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Kurzfassung

Diese Arbeit beschreibt die Entwicklung des ersten open-source VHDL-Frontends mit dem
Namen Yodl. Yodl selbst benutzt das quelloffene Synthesetoolkit Yosys als Basis.

Zunächst wird kurz der aktuelle Status der Entwicklung digitaler Schaltungen reflektiert.
Außerdem wird Yosys kurz beschrieben. Danach beschreibt die Arbeit erst generelle,
compiler-spezifische Probleme, die gelöst werden müssen. Sodann geht sie detailliert auf
die VHDL-bezogenen Probleme ein und zeigt die entwickelten Algorithmen und Design-
entscheidungen auf. Schließlich liefert diese Masterarbeit einen Ausblick in die Zukunft
von Yodl, wobei hier sowohl die momentanen Limitierungen der Implementierung als auch
Verbesserungen des Testsystems betrachtet werden.

Diese Abschlussarbeit dokumentiert und erklärt den Quellcode von Yodl. Dieser liegt der
Arbeit bei und ist gleichzeitig das wichtigste Ergebnis.

Interessant ist sowohl der schriftliche als auch der Quellcodeteil dieser Ausarbeitung
für Hardwareentwickler, VHDL-Programmierer, Yosys-Nutzer und Theoretiker aus dem
Compilerbau und dem Gebiet der formalen Sprachen. Insbesondere für Theoretiker ist der
praktische Aspekt dieser Arbeit relevant.

Schlüsselworte: Compiler, Formale Sprachen, VHDL, Yosys, Hardwaresynthese
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Abstract

This work describes the development of the first open-source VHDL frontend named Yodl.
Yodl uses the synthesis toolkit Yosys as the foundation.

First of all, the state-of-the-art of digital hardware design is described. Furthermore,
some details of the Yosys toolkit are shown. After that, this work illustrates general,
compiler-specific problems any translation system faces during implementation. Then, the
thesis elaborates on the problems relevant to the processing of VHDL code and shows the
appropriate algorithms and design decisions the project uses. Finally, this work provides a
glance into the possible future of Yodl where, among other things, current limitations and
improvements of the test system play an important role.

This thesis documents and explains the source code of Yodl which was developed in the
scope of this master thesis and also represents the greatest achievement of it.

Both, the written part and the source code, might be of interest for hardware developers,
VHDL programmers, Yosys users, and theorists with a background on compiler construction
or formal languages. For theoreticians, especially the practical aspects of this thesis are likely
to be relevant.

Key words: Compiler, formal languages, VHDL, Yosys, hardware synthesis





Contents

1 State-of-the-art of Hardwaredesign 1
1.1 VHDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Yosys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Yodl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Yodl – Subproblems 5
2.1 Lexis and Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Compile-time checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Yodl – Implementation details 9
3.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Dot code generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Generic traverser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.5 Type predicates and stateful lambdas . . . . . . . . . . . . . . . . . . . 22
3.1.6 Localizing parser data structures . . . . . . . . . . . . . . . . . . . . . . 25
3.1.7 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 AST transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Loop expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Generate expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Elsif elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 If statement elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Process lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 RTLIL generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Yosys’s RTLIL data structures . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Introduction of SVHDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Synthesis semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Transformation algorithm – Synthesis examples . . . . . . . . . . . . . 44
3.3.5 Transformation algorithm – Implementation details . . . . . . . . . . . 54

3.4 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Yodl – Future work 57
4.1 Complete parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 BNFC and LBNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Further grammar issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Complete VHDL support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Far in the future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Formal specification of VHDL’s synthesis semantics . . . . . . . . . . 59
4.4.2 Regression based test suite . . . . . . . . . . . . . . . . . . . . . . . . . 59

i



Bibliography 61

ii



List of Figures

1.1 Netlist example for a binary adder . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Abstraction hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main Yosys components and data structures . . . . . . . . . . . . . . . . . . . . . 4

3.1 Class hierarchy of the AST’s data model . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 An example graph generated by Yodl . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Runtime structure of a SimpleTree oject . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Difference between shallow and deep cloning . . . . . . . . . . . . . . . . . . . . 17
3.5 Generic traverser runtime behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Important classes and their relationship . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Netlist for listing 1.1 generated by Yosys . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Netlist for listing 3.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Netlist for the listing 3.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Netlist for listing 3.39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Netlist for listing 3.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.12 Netlist for listing 3.41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.13 Netlist for listing 3.42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.14 Netlist for listing 3.43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.15 Netlist for listing 3.44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iii



iv



List of Tables

3.1 Truthtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



vi



Listings

1.1 Simple full adder in vhdl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example of a syntactically ambiguous VHDL snippet . . . . . . . . . . . . . . . . . 7

