
Modern C++ Programming
17. Performance Optimization II

Code Optimization

Federico Busato

2022, v3.15



Table of Context

1 I/O Operations
printf

Memory Mapped I/O
Speed Up Raw Data Loading

2 Memory Optimizations

1/65



Table of Context

3 Arithmetic
Data Types
Operations
Conversion
Floating-Point
Compiler Intrinsic Functions
Value in a Range
Lookup Table

2/65



Table of Context

4 Control Flow
Loop Hoisting
Loop Unrolling
Branch Hints
Recursion

5 Functions
Function Call Cost
Argument Passing
Function Optimizations
Function Inlining
Pointers Aliasing

3/65



Table of Context

6 C++ Objects
Object RAII Optimizations

4/65



I/O Operations



I/O Operations

I/O Operations are orders of magnitude slower than
memory accesses

5/65



I/O Streams

In general, input/output operations are one of the most expensive

• Use endl for ostream only when it is strictly necessary (prefer \n )

• Disable synchronization with printf/scanf :
std::ios base::sync with stdio(false)

• Disable IO flushing when mixing istream/ostream calls:
<istream obj>.tie(nullptr);

• Increase IO buffer size:
file.rdbuf()->pubsetbuf(buffer var, buffer size);

6/65



I/O Streams - Example

#include <iostream>

int main() {
std::ifstream fin;
// --------------------------------------------------------
std::ios_base::sync_with_stdio(false); // sync disable
fin.tie(nullptr); // flush disable

// buffer increase
const int BUFFER_SIZE = 1024 * 1024; // 1 MB
char buffer[BUFFER_SIZE];
fin.rdbuf()->pubsetbuf(buffer, BUFFER_SIZE);
// --------------------------------------------------------
fin.open(filename); // Note: open() after optimizations

// IO operations
fin.close();

} 7/65



printf

• printf is faster than ostream (see speed test link)

• A printf call with a simple format string ending with \n is converted to a
puts() call
printf("Hello World\n");
printf("%s\n", string);

• No optimization if the string is not ending with \n or one or more % are
detected in the format string

www.ciselant.de/projects/gcc_printf/gcc_printf.html 8/65

https://github.com/fmtlib/fmt#speed-tests
www.ciselant.de/projects/gcc_printf/gcc_printf.html


Memory Mapped I/O

A memory-mapped file is a segment of virtual memory that has been assigned a
direct byte-for-byte correlation with some portion of a file

Benefits:
• Orders of magnitude faster than system calls
• Input can be “cached” in RAM memory (page/file cache)
• A file requires disk access only when a new page boundary is crossed
• Memory-mapping may bypass the page/swap file completely
• Load and store raw data (no parsing/conversion)

9/65



Memory Mapped I/O - Example 1/2

#if !defined(__linux__)
#error It works only on linux

#endif
#include <fcntl.h> //::open
#include <sys/mman.h> //::mmap
#include <sys/stat.h> //::open
#include <sys/types.h> //::open
#include <unistd.h> //::lseek
// usage: ./exec <file> <byte_size> <mode>
int main(int argc, char* argv[]) {

size_t file_size = std::stoll(argv[2]);
auto is_read = std::string(argv[3]) == "READ";
int fd = is_read ? ::open(argv[1], O_RDONLY) :

::open(argv[1], O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
if (fd == -1)

ERROR("::open") // try to get the last byte
if (::lseek(fd, static_cast<off_t>(file_size - 1), SEEK_SET) == -1)

ERROR("::lseek")
if (!is_read && ::write(fd, "", 1) != 1) // try to write

ERROR("::write")
10/65



Memory Mapped I/O Example 2/2

auto mm_mode = (is_read) ? PROT_READ : PROT_WRITE;

// Open Memory Mapped file
auto mmap_ptr = static_cast<char*>(

::mmap(nullptr, file_size, mm_mode, MAP_SHARED, fd, 0) );

if (mmap_ptr == MAP_FAILED)
ERROR("::mmap");

