command Abbr. Description

print <variable> p print variable

print/h <variable> p/h print variable in hex

print/nb <variable> p/nb print variable in binary (n bytes)

print/w <address> p/w print address in binary

p /s <char array/address> print char array

p *array var@n print n array elements

p (int[4])<address> print four elements of type int

p *(char**)&<std::string> print std::string

15/93

gdb - Disassemble

Command Description

disasseble <function name> disassemble a specified function

disasseble <0xStart,0xEnd addr> disassemble function range

nexti <variable>
execute next line of code (follow
function calls)

stepi <variable> execute next line of code

x/nfu <address>

examine address
n number of elements,
f format (d: int, f: float, etc.),
u data size (b: byte, w: word, etc.)

16/93

gdb - Notes

The debugger automatically stops when:
• breakpoint (by using the debugger)
• assertion fail
• segmentation fault
• trigger software breakpoint (e.g. SIGTRAP on Linux)

github.com/scottt/debugbreak

Full story: www.yolinux.com/TUTORIALS/GDB-Commands.html (it also contains a
script to de-referencing STL Containers)

gdb reference card V5 link

17/93

https://github.com/scottt/debugbreak
www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf

Memory Debugging

Memory Vulnerabilities 1/2

“70% of all the vulnerabilities in Microsoft products are
memory safety issues”

Matt Miller, Microsoft Security Engineer

“Chrome: 70% of all security bugs are memory safety
issues”

Chromium Security Report

Microsoft: 70% of all security bugs are memory safety issues
Chrome: 70% of all security bugs are memory safety issues 18/93

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/

Memory Vulnerabilities 2/2

Terms like buffer overflow, race condition, page fault, null pointer, stack exhaustion,
heap exhaustion/corruption, use-after-free, or double free – all describe memory
safety vulnerabilities

Solutions:

• Run-time check
• Static analysis
• Avoid unsafe language constructs

19/93

valgrind 1/9

valgrind is a tool suite to automatically detect many
memory management and threading bugs

How to install the last version:

$ wget ftp://sourceware.org/pub/valgrind/valgrind-3.18.1.tar.bz2
$ tar xf valgrind-3.18.1.tar.bz2
$ cd valgrind-3.18.1
$./configure --enable-lto
$ make -j 12
$ sudo make install
$ sudo apt install libc6-dbg #if needed

some linux distributions provide the package through apt install valgrid , but it could be an old version 20/93

http://valgrind.org

valgrind 2/9

Basic usage:
• compile with -g

• $ valgrind ./program <args...>

Output example 1:
==60127== Invalid read of size 4 !!out-of-bound access
==60127== at 0x100000D9E: f(int) (main.cpp:86)
==60127== by 0x100000C22: main (main.cpp:40)
==60127== Address 0x10042c148 is 0 bytes after a block of size 40 alloc'd
==60127== at 0x1000161EF: malloc (vg_replace_malloc.c:236)
==60127== by 0x100000C88: f(int) (main.cpp:75)
==60127== by 0x100000C22: main (main.cpp:40)

21/93

valgrind 3/9

Output example 2:

!!memory leak
==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: f (main.cpp:5)
==19182== by 0x80483AB: main (main.cpp:11)

==60127== HEAP SUMMARY:
==60127== in use at exit: 4,184 bytes in 2 blocks
==60127== total heap usage: 3 allocs, 1 frees, 4,224 bytes allocated
==60127==
==60127== LEAK SUMMARY:
==60127== definitely lost: 128 bytes in 1 blocks !!memory leak
==60127== indirectly lost: 0 bytes in 0 blocks
==60127== possibly lost: 0 bytes in 0 blocks
==60127== still reachable: 4,184 bytes in 2 blocks !!not deallocated
==60127== suppressed: 0 bytes in 0 blocks

22/93

valgrind 4/9

Memory leaks are divided into four categories:

• Definitely lost
• Indirectly lost
• Still reachable
• Possibly lost

When a program terminates, it releases all heap memory allocations. Despite this,
leaving memory leaks is considered a bad practice and makes the program unsafe with
respect to multiple internal iterations of a functionality. If a program has memory leaks
for a single iteration, is it safe for multiple iterations?

