
Modern C++ Programming
18. Performance Optimization III

Non-Coding Optimizations and Benchmarking

Federico Busato

University of Verona, Dept. of Computer Science
2022, v3.11

Table of Context

1 Compiler Optimizations
About the Compiler
Architecture Flags
Optimization Flags
Help the Compiler to Produce Better Code
Profile Guided Optimization (PGO)

2 Compiler Transformation Techniques

1/62

Table of Context

3 Libraries and Data Structures
External Libraries
Std Library

4 Profiling
gprof

uftrace

callgrind

cachegrind

perf Linux profiler

2/62

Table of Context

5 Performance Benchmarking
What to Test?
Workload/Dataset Quality
Cache Behavior
Stable CPU Performance
Program Memory Layout

6 Parallel Computing
Concurrency vs. Parallelism
Performance Scaling
Gustafson’s Law
Parallel Programming Languages

3/62

Compiler
Optimizations

About Compiler Optimizations 1/3

”I always say the purpose of optimizing compilers is not to make code
run faster, but to prevent programmers from writing utter **** in the
pursuit of making it run faster“

Rich Felker, musl-libc (libc alternative)

4/62

About Compiler Optimizations 2/3

bool isEven(int number) {
int numberCompare = 0;
bool even = true;
while (number != numberCompare) {

even = !even;
numberCompare++;

}
return even;

}

→
bool isEven(int number) {

return number & 1u;
}

Exploring Clang/LLVM optimization on programming horror 5/62

https://blog.matthieud.me/2020/exploring-clang-llvm-optimization-on-programming-horror/

About Compiler Optimizations 3/3

On the other hand, having a good compiler does not mean that it can fully optimize
any code:

• The compiler does not “understand” the code, as opposed to human

• The compiler is conservative and applies optimizations only if they are safe and do
not affect the correctness of computation

• The compiler is full of models and heuristics that could not match a specific
situation

• The compiler cannot spend large amount of time in code optimization

• The compiler could consider other targets outside performance, e.g. binary size

6/62

About the Compiler 1/2

Important advise: Use an updated version of the compiler
• Newer compiler produces better/faster code

- Effective optimizations
- Support for newer CPU architectures

• New warnings to avoid common errors and better support for existing
error/warnings (e.g. code highlights)

• Faster compiling, less memory usage

• Less compiler bugs: compilers are very complex and they have many bugs

Use an updated version of the linker : e.g. for Link Time Optimization,
gold linker or LLVM linker lld

7/62

About the Compiler 2/2

Which compiler?

Answer: It dependents on the code and on the processor
example: GCC 9 vs. Clang 8

Some compilers can produce optimized code for specific architectures:
• Intel Compiler (commercial): Intel processors
• IBM XL Compiler (commercial): IBM processors/system
• Nvidia NVC++ Compiler (free/commercial): Multi-core processors/GPUs

• gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
• Intel Blog: gcc-x86-performance-hints
• Advanced Optimization and New Capa-bilities of GCC 10 8/62

https://www.phoronix.com/scan.php?page=article&item=gcc9-clang8-hedt&num=1
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/blogs/2012/09/26/gcc-x86-performance-hints
https://documentation.suse.com/sbp/all/pdf/SBP-GCC-10_color_en.pdf

Architecture Flags

32-bits or 64-bits?

-m64 In 64-bit mode the number of available registers increases from 6 to 14 general
and from 8 to 16 XMM. Also all 64-bits x86 architectures have SSE2 extension by
default. 64-bit applications can use more than 4GB address space

-m32 32-bit mode. It should be combined with -mfpmath=sse to enable using of XMM
registers in floating point instructions (instead of stack in x87 mode). 32-bit
applications can use less than 4GB address space

It is recommended to use 64-bits for High-Performance Computing applications and
32-bits for phone and tablets applications

9/62

Optimization Flags 1/5

-O0 Disables any optimization
• default behavior
• fast compile time

-O1 Enables basic optimizations

-O2 Enables advanced optimizations
• some optimization steps are expensive
• can increase the binary size

-O3 Turns on all optimizations specified by -O2, plus some more
• -O3 does not guarantee to produce faster code than -O2
• it could break floating-point IEEE764 rules on some non-traditional compilers