// Advise sequential access
if (::madvise(mmap_ptr, file_size, MADV_SEQUENTIAL) == -1)

ERROR("::madvise");

// MemoryMapped Operations
// read from/write to "mmap_ptr" as a normal array: mmap_ptr[i]

// Close Memory Mapped file
if (::munmap(mmap_ptr, file_size) == -1)

ERROR("::munmap");
if (::close(fd) == -1)

ERROR("::close");
11/65



Low-Level Parsing 1/2

Consider using optimized (low-level) numeric conversion routines:
template<int N, unsigned MUL, int INDEX = 0>
struct fastStringToIntStr;

inline unsigned fastStringToUnsigned(const char* str, int length) {
switch(length) {

case 10: return fastStringToIntStr<10, 1000000000>::aux(str);
case 9: return fastStringToIntStr< 9, 100000000>::aux(str);
case 8: return fastStringToIntStr< 8, 10000000>::aux(str);
case 7: return fastStringToIntStr< 7, 1000000>::aux(str);
case 6: return fastStringToIntStr< 6, 100000>::aux(str);
case 5: return fastStringToIntStr< 5, 10000>::aux(str);
case 4: return fastStringToIntStr< 4, 1000>::aux(str);
case 3: return fastStringToIntStr< 3, 100>::aux(str);
case 2: return fastStringToIntStr< 2, 10>::aux(str);
case 1: return fastStringToIntStr< 1, 1>::aux(str);
default: return 0;

}
} 12/65



Low-Level Parsing 2/2

template<int N, unsigned MUL, int INDEX>
struct fastStringToIntStr {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0') * MUL +

fastStringToIntStr<N - 1, MUL / 10, INDEX + 1>::aux(str);
}

};

template<unsigned MUL, int INDEX>
struct fastStringToIntStr<1, MUL, INDEX> {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0');

}
};

Faster parsing: lemire.me/blog/tag/simd-swar-parsing 13/65

https://lemire.me/blog/tag/simd-swar-parsing/


Speed Up Raw Data Loading 1/2

• Hard disk is orders of magnitude slower than RAM

• Parsing is faster than data reading

• Parsing can be avoided by using binary storage and mmap

• Decreasing the number of hard disk accesses improves the performance →
compression

LZ4 is lossless compression algorithm providing extremely fast decompression up to
35% of memcpy and good compression ratio
github.com/lz4/lz4

Another alternative is Facebook zstd
github.com/facebook/zstd 14/65

https://github.com/lz4/lz4
https://github.com/facebook/zstd


Speed Up Raw Data Loading 2/2

Performance comparison of different methods for a file of 4.8 GB of integer values

Load Method Exec. Time Speedup

ifstream 102 667 ms 1.0x

memory mapped + parsing (first run) 30 235 ms 3.4x

memory mapped + parsing (second run) 22 509 ms 4.5x

memory mapped + lz4 (first run) 3 914 ms 26.2x

memory mapped + lz4 (second run) 1 261 ms 81.4x

NOTE: the size of the Lz4 compressed file is 1,8 GB

15/65



Memory
Optimizations



Heap Memory

• Dynamic heap allocation is expensive: implementation dependent and interaction
with the operating system

• Many small heap allocations are more expensive than one large memory allocation
The default page size on Linux is 4KB. For smaller/multiple sizes, C++ uses a
suballocator

• Allocations within the page size is faster than larger allocations (suballocator)

16/65



Stack Memory

• Stack memory is faster than heap memory. The stack memory provides high
locality, it is small (cache fit), and its size is known at compile-time

• static stack allocations produce better code. It avoids filling the stack each
time the function is reached

• constexpr arrays with dynamic indexing produces very inefficient code with
GCC. Use static constexpr instead
void f(int x) {
// bad performance with GCC
// constexpr int array[] = {1,2,3,4,5,6,7,8,9};

static constexpr int array[] = {1,2,3,4,5,6,7,8,9};
return array[x];

