
Modern C++ Programming
16. Performance Optimization I

Basic Concepts

Federico Busato

2022, v3.15

Table of Context

1 Overview
2 Basic Concepts

Asymptotic Complexity
Time-Memory Trade-off
Developing Cycle
Ahmdal’s Law
Throughput, Bandwidth, Latency
Performance Bounds
Arithmetic Intensity

1/52

Table of Context

3 Basic Architecture Concepts
Instruction-Level Parallelism
Little’s Law
Data-Level Parallelism
Thread-Level Parallelism
RISC, CISC Instruction Sets

4 Memory Hierarchy
Memory Hierarchy Concepts
Memory Locality
Internal Structure Alignment
External Structure Alignment

2/52

Overview

Moore’s Law 1/2

“The number of transistors incorporated in a chip will approximately
double every 24 months.” (40% per year)

Gordon Moore, Intel co-founder

3/52

Moore’s Law 2/2

The Moore’s Law is not (yet) dead but the same concept is not true for clock
frequency, single-thread performance, and power consumption. How we can provide
value?

4/52

Single-Thread Performance Trend

A Look Back at Single-Threaded CPU Performance
Herb Sutter, The Free Lunch Is Over

5/52

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
http://www.gotw.ca/publications/concurrency-ddj.htm

Reasons for Optimizing

• In the first decades, the computer performance was extremely limited. Low-level
optimizations were essential to fully exploit the hardware

• Modern systems provide much higher performance, but we cannot more rely on
hardware improvement on short-period

• Performance and efficiency add market value (fast program for a given task), e.g.
search, page loading, etc.

• Optimized code uses less resources, e.g. in a program that runs on a server for
months or years, a small reduction in the execution time translates in a big saving
of power consumption

6/52

The Role of Software Engineering and Algorithms

Forget Moore’s Law. Algorithms drive technology forward
“Algorithmic improvements make more efficient use of existing resources and allow

computers to do a task faster, cheaper, or both. Think of how easy the smaller MP3
format made music storage and transfer. That compression was because of an algorithm.”

• Forget Moore’s Law
• What will drive computer performance after Moore’s law?

7/52

https://stackoverflow.blog/2021/03/24/forget-moores-law-algorithms-drive-technology-forward/
https://science.sciencemag.org/content/368/6495/eaam9744

Software Optimization is Complex

from ”Speed is Found in the Minds of People“,
Andrei Alexandrescu, CppCon 2019 8/52

References

• Optimized C++, Kurt Guntheroth

• Awesome C/C++ performance optimization resources, Bartlomiej Filipek

• Optimizing C++, wikibook

• Optimizing software in C++, Agner Fog

• Hacker Delight (2nd), Henry S. Warren

• Algorithms for Modern Hardware

9/52

http://shop.oreilly.com/product/0636920038030.do
https://github.com/fenbf/AwesomePerfCpp
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.hackersdelight.org/
https://en.algorithmica.org/hpc/

Basic Concepts

Asymptotic Complexity 1/2

The asymptotic analysis refers to estimate the execution time or memory usage as
function of the input size (the order of growing)

The asymptotic behavior is opposed to a low-level analysis of the code
(instruction/loop counting/weighting, cache accesses, etc.)

Drawbacks:

• The worst-case is not the average-case

• Asymptotic complexity does not consider small inputs (think to insertion sort)
• The hidden constant can be relevant in practice
• Asymptotic complexity does not consider instructions cost and hardware details

10/52

Asymptotic Complexity 2/2

Be aware that only real-world problems with a small asymptotic complexity or small
size can be solved in a “user” acceptable time

Three examples:

• Sorting : O (n log n), try to sort an array of one billion elements (4GB)

• Diameter of a (sparse) graph: O
(
V 2)

, just for graphs with a few hundred
thousand vertices it becomes impractical without advanced techniques

• Matrix multiplication: O
(
N3)

, even for small sizes N (e.g. 8K, 16K), it requires
special accelerators (e.g. GPU, TPU, etc.) for achieving acceptable performance

11/52

Time-Memory Trade-off

The time-memory trade-off is a way of solving a problem or calculation in less time
by using more storage space (less often the opposite direction)

Examples:

• Memoization (e.g. used in dynamic programming): returning the cached result
when the same inputs occur again

• Hash table: number of entries vs. efficiency
• Lookup tables: precomputed data instead branches
• Uncompressed data: bitmap image vs. jpeg

12/52

Developing Cycle 1/3

“If you’re not writing a program, don’t use a programming language”
Leslie Lamport, Turing Award

“First solve the problem, then write the code”