3.1 Class hierarchy for a simple expression grammar . . . . . . . . . . . . . . . . . . 10
3.2 Representation of (1 + 3) ∗ (4 + 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Sample snippet for dot graph generator demonstration . . . . . . . . . . . . . . . . 11
3.4 A sample graph in dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Simplified version of emit_vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Simplified version of emit_edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 class hierarchy for integer arithmetic expression . . . . . . . . . . . . . . . . . . . . 17
3.8 Instance of a syntax tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Eval functions for expression AST . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Traverser with Mach7 pattern matching . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Interface definition of the GenericTraverser class . . . . . . . . . . . . . . . . . . . 20
3.12 Example usage of an GenericTraverser object . . . . . . . . . . . . . . . . . . . . . . 21
3.13 An interface for stateful lambdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14 N-ary predicate generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15 Compile time evaluation of makeNaryTypePredicate . . . . . . . . . . . . . . . . 24
3.16 First special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.17 Second special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18 Third special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.19 Unrolling Scheme – First transformation . . . . . . . . . . . . . . . . . . . . . . . 29
3.20 Unrolling Scheme – Second transformation . . . . . . . . . . . . . . . . . . . . . . 29
3.21 A nested generate statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.22 Generate statement unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.23 Original if statement with elsif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.24 Desugared if statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.25 Generated case when statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.26 Simple concurrent signal assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.27 Conditional concurrent signal assignment . . . . . . . . . . . . . . . . . . . . . . . 35
3.28 Selected concurrent signal assignment . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29 Process encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.30 A typical IEEE 1076.6 code snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.31 Declaration of variables and signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.32 A typical IEEE 1076.6 code snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.33 Simple conditional assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.34 Simple D-Latch being utilized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.35 Clock edge specification syntax in VHDL . . . . . . . . . . . . . . . . . . . . . . . 43
3.36 Public API of NetlistGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.37 Code for a synchronized bit assignment . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



3.38 Code for a nested synchronized bit assignment . . . . . . . . . . . . . . . . . . . . 46
3.39 Code for a simple latched bit assignment . . . . . . . . . . . . . . . . . . . . . . . . 47
3.40 Code for a nested latched bit assignment . . . . . . . . . . . . . . . . . . . . . . . . 47
3.41 Code for a simple case statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.42 Code for three nested case statements . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.43 Code for a simple synchronized case statement . . . . . . . . . . . . . . . . . . . . . 51
3.44 Code for an if statement actually representing a case statement (aka. muxer) . . 52
3.45 Equal semantics as in 3.44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.46 API of base stack element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.47 Case statement context class derived from stack_element_t . . . . . . . . . . . . . 55
3.48 API of base netlist element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Generated classes for expression grammar . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Illustration of a common reduce-reduce conflict . . . . . . . . . . . . . . . . . . . 58

viii



List of Algorithms

1 Abstract description of a generic traverser’s behaviour . . . . . . . . . . . . . . . . . 20
2 A generic loop pre-processing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Generate expansion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 A simple elsif elimination algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



x



1 State-of-the-art of Hardwaredesign

Today, almost every part of the work in digital hardware design is done using sophisticated
tools and integrated development environments. This chapter will briefly elaborate on how
digital hardware is developed nowadays.

1.1 VHDL

The VHSIC Hardware Description Language (VHDL) is a language originally intended
for hardware simulation. Its history will not be elaborated here because there already is
comprehensive literature about this topic [1].

VHDL quickly evolved from being just a hardware simulation tool to a language that can
also be compiled. Since VHDL describes hardware, the target “language” is no language in
the sense of x64 or Motorola assembly, but rather a netlist (cyclic graph) of cells connected
through wires. Cells can be adders, multipliers or subtraction units and are represented as
vertices in the netlist. Wires represent the interconnections between the functional units in the
netlist. The term signal vector or signal chunk describes signals with n-bit width. A netlist
can be coarsely or finely grained, where a finely grained netlist is obliged to only contain
1-bit input logic gates and 1-bit wide connections. This limitation is not imposed on coarsely
grained netlists. Those are even allowed to contain abstractions for n-bit Multiplexers, etc.
(cf. [2] chapter 4.2).

To give an intuition of what hardware design with VHDL looks like, listing 1.1 presents a
hardware model of a 1-bit wide full adder.

The identifiers a, b, carryIn, carryOut and sum are signals of the top level entity of this
model. All those top-level signals can have a type, in this case std_logic, and a direction,
either in, out or inout. The type std_logic declares all signals to be of 1-bit width. Entity
declarations describe the interface of a hardware module, whereas architecture blocks
define the netlist of the previously declared entity.

In architecture behv, two statements are present. These are called signal assignment
statements. The arrow is used to connect two signals together and operators like xor or and
define hardware functionality. Adders would thus be described by the operator +.

Since the code in 1.1 is synthesizeable, a netlist can be compiled from the source. For the
model given above, the result is shown in figure 1.1. Note how the semantics of listing 1.1
and graph 1.1 have not changed; illustration 1.1 describes exactly the same data flow as
figure 1.1. Only the representation of the hardware description has changed.

In real life, however, hardware designs are much more complicated than in listing 1.1.
Because of the incredible complex designs arising in modern hardware industry, VHDL
became a viable tool, as it is obvious that the construction of netlists by hand like figure 1.1,
does not scale well especially if more than one person is involved in a design project.

1



1 State-of-the-art of Hardwaredesign

Listing 1.1 Simple full adder in vhdl
entity adder is

port ( a : in s t d _ l o g i c ;
b : in s t d _ l o g i c ;
car ry In : in s t d _ l o g i c ;
carryOut : out s t d _ l o g i c ;
sum : out s t d _ l o g i c ) ;

end adder ;

architecture behv of adder is
begin

sum <= a xor b xor carryIn ;
carryOut <= ( a and b )

or ( b and carryIn )
or ( a and carryIn ) ;

end behv ;

1.2 Yosys

Yodl – the tool described in this work – is based on Yosys. Yosys is an open-source logic
synthesis toolkit with various other features. It is actively maintained by Clifford Wolf, who
also did almost all of the implementation work (cf. [2]).

Like in so many other topics in science and engineering, different layers of abstraction
help to make hardware design automation feasible. Figure 1.2 shows such a layer stack
(cf. [2] chapter 2.1). Note that 1.2 is not a comprehensive depiction of those layers. Yosys
acts on the abstraction levels Behavioral Level, RTL Synthesis and Logic Synthesis, but it does
not implement every algorithm for the transitions between these layers itself. While Logic
Synthesis can be done entirely using the own logic synthesis algorithms of Yosys, the toolkit
also provides an interface to a logic synthesis toolchain called ABC which is recommended to
be used (cf. [2] chapter 2.1.5 page 16). An in-depth introduction to either one of the depicted
levels is beyond the scope of this work. However, chapter 1 of [3] provides an introduction
to the topic.