} 17/65



Memory-Oriented Optimizations

Maximize cache utilization:

• Prefer small data types

• Prefer std::vector<bool> over array of bool

• Prefer std::bitset<N> over std::vector<bool> if the data size is known in
advance or bounded

18/65



Arithmetic



Hardware Notes

• Instruction throughput greatly depends on processor model and characteristics

• Modern processors provide separated units for floating-point computation (FPU)

• Addition, subtraction, and bitwise operations are computed by the ALU and they
have very similar throughput

• In modern processors, multiplication and addition are computed by the same
hardware component for decreasing circuit area → multiplication and addition can
be fused in a single operation fma (floating-point) and mad (integer)

uops.info: Latency, Throughput, and Port Usage Information 19/65

https://uops.info/table.html


Data Types

• 32-bit integral vs. floating-point: in general, integral types are faster, but it
depends on the processor characteristics

• 32-bit types are faster than 64-bit types
• 64-bit integral types are slightly slower than 32-bit integral types. Modern processors

widely support native 64-bit instructions for most operations, otherwise they require
multiple operations

• Single precision floating-points are up to three times faster than double precision
floating-points

• Small integral types are slower than 32-bit integer, but they require less
memory → cache/memory efficiency

20/65



Operations

• In modern architectures, arithmetic increment/decrement ++ / -- has the same
performance of add / sub

• Prefer prefix operator ( ++var ) instead of the postfix operator ( var++ ) *

• Use the compound operators ( a += b ) instead of operators combined with
assignment ( a = a + b ) *

• Keep near constant values/variables → the compiler can merge their values

* the compiler automatically applies such optimization whenever possible
(this is not ensured for object types) 21/65



Integer Multiplication

Integer multiplication requires double the number of bits of the operands
// 32-bit PLATFROM

int f1(int x, int y) {
return x * y; // efficient but can overflow

}

int64_t f2(int64_t x, int64_t y) {
return x * y; // always correct but slow

}

int64_t f3(int x, int y) {
return x * static_cast<int64_t>(y); // correct and efficient!!

}

22/65



Power-of-Two Multiplication/Division/Modulo

• Prefer shift for power-of-two multiplications ( a ≪ b ) and divisions
( a ≫ b ) only for run-time values *

• Some unsigned operations are faster than signed operations (deal with negative
number), e.g. x / 2

• Prefer bitwise and ( a % b → a & (b - 1) ) for power-of-two modulo
operations only for run-time values *

• Constant multiplication and division can be heavily optimized by the compiler,
even for non-trivial values

* the compiler automatically applies such optimizations if b is known at compile-time. Bitwise
operations make the code harder to read
Ideal divisors: when a division compiles down to just a multiplication

23/65

https://lemire.me/blog/2021/04/28/ideal-divisors-when-a-division-compiles-down-to-just-a-multiplication/?amp&__twitter_impression=true


Conversion

From To Cost

Signed Unsigned no cost, bit representation is the same

Unsigned Larger Unsigned no cost, register extended

Signed Larger Signed 1 clock-cycle, register + sign extended

Integer Floating-point

4-16 clock-cycles
Signed → Floating-point is faster than
Unsigned → Floating-point (except AVX512
instruction set is enabled)

Floating-point Integer fast if SSE2, slow otherwise (50-100 clock-cycles)

Optimizing software in C++, Agner Fog 24/65



Floating-Point Division

Multiplication is much faster than division*

not optimized:
// "value" is floating-point (dynamic)
for (int i = 0; i < N; i++)

A[i] = B[i] / value;

optimized:
div = 1.0 / value; // div is floating-point
for (int i = 0; i < N; i++)

A[i] = B[i] * div;

* Multiplying by the inverse is not the same as the division
see lemire.me/blog/2019/03/12

25/65

https://lemire.me/blog/2019/03/12/multiplying-by-the-inverse-is-not-the-same-as-the-division/