“Inside every large program is an algorithm trying to get out”
Tony Hoare, Turing Award

“Premature optimization is the root of all evil”
Donald Knuth, Turing Award

“Code for correctness first, then optimize!”
13/52

Developing Cycle 2/3

14/52

Developing Cycle 3/3

• One of the most important phase of the optimization cycle is the
application profiling for finding regions of code that are critical for
performance (hotspot)
→ Expensive code region (absolute)
→ Code regions executed many times (cumulative)

• Most of the times, there is no the perfect algorithm for all cases (e.g.
insertion, merge, radix sort). Optimizing also refers in finding the correct
heuristics for different program inputs/platforms instead of modifying the
existing code

15/52

Ahmdal’s Law 1/3

Ahmdal’s Law
The Ahmdal’s law expresses the maximum improvement possible by improving a
particular part of a system

Observation: The performance of any system is constrained by the speed of the
slowest point

S : improvement factor expressed as a factor of P

16/52

Ahmdal’s Law 2/3

Overall Improvement = 1

(1 − P) + P
S

P \ S 25% 50% 75% 2x 3x 4x 5x 10x ∞

10% 1.02x 1.03x 1.04x 1.05x 1.07x 1.08x 1.09x 1.10x 1.11x
20% 1.04x 1.07x 1.09x 1.11x 1.15x 1.18x 1.19x 1.22x 1.25x
30% 1.06x 1.11x 1.15x 1.18x 1.25x 1.29x 1.31x 1.37x 1.49x
40% 1.09x 1.15x 1.20x 1.25x 1.36x 1.43x 1.47x 1.56x 1.67x
50% 1.11x 1.20x 1.27x 1.33x 1.50x 1.60x 1.66x 1.82x 2.00x
60% 1.37x 1.25x 1.35x 1.43x 1.67x 1.82x 1.92x 2.17x 2.50x
70% 1.16x 1.30x 1.43x 1.54x 1.88x 2.10x 2.27x 2.70x 3.33x
80% 1.19x 1.36x 1.52x 1.67x 2.14x 2.50x 2.78x 3.57x 5.00x
90% 1.22x 1.43x 1.63x 1.82x 2.50x 3.08x 3.57x 5.26x 10.00x 17/52

Ahmdal’s Law 3/3

note: s is the portion of the system that cannot be improved 18/52

Throughput, Bandwidth, Latency

The throughput is the rate at which operations are performed

Peak throughput:
(CPU speed in Hz) x (CPU instructions per cycle) x
(number of CPU cores) x (number of CPUs per node)
NOTE: modern processors have more than one computation unit

The memory bandwidth is the amount of data that can be loaded from or stored into
a particular memory space

Peak bandwidth:
(Frequency in Hz) x (Bus width in bit / 8) x (Pump rate, memory type multiplier)

The latency is the amount of time needed for an operation to complete
19/52

Performance Bounds 1/2

The performance of a program is bounded by one or more aspects of its computation.
This is also strictly related to the underlying hardware

• Memory-bound. The program spends its time primarily in performing memory
accesses. The performance is limited by the memory bandwidth (rarely
memory-bound also refers to the amount of memory available)

• Compute-bound. The program spends its time primarily in computing arithmetic
instructions. The performance is limited by the speed of the CPU

20/52

Performance Bounds 2/2

• Latency-bound. The program spends its time primarily in waiting the data are
ready (instruction/memory dependencies). The performance is limited by the
latency of the CPU/memory

• I/O Bound. The program spends its time primarily in performing I/O operations
(network, user input, storage, etc.). The performance is limited by the speed of
the I/O subsystem

21/52

Arithmetic Intensity 1/2

Arithmetic Intensity
Arithmetic/Operational Intensity is the ratio of total operations to total data
movement (bytes or words)

The naive matrix multiplication algorithm requires N3 · 2 floating-point operations
(multiplication + addition), while it involves

(
N2 · 4B

)
· 3 data movement

22/52

Arithmetic Intensity 2/2

R = ops
bytes = 2n3

12n2 = n
6

which means that for every byte accessed, the algorithm performs n
6 operations →

compute-bound

N Operations Data Movement Ratio Exec. Time

512 268 · 106 3 MB 85 2 ms
1024 2 · 109 12 MB 170 21 ms
2048 17 · 109 50 MB 341 170 ms
4096 137 · 109 201 MB 682 1.3 s
8192 1 · 1012 806 MB 1365 11 s