A robust program prevents any memory leak even when abnormal conditions occur

23/93

valgrind 5/9

Definitely lost indicates blocks that are not deleted at the end of the program (return
from the main() function). The common case is local variables pointing to newly
allocated heap memory

void f() {
int* y = new int[3]; // 12 bytes definitely lost

}

int main() {
int* x = new int[10]; // 40 bytes definitely lost
f();

}

24/93

valgrind 6/9

Indirectly lost indicates blocks pointed by other heap variables that are not deleted.
The common case is global variables pointing to newly allocated heap memory

struct A {
int* array;

};

int main() {
A* x = new A; // 8 bytes definitely lost
x->array = new int[4]; // 16 bytes indirectly lost

}

25/93

valgrind 7/9

Still reachable indicates blocks that are not deleted but they are still reachable at the
end of the program
int* array;

int main() {
array = new int[3];

}
// 12 bytes still reachable (global static class could delete it)

include <cstdlib>
int main() {

int* array = new int[3];
std::abort(); // early abnormal termination
// 12 bytes still reachable
... // maybe it is delete here

}

26/93

valgrind 8/9

Possibly lost indicates blocks that are still reachable but pointer arithmetic makes the
deletion more complex, or even not possible

include <cstdlib>
int main() {

int* array = new int[3];
array++; // pointer arithmetic
std::abort(); // early abnormal termination
// 12 bytes still reachable
... // maybe it is delete here but you should be able

// to revert pointer arithmetic
}

27/93

valgrind 9/9

Advanced flags:

• --leak-check=full print details for each “definitely lost” or “possibly lost”
block, including where it was allocated

• --show-leak-kinds=all to combine with --leak-check=full. Print all leak kinds

• --track-fds=yes list open file descriptors on exit (not closed)

• --track-origins=yes tracks the origin of uninitialized values (very slow execution)

valgrind --leak-check=full --show-leak-kinds=all
--track-fds=yes --track-origins=yes ./program <args...>

Track stack usage:

valgrind --tool=drd --show-stack-usage=yes ./program <args...>

28/93

Stack Protection - Compile-time 1/2

Stack size check:

• -Wstack-usage=<byte-size> Warn if the stack usage of a function might
exceed byte-size. The computation done to determine the stack usage is
conservative (no VLA)

• -fstack-usage Makes the compiler output stack usage information for the
program, on a per-function basis

• -Wvla Warn if a variable-length array is used in the code

• -Wvla-larger-than=<byte-size> Warn for declarations of variable-length
arrays whose size is either unbounded, or bounded by an argument that allows the
array size to exceed byte-size bytes

Use compiler flags for stack protection in GCC and Clang
29/93

https://developers.redhat.com/articles/2022/06/02/use-compiler-flags-stack-protection-gcc-and-clang#stack_canary

Stack Protection - Run-time 2/2

Adding FORTIFY SOURCE define, the compiler provides buffer overflow checks for the
following functions:
memcpy , mempcpy , memmove , memset , strcpy , stpcpy , strncpy , strcat , strncat , sprintf ,
vsprintf , snprintf , vsnprintf , gets .

include <cstring> // std::memset
include <string> // std::stoi
int main(int argc, char** argv) {

int size = std::stoi(argv[1]);
char buffer[24];
std::memset(buffer, 0xFF, size);

}

$ gcc -O1 -D FORTIFY SOURCE program.cpp -o program
$./program 12 # OK
$./program 32 # Wrong
$ *** buffer overflow detected ***: ./program terminated 30/93

Sanitizers

Address Sanitizer

Sanitizers are compiler-based instrumentation components to perform dynamic
analysis

Sanitizer are used during development and testing to discover and diagnose memory
misuse bugs and potentially dangerous undefined behavior

Sanitizer are implemented in Clang (from 3.1), gcc (from 4.8) and Xcode

Project using Sanitizers:
• Chromium
• Firefox
• Linux kernel
• Android

Memory error checking in C and C++: Comparing Sanitizers and Valgrind 31/93

https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind

Address Sanitizer

Address Sanitizer is a memory error detector
• heap/stack/global out-of-bounds
• memory leaks
• use-after-free, use-after-return, use-after-scope
• double-free, invalid free
• initialization order bugs
* Similar to valgrind but faster (50X slowdown)

clang++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>

-O1 disable inlining
-g generate symbol table

• clang.llvm.org/docs/AddressSanitizer.html
• github.com/google/sanitizers/wiki/AddressSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 32/93

https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Leak Sanitizer

LeakSanitizer is a run-time memory leak detector
• integrated into AddressSanitizer, can be used as standalone tool
* almost no performance overhead until the very end of the process

g++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>
clang++ -O1 -g -fsanitize=leak -fno-omit-frame-pointer <program>