Floating-Point FMA

Modern processors allow performing a * b + c in a single operation, called fused
multiply-add ( std::fma in C++11). This implies better performance and accuracy

CPU processors perform computations with a larger register size than the original data
type (e.g. 48-bit for 32-bit floating-point) for performing this operation

Compiler behavior:
• GCC 9 and ICC 19 produce a single instruction for std::fma and for a * b + c with

-O3 -march=native

• Clang 9 and MSVC 19.* produce a single instruction for std::fma but not for
a * b + c

FMA: solve quadratic equation
FMA: extended precision addition and multiplication by constant

26/65

https://marc-b-reynolds.github.io/math/2020/01/10/Quadratic.html
https://marc-b-reynolds.github.io/math/2020/01/09/ConstAddMul.html


Compiler Intrinsic Functions 1/5

Compiler intrinsics are highly optimized functions directly provided by the compiler
instead of external libraries

Advantages:

• Directly mapped to hardware functionalities if available
• Inline expansion
• Do not inhibit high-level optimizations and they are portable contrary to asm code

Drawbacks:

• Portability is limited to a specific compiler
• Some intrinsics do not work on all platforms
• The same instricics can be mapped to a non-optimal instruction sequence

depending on the compiler
27/65



Compiler Intrinsic Functions 2/5

Most compilers provide intrinsics bit-manipulation functions for SSE4.2 or ABM
(Advanced Bit Manipulation) instruction sets for Intel and AMD processors
GCC examples:

builtin popcount(x) count the number of one bits

builtin clz(x) (count leading zeros) counts the number of zero bits following the
most significant one bit

builtin ctz(x) (count trailing zeros) counts the number of zero bits preceding
the least significant one bit

builtin ffs(x) (find first set) index of the least significant one bit

gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
28/65

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html


Compiler Intrinsic Functions 3/5

• Compute integer log2

inline unsigned log2(unsigned x) {
return 31 - __builtin_clz(x);

}

• Check if a number is a power of 2

inline bool is_power2(unsigned x) {
return __builtin_popcount(x) == 1;

}

• Bit search and clear
inline int bit_search_clear(unsigned x) {

int pos = __builtin_ffs(x); // range [0, 31]
x &= ∼(1u << pos);
return pos;

} 29/65



Compiler Intrinsic Functions 4/5

Example of intrinsic portability issue:

builtin popcount() GCC produces popcountdi2 instruction while Intel
Compiler (ICC) produces 13 instructions

mm popcnt u32 GCC and ICC produce popcnt instruction, but it is available only
for processor with support for SSE4.2 instruction set

More advanced usage

• Compute CRC: mm crc32 u32
• AES cryptography: mm256 aesenclast epi128
• Hash function: mm sha256msg1 epu32

software.intel.com/sites/landingpage/IntrinsicsGuide/
30/65

https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Compiler Intrinsic Functions 5/5

Using intrinsic instructions is extremely dangerous if the target processor does not
natively support such instructions

Example:

“If you run code that uses the intrinsic on hardware that doesn’t support the lzcnt
instruction, the results are unpredictable” - MSVC

on the contrary, GNU and clang builtin * instructions are always well-defined.
The instruction is translated to a non-optimal operation sequence in the worst case

The instruction set support should be checked at run-time (e.g. with cpuid
function on MSVC), or, when available, by using compiler-time macro (e.g. AVX )

31/65



Automatic Compiler Function Transformation

std::abs can be recognized by the compiler and transformed to a hardware
instruction

In a similar way, C++20 provides a portable and efficient way to express bit operations
<bit>

rotate left : std::rotl
rotate right : std::rotr

count leading zero : std::countl zero
count leading one : std::countl one

count trailing zero : std::countr zero
count trailing one : std::countr one

population count : std::popcount

Why is the standard "abs" function faster than mine?
32/65

https://stackoverflow.com/questions/66023408/why-is-the-standard-abs-function-faster-than-mine