A high-level overview of the architecture of Yosys is necessary, especially for later chapters
where Yosys is directly interfaced. Figure 1.3 gives such a birds-eye view and shows how the
different components of the toolchain work together. RTLIL and AST are data structures
located in memory during the execution of Yosys. RTLIL represents netlists, whereas AST
depicts generic abstract syntax trees. Yosys makes it possible to add the VHDL frontend
component at two places. First, the frontend could produce an abstract syntax tree using
the predefined AST format from Yosys, thus the component would be placed above AST.
Second, the VHDL component could emit an RTLIL netlist serialized to normal ASCII text.
Said text would then be put into the ilang frontend that does the deserialization. The AST
frontend of Yosys is used to convert the AST format into RTLIL netlists. Note that there are
various ways to output RTLIL structures. The Verilog backend, for example, generates plain
register transfer level Verilog code, whereas the Graphviz backend serves as tool for netlist
visualization. Finally, Yosys provides optimizations that act only on RTLIL netlists. Chapter
3.3.1 illustrates the format of those netlists. There are, for instance, optimization passes that
eliminate process objects or similar high-level constructs from the netlists and replace them
by simple logic cells or wires.

2



1.3 Yodl

Figure 1.1 Netlist example for a binary adder

a

xor

b carryIn

sum

carryOut

or

or xor2

and andand

1.3 Yodl

Yodl is a standalone program that generates Ilang code. Ilang code, is just another represen-
tation of RTLIL from figure 1.3 and as such it is just a netlist. Yodl, in turn, uses VHDL files
as input in order to generate those netlists. So, consequently, Yodl transforms VHDL code
into RTLIL. The details regarding this transformation will be explained in detail in chapter 3.
The same chapter also contains information about the RTLIL.

Yodl is not a production ready synthesis system yet. The current limitations are listed in
chapter 3.4. During the development of Yodl, a subset of VHDL has been developed to hide
some complexities not regarded in this work. The subset is called SVHDL (S for simple) and
is specified briefly and informally in chapter 3.3.2.

As stated in the abstract, a major achievement of this thesis is the implementation of
Yodl itself. The entire source code is available on Github: https://github.com/forflo/
yodl. File names referring to sources in this repository are printed using this font
and, unless otherwise noted, are relative to https://github.com/forflo/yodl/tree/
master/vhdlpp.
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1 State-of-the-art of Hardwaredesign

Figure 1.2 Abstraction hierarchy
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Figure 1.3 Main Yosys components and data structures
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2 Yodl – Subproblems

Any compiler construction project can be split up into three distinct subprojects: Lexis and
Syntax, validity checks regarding the semantics and code/hardware generation. The last
step, hardware generation, is also usually referred to as synthesis. The first section of this
chapter shows the parsing and lexing problems caused by VHDL’s unorthodox grammar.
Section two briefly describes the concept of language semantics and answers the question
why Yodl can’t provide proper compile-time semantics checks. The last part of the problem,
synthesis, will not be elaborated here because chapter 3 contains detailed information about
this topic.

2.1 Lexis and Syntax

In order to process a programming language of any kind, an abstract syntax tree (AST) has
to be constructed. A software component called parser usually does that. The parser takes
tokens produced by a tokenizer (also called lexer) and incrementally builds said AST. In
theory, every programming language can be expressed using only one formal grammar
(concrete syntax). However, this grammar would even have to include rules describing how
identifiers, numbers or even strings can be constructed, making it very convoluted – and
as a consequence – harder to understand. Thus, a two-layer approach is used ever since
the very first compilers were built. The first layer solely contains the lexical analysis. In it,
every token (parentheses, identifiers, operator symbols . . . ) is described by a corresponding
regular expression. The result of the first step is a sequence of tokens which the parser
uses for the second step. This second step consists of a parsing algorithm that can match
context-free grammars (mostly of type LALR(1)). The vast set of details bound to formal
languages and, in consequence, parsing in general, is beyond the scope of this document
and will not be elaborated.

Since the rise of parser generators (such as YACC in the early 1970s) very efficient parsers
can be automatically generated from context free grammars encoded in BNF (Backus-Nauer
Form). The majority of these code generators put certain restrictions onto the grammars
which they can process. Grammars usually have to be in a well-defined subset of the set
of the context-free languages; LALR(1) is such a subset. In order for a language to be an
element of LALR(1), it must not contain any shift/reduce or reduce/reduce conflicts. This
property can be mechanically checked using sophisticated mathematical algorithms (cf. [21]).

VHDL is a special case because its grammar neither is a member of LR(1) – a superclass of
LALR(1) – nor LALR(1). To proof this, a part of VHDL’s grammar is examined.