-O4 For some compilers, it is an alias of -O3 . In other cases can refers to
inter-procedural optimization 10/62

Optimization Flags (floating-point) 2/5

In general, enabling the following flags implies less floating-point accuracy, breaking
the IEEE764 standard, and it is implementation dependent (not included in -O3)

-fno-trapping-math Disable floating-point exceptions

-ffinite-math-only Disable special conditions for handling inf and NaN

-funsafe-math-optimizations Allows breaking floating-point associativity and
enables reciprocal optimization

-ffast-math Enables aggressive floating-point optimizations. All
the previous, flush-to-zero denormal number, plus
others

Beware of fast-math 11/62

https://simonbyrne.github.io/notes/fastmath/

Optimization Flags 3/5

-Ofast Provides other aggressive optimizations that may violate strict
compliance with language standards. It includes -O3 -ffast-math

-Os Optimize for size. It enables all -O2 optimizations that do not
typically increase code size

-funroll-loops Enables loop unrolling (not included in -O3)

-march=native Generates instructions for a specific machine by determining the
processor type at compilation time (not included in -O3) (e.g. SSE2 ,
AVX512 , etc.)

-mtune=native Generates instructions for a specific machine and for earlier CPUs in the
architecture family (may be slower than -march=native)

12/62

Optimization Flags 5/5

-flto Enables Link Time Optimizations (Interprocedural Optimization). The
linker merges all modules into a single combined module for
optimization

• the linker must support this feature: GNU ld v2.21++ or gold version,
to check with ld --version

• it can significantly improve the performance
• in general, it is a very expensive step, even longer than the object

compilations

-fwhole-program Assume that the current compilation unit represents the whole
program being compiled → Assume that all non-extern functions and
variables belong only to their compilation unit

Ubuntu 21.04 To Turn On LTO Optimizations For Its Packages 13/62

https://www.phoronix.com/scan.php?page=news_item&px=Ubuntu-21.04-LTO-Packages

Help the Compiler to Produce Better Code

Grouping related variables and functions in same translation units
• Private functions and variables in the same translation units

• Define every global variable in the translation unit in which it is used more often

• Declare in an anonymous namespace the variables and functions that are global to
translation unit, but not used by other translation units

• Put in the same translation unit all the function definitions belonging to the same
bottleneck

Static library linking helps the linker to optimize the code across different
modules (link-time optimizations). Dynamic linking prevents these kind of
optimizations

14/62

Profile Guided Optimization (PGO) 1/2

Profile Guided Optimization (PGO) is a compiler technique aims at improving the
application performance by reducing instruction-cache problems, reducing branch
mispredictions, etc. PGO provides information to the compiler about areas of an
application that are most frequently executed

It consists in the following steps:

(1) Compile and instrument the code

(2) Run the program by exercising the most used/critical paths

(3) Compile again the code and exploit the information produced in the previous step

The particular options to instrument and compile the code are compiler specific

15/62

Profile Guided Optimization (PGO) 2/2

GCC

$ gcc -fprofile-generate my_prog.c my_prog # program instrumentation
$./my_prog # run the program (most critial/common path)
$ gcc -fprofile-use -O3 my_prog.c my_prog # use instrumentation info

Clang

$ clang++ -fprofile-instr-generate my_prog.c my_prog
$./my_prog
$ xcrun llvm-profdata merge -output default.profdata default.profraw
$ clang++ -fprofile-instr-use=default.profdata -O3 my_prog.c my_prog

e.g. Firefox and Google Chrome support PGO building

16/62

PGO, LTO Performance

SPEC 2017 built with GCC 10.2 and -O2

17/62

Polyhedral Optimizations

Polyhedral optimization is a compilation technique that
rely on the representation of programs, especially those involving
nested loops and arrays, in parametric polyhedra. Thanks to
combinatorial and geometrical optimizations on these objects, the
compiler is able to analyze and optimize the programs including automatic
parallelization, data locality, memory management, SIMD instructions, and code
generation for hardware accelerators

Polly is a high-level loop and data-locality optimizer and optimization infrastructure
for LLVM