Value in a Range

Checking if a non-negative value x is within a range [A, B] can be optimized if
B > A (useful when the condition is repeated multiple times)

if (x >= A && x <= B)

// STEP 1: subtract A
if (x - A >= A - A && x - A <= B - A)
// -->
if (x - A >= 0 && x - A <= B - A) // B - A is precomputed

// STEP 2
// - convert "x - A >= 0" --> (unsigned) (x - A)
// - "B - A" is always positive
if ((unsigned) (x - A) <= (unsigned) (B - A))

33/65



Value in a Range Examples

Check if a value is an uppercase letter:
uint8_t x = ...
if (x >= 'A' && x <= 'Z')

...
→

uint8_t x = ...
if (x - 'A' <= 'Z')

...

A more general case:
int x = ...
if (x >= -10 && x <= 30)

...
→

int x = ...
if ((unsigned) (x + 10) <= 40)

...

The compiler applies this optimization only in some cases
(tested with GCC/Clang 9 -O3) 34/65



Lookup Table

Lookup table (LUT) is a memoization technique which allows replacing runtime
computation with precomputed values
Example: a function that computes the logarithm base 10 of a number in the range [1-100]
template<int SIZE, typename Lambda>
constexpr std::array<float, SIZE> build(Lambda lambda) {

std::array<float, SIZE> array{};
for (int i = 0; i < SIZE; i++)

array[i] = lambda(i);
return array;

}
float log10(int value) {

constexpr auto lamba = [](int i) { return std::log10f((float) i); };
static constexpr auto table = build<100>(lambda);
return table[value];

}

Make your lookup table do more
35/65

https://commaok.xyz/post/lookup_tables/


Low-Level Optimizations

Collection of low-level implementations/optimization of common operations:

• Bit Twiddling Hacks
graphics.stanford.edu/∼seander/bithacks.html

• The Aggregate Magic Algorithms
aggregate.org/MAGIC

• Hackers Delight Book
www.hackersdelight.org

36/65

https://graphics.stanford.edu/~seander/bithacks.html
http://aggregate.org/MAGIC/
http://www.hackersdelight.org/


Low-Level Information

The same instruction/operation may take different clock-cycles on different
architectures/CPU type

• Agner Fog - Instruction tables (latencies, throughputs)
www.agner.org/optimize/instruction tables.pdf

• Latency, Throughput, and Port Usage Information
uops.info/table.html

37/65

http://www.agner.org/optimize/instruction_tables.pdf
http://uops.info/table.html


Control Flow



Branches are expensive 1/2

Computation is faster than decision

38/65



Branches are expensive 2/2

Pipelines are an essential element in modern processors. Some processors have up to
20 pipeline stages (14/16 typically)

The downside to long pipelines includes the danger of pipeline stalls that waste CPU
time, and the time it takes to reload the pipeline on conditional branch operations
( if , while , for )

39/65



Control Flow 1/2

• Prefer switch statements instead of multiple if
- If the compiler does not use a jump-table, the cases are evaluated in order of

appearance → the most frequent cases should be placed before

- Some compilers (e.g. clang) are able to translate a sequence of if into a switch

• Prefer square brackets syntax [] over pointer arithmetic operations for array
access to facilitate compiler loop optimizations (polyhedral loop transformations)

• Prefer signed integer for loop indexing. The compiler optimizes more aggressively
such loops since integer overflow is not defined

• Prefer range-based loop for iterating over a container 1

The Little Things: Everyday efficiencies
40/65

https://codingnest.com/the-little-things-everyday-efficiencies/amp/?__twitter_impression=true


Control Flow 2/2

• In general, if statements affect performance when the branch is taken

• Some compilers (e.g. clang) use assertion for optimization purposes: most likely
code path, not possible values, etc. 2

• Not all control flow instructions (or branches) are translated into jump
instructions. If the code in the branch is small, the compiler could optimize it in a
conditional instruction, e.g. ccmovl
Small code section can be optimized in different ways 3 (see next slides)