• clang.llvm.org/docs/LeakSanitizer.html
• github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 33/93

https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Memory Sanitizers

Memory Sanitizer is detector of uninitialized reads
• stack/heap-allocated memory read before it is written
* Similar to valgrind but faster (3X slowdown)

clang++ -O1 -g -fsanitize=memory -fno-omit-frame-pointer <program>

-fsanitize-memory-track-origins=2
track origins of uninitialized values

Note: not compatible with Address Sanitizer

• clang.llvm.org/docs/MemorySanitizer.html
• github.com/google/sanitizers/wiki/MemorySanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 34/93

https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Undefined Behavior Sanitizer

UndefinedBehaviorSanitizer is a undefined behavior detector
• signed integer overflow, floating-point types overflow, enumerated not in range
• out-of-bounds array indexing, misaligned address
• divide by zero
• etc.
* Not included in valgrind

clang++ -O1 -g -fsanitize=undefined -fno-omit-frame-pointer <program>

-fsanitize=integer Checks for undefined or suspicious integer behavior (e.g. unsigned integer
overflow)

-fsanitize=nullability Checks passing null as a function parameter, assigning null to an lvalue, and
returning null from a function

• clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 35/93

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Sanitizers vs. Valgrind

Valgrind - A neglected tool from the shadows or a serious debugging tool? 36/93

https://m-peko.github.io/craft-cpp/posts/valgrind-a-neglected-tool-from-the-shadows-or-a-serious-debugging-tool/

Debugging Summary

How to Debug Common Errors

Segmentation fault
• gdb
• valgrind
• Segmentation fault when just entered in a function → stack overflow

Double free or corruption
• gdb
• valgrind

Infinite execution
• gdb + (CTRL + C)

Incorrect results
• valgrind + assertion + gdb + UndefinedBehaviorSanitizer

37/93

Code Checking and
Analysis

Compiler Warnings

Enable specific warnings:

g++ -W<warning> <args...>

Disable specific warnings:

g++ -Wno-<warning> <args...>

Common warning flags to minimize accidental mismatches:
-Wall Enables many standard warnings (∼50 warnings)

-Wextra Enables some extra warning flags that are not enabled by -Wall (∼15 warnings)

-Wpedantic Issue all the warnings demanded by strict ISO C/C++

Enable ALL warnings (only clang) -Weverything
38/93

GCC Warnings

Additional GCC warning flags (≥ 5.0):
-Wcast-align
-Wcast-qual
-Wconversion
-Wfloat-conversion
-Wsign-conversion
-Wdate-time
-Wdouble-promotion
-Weffc++
-Wdelete-non-virtual-dtor
-Wnon-virtual-dtor
-Wformat-signedness
-Winvalid-pch
-Wlogical-op
-Wmissing-declarations
-Wmissing-include-dirs
-Wodr

-Wold-style-cast
-Wpragmas
-Wredundant-decls
-Wshadow
-Wsign-promo*
-Wstrict-aliasing
-Wstrict-overflow=1 # 5
-Wswitch-bool
-Wswitch-default
-Wswitch-enum
-Wtrampolines
-Wunused-macros
-Wuseless-cast
-Wvla
-Wformat=2
-Wno-long-long

• gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
• github.com/barro/compiler-warnings

39/93

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://github.com/barro/compiler-warnings

Static Analyzers - clang static analyzer

The Clang Static Analyzer is a source code analysis
tool that finds bugs in C/C++ programs at compile-time

It find bugs by reasoning about the semantics of code (may produce false positives)
Example:
void test() {

int i, a[10];
int x = a[i]; // warning: array subscript is undefined

}

How to use:

scan-build make

scan-build is included in the LLVM suite
40/93

https://clang-analyzer.llvm.org

Static Analyzers - cppcheck

The GCC Static Analyzer can diagnose various kinds of
problems in C/C++ code at compile-time (e.g. double-
free, use-after-free, stdio related, etc) -fanalyzer

cppcheck provides code analysis to detect bugs, undefined behavior and dangerous
coding construct. The goal is to detect only real errors in the code (i.e. have very few
false positives)

cppcheck --enable=warning,performance,style,portability,information,error
<src_file/directory>

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
cppcheck --enable=<enable_flags> --project=compile_commands.json

41/93

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
http://cppcheck.sourceforge.net/

Static Analyzers - PVS-Studio, FBInfer

PVS-Studio is a high-quality proprietary (free for open
source projects) static code analyzer supporting C, C++

Customers: IBM, Intel, Adobe, Microsoft, Nvidia, Bosh, IdGames, EpicGames, etc.