PLUTO is an automatic parallelization tool based on the polyhedral model

see also Using Polly with Clang 18/62

https://polly.llvm.org/
http://pluto-compiler.sourceforge.net/
https://polly.llvm.org/docs/UsingPollyWithClang.html

Compiler
Transformation
Techniques

Help the Compiler to Produce Better Code

Overview on compiler code generation and transformation:

• Optimizations in C++ Compilers
Matt Godbolt, ACM Queue

• Compiler Optimizations

19/62

https://dl.acm.org/ft_gateway.cfm?id=3372264&ftid=2096683&dwn=1
http://compileroptimizations.com/category/address_optimization.htm

Compiler Transformations 1/3

• Constant folding. Direct evaluation constant expressions at compile-time
const int K = 100 * 1234 / 2;

• Constant propagation. Substituting the values of known constants in
expressions at compile-time
const int K = 100 * 1234 / 2;
const int J = K * 25;

• Common subexpression elimination. Avoid computing identical and redundant
expressions
int x = y * z + v;
int y = y * z + k; // y * z is redundant

20/62

Compiler Transformations 2/3

• Induction variable elimination. Eliminate variables whose values are dependent
(induction)
for (int i = 0; i < 10; i++)

x = i * 8;
// "x" can be derived by knowing the value of "i"

• Dead code elimination. Elimination of code which is executed but whose result
is never used, e.g. dead store
int a = b * c;
... // "a" is never used, "b * c" is not computed

Unreachable code elimination instead involves removing code that is never
executed

21/62

Compiler Transformations 3/3

• Use-define chain. Avoid computations related to a variable that happen before
its definition
x = i * k + l;
x = 32; // "i * k + l" is not needed

• Peephole optimization. Replace a small set of low-level instructions with a
faster sequence of instructions with better performance and the same semantic.
The optimization can involve pattern matching
imul eax, eax, 8 // a * 8
sal eax, 3 // a << 3 (shift)

22/62

Loop Unswitching

• Loop Unswitching. Split the loop to improve data locality and perform
additional optimizations
for (i = 0; i < N; i++) {

if (x)
a[i] = 0;

else
b[i] = 0;

}

if (x) {
for (i = 0; i < N; i++)

a[i] = 0; // use memset
}
else {

for (i = 0; i < N; i++)
b[i] = 0; // use memset

}
23/62

Loop Fusion

• Loop Fusion (jamming). Merge multiple loops to improve data locality and
perform additional optimizations
for (i = 0; i < 300; i++)

a[i] = a[i] + sqrt(i);
for (i = 0; i < 300; i++)

b[i] = b[i] + sqrt(i);

for (i = 0; i < 300; i++) {
a[i] = a[i] + sqrt(i); // sqrt(i) is computed only
b[i] = b[i] + sqrt(i); // one time

}

24/62

Loop Fission

• Loop Fission (distribution). Split a loop in multiple loops to
for (i = 0; i < 300; i++)

a[i] = a[i] + sqrt(i);
for (i = 0; i < 300; i++)

b[i] = b[i] + sqrt(i);

for (i = 0; i < 300; i++) {
a[i] = a[i] + sqrt(i); // sqrt(i) is computed only
b[i] = b[i] + sqrt(i); // one time

}

25/62

Loop Interchange

• Loop Interchange. Exchange the order of loop iterations to improve data locality
and perform additional optimizations (e.g. vectorization)
for (i = 0; i < 1000000; i++) {

for (j = 0; j < 100; j++)
a[j * x + i] = ...; // low locality

}

for (j = 0; j < 100; j++) {
for (i = 0; i < 1000000; i++)

a[j * x + i] = ...; // high locality
}

26/62

Loop Tiling

• Loop Tiling (blocking, nest optimization). Partition the iterations of multiple
loops to exploit data locality
for (i = 0; i < N; i++) {

for (j = 0; j < M; j++)
a[j * N + i] = ...; // low locality

}

for (i = 0; i < N; i += TILE_SIZE) {
for (j = 0; j < M; j += TILE_SIZE) {

for (k = 0; k < TILE_SIZE; k++) {
for (l = 0; l < TILE_SIZE; l++) {

In many cases, the compiler already applies these optimizations 27/62

Libraries and Data
Structures

External Libraries 1/3

Consider using optimized external libraries for critical program operations

• Compressed Bitmask: set algebraic operations
• BitMagic Library
• Roaring Bitmaps