1 Branch predictor: How many ‘if’s are too many?
2 Andrei Alexandrescu
3 Is this a branch? 41/65

https://blog.cloudflare.com/branch-predictor/
https://twitter.com/incomputable/status/1247234209753808897?s=20
https://bartwronski.com/2021/01/18/is-this-a-branch/


Minimize Branch Overhead

• Branch prediction: technique to guess which way a branch takes. It requires
hardware support and it is generically based on dynamic history of code executing

• Branch predication: a conditional branch is substituted by a sequence of
instructions from both paths of the branch. Only the instructions associated to a
predicate (boolean value), that represents the direction of the branch, are actually
executed
int x = (condition) ? A[i] : B[i];
P = (condition) // P: predicate
@P x = A[i];
@!P x = B[i];

• Speculative execution: execute both sides of the conditional branch to better
utilize the computer resources and commit the results associated to the branch
taken 42/65



Loop Hoisting

Loop Hoisting, also called loop-invariant code motion, consists of moving statements
or expressions outside the body of a loop without affecting the semantics of the
program

Base case:

for (int i = 0; i < 100; i++)
a[i] = x + y;

Better:
v = x + y;
for (int i = 0; i < 100; i++)

a[i] = v;

Loop hoisting is also important in the evaluation of loop conditions
Base case:
// "x" never changes
for (int i = 0; i < f(x); i++)

a[i] = y;

Better:
int limit = f(x);
for (int i = 0; i < limit; i++)

a[i] = y;

In the worst case, f(x) is evaluated at every iteration (especially when it belongs to
another translation unit) 43/65



Loop Unrolling 1/2

Loop unrolling (or unwinding) is a loop transformation technique which optimizes
the code by removing (or reducing) loop iterations

The optimization produces better code at the expense of binary size

Example:
for (int i = 0; i < N; i++)

sum += A[i];

can be rewritten as:
for (int i = 0; i < N; i += 8) {

sum += A[i];
sum += A[i + 1];
sum += A[i + 2];
sum += A[i + 3];
...

} // we suppose N is a multiple of 8 44/65



Loop Unrolling 2/2

Loop unrolling notes:

+ Improve instruction-level parallelism (ILP)
+ Allow vector (SIMD) instructions
+ Reduce control instructions and branches
- Increase compile-time/binary size
- Require more instruction decoding
- Use more memory and instruction cache

Unroll directive The Intel, IBM, and clang compilers (but not GCC) provide the
preprocessing directive #pragma unroll (to insert above the loop) to force loop unrolling.
The compiler already applies the optimization in most cases

lemire.me/blog/2019/04/12 45/65

https://lemire.me/blog/2019/04/12/why-are-unrolled-loops-faster/


Branch Hints

C++20 [[likely]] and [[unlikely]] provide a hint to the compiler to optimize
a conditional statement, such as while , for , if

for (i = 0; i < 300; i++) {
[[unlikely]] if (rand() < 10)

return false;
}

switch (value) {
[[likely]] case 'A': return 2;
[[unlikely]] case 'B': return 4;

}

46/65



Recursion 1/2

Avoid run-time recursion (very expensive). Prefer iterative algorithms instead (see
next slides)

Recursion cost: The program must store all variables (snapshot) at each recursion
iteration on the stack, and remove them when the control return to the caller instance

The tail recursion optimization avoids to maintain caller stack and pass the control to
the next iteration. The optimization is possible only if all computation can be executed
before the recursive call

47/65



Recursion 2/2

Via Twitter - Jan Wildeboer
48/65

https://twitter.com/jwildeboer/status/1218865157864067077?s=09


Functions



Function Call Cost

Function call methods:

Direct Function address is known at compile-time
Indirect Function address is known only at run-time

Inline The function code is fused in the caller code

Function call cost:

• The caller pushes the arguments on the stack in reverse order
• Jump to function address
• The caller clears (pop) the stack
• The function pushes the return value on the stack
• Jump to the caller address