〈name〉 ::= 〈simple_name〉
| 〈operator_symbol〉
| 〈character_literal〉
| 〈selected_name〉
| 〈indexed_name〉
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2 Yodl – Subproblems

| 〈slice_name〉
| 〈attribute_name〉

〈function_call〉 ::= 〈name〉 [ ‘(’ 〈association_list〉 ‘)’ ]

〈association_list〉 ::= 〈association_element〉 { , 〈association_element〉 }

〈association_element〉 ::= [ 〈formal_part〉 ‘=>’ ] 〈actual_part〉

〈formal_part〉 ::= 〈name〉
| 〈name〉 ‘(’ 〈name〉 ‘)’

〈actual_part〉 ::= 〈actual_designator〉
| 〈name〉 ‘(’ 〈actual_designator〉 ‘)’

〈expression〉 ::= 〈name〉
| 〈number〉

〈actual_designator〉 ::= [ ‘inertial’ ] 〈expression〉
| 〈name〉
| ‘open’

〈prefix〉 ::= 〈name〉
| 〈function_call〉

〈selected_name〉 ::= 〈prefix〉 ‘.’ 〈suffix〉

〈attribute_name〉 ::= 〈prefix〉 ‘’’ 〈attribute_designator〉 [ ‘(’ 〈expression〉 ‘)’ ]

〈slice_name〉 ::= 〈prefix〉 ‘(’ 〈discrete_range〉 ‘)’

〈indexed_name〉 ::= 〈prefix〉 ‘(’ 〈expression〉 { ‘,’ 〈expression〉 } ‘)’

〈operator_symbol〉 ::= 〈string_literal〉

〈character_literal〉 ::= ‘’’ 〈graphic_character〉 ‘’’

Although this is only a very small subset of the VHDL grammar, it is still hard to see the
ambiguity. The following paragraph will present a set of valid simplification steps, that
produce subsets of the grammar listed above. The removal of any grammar rules and non-
terminal symbols does not create ambiguities but only a new subset of the original language.
The idea behind this proof is, to keep deleting non-terminals and grammar rules until it
becomes obvious enough to trivially show the existence of a reduce/reduce or shift/reduce
conflict. Since only a strict subset of the grammar remains, the proof is sound.

The deletion of the following non-terminals, serves as start.

〈operator_symbol〉 ::= 〈string_literal〉

〈character_literal〉 ::= ‘’’ 〈graphic_character〉 ‘’’

Since “slice_name” can be expressed by the non-terminal “indexed_name” the following can
also be deleted:
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2.1 Lexis and Syntax

〈slice_name〉 ::= 〈prefix〉 ‘(’ 〈discrete_range〉 ‘)’

Also, the rules

〈selected_name〉 ::= 〈prefix〉 ‘.’ 〈suffix〉

〈attribute_name〉 ::= 〈prefix〉 ‘’’ 〈attribute_designator〉 [ ‘(’ 〈expression〉 ‘)’ ]

get deleted.
Furthermore, simplification can be done by defining function calls to be productions of

〈function_call〉 ::= 〈name〉 [ ‘(’ 〈expression〉 ‘)’ ]

This produces a language subset, where only unary functions can be called.
After these subsetting steps, only the following grammar remains. Note that prefix does

not exist because it has been subsumed by indexed_name.

〈name〉 ::= 〈simple_name〉
| 〈indexed_name〉

〈function_call〉 ::= 〈name〉 [ ‘(’ 〈expression〉 ‘)’ ]

〈expression〉 ::= 〈name〉
| 〈number〉

〈indexed_name〉 ::= 〈name〉 ‘(’ 〈expression〉 { ‘,’ 〈expression〉 } ‘)’
| 〈function_call〉 ‘(’ 〈expression〉 { ‘,’ 〈expression〉 } ‘)’

The reduce/reduce conflict indeed is obvious now. It shows up clearly if one creates two
different production sequences that generate the same sequence of tokens.

〈name〉 ::= 〈indexed_name〉 ::= 〈name〉 ‘(’ 〈expression〉 ‘)’ ::= ‘foo’ ‘(’ 42 ‘)’

〈name〉 ::= 〈indexed_name〉 ::= 〈function_call〉 ::= 〈name〉 ‘(’ 〈expression〉 ‘)’ ::= ‘foo’ ‘(’ 42 ‘)’

Reduce/reduce errors generally imply a bad language design. But as mentioned before,
VHDL is a special case. It simply might not be possible to create a conflict free context-
free grammar where function parameter lists and array subscriptions both use the same
parameter/expression grouping symbol; namely “(” and “)”.

Fortunately, there is a way to resolve this ambiguity. Given the following VHDL snippet
2.1

Listing 2.1 Example of a syntactically ambiguous VHDL snippet
entity ent is

port (A : out s t d _ l o g i c _ v e c t o r (1 downto 0) ) ;
end ent ;

architecture beh of ent is
signal foo : s t d _ l o g i c _ v e c t o r (1 downto 0) ;

begin
A( 1 ) <= foo ( 0 ) ;
A( 0 ) <= foo ( 1 ) ;

end beh ;
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The ambiguity can be resolved with the help of the context. In particular the scoping
information can be used to figure out whether a name refers to a variable, a type, or a
function. In the above source code, this is easy. Since A is declared to be an output signal
and foo is a signal local (i.e. only visible) inside the enclosing architecture and because both
signals are of type std_logic_vector, it can be inferred that A(1) clearly describes an array
subscription.

In order to generate an unambiguous AST, this information needs to be processed by
the parser. To be specific, the parser needs to keep track of a scope stack and all visible
identifiers, which makes it a scope aware parser. Because the implementation of such a
context sensitive parser would probably be enough to provide material for an entire thesis,
an existing VHDL parser will be reused for the purpose presented in this master thesis (cf.
3).

2.2 Compile-time checks

Compile-time checks are also commonly referred to as semantic checks. In formal language
theory, there generally are two kinds of semantics that can be defined: The static semantics
and dynamic semantics. Both formalisms use the previously defined abstract syntax to give a
formal specification and assume only syntactically correct programs as input. Simply put,
static semantics describe properties of a program that can be verified during compile time.
Hence the term static. The type system of a programming language belongs to this semantic
class. In the context of VHDL, for example, the correct usage of packages or libraries must
be verifiable during translation time too, thus checks regarding those issues are part of a
static semantic specification (cf. introductory chapters of [4] and [5]).