• Ordered Map/Set: B+Tree as replacement for red-black tree
• STX B+Tree
• Abseil B-Tree

• Hash Table: (replace for std::unsorted set/map)
• Google Sparse/Dense Hash Table
• bytell hashmap
• Facebook F14 memory efficient hash table
• Abseil Hashmap (2x-3x faster)
• Robin Hood Hashing 28/62

http://bitmagic.io/index.html
http://roaringbitmap.org/
https://panthema.net/2007/stx-btree/
https://abseil.io/docs/cpp/guides/container
https://github.com/sparsehash/sparsehash
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://code.fb.com/developer-tools/f14/
https://abseil.io/docs/cpp/guides/container
https://github.com/martinus/robin-hood-hashing

External Libraries 2/3

• Probabilistic Set Query: Bloom filter, ‘XOR filter, Facebook’s Ribbon
Filter, Binary Fuse filter

• Scan, print, and formatting: fmt library, scn library instead of iostream
or printf/scanf

• Random generator: PCG random generator instead of Mersenne Twister or
Linear Congruent

• Non-cryptographic hash algorithm: xxHash instead of CRC

• Cryptographic hash algorithm: BLAKE3 instead of MD5 or SHA
29/62

https://arxiv.org/abs/1912.08258
https://engineering.fb.com/2021/07/09/data-infrastructure/ribbon-filter/
https://engineering.fb.com/2021/07/09/data-infrastructure/ribbon-filter/
https://github.com/hexops/fastfilter
https://github.com/fmtlib/fmt
https://github.com/eliaskosunen/scnlib/tree/v1.0
http://www.pcg-random.org/
https://cyan4973.github.io/xxHash/
https://github.com/BLAKE3-team/BLAKE3

External Libraries 3/3

• Linear Algebra: Eigen, Armadillo, Blaze

• Sort:
• Beating Up on Qsort. Radix-sort for non-comparative elements (e.g. int ,

float)
• Vectorized and performance-portable Quicksort

• malloc replacement:
• tcmalloc (Google)
• mimalloc (Microsoft)

• Performance-oriented std library
• Folly (Facebook)

30/62

http://eigen.tuxfamily.org
arma.sourceforge.net
https://bitbucket.org/blaze-lib/blaze
https://travisdowns.github.io/blog/2019/05/22/sorting.html
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/microsoft/mimalloc
https://github.com/facebook/folly/blob/master/folly/docs/Overview.md

Library Collections

A curated list of awesome header-only
C++ libraries

31/62

https://github.com/p-ranav/awesome-hpp

std Library - From C to C++ 1/4

• Avoid old C library routines such as qsort , bsearch , etc. Prefer instead
std::sort , std::binary search

- std::sort is based on a hybrid sorting algorithm. Quick-sort / head-sort
(introsort), merge-sort / insertion, etc. depending on the std implementation

- Prefer std::find() for small array, std::lower bound ,
std::upper bound , std::binary search for large sorted array

32/62

std Library - Function Optimizations 2/4

• std::fill applies memset and std::copy applies memcpy if the
input/output are continuous in memory

• Use the same type for initialization in functions like std::accumulate() ,
std::fill

auto array = new int[size];
...
auto sum = std::accumulate(array, array + size, 0u);
// 0u != 0 → conversion at each step

std::fill(array, array + size, 0u);
// it is not translated into memset

The Hunt for the Fastest Zero 33/62

https://travisdowns.github.io/blog/2020/01/20/zero.html

std Library - Containers 3/4

• Use std container member functions (e.g. obj.find()) instead of external
ones (e.g. std::find()). Example: std::set O(log(n)) vs. O(n)

• Be aware of container properties, e.g. vector.push vector(v) , instead of
vector.insert(vector.begin(), value)

• Set std::vector size during the object construction (or use the reserve()
method) if the number of elements to insert is known in advance

• Consider unordered containers instead of the standard one, e.g. unorder map
vs. map