The True Cost of Calls
49/65

https://hbfs.wordpress.com/2008/12/30/the-true-cost-of-calls/


Argument Passing 1/2

pass by-value small data types (≤ 8/16 bytes)
The data are copied into registers, instead of stack

pass by-pointer introduces one level of indirection
They should be used only for raw pointers (potentially NULL)

pass by-reference may introduce one level of indirection
pass-by-reference is more efficient than pass-by-pointer as
it facilitates variable elimination by the compiler, and the function
code does not require checking for NULL pointer

Most compilers optimize pass by-value with pass by-reference for passive data
structures

Three reasons to pass std::string view by value
50/65

https://quuxplusone.github.io/blog/2021/11/09/pass-string-view-by-value/


Argument Passing 2/2

For active objects with non-trivial (and expensive) copy constructor or destructor:

by-value Expensive, hard to optimize
by-pointer/reference ok. Prefer pass-by- const -X ( const overloading can also be

cheaper)

For passive objects with trivial copy constructor and destructor:

by-const-value Always produce the optimal code (converted in pass-by-const
ref if needed) but it should be avoided for as it does not change
the function signature

by-value Produce optimal code except for GCC (tested with GCC 9.2)
by-reference Could introduce a level of indirection

51/65



Function Optimizations

• Pass by-value built-in types and passive data structured (no side-effect. The
compiler already applies heuristics to determine the most efficient way to pass the
parameter (by-value or by-reference). Pass by-reference does not allow the
compiler to optimize in pass by-value (if not inline)

• Keep small the number of function parameters. The parameters can be passed by
using the registers instead filling and emptying the stack

• Consider combining several function parameters in a structure

• const modifier applied to pointers and references does not produce better code
in most cases, but it is useful for ensuring read-only accesses

GoTW#81 52/65

http://www.gotw.ca/gotw/081.htm


inline Function Declaration 1/2

inline (internal linkage)
inline specifier when applied to internal linkage functions (static or anonymous
namespace) is a hint for the compiler.
The code of the function can be copied where it is called (inlining)

inline void f() { ... }

• It is just a hint for the compiler that can ignore it ( inline increases the
compiler heuristic threshold)

• inline functions increase the binary size because they are expanded in-place for
every function call

53/65



inline Function Declaration 2/2

Compilers have different heuristics for function inlining

• Number of lines (even comments: How new-lines affect the Linux kernel
performance)

• Number of assembly instructions

• Inlining depth (recursive)

GCC/Clang extensions allow to force inline/non-inline functions:
attribute ((always_inline)) void f() { ... }
attribute ((noinline)) void f() { ... }

• An Inline Function is As Fast As a Macro
• Inlining Decisions in Visual Studio

54/65

https://nadav.amit.zone/linux/2018/10/10/newline.html
https://nadav.amit.zone/linux/2018/10/10/newline.html
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://devblogs.microsoft.com/cppblog/inlining-decisions-in-visual-studio/


Local Functions

All compilers, except MSVC, export all function symbols → slow, the symbols can be
used in other translation units

Alternatives:

• Use static functions

• Use anonymous namespace (functions and classes)

• Use GNU extension (also clang) attribute ((visibility("hidden")))

gcc.gnu.org/wiki/Visibility 55/65

https://gcc.gnu.org/wiki/Visibility


Pointers Aliasing 1/4

Consider the following example:
// suppose f() is not inline
void f(int* input, int size, int* output) {

for (int i = 0; i < size; i++)
output[i] = input[i];

}

• The compiler cannot unroll the loop (sequential execution, no ILP) because
output and input pointers can be aliased, e.g. output = input + 1

• The aliasing problem is even worse for more complex code and inhibits all kinds of
optimization including code re-ordering, vectorization, common sub-expression
elimination, etc.