16384 9 · 1012 3 GB 2730 90 s

A modern CPU performs 100 GFlops, and has about 50 GB/s memory bandwidth 23/52

Basic Architecture
Concepts

Instruction-Level Parallelism (ILP) 1/3

Modern processor architectures are deeply pipelined → superscalar processor
Instruction-Level Parallelism (ILP) is a measure of how many instructions in a
computer program can be executed simultaneously by issuing independent instructions
in sequence (out-of-order)

Instruction pipelining is a technique for implementing ILP within a single processor

24/52

Instruction-Level Parallelism (ILP) 2/3

Microarchitecture Pipeline
stages

Core 14
Bonnell 16
Sandy Bridge 14
Silvermont 14 to 17
Haswell 14
Skylake 14
Kabylake 14

The pipeline efficiency is affected by

• Instruction stalls, e.g. cache miss, an execution unit not available, etc.
• Bad speculation, branch misprediction

25/52

Instruction-Level Parallelism (ILP) 3/3

for (int i = 0; i < N; i++) // with no optimizations, the loop
C[i] = A[i] * B[i]; // is executed in sequence

can be rewritten as:

for (int i = 0; i < N; i += 4) { // four independent multiplications
C[i] = A[i] * B[i]; // per iteration
C[i + 1] = A[i + 1] * B[i + 1]; // A, B, C are not alias
C[i + 2] = A[i + 2] * B[i + 2];
C[i + 3] = A[i + 3] * B[i + 3];

}

26/52

ILP and Little’s Law

The Little’s Law expresses the relation between latency and throughput. The
throughput of a system λ is equal to the number of elements in the system divided by
the average time spent (latency) W for each element in the system:

L = λW → λ = L
W

• L: average number of customers in a store
• λ: arrival rate (throughput)
• W : average time spent (latency)

27/52

Data-Level Parallelism

Data-Level Parallelism refers to the execution of the same operation on multiple
data in parallel

Vector processors or array processors provide SIMD (Single Intruction-Multiple Data)
or vector instructions for exploiting data-level parallelism

The popular vector instruction sets are:
MMX MultiMedia eXtension. 80-bit width (Intel, AMD)

SSE (SSE2, SSE3, SSE4) Streaming SIMD Extensions. 128-bit width (Intel, AMD)

AVX (AVX, AVX2, AVX-512) Advanced Vector Extensions. 512-bit width (Intel, AMD)

NEON Media Processing Engine. 128-bit width (ARM)

SVE (SVE, SVE2) Scalable Vector Extension. 128-2048 bit width (ARM)
28/52

Thread-Level Parallelism

A thread is a single sequential execution flow within a program with its state
(instructions, data, PC, register state, and so on)

Thread-level parallelism refers to the execution of separate computation “thread” on
different processing units

29/52

RISC, CISC Instruction Sets

The Instruction Set Architecture (ISA) is an abstract model of the CPU to
represent its behavior. It consists of addressing modes, instructions, data types,
registers, memory architecture, interrupt, etc.
It does not defined how an instruction is processed

The microarchitecture (µarch) is the implementation of an ISA which includes
pipelines, caches, etc.

30/52

CISC

Complex Instruction Set Computer (CISC)

• Complex instructions for special tasks even if used infrequently
• Assembly instructions follow software. Little compiler effort for translating

high-level language into assembly
• Initially designed for saving cost of computer memory and disk storage (1960)
• High number of instructions with different size
• Instructions require complex micro-ops decoding (translation) for exploiting ILP
• Multiple low-level instructions per clock but with high latency

Hardware implications

• High number of transistors
• Extra logic for decoding. Heat dissipation
• Hard to scale 31/52

RISC

Reduced Instruction Set Computer (RISC)

• Simple instructions
• Small number of instructions with fixed size
• 1 clock per instruction
• Assembly instructions does not follow software
• No instruction decoding

Hardware implications

• High ILP, easy to schedule
• Small number of transistors
• Little power consumption
• Easy to scale

32/52

Instruction Set Comparison

x86 Instruction set

MOV AX, 15; AH = 00, AL = 0Fh
AAA; AH = 01, AL = 05
RET

ARM Instruction set

MOV R3, # 10
AND R2, R0, # 0xF
CMP R2, R3
IT LT
BLT elsebranch
ADD R2. # 6
ADD R1. #1
elsebranch:
END

ARM vs x86: What’s the difference between the two processor architectures? 33/52

https://prog.world/arm-vs-x86-whats-the-difference-between-the-two-processor-architectures/

CISC vs. RISC

• Hardware market:
- RISC (ARM, IBM): Qualcomm Snapdragon, Amazon Graviton, Nvidia Grace,

Nintendo Switch, Fujitsu Fukaku, Apple M1, Apple Iphone/Ipod/Mac, Tesla
Full Self-Driving Chip, PowerPC

- CISC (Intel, AMD): all x86-64 processors

• Software market:
- RISC : Android, Linux, Apple OS, Windows
- CISC : Windows, Linux

• Power consumption:
- CISC : Intel i5 10th Generation: 64W
- RISC : Arm-based smartphone < 5W

34/52

ARM Quote

“Incidentally, the first ARM1 chips required so little power, when the
first one from the factory was plugged into the development system to
test it, the microprocessor immediately sprung to life by drawing current
from the IO interface – before its own power supply could be properly
connected.”