FBInfer is a static analysis tool (also available online)
to checks for null pointer deferencing, memory leak,
coding conventions, unavailable APIs, etc.

Customers: Amazon AWS, Facebook/Ocolus, Instagram, Whatapp, Mozilla, Spotify, Uber,
Sky, etc.

42/93

http://fbinfer.com

Static Analyzers - DeepCode, SonarSource

deepCode is an AI-powered code review system, with
machine learning systems trained on billions of lines
of code from open-source projects

Available for Visual Studio Code, Sublime, IntelliJ IDEA, and Atom

SonarSource is a static analyzer which inspects
source code for bugs, code smells, and security vul-
nerabilities for multiple languages (C++, Java, etc.)

SonarLint plugin is available for Visual Code, Visual Studio Code, Eclipse, and IntelliJ
IDEA

see also A curated list of static analysis tool 43/93

https://www.deepcode.ai/
https://www.sonarsource.com/
https://www.sonarlint.org/
https://github.com/analysis-tools-dev/static-analysis

Code Testing

Code Testing

see Case Study 4: The $440 Million Software Error at Knight Capital

from: Kat Maddox (on Twitter)
44/93

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

Unit Test 1/2

Unit testing involves breaking your program into pieces, and subjecting each piece to
a series of tests

Unit Testing Benefits:
• Increases confidence in changing/ maintaining code
• The cost of fixing a defect detected during unit testing is lesser in comparison to

that of defects detected at higher levels
• Debugging is easy. When a test fails, only the latest changes need to be debugged

C++ Unit testing frameworks:
• catch
• doctest
• Google Test
• CppUnit
• Boost.Test 45/93

Unit Test 2/2

46/93

catch 1/2

Catch2 is a multi-paradigm test framework for C++

Catch2 features
• Header only and no external dependencies
• Assertion macro
• Floating point tolerance comparisons

Basic usage:
• Create the test program
• Run the test

$./test_program [<TestName>]

• github.com/catchorg/Catch2
• The Little Things: Testing with Catch2 47/93

https://catch-lib.net
https://github.com/catchorg/Catch2/blob/master/docs/command-line.md
https://codingnest.com/the-little-things-testing-with-catch-2/

catch 2/2

define CATCH_CONFIG_MAIN // This tells Catch to provide a main()
include "catch.hpp" // only do this in one cpp file

unsigned Factorial(unsigned number) {
return number <= 1 ? number : Factorial(number - 1) * number;

}

"Test description and tag name"
TEST_CASE("Factorials are computed", "[Factorial]") {

REQUIRE(Factorial(1) == 1);
REQUIRE(Factorial(2) == 2);
REQUIRE(Factorial(3) == 6);
REQUIRE(Factorial(10) == 3628800);

}

float floatComputation() { ... }

TEST_CASE("floatCmp computed", "[floatComputation]") {
REQUIRE(floatComputation() == Approx(2.1));

}
48/93

Code Coverage 1/3

Code coverage is a measure used to describe the degree to which the source code of
a program is executed when a particular test suite runs

gcov is a tool you can use in conjunction with GCC to test code coverage in programs

gcovr is a utility for managing gcov and generating code coverage results

Step for code coverage:

• compile with --coverage flag (objects + linking)
• run the test
• visualize the results with gcovr

49/93

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcovr.com/en/stable/index.html

Code Coverage 2/3

program.cpp:
include <iostream>
include <string>

int main(int argc, char* argv[]) {
int value = std::stoi(argv[1]);
if (value % 3 == 0)

std::cout << "first\n";
if (value % 2 == 0)

std::cout << "second\n";
}

$ gcc -g --coverage program.cpp -o program
$./program 9
first
$ gcovr -r --html --html-details <path_to_cover>
generate coverage.html

50/93

Code Coverage 3/3

1: 4:int main(int argc, char* argv[]) {
1: 5: int value = std::stoi(argv[1]);
1: 6: if (value % 3 == 0)
1: 7: std::cout << "first\n";
1: 8: if (value % 2 == 0)

####: 9: std::cout << "second\n";
4: 10:}

51/93

Coverage-Guided Fuzz Testing

A fuzzer is a specialized tool that tracks which areas of the code are reached, and
generates mutations on the corpus of input data in order to maximize the code
coverage

LibFuzzer is the library provided by LLVM and feeds fuzzed inputs to the library via a
specific fuzzing entrypoint

The fuzz target function accepts an array of bytes and does something interesting with these
bytes using the API under test:

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* Data,
size_t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return 0;