56/65



Pointers Aliasing 2/4

Most compilers (included GCC/Clang/MSVC) provide restricted pointers
( restrict ) so that the programmer asserts that the pointers are not aliased
void f(int* __restrict input,

int size,
int* __restrict output) {

for (int i = 0; i < size; i++)
output[i] = input[i];

}

Potential benefits:
• Instruction-level parallelism
• Less instructions executed
• Merge common sub-expressions

57/65



Pointers Aliasing 3/4

Benchmarking matrix multiplication

void matrix_mul_v1(const int* A,
const int* B,
int N,
int* C) {

void matrix_mul_v2(const int* __restrict A,
const int* __restrict B,
int N,
int* __restrict C) {

Optimization -O1 -O2 -O3

v1 1,030 ms 777 ms 777 ms
v2 513 ms 510 ms 761 ms
Speedup 2.0x 1.5x 1.02x

58/65



Pointers Aliasing 4/4

void foo(std::vector<double>& v, const double& coeff) {
for (auto& item : v) item *= std::sinh(coeff);

}

vs.
void foo(std::vector<double>& v, double coeff) {

for (auto& item : v) item *= std::sinh(coeff);
}

Argument Passing, Core Guidelines and Aliasing
59/65

https://www.youtube.com/watch?v=uylFACqcWYI


C++ Objects



Variable/Object Scope

Declare local variable in the inner most scope

• the compiler can more likely fit them into registers instead stack

• it improves readability

Wrong:

int i, x;
for (i = 0; i < N; i++) {

x = value * 5;
sum += x;

}

Correct:

for (int i = 0; i < N; i++) {
int x = value * 5;
sum += x;

}

60/65



Variable/Object Scope

Exception! Built-in type variables and passive structures should be placed in the inner
most loop, while objects with constructors should be placed outside loops

for (int i = 0; i < N; i++) {
std::string str("prefix_");
std::cout << str + value[i];

} // str call CTOR/DTOR N times

std::string str("prefix_");
for (int i = 0; i < N; i++) {

std::cout << str + value[i];
}

61/65



Object RAII Optimizations

• Prefer direct initialization and full object constructor instead of two-step
initialization (also for variables)

• Prefer move semantic instead of copy constructor. Mark copy constructor as
=delete (sometimes it is hard to see, e.g. implicit)

• Ensure defaulted default and copy constructors = default to enable
vectorization

62/65



Object Dynamic Behavior Optimizations

• Avoid dynamic operations: exceptions* (and use noexcept ), dynamic cast,
smart pointer

• Virtual calls are slower than standard functions

• Mark final all virtual functions that are not overridden

*Investigating the Performance Overhead of C++ Exceptions 63/65

https://pspdfkit.com/blog/2020/performance-overhead-of-exceptions-in-cpp/


Object Operation Optimizations

• Use static for all members that do not use instance member (avoid passing
this pointer)

• Avoid multiple + operations between objects to avoid temporary storage

• Prefer ++obj / --obj (return &obj ), instead of obj++ , obj-- (return old
obj )

• Prefer x += obj , instead of x = x + obj → avoid the object copy

64/65



Object Implicit Conversion

struct A { // big object
int array[10000];

};
struct B {

int array[10000];

B() = default;

B(const A& a) { // user-defined constructor
std::copy(a.array, a.array + 10000, array);

}
};
//----------------------------------------------------------------------
void f(const B& b) {}

A a;
B b;
f(b); // no cost
f(a); // very costly!! implicit conversion 65/65


	I/O Operations
	printf
	Memory Mapped I/O
	Speed Up Raw Data Loading

	Memory Optimizations
	Arithmetic
	Data Types
	Operations
	Conversion
	Floating-Point
	Compiler Intrinsic Functions
	Value in a Range
	Lookup Table

	Control Flow
	Loop Hoisting
	Loop Unrolling
	Branch Hints
	Recursion

	Functions
	Function Call Cost
	Argument Passing
	Function Optimizations
	Function Inlining
	Pointers Aliasing

	C++ Objects
	Object RAII Optimizations