Happy birthday, ARM1. It is 35 years since Britain’s Acorn RISC Machine chip
sipped power for the first time 35/52

https://www.theregister.com/2020/04/27/arm_35_year_anniversary/
https://www.theregister.com/2020/04/27/arm_35_year_anniversary/

Memory Hierarchy

The Von Neumann Bottleneck

Access to memory dominates other costs in a processor

36/52

The Von Neumann Bottleneck

The efficiency of computer architectures is limited by the Memory Wall
problem, namely the memory is the slowest part of the system

Moving data to and from main memory consumes the vast majority of time and
energy of the system

For these reasons, computer architectures need
a sophisticated memory hierarchy

37/52

Memory Hierarchy 1/3

Modern architectures rely on complex memory hierarchy (primary memory, caches,
registers, scratchpad memory, etc.). Each level has different characteristics and
constrains (size, latency, bandwidth, concurrent accesses, etc.)

1 byte of RAM (1946) IBM 5MB hard drive (1956)

twitter.com/MIT CSAIL 38/52

https://twitter.com/MIT_CSAIL

Memory Hierarchy 2/3

Source:
“Accelerating Linear Algebra on Small Matrices from Batched BLAS to Large Scale Solvers”,
ICL, University of Tennessee 39/52

Memory Hierarchy 3/3

Intel Coffee Lake Core-i7-8700 example:

Hierarchy level Size Latency Latency
Ratio

Bandwidth Bandwidth
Ratio

L1 cache 192 KB 1.5 ns 1.0x 1,600 GB/s 1.0x

L2 cache 1.5 MB 4 ns 2.6x 570 GB/s 2.8x

L3 cache 12 MB 12 - 40 ns 8-27x 320 GB/s 5x

DRAM / 60 ns 40x 40 GB/s 40x

SDD Disk (swap) / 70µs 4.7 * 104x 2 GB/s 800x

HDD Disk (swap) / 10 ms 6.6 * 106x 2 GB/s 800x

• en.wikichip.org/wiki/WikiChip

• Memory Bandwidth Napkin Math
40/52

https://en.wikichip.org/wiki/WikiChip

Memory Hierarchy Concepts 1/4

A cache is a small and fast memory located close to the processor that stores
frequently used instructions and data. It is part of the processor package and takes 40
to 60 percent of the chip area

Characteristics and content:

Registers Program counter (PC), General purpose registers, Instruction Register
(IR), etc.

L1 Cache Instruction cache and data cache, private/exclusive per CPU core,
located on-chip

L2 Cache Private/exclusive per single CPU core or a cluster of cores, located
off-chip

L3 Cache Shared between all cores and located off-chip 41/52

Memory Hierarchy Concepts 2/4

42/52

Memory Hierarchy Concepts 3/4

A cache line or cache block is the unit of data transfer between the cache and main
memory, namely the memory is loaded at the granularity of a cache line
The typical size of the cache line is 64 bytes. A cache line can be further organized in
banks or sectors

Cache access type:

Hot Closest-processor cached, L1
Warm L2 or L3 caches

Cold First load, cache empty

43/52

Memory Hierarchy Concepts 4/4

• A cache hit occurs when a requested data is successfully found in the cache
memory

• The cache hit rate is the number of cache hits divided by the number of memory
requests

• A cache miss occurs when a requested data is not found in the cache memory

• The miss penalty refers to the extra time required to load the data into cache
from the main memory when a cache miss occurs

• A page fault occurs when a requested data is in the process address space, but it
is not currently located in the main memory (swap/pagefile)

44/52

Memory Locality

• Spatial Locality refers to the use of data elements within
relatively close storage locations e.g. scan arrays in increasing order, matrices by
row. It involves mechanisms such as memory prefetching and access granularity
When spatial locality is low, many words in the cache line are not used

• Temporal Locality refers to the reuse of the same data within a relatively
small time duration, and, as consequence, exploit lower levels of the memory
hierarchy (caches), e.g. multiple sparse accesses
Heavily used memory locations can be accessed more quickly than less heavily
used locations