• Prefer std::array instead of dynamic heap allocation
34/62

std Library - Initialization and noexcept 4/4

• Most data structures are implemented over the heap memory. Consider
re-implement them by using the stack memory if the number of elements to insert
is small (e.g. queue)

• Prefer lambda expression (or function object) instead of std::function
or function pointers

• Use noexcept decorator → program is aborted if an error occurred instead of
raising an exception. see
Bitcoin: 9% less memory: make SaltedOutpointHasher noexcept

35/62

https://github.com/bitcoin/bitcoin/pull/16957

Profiling

Overview

A code profiler is a form of dynamic program analysis which aims at investigating the
program behavior to find performance bottleneck. A profiler is crucial in saving time
and effort during the development and optimization process of an application

Code profilers are generally based on the following methodologies:

• Instrumentation Instrumenting profilers insert special code at the beginning and
end of each routine to record when the routine starts and when it exits. With this
information, the profiler aims to measure the actual time taken by the routine on
each call.
Problem: The timer calls take some time themselves

• Sampling The operating system interrupts the CPU at regular intervals (time slices)
to execute process switches. At that point, a sampling profiler will record the
currently-executed instruction 36/62

gprof

gprof is a profiling program which collects and arranges timing statistics on a given
program. It uses a hybrid of instrumentation and sampling programs to monitor
function calls

Website: sourceware.org/binutils/docs/gprof/

Usage:
• Code Instrumentation

$ g++ -pg [flags] <source_files>

Important: -pg is required also for linking and it is not supported by clang

• Run the program (it produces the file gmon.out)
• Run gprof on gmon.out

$ gprof <executable> gmon.out

• Inspect gprof output 37/62

https://sourceware.org/binutils/docs/gprof/

gprof 2/2

gprof output

gprof can be also used for showing the call graph statistics

$ gprof -q <executable> gmon.out

38/62

uftrace

The uftrace tool is to trace and analyze execution of a program written in C/C++

Website: github.com/namhyung/uftrace

$ gcc -pg <program>.cpp
$ uftrace record <executable>
$ uftrace replay

Flame graph output in html and svg

39/62

https://github.com/namhyung/uftrace

callgrind

callgrind is a profiling tool that records the call history among functions in a
program’s run as a call-graph. By default, the collected data consists of the number of
instructions executed

Website: valgrind.org/docs/manual/cl-manual.html

Usage:

• Profile the application with callgrind

$ valgrind --tool callgrind <executable> <args>

• Inspect callgrind.out.XXX file, where XXX will be the process identifier

40/62

http://valgrind.org/docs/manual/cl-manual.html

cachegrind

cachegrind simulates how your program interacts with a machine’s cache hierarchy
and (optionally) branch predictor

Website: valgrind.org/docs/manual/cg-manual.html

Usage:
• Profile the application with cachegrind

$ valgrind --tool cachegrind --branch-sim=yes <executable> <args>

• Inspect the output (cache misses and rate)
- l1 L1 instruction cache
- D1 L1 data cache
- LL Last level cache

41/62

http://valgrind.org/docs/manual/cg-manual.html

kcachegrind and qcachegrindwin (View)

KCachegrind (linux) and Qcachegrind (windows) provide a graphical interface for
browsing the performance results of callgraph

•kcachegrind.sourceforge.net/html/Home.html

•sourceforge.net/projects/qcachegrindwin

42/62

http://kcachegrind.sourceforge.net/html/Home.html
https://sourceforge.net/projects/qcachegrindwin/

gprof2dot (View)

gprof2dot is a Python script to convert the output from many profilers into a dot
graph

Website: github.com/jrfonseca/gprof2dot

43/62

https://github.com/jrfonseca/gprof2dot

perf Linux profiler 1/2

Perf is performance monitoring and analysis tool for Linux. It uses statistical profiling,
where it polls the program and sees what function is working

Website: perf.wiki.kernel.org/index.php/Main Page

$ perf record -g <executable> <args> // or
$ perf record --call-graph dwarf <executable>
$ perf report // or
$ perf report -g graph --no-children

Linux perf for Qt developers 44/62

https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kdab.com/wp-content/uploads/stories/Linux_perf_for_Qt_developers.pdf

perf Linux profiler 2/2

Data collected by perf can be visualized by using flame graphs, see:
Speedscope: visualize what your program is doing and where it is
spending time