}

52/93

https://llvm.org/docs/LibFuzzer.html

Code Quality

Linters - clang-tidy 1/2

lint: The term was derived from the name of the undesirable bits of fiber

clang-tidy provides an extensible framework for diagnosing and fixing typical
programming errors, like style violations, interface misuse, or bugs that can be deduced
via static analysis

$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
$ clang-tidy -p .

clang-tidy searches the configuration file .clang-tidy file located in the closest
parent directory of the input file

clang-tidy is included in the LLVM suite

53/93

https://clang.llvm.org/extra/clang-tidy

Linters - clang-tidy 2/2

Coding Guidelines:
• CERT Secure Coding Guidelines
• C++ Core Guidelines
• High Integrity C++ Coding Standard

Supported Code Conventions:
• Fuchsia
• Google
• LLVM

Bug Related:
• Android related
• Boost library related
• Misc
• Modernize
• Performance
• Readability
• clang-analyzer checks
• bugprone code constructors

.clang-tidy

Checks: 'android-*,boost-*,bugprone-*,cert-*,cppcoreguidelines-*,
clang-analyzer-*,fuchsia-*,google-*,hicpp-*,llvm-*,misc-*,modernize-*,
performance-*,readability-*' 54/93

CMake

CMake Overview

CMake is an open-source, cross-platform family of tools designed to build,
test and package software

CMake is used to control the software compilation process using simple platform and
compiler independent configuration files, and generate native Makefile/Ninja and
workspaces that can be used in the compiler environment of your choice

CMake features:
• Turing complete language (if/else, loops, functions, etc.)
• Multi-platform (Windows, Linux, etc.)
• Open-Source
• Generate: makefile, ninja, etc.
• Supported by many IDEs: Visual Studio, Clion, Eclipse, etc.

55/93

https://cmake.org

CMake - References

• 19 reasons why CMake is actually awesome

• An Introduction to Modern CMake

• Effective Modern CMake

• Awesome CMake

• Useful Variables

56/93

https://kubasejdak.com/19-reasons-why-cmake-is-actually-awesome
https://cliutils.gitlab.io/modern-cmake/
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://github.com/onqtam/awesome-cmake
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful-Variables

Install CMake

Using PPA repository

$ wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null |
gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null

$ sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ focal main' # bionic, xenial
$ sudo apt update
$ sudo apt install cmake cmake-curses-gui

Using the installer or the pre-compiled binaries: cmake.org/download/

download the last cmake package, e.g. cmake-x.y.z-linux-x86_64.sh
$ sudo sh cmake-x.y.z-linux-x86_64.sh

57/93

https://cmake.org/download/

A Minimal Example

CMakeLists.txt:

project(my_project) # project name

add_executable(program program.cpp) # compile command

we are in the project root dir
$ mkdir build # 'build' dir is needed for isolating temporary files
$ cd build
$ cmake .. # search for CMakeLists.txt directory
$ make # makefile automatically generated

Scanning dependencies of target program
[100%] Building CXX object CMakeFiles/out_program.dir/program.cpp.o
Linking CXX executable program
[100%] Built target program 58/93

Parameters and Message

CMakeLists.txt:
project(my_project)
add_executable(program program.cpp)

if (VAR)
message("VAR is set, NUM is ${NUM}")

else()
message(FATAL_ERROR "VAR is not set")

endif()

$ cmake ..
VAR is not set
$ cmake -DVAR=ON -DNUM=4 ..
VAR is set, NUM is 4
...
[100%] Built target program 59/93

Language Properties

project(my_project
DESCRIPTION "Hello World"
HOMEPAGE_URL "github.com/"
LANGUAGES CXX)

cmake_minimum_required(VERSION 3.15)

set(CMAKE_CXX_STANDARD 14) # force C++14
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF) # no compiler extensions

add_executable(program ${PROJECT_SOURCE_DIR}/program.cpp) #$
PROJECT_SOURCE_DIR is the root directory of the project

60/93

Target Commands

add_executable(program) # also add_library(program)

target_include_directories(program
PUBLIC include/
PRIVATE src/)

target_include_directories(program SYSTEM ...) for system headers

target_sources(program # best way for specifying
PRIVATE src/program1.cpp # program sources and headers
PRIVATE src/program2.cpp
PUBLIC include/header.hpp)

target_compile_definitions(program PRIVATE MY_MACRO=ABCEF)

target_compile_options(program PRIVATE -g)

target_link_libraries(program PRIVATE boost_lib)

target_link_options(program PRIVATE -s) 61/93

Build Types

project(my_project) # project name
cmake_minimum_required(VERSION 3.15) # minimum version

add_executable(program program.cpp)

if (CMAKE_BUILD_TYPE STREQUAL "Debug") # "Debug" mode
cmake already adds "-g -O0"

message("DEBUG mode")
if (CMAKE_COMPILER_IS_GNUCXX) # if compiler is gcc

target_compile_options(program "-g3")
endif()

elseif (CMAKE_BUILD_TYPE STREQUAL "Release") # "Release" mode
message("RELEASE mode") # cmake already adds "-O3 -DNDEBUG"

endif()

$ cmake -DCMAKE_BUILD_TYPE=Debug ..