The dynamic semantics of a program is either a rigid description of its behavior during
runtime (i.e. how does the program manipulate data) or a specification of the end-product
to the translation process (i.e. a netlist).

Unfortunately, IEEE 1076-2008, [6], does not give a formal set of rules using mature mathe-
matical frameworks for semantic specifications. Rather, it provides a language description in
English (which is a natural language and not meant to be used as a rigid formal tool).

In 1995, however, the formal specification [10] was published which defines VHDL with
different mathematical tools. Since then, sadly there hasn’t been made any update for this
work whatsoever, making it obsolete as the current standard outdates this work by 13 years.

As a consequence, this work will not present any compile-time consistency/semantic
checks.
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This chapter will elaborate on information around the actual implementation of the VHDL
frontend Yodl. The first chapter examines the infrastructure that has been built. The
following chapter describes the various AST transformation passes. The last chapter finally
gives information about the netlist generator algorithm and Yodl’s current limitations.

Before the first section of this chapter begins, the overall mode of operation of Yodl must
be clarified. As chapter 1.3 briefly states, Yodl transforms plain VHDL code into RTLIL
netlists. In order to accomplish this, Yodl first reads in the VHDL source and constructs
a tree structure representing the code. The scanner component tokenizes the input code
according to the language standard and passes the tokens to the parser, which gradually
constructs the parse tree (AST) from the bottom up. Unnecessary information gets discarded
during scanning and parsing. For example, parentheses or other structuring tokens need not
be contained in the tree representation, because the structure of the tree already provides the
same information in a much more usable manner. Chapter 2.1 regards some of the more
difficult problems in the scanning and parsing parts.

Once Yodl possesses an AST, it must be semantically checked; though this step is currently
omitted. Thereafter, AST simplification happens. Compile-time evaluable expressions get
evaluated and replace their originals, loops get unrolled, generate statement evaluation
happens and syntax sugar gets replaced by simpler, semantically equivalent language
primitives. The order of these simplification steps is not hard-wired and can easily be
adjusted. Also, they are elaborated in chapter 3.2.

Finally, Yodl conducts the netlist synthesis and emits the serialized netlist to an IO stream.
Yodl currently does not do anything besides AST simplification and netlist generation
because of the limitations listed at the end of this chapter. Note that figure 1.3 puts Yodl
in the greater context of the Yosys toolchain and shows how frontend and backend are
intertwined. Furthermore, section 3.3 documents the creation of netlists.

3.1 Infrastructure

3.1.1 Data model

As 2.1 mentioned, Yodl reuses an existing parser for VHDL. This parser comes from the
project vhdlpp [11]. Vhdlpp already includes a lexer, a parser and suitable classes that
describe the abstract syntax tree.

The data model uses inheritance in order to resemble the nature of the productions in the
grammar. The principle used, can be explained best using a simple expression grammar.

〈Exp〉 ::= 〈Exp〉 + 〈Exp1〉
| 〈Exp1〉;

〈Exp1〉 ::= 〈Exp1〉 * 〈Exp2〉
| 〈Exp2〉;
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〈Exp2〉 ::= 〈Integer〉
| ( 〈Exp〉 );

A set of data types can now be defined that might be used to build a typed AST for this
grammar. Listing 3.1 shows one possible implementation. Using the data types from listing
3.1, the representation of the expression 1 + 3 ∗ 4 + 3 is as simple as code 3.2.

Listing 3.1 Class hierarchy for a simple expression grammar
class Exp { virtual ~Exp ( ) = default ; } ;

class EAdd : public Exp {
public :

Exp ∗exp_1 ; Exp ∗exp_2 ;
EAdd( Exp ∗p1 , Exp ∗p2 ) ;

} ;

class EMul : public Exp {
public :

Exp ∗exp_1 ; Exp ∗exp_2 ;
EMul ( Exp ∗p1 , Exp ∗p2 ) ;

} ;

class EInt : public Exp {
public :

I n t e g e r i n t e g e r _ ;
EInt ( I n t e g e r p1 ) ;

} ;

Listing 3.2 Representation of (1 + 3) ∗ (4 + 3)
Exp ∗ express ion = new EMul (

new EAdd( new EInt ( 1 ) , new EInt ( 3 ) ) ,
new EAdd( new EInt ( 4 ) , new EInt ( 3 ) ) ) ;

Listing 3.1 contains one base class Exp and three derived classes that inherit from it. Since
the destructor function of the base is marked virtual and default, the inheritance tree is
polymorphic and, consequently, the compiler generates a V-Table for each child of Exp. Those
V-Tables serve two purposes. First of all, they enable virtual dispatch and Secondly, V-Tables
are needed for runtime type analysis of polymorphic objects. After all, the cast operator of
C++, dynamic_cast, can only do downcasts on polymorphic objects. Type analysis enables
one to determine whether a pointer of type Exp points to EAdd or any other specialization of
that same base class. In other words, a polymorphic inheritance relation that models a formal
grammar, can be used to create typed abstract syntax trees, where the type information of
the respective nodes is implicitly available through the V-Tables attached to every object
and can be explicitly queried using dynamic_cast. The details of queries of this nature are a
idiosyncracy of C++ and shall not be elaborated any further here.

The main purpose of the method illustrated in listing 3.1 is therefore the creation of typed
ASTs.