45/62

https://johnysswlab.com/speedscope-visualize-what-your-program-is-doing-and-where-it-is-spending-time/
https://johnysswlab.com/speedscope-visualize-what-your-program-is-doing-and-where-it-is-spending-time/

Other Profilers

Free profiler:

• Hotspot

Proprietary profiler:

• Intel VTune

• AMD CodeAnalyst

46/62

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

Performance
Benchmarking

Performance Benchmarking

Performance benchmarking is a non-functional test focused on mea-
suring the efficiency of a given task or program under a particular load

Performance benchmarking is hard!!

Main reasons:

• What to test?
• Workload/Dataset quality
• Cache behavior
• Stable CPU performance
• Program memory layout

47/62

What to Test?

1. Identify performance metrics: The metric(s) should be strongly related to the
specific problem and that allows a comparison across different systems, e.g.
elapsed time is not a good metric in general for measuring the throughput

- Matrix multiplication: FLoating-point Operation Per Second (FLOPS)
- Graph traversing: Edge per Second (EPS)

2. Plan performance tests: Determine what part of the problem is relevant for
solving the given problem, e.g. excluding initialization process

- Suppose a routine that requires different steps and ask a memory buffer for each of
them. Memory allocations should be excluded as a user could use a memory pool

48/62

Workload/Dataset Quality

1. Stress the most important cases: Rare or edge cases that are not used in
real-world applications or far from common usage are less important, e.g. a graph
problem where all vertices are not connected

2. Use datasets that are well-known in the literature and reproducible. Don’t
use “self-made” dataset and, if possible, use public available resources

3. Use a reproducible test methodology. Trying to remove sources of “noise”,
e.g. if the procedure is randomized, the test should be use with the same seed. It
is not always possible, e.g. OS scheduler, atomic operations in parallel computing,
etc.

see also Reproducibility in artificial intelligence 49/62

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17248/15864

Cache Behavior

• Cache behavior is not deterministic. Different executions lead to different hit rates

• After a data is loaded from the main memory, it remains in the cache until it
expires or is evicted to make room for new content

• Executing the same routine multiple times, the first run is much slower than the
other ones due to the cache effect

• There is no a systematic way to flush the cache. A good technique to ensure
reliable performance results is to overwrite all data involved in the computation
between each runs

see: Is there a way to flush the entire CPU cache related to a program?

50/62

https://stackoverflow.com/questions/48527189/is-there-a-way-to-flush-the-entire-cpu-cache-related-to-a-program

Stable CPU Performance 1/4

One of the first source of fluctuation in performance measurement is due to unstable
CPU frequency

Dynamic frequency scaling, also known as CPU throttling, automatically decreases
the CPU frequency for:

• Power saving, extending battery life
• Decrease fan noise and chip heat
• Prevent high frequency damage

Modern processors also comprise advanced technologies to automatically raise CPU
operating frequency when demanding tasks are running (e.g. Intel® Turbo
Boost). Such technologies allow processors to run with the highest possible frequency
for limited amount of time depending on different factors like type of workload,
number of active cores, power consumption, temperature, etc.

51/62

Stable CPU Performance 2/4

Get CPU info:

• CPU characteristics:
lscpu

• Monitor CPU clocks in real-time:
cpupower monitor -m Mperf

• Get CPU clocks info:
cpupower frequency-info
see “cpufreq governors”

52/62

Stable CPU Performance 3/4

• Disable Turbo Boost
echo 1 >> /sys/devices/system/cpu/intel pstate/no turbo

• Disable hyper threading
echo 0 > /sys/devices/system/cpu/cpuX/online

or through BIOS

• Use “performance” scaling governor
sudo cpupower frequency-set -g performance

• Set CPU affinity (CPU-Program binding) taskset -c <cpu id> <program>

• Set process priority sudo nice -n -5 taskset -c <cpu id> <process>
53/62

Stable CPU Performance 4/4

• Disable address space randomization
echo 0 | sudo tee /proc/sys/kernel/randomize va space

• Drop file system cache (if the benchmark involves IO ops)
echo 3 | sudo tee /proc/sys/vm/drop caches; sync