45/52

Spatial Locality Example 1/2

A, B, C matrices of size N × N

C = A * B

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

int sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[k][j]; // row × column
C[i][j] = sum;

}
}

C = A * BT

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

int sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[j][k]; // row × row
C[i][j] = sum;

}
}

46/52

Spatial Locality Example 2/2

Benchmark:

N 64 128 256 512 1024

A * B < 1 ms 5 ms 29 ms 141 ms 1,030 ms

A * BT < 1 ms 2 ms 6 ms 48 ms 385 ms

Speedup / 2.5x 4.8x 2.9x 2.7x

47/52

Temporal-Locality Example

Speeding up a random-access function

for (int i = 0; i < N; i++) // V1
out_array[i] = in_array[hash(i)];

for (int K = 0; K < N; K += CACHE) { // V2
for (int i = 0; i < N; i++) {

auto x = hash(i);
if (x >= K && x < K + CACHE)

out_array[i] = in_array[x];
}

}

V1 : 436 ms, V2 : 336 ms → 1.3x speedup (temporal locality improvement)
.. but it needs a careful evaluation of CACHE and it can even decrease the performance for
other sizes

pre-sorted hash(i) : 135 ms → 3.2x speedup (spatial locality improvement)

lemire.me/blog/2019/04/27
48/52

https://lemire.me/blog/2019/04/27/speeding-up-a-random-access-function/

Internal Structure Alignment

struct A1 {
char x1; // offset 0
double y1; // offset 8!! (not 1)
char x2; // offset 16
double y2; // offset 24
char x3; // offset 32
double y3; // offset 40
char x4; // offset 48
double y4; // offset 56
char x5; // offset 64 (65 bytes)

}

struct A2 { // internal alignment
char x1; // offset 0
char x2; // offset 1
char x3; // offset 2
char x4; // offset 3
char x5; // offset 4
double y1; // offset 8
double y2; // offset 16
double y3; // offset 24
double y4; // offset 32 (40 bytes)

}

Considering an array of structures (AoS), there are two problems:
• We are wasting 40% of memory in the first case (A1)
• In common x64 processors the cache line is 64 bytes. For the first structure A1 ,

every access involves two cache line operations (2x slower)

see also #pragma pack(1)
49/52

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290

External Structure Alignment and Padding

Considering the previous example for the structure A2 , random loads from an array of
structures A2 leads to one or two cache line operations depending on the alignment at
a specific index, e.g.

index 0 → one cache line load
index 1 → two cache line loads

It is possible to fix the structure alignment in two ways:

• The memory padding refers to introduce extra bytes at the end of the data
structure to enforce the memory alignment
e.g. add a char array of size 24 to the structure A2

• Align keyword or attribute allows specifying the alignment requirement of a
type or an object (next slide)

50/52

External Structure Alignment in C++ 1/2

C++ allows specifying the alignment requirement in different ways:

• C++11 alignas(N) only for variable / struct declaration

• C++17 aligned new (e.g. new int[2, N])

• Compiler Intrinsic only for variables / struct declaration
• GCC/Clang: attribute ((aligned(N)))

• MSVC: declspec(align(N))

• Compiler Intrinsic for dynamic pointer
• GCC/Clang: builtin assume aligned(x)

• Intel: assume aligned(x)

Data alignment is also essential to exploit hardware vector instructions (SIMD)
like SSE, AVX, etc. 51/52

External Structure Alignment in C++ 2/2

struct alignas(16) A1 { // C++11
int x, y;

};

struct __attribute__((aligned(16))) A2 { // compiler-specific attribute
int x, y;

};

auto ptr1 = new int[100, 16]; // 16B alignment, C++17
auto ptr2 = new int[100]; // 4B alignment guarantee
auto ptr3 = __builtin_assume_aligned(ptr2, 16); // compiler-specific attribute
auto ptr4 = new A1[10]; // no aligment guarantee

52/52

	Overview
	Basic Concepts
	Asymptotic Complexity
	Time-Memory Trade-off
	Developing Cycle
	Ahmdal's Law
	Throughput, Bandwidth, Latency
	Performance Bounds
	Arithmetic Intensity

	Basic Architecture Concepts
	Instruction-Level Parallelism
	Little's Law
	Data-Level Parallelism
	Thread-Level Parallelism
	RISC, CISC Instruction Sets

	Memory Hierarchy
	Memory Hierarchy Concepts
	Memory Locality
	Internal Structure Alignment
	External Structure Alignment