Listing 3.2 shows the creation of a typed abstract syntax tree. Once created, the tree begins
with an EMul object as root containing two pointers. Both point to a distinct EAdd object
which, in turn, also point to two EInt objects respectively. EInt(3), for example, can be reached
using the path EMul::exp_1→ EAdd::exp_2.
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For reference, figure 3.1 shows the inheritance relation between all relevant classes of the
data model of the AST that Yodl uses internally for VHDL code. This model is constructed
using the same principles, that the listings 3.1 and 3.2 demonstrate. That means, each actual
node can be of a non-virtual class type that is present in the illustrated inheritance tree.

3.1.2 Dot code generator

The simple VHDL frontend prototype Yodl – at the time of this writing – uses 5 different
transformation passes that operate on one big data structure; namely the AST. One can see
very clearly how important it is to be able to visualize this data structure.

The Graphviz project is a very mature graph rendering software. This software uses a
declarative language to describe graphs (and thus trees) and provides a large variety of tools
that can understand this formalism. Graph descriptions written in this Graphviz language
are also informally called dot-graphs [12]. Graphviz was chosen for rendering because it
provides the means necessary to convert the AST itself into various graphic formats. The
remaining section explains how AST’s get converted into dot.

How should the visualized AST look like? Given the VHDL snippet 3.3 the fully rendered
graph should look like figure 3.2.

Listing 3.3 Sample snippet for dot graph generator demonstration
architecture behv of adder is

signal r e s u l t : s t d _ l o g i c _ v e c t o r ( n downto 0) ;
begin
−− the 3rd b i t should be carry
r e s u l t <= ( ’ 0 ’ & A) + ( ’ 0 ’ & B ) ;
sum <= r e s u l t ( n − 1 downto 0) ;
carry <= r e s u l t ( n ) ;

end behv ;

The implementation splits the problem into three major parts:

1. Extraction of the relevant information from the AST into an intermediate format

2. Modification of the resulting data for better processing

3. Traversal and code generation

Extraction of information from the AST

After parsing has finished, the complete information from the original VHDL source code lies
in the AST. This data structure is built from objects representing expressions, signal assign-
ments or control structures. The current data model, for reference, defines an ExpArithmetic
object like the following:

class Expression { /∗ Abstrac t base c l a s s f o r express ions ∗/ } ;

class ExpBinary : public Expression {
public :

ExpBinary ( Expression ∗op1 , Expression ∗op2 ) ;
/∗ I n t e n t i o n a l l y l e f t out ∗/

public :
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Figure 3.1 Class hierarchy of the AST’s data model
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Figure 3.2 An example graph generated by Yodl

Expression ∗operand1_ ;
Expression ∗operand2_ ;

} ;

class ExpArithmetic : public ExpBinary {
public :

enum fun_t {PLUS , MINUS, MULT, DIV , MOD, REM, POW, xCONCAT} ;
ExpArithmetic ( ExpArithmetic : : fun_t op , Expression ∗op1 , Expression

∗op2 ) ;
/∗ I n t e n t i o n a l l y l e f t out ∗/

public :
fun_t fun_ ;

}

This depiction is heavily simplified and does not comprehensively represent all details
of ExpArithmetic objects. Objects that represent whole Architectures are obviously even
more complicated. The class definition of an Architecture object contains the name of the
architecture, a linked list of concurrent statements and all possible declarations that can
occur in the architecture header.

In order to extract the mentioned information from the AST, each node (= object) has to be
visited. In OOP, there generally are two possible solutions for this kind of traversal. On the
one hand, every node object of the AST could implement a virtual method that outputs the
desired information in a special data structure. On the other hand, the AST could completely
be traversed from outside. However, the second option clearly imposes the public member
access upon all member variables of the objects. Within the scope of this work, the first

13



3 Yodl – Implementation details

Figure 3.3 Runtime structure of a SimpleTree oject
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solution has been implemented and shall now be elaborated.
As mentioned before, the first step produces data in some kind of intermediate format.

Since the AST itself is an n-ary tree, the output ought to be a tree as well. For this purpose,
the class SimpleTree has been introduced. Its class declaration shall be given in the following
listing.

class SimpleTree {
public :

SimpleTree ( const std : : map< s t r i n g , s t r i n g > s ) : root ( s ) { } ;
SimpleTree ( const map<s t r i n g , s t r i n g > s ,

s td : : vector <SimpleTree <std : : map<s t r i n g , s t r i n g >>∗> own)
: root ( s ) , f o r e s t (own) { } ;

/∗ f u r t h e r c t o r and dtor d e c l a r a t i o n s i n t e n t i o n a l l y l e f t out ∗/
public :

s td : : map< s t r i n g , s t r i n g > root ;
s td : : vector <SimpleTree <std : : map< s t r i n g , s t r i n g >>∗> f o r e s t ;

} ;

Note, that the original class uses C++-Templates but, due to the great negative influence of
templates on the readability, an instantiated version of the class was printed. As the code
shows, the data type used for this instantiation is std :: map<string, string>.

In order to visualize the runtime structure of a SimpleTree tree, an example is given in
figure 3.3. Now one can take a look at how the mentioned methods inside the AST nodes
are implemented. The scheme is as follows: Every AST object inherits the virtual method
with the signature

SimpleTree <map<s t r i n g , s t r i n g >> ∗ e m i t _ s t r i n f o _ t r e e ( void ) const ;

Every non-abstract object must provide for a specific implementation that transforms each
actual object, this, and each of it’s successors into a pointer to SimpleTree<map<string,
string>>.
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For AST nodes that cannot have childs, this implementation is very simple, because it just
consists of a statement like

return new SimpleTree <map<s t r i n g , s t r i n g >>(
map<s t r i n g , s t r i n g >{

{ " node−type " , " ExpInteger " } ,
/∗ i n t e n t i o n a l l y l e f t out ∗/ ,
{ " value " , ( dynamic_cast<st r ings t ream &>(

s t r ings t ream { } << value_ ) ) . s t r ( ) } } ) ;

The C++ statement above produces a SimpleTree with an empty set of successor SimpleTrees
and a map containing the type of the object (here ExpInteger), its pointer and its value; where
every value is expressed as a string.