62/93

Custom Targets and File Managing

project(my_project)
add_executable(program)

add_custom_target(echo_target # makefile target name
COMMAND echo "Hello" # real command
COMMENT "Echo target")

find all .cpp file in src/ directory
file(GLOB_RECURSE SRCS ${PROJECT_SOURCE_DIR}/src/*.cpp)
compile all *.cpp file
target_sources(program PRIVATE ${SRCS}) # prefer the explicit file list instead

$ cmake ..
$ make echo_target

63/93

Local and Cached Variables

Cached variables can be reused across multiple runs, while local variables are only
visible in a single run. Cached FORCE variables can be modified only after the
initialization

project(my_project)

set(VAR1 "var1") # local variable
set(VAR2 "var2" CACHE STRING "Description1") # cached variable
set(VAR3 "var3" CACHE STRING "Description2" FORCE) # cached variable
option(OPT "This is an option" ON) # boolean cached variable

same of var2
message(STATUS "${VAR1}, ${VAR2}, ${VAR3}, ${OPT}")

$ cmake .. # var1, var2, var3, ON
$ cmake -DVAR1=a -DVAR2=b -DVAR3=c -DOPT=d .. # var1, b, var3, d 64/93

Manage Cached Variables

$ ccmake . # or 'cmake-gui'

65/93

Find Packages

project(my_project) # project name
cmake_minimum_required(VERSION 3.15) # minimum version

add_executable(program program.cpp)
find_package(Boost 1.36.0 REQUIRED) # compile only if Boost library

is found
if (Boost_FOUND)

target_include_directories("${PROJECT_SOURCE_DIR}/include" PUBLIC ${Boost_INCLUDE_DIRS})
else()

message(FATAL_ERROR "Boost Lib not found")
endif()

66/93

Compile Commands

Generate JSON compilation database (compile commands.json)
It contains the exact compiler calls for each file that are used by other tools

project(my_project)
cmake_minimum_required(VERSION 3.15)

set(CMAKE_EXPORT_COMPILE_COMMANDS ON) # <--

add_executable(program program.cpp)

Change the C/C++ compiler:

CC=clang CXX=clang++ cmake ..

67/93

ctest 1/2

CTest is a testing tool (integrated in CMake) that can be used to automate updating,
configuring, building, testing, performing memory checking, performing coverage

project(my_project)
cmake_minimum_required(VERSION 3.5)
add_executable(program program.cpp)

enable_testing()

add_test(NAME Test1 # check if "program" returns 0
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/build
COMMAND ./program <args>) # command can be anything

add_test(NAME Test2 # check if "program" print "Correct"
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/build
COMMAND ./program <args>)

set_tests_properties(Test2
PROPERTIES PASS_REGULAR_EXPRESSION "Correct") 68/93

ctest 2/2

Basic usage (call ctest):

$ make test # run all tests

ctest usage:

$ ctest -R Python # run all tests that contains 'Python' string
$ ctest -E Iron # run all tests that not contain 'Iron' string
$ ctest -I 3,5 # run tests from 3 to 5

Each ctest command can be combined with other tools (e.g. valgrind)

69/93

ctest with Different Compile Options

It is possible to combine a custom target with ctest to compile the same code with
different compile options

add_custom_target(program-compile
COMMAND mkdir -p test-release test-ubsan test-asan # create dirs
COMMAND cmake .. -B test-release # -B change working dir
COMMAND cmake .. -B test-ubsan -DUBSAN=ON
COMMAND cmake .. -B test-asan -DASAN=ON
COMMAND make -C test-release -j20 program # -C run make in a
COMMAND make -C test-ubsan -j20 program # different dir
COMMAND make -C test-asan -j20 program)

enable_testing()

add_test(NAME Program-Compile
COMMAND make program-compile)

70/93

CMake Alternatives - xmake

xmake is a cross-platform build utility based on
Lua.