• CPU isolation
don’t schedule process and don’t run kernels code on the selected CPUs. GRUB
options: isolcpus=<cpu ids>,rcu nocbs=<cpu ids>

• How to get consistent results when benchmarking on Linux?
• How to run stable benchmarks
• Best Practices When Benchmarking CUDA Applications 54/62

https://easyperf.net/blog/2019/08/02/Perf-measurement-environment-on-Linux
https://archive.fosdem.org/2017/schedule/event/python_stable_benchmark/attachments/slides/1813/export/events/attachments/python_stable_benchmark/slides/1813/howto_run_stable_benchmarks.pdf
https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf

Program Memory Layout

A small code change modifies the memory program layout
→ large impact on cache (up to 40%)

• Linking
- link order → changes function addresses
- upgrade a library

• Environment Variable Size: moves the program stack
- run in a new directory
- change username

•Performance Matters, E. Berger, CppCon20
•Producing Wrong Data Without Doing Anything Obviously Wrong!, Mytkowicz et al.,
ASPLOS’09 55/62

https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf
https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw
https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw

Parallel Computing

Concurrency vs. Parallelism

Concurrency
A system is said to be concurrent if it can support two or more actions in progress
at the same time. Multiple processing units work on different tasks independently

Parallelism
A system is said to be parallel if it can support two or more actions executing
simultaneously. Multiple processing units work on the same problem and their
interaction can effect the final result

Note: parallel computation requires rethinking original sequential algorithms (e.g.
avoid race conditions)

56/62

Performance Scaling

Strong Scaling
The strong scaling defined how the compute time decreases increasing the number
of processors for a fixed total problem size

Weak Scaling
The weak scaling defined how the compute time decrease increasing the number of
processors for a fixed total problem size per processor

Strong scaling is hard to achieve because of computation units communication. Strong
scaling is in contrast to the Amdahl’s Law

57/62

Gustafson’s Law

Gustafson’s Law
Increasing number of processor units allow solving larger problems in the same time
(the computation time is constant)

Multiple problem instances can run concurrently with more computational resources

58/62

Parallel Programming Platforms and APIs 1/3

C++11 Threads (+ Parallel STL) free, multi-core CPUs

OpenMP free, directive-based, multi-core CPUs and GPUs (last versions)

OpenACC free, directive-based, multi-core CPUs and GPUs

Khronos OpenCL free, multi-core CPUs, GPUs, FPGA

Nvidia CUDA free, Nvidia GPUs

AMD ROCm free, AMD GPUs

HIP free, heterogeneous-compute Interface for AMD/Nvidia GPUs
59/62

Parallel Programming Platforms and APIs 2/3

Khronos SyCL free, abstraction layer for OpenCL, OpenMP, C/C++ libraries,
multi-core CPUs and GPUs

KoKKos (Sandia) free, abstraction layer for multi-core CPUs and GPUs

Raja (LLNL) free, abstraction layer for multi-core CPUs and GPUs

Intel TBB commercial, multi-core CPUs

OneAPI free, Data Parallel C++ (DPC++) built upon C++ and SYCL,
CPUs, GPUs, FPGA, accelerators

MPI free, de-facto standard for distributed system
60/62

Parallel Programming Platforms and APIs 3/3

61/62

A Nice Example

Accelerates computational chemistry simulations from 14 hours to 47 seconds with
OpenACC on GPUs (∼ 1, 000x Speedup)

Accelerating Prediction of Chemical Shift of Protein Structures on GPUs 62/62

https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1

	Compiler Optimizations
	About the Compiler
	Architecture Flags
	Optimization Flags
	Help the Compiler to Produce Better Code
	Profile Guided Optimization (PGO)

	Compiler Transformation Techniques
	Libraries and Data Structures
	External Libraries
	Std Library

	Profiling
	gprof
	uftrace
	callgrind
	cachegrind
	perf Linux profiler

	Performance Benchmarking
	What to Test?
	Workload/Dataset Quality
	Cache Behavior
	Stable CPU Performance
	Program Memory Layout

	Parallel Computing
	Concurrency vs. Parallelism
	Performance Scaling
	Gustafson's Law
	Parallel Programming Languages