For elements inside the AST, the same implementation looks a bit more complicated:

SimpleTree <map<s t r i n g , s t r i n g >> ∗ExpRelation : : e m i t _ s t r i n f o _ t r e e ( ) const {
auto r e s u l t = new SimpleTree <map<s t r i n g , s t r i n g >>(

/∗ i n t e n t i o n a l l y l e f t out . Analogous to above snipped ∗/ ) ;

r e s u l t−>f o r e s t = {
operand1_−>e m i t _ s t r i n f o _ t r e e ( ) ,
operand2_−>e m i t _ s t r i n f o _ t r e e ( ) } ;

return r e s u l t ;
}

Because every ExpRelation object represents a relational operator in the AST, it must also
contain two pointers to the operands. In addition, every operand pointer has to be able to
point to arbitrary Expressions; hence both operand1_ and operand2_ are of type ∗ Expression;

Modification of the resulting data for better processing

Before the final dot code generation can start, the tree containing the relevant information
needs to be modified because of the way the dot language works. In dot, every node must
have its own unique identifier, because nodes are implicitly created if a new unknown id
appears in the source code. Listing 3.4 illustrates this and also shows how the occurring
nodes will be labeled in the rendered picture.

The fact that every node’s id has to be unique is problematic, because an AST for the
expression 1 + 2 ∗ 3 + 4 contains 4 ExpInteger and 3 ExpArithmetic objects. As figure 3.2
shows, we want to appear those operator objects in the rendered graph labeled with their
type (i.e. ExpArithmetic and ExpInteger). Thus, it’s simply not possible to use the type of the
node (in the SimpleTree) as node id in the dot code. For that reason, the intermediate tree
needs to be augmented with pre-calculated node id’s.

The algorithm for this task, however, is not relevant here, but can be viewed in file
generate_graph.cc at line 77.

Listing 3.4 A sample graph in dot
digraph c {

// two nodes are crea ted : nodeB and nodeA
nodeA −> nodeB ; // nodeB i s labe led " nodeB " in rendered graph ,
nodeA [ l a b e l =" foo " ] ; //whereas "nodeA" i s labe led " foo "

}
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Traversal and code generation

The dot language permits the separation of the node declarations and the specification
of their interconnections. Hence, the first traversal only emits all nodes to be connected,
whereas the second pass generates the code necessary for the connections between those
nodes. The code excerpts from file generate_graph.cc, listings 3.6 and 3.5, illustrate the
traversal. Note, that the two functions have been heavily simplified for reasons of clarity.

Listing 3.5 Simplified version of emit_vertices
void e m i t _ v e r t i c e s ( ostream &out ,

SimpleTree <map<s t r i n g , s t r i n g >> ∗ast ,
int depth ) {

out << ast−>root [NODEID] << " [ l a b e l =\" "
<< ast−>root [ " l a b e l " ] << " \" ] " ;

// recurse i n t o a l l c h i l d t r e e s :
for ( auto &i : ast−>f o r e s t )

e m i t _ v e r t i c e s ( out , i , ++depth ) ;
}

Listing 3.6 Simplified version of emit_edges
void emit_edges ( ostream &out ,

SimpleTree <map<s t r i n g , s t r i n g >> ∗ a s t ) {
for ( auto &i : ast−>f o r e s t ) {

out << ast−>root [NODEID] << " −> "
<< i−>root [NODEID] << " ;\n" ;

// recurse i n t o a l l c h i l d t r e e s
emit_edges ( out , i ) ;

}
}

The code in 3.5 will run first and emits all node identifiers. Remember, that each SimpleTree
node possesses a map, ast−>root, containing all relevant attributes. The same goes for listing
3.6.

3.1.3 Cloning

Some transformation steps expand certain parts of the AST rather than shrinking it. For
instance, loop expansion or generate expansion eliminate looping structures at compile time
and replace the affected parts of the AST by parameterized copies of the statements enclosed
by the said control blocks.

For this reason, every part of the syntax tree must be deep copyable. The difference
between deep and shallow cloning is shown in figure 3.4.

The graphic 3.4 shows that a shallow copy of object 0x0002 only adds one new object to the
memory. If the complete subtree beginning at 0x0002 gets freed, the user of the AST can not
execute the destructor of the shallowly cloned object, since it contains already invalidated
pointers to non-existing objects. Every AST nodes’ destructors are recursive. That means
that every object, held by the node that the destructor has been called at, gets destructed too.
The cloned instance of ExpLogical instead is a full clone, which means that the previously
described freeing problem does not need to be considered during its further usage. As a
consequence, the code that modifies the AST gets significantly easier to understand.

16



3.1 Infrastructure

Figure 3.4 Difference between shallow and deep cloning
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3.1.4 Generic traverser

Traversal and evaluation

Due to the recursive nature of an AST, its traversal plays a key role in every compiler
development. Arithmetic expressions, for instance, could be modeled by 3.7 (see also section
3.1.1).