Compared with makefile/CMakeLists.txt, the configuration syntax is more concise
and intuitive. It is very friendly to novices and can quickly get started in a short time.
Let users focus more on actual project development

Comparison: xmake vs cmake

71/93

https://xmake.io
https://tboox.org/2019/05/29/xmake-vs-cmake/

Code
Documentation

doxygen 1/6

Doxygen is the de facto standard tool for generating documentation from annotated
C++ sources

Doxygen usage

• comment the code with /// or /** comment */

• generate doxygen base configuration file

$ doxygen -g

• modify the configuration file Doxyfile

• generate the documentation

$ doxygen <config_file>

72/93

doxygen 2/6

73/93

doxygen 3/6

Doxygen requires the following tags for generating the documentation:

• @file Document a file

• @brief Brief description for an entity

• @param Run-time parameter description

• @tparam Template parameter description

• @return Return value description

74/93

doxygen - Features 4/6

• Automatic cross references between functions, variables, etc.

• Specific highlight. Code `<code>` , input/output parameters
@param[in] <param>

• Latex/MathJax $<code>$

• Markdown (Markdown Cheatsheet link), Italic text *<code>* , bold text
<code> , table, list, etc.

• Call/Hierarchy graph can be useful in large projects (requires graphviz)
HAVE DOT = YES
GRAPHICAL HIERARCHY = YES
CALL GRAPH = YES
CALLER GRAPH = YES 75/93

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

doxygen - Example 5/6

/**
* @file
* @copyright MyProject
* license BSD3, Apache, MIT, etc.
* @author MySelf
* @version v3.14159265359
* @date March, 2018
*/

/// @brief Namespace brief description
namespace my_namespace {

/// @brief "Class brief description"
/// @tparam R "Class template for"
template<typename R>
class A {

/**
* @brief "What the function does?"
* @details "Some additional details",
* Latex/MathJax: $\sqrt a$
* @tparam T Type of input and output
* @param[in] input Input array
* @param[out] output Output array
* @return `true` if correct,
* `false` otherwise
* @remark it is *useful* if ...
* @warning the behavior is **undefined** if
* @p input is `nullptr`
* @see related_function
*/

template<typename T>
bool my_function(const T* input, T* output);

/// @brief
void related_function(); 76/93

doxygen - Call Graph 6/6

77/93

Doxygen Alternatives

M.CSS Doxygen C++ theme

Doxypress Doxygen fork

clang-doc LLVM tool

Sphinx Clear, Functional C++ Documentation with Sphinx + Breathe
+ Doxygen + CMake

standardese The nextgen Doxygen for C++ (experimental)

HDoc The modern documentation tool for C++ (alpha)

Adobe Hyde Utility to facilitate documenting C++
78/93

https://mcss.mosra.cz/documentation/doxygen/
https://www.copperspice.com/documentation-doxypress.html
https://clang.llvm.org/extra/clang-doc.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#cpp-domain
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
https://github.com/standardese/standardese
https://hdoc.io/
https://github.com/adobe/hyde

Code Statistics

Count Lines of Code - cloc

cloc counts blank lines, comment lines, and physical lines of source code in many
programming languages

$cloc my_project/

4076 text files.
3883 unique files.
1521 files ignored.

http://cloc.sourceforge.net v 1.50 T=12.0 s (209.2 files/s, 70472.1 lines/s)

Language files blank comment code

C 135 18718 22862 140483
C/C++ Header 147 7650 12093 44042
Bourne Shell 116 3402 5789 36882

Features: filter by-file/language, SQL database, archive support, line count diff, etc. 79/93

https://github.com/AlDanial/cloc

Cyclomatic Complexity Analyzer - lyzard 1/3

Lizard is an extensible Cyclomatic Complexity Analyzer for many programming
languages including C/C++
Cyclomatic Complexity: is a software metric used to indicate the complexity of a program. It
is a quantitative measure of the number of linearly independent paths through a program
source code

$lizard my_project/
==
NLOC CCN token param function@line@file
--
10 2 29 2 start_new_player@26@./html_game.c
6 1 3 0 set_shutdown_flag@449@./httpd.c
24 3 61 1 server_main@454@./httpd.c
--

• CCN: cyclomatic complexity (should not exceed a threshold)
• NLOC: lines of code without comments
• token: Number of conditional statements
• param: Parameter count of functions

80/93

https://github.com/terryyin/lizard

Cyclomatic Complexity Analyzer - lyzard 2/3

CCN = 3

81/93

Cyclomatic Complexity Analyzer - lyzard 3/3

CC Risk Evaluation

1-10 a simple program, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk
> 50 untestable program, very high risk

CC Guidelines

1-5 The routine is probably fine
6-10 Start to think about ways to simplify the routine
> 10 Break part of the routine

Risk: Lizard: 15, OCLint: 10

• www.microsoftpressstore.com/store/code-complete-9780735619678
• blog.feabhas.com/2018/07/code-quality-cyclomatic-complexity 82/93

www.microsoftpressstore.com/store/code-complete-9780735619678
https://blog.feabhas.com/2018/07/code-quality-cyclomatic-complexity/

Other Tools

Code Formatting - clang-format

clang-format is a tool to automatically format C/C++ code (and other languages)

$ clang-format <file/directory>

clang-format searches the configuration file .clang-format file located in the
closest parent directory of the input file

clang-format example:
IndentWidth: 4
UseTab: Never
BreakBeforeBraces: Linux
ColumnLimit: 80
SortIncludes: true

83/93

clang.llvm.org/docs/ClangFormat.html

Compiler Explorer (assembly and execution)

Compiler Explorer is an interactive tool that lets you type source code and see
assembly output, control flow graph, optimization hint, etc.

Key features: support multiple architectures and compilers

84/93

https://godbolt.org

Code Transformation - CppInsights

CppInsights See what your compiler does behind the scenes

85/93

https://cppinsights.io/

Code Autocompletion - GitHub CoPilot

CoPilot is an AI pair programmer that helps you write code faster and with less work.
It draws context from comments and code to suggest individual lines and whole
functions instantly

86/93

https://github.com/features/copilot

Code Autocompletion - TabNine

TabNine uses deep learning to provide code completion

Features:
• Support all languages
• C++ semantic completion is available through clangd
• Project indexing
• Recognize common language patterns
• Use even the documentation to infer this function name, return type, and arguments

Available for Visual Studio Code, IntelliJ, Sublime, Atom, and Vim

87/93

https://tabnine.com/

Code Autocompletion - Kite

Kite adds AI powered code completions to your code editor

Support 13 languages

Available for Visual Studio Code, IntelliJ, Sublime, Atom, Vim, + others

88/93

https://www.kite.com/

Local Code Search - ripgrep

Ripgrep is a code-searching-oriented tool for regex pattern

Features:
• Default recursively searches
• Skip .gitignore patterns, binary and hidden files/directories
• Windows, Linux, Mac OS support
• Up to 100x faster than GNU grep

89/93

https://github.com/BurntSushi/ripgrep

Code Search Engine - searchcode

Searchcode is a free source code search engine

Features:
• Search over 20 billion lines of code from 7,000,000 projects
• Search sources: github, bitbucket, gitlab, google code, sourceforge, etc.

90/93

https://searchcode.com/

Code Search Engine - grep.app

grep.app searches across a half million GitHub repos

91/93

https://grep.app/

Code Benchmarking - Quick-Bench

Quick-benchmark is a micro benchmarking tool intended to quickly and simply
compare the performances of two or more code snippets. The benchmark runs on a
pool of AWS machines

92/93

http://quick-bench.com

Font for Coding

Many editors allow adding optimized fonts for programming which improve legibility
and provide extra symbols (ligatures)

Some examples:

• JetBrain Mono
• Fira Code
• Microsoft Cascadia
• Consolas Ligaturized

93/93

https://www.jetbrains.com/lp/mono/
https://github.com/tonsky/FiraCode
https://github.com/microsoft/cascadia-code
https://github.com/somq/consolas-ligaturized

	Debugging
	Assertion
	Execution Debugging (gdb)

	Memory Debugging
	valgrind
	Stack Protection

	Sanitizers
	Address Sanitizer
	Leak Sanitizer
	Memory Sanitizers
	Undefined Behavior Sanitizer

	Debugging Summary
	Code Checking and Analysis
	Compiler Warnings
	Static Analyzers

	Code Testing
	Unit Test
	Code Coverage
	Fuzz Testing

	Code Quality
	clang-tidy

	CMake
	ctest

	Code Documentation
	doxygen

	Code Statistics
	Count Lines of Code
	Cyclomatic Complexity Analyzer

	Other Tools
	Code Formatting - clang-format
	Compiler Explorer
	Code Transformation - CppInsights
	Code Autocompletion - GitHub CoPilot, TabNine, Kite
	Local Code Search - ripgrep
	Code Search Engine - searchcode, grep.app
	Code Benchmarking - Quick-Bench
	Font for Coding