Listing 3.7 class hierarchy for integer arithmetic expression
struct Exp { virtual ~Exp ( ) { } } ;
struct Value : Exp {

int value ; Value ( int v ) : value ( v ) { }
} ;

struct Plus : Exp {
Exp∗ l e f t ; Exp∗ r i g h t ;
Plus ( Exp∗ l , Exp∗ r ) : l e f t ( l ) , r i g h t ( r ) { }

} ;

struct Minus : Exp {
Exp∗ l e f t ; Exp∗ r i g h t ;
Minus ( Exp∗ l , Exp∗ r ) : l e f t ( l ) , r i g h t ( r ) { }

} ;
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struct Times : Exp {
Exp∗ l e f t ; Exp∗ r i g h t ;
Times ( Exp∗ l , Exp∗ r ) : l e f t ( l ) , r i g h t ( r ) { }

} ;

struct Divide : Exp {
Exp∗ l e f t ; Exp∗ r i g h t ;
Divide ( Exp∗ l , Exp∗ r ) : l e f t ( l ) , r i g h t ( r ) { }

} ;

Listing 3.8 Instance of a syntax tree
Times ∗exp = new Minus (

new Plus (
new Times ( new Value ( 2 ) , new Value ( 3 ) ) ,
new Times ( new Value ( 4 ) , new Value ( 5 ) ) ) ,

new Divide ( new Value ( 1 2 ) , new Value ( 3 ) )
) ;

Using the classes from listing 3.7, the arithmetic Expression 2 · 3 + 4 · 5− (12/3) may be
represented by listing 3.8, which is exactly how the parser itself constructs a syntax tree
during its reduction phase!

There are two main approaches how arithmetic expressions like 3.8 could be evaluated.
Because of the importance of these techniques, both will be elaborated in detail further below.
The two evaluation methods are:

1. OOP-like evaluation using member function traversal

2. Functional-style evaluation using an external traverser

Evaluation with 1 requires additional member functions in each of the classes of 3.7 (see
snippet 3.9).

Listing 3.9 Eval functions for expression AST
// a d d i t i o n a l funct ion in s t r u c t Exp :

virtual int evaluate ( ) = 0 ;

/∗ Further funct ion d e c l a r a t i o n s in s t r u c t s Plus , Minus
Divide , Times and Value i n t e n t i o n a l l y l e f t out ∗/

int Plus : : evaluate ( ) { return l e f t −>evaluate ( ) +r ight−>evaluate ( ) ; }
int Minus : : evaluate ( ) { return l e f t −>evaluate ( )−r ight−>evaluate ( ) ; }
int Times : : evaluate ( ) { return l e f t −>evaluate ( ) ∗ r ight−>evaluate ( ) ; }
int Divide : : eva luate ( ) { return l e f t −>evaluate ( ) /r ight−>evaluate ( ) ; }
int Value : : evaluate ( ) { return this−>value ; }

With the new eval member function, the evaluation of the arithmetic expression from 3.8
becomes as easy as exp−>evaluate()! However, this evaluation method comes with two
major drawbacks. First of all, the evaluate function must redundantly be declared and
implemented for each leaf class of the AST hierarchy. In addition, listing 3.9 shows that
also the implementation only differs in the respective arithmetic operation (+, −, · and /).
Secondly, due to the first point, the technique doesn’t scale well. In more complex AST’s
with more complex evaluation semantics, the complete traversal process – which is specified
by the evaluation functions – is spread over each implementation file of every participating
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AST class. That in turn, makes changes difficult to manage and bugs hard to find, which is
why Yodl makes no use of this traversal scheme.

Note: The vhdlpp transpiler from the IcarusVerilog project uses exactly the same scheme
in order to transpile the VHDL AST into an semantically equivalent Verilog source code (cf.
[13] file expression_emit.cc).

However, there is another way of doing traversals over syntax trees. Method 2 (see
enumeration from above) is a technique frequently found in a functional programming
context. It uses so called evaluation/traverser functions in order to extract meaning (aka.
semantics) from a given syntax tree. In classical denotational semantics an evaluation
function is simply a side effect free function that maps an AST onto a mathematical object
that represents the value of the evaluated (or executed) abstract syntax tree (cf. [5], in
particular 2.2.2). A main characteristic of these functions is that they use pattern matching
(cf. [5] figure 4.2 for mathematical pattern matching) in order to determine the type of the
current node. Based on this type information, the traverser function determines the fitting
traversal for the current AST node. C++, unfortunately, does not natively support pattern
matching as a language primitive. However, there are at least two popular libraries – Mach7
and SimpleMatch – that implement such functionality (cf. [14], [15]). Both make heavy
use of template meta programming and are thus not easy to understand and explain. For
this reason the inner workings won’t be elaborated here. Also, no introduction to pattern
matching will be provided here, because of its wide adoption in the field of computer
science. Nevertheless, materials on that concept can be found in [16] (chapter 4.1, “Pattern
matching”).

For listing 3.7, a traverser (and evaluator) can be built using pattern matching with Mach7
and looks like snippet 3.10.

Listing 3.10 Traverser with Mach7 pattern matching
int eval ( Exp ∗ express ion ) {

using namespace mch ;
using namespace std ;
var <int> i ;
var <Exp ∗> l , r ;
Match ( express ion ) {

Case (C<Value >( i ) ) { return i ; }
Case (C<Plus >( l , r ) ) { return eval ( l ) + eval ( r ) ; }
Case (C<Minus >( l , r ) ) { return eval ( l ) − eval ( r ) ; }
Case (C<Times >( l , r ) ) { return eval ( l ) ∗ eval ( r ) ; }
Case (C<Divide >( l , r ) ) { return eval ( l ) / eval ( r ) ; }
Otherwise ( ) { s td : : cout << " e r r o r ! " << endl ; }

} EndMatch ;
}

A natural language description of the source line
Case (C<Plus >( l , r ) ) { return eval ( l ) + eval ( r ) ; }

reads as follows: “If the variable expression has the dynamic type Plus, then variable l and r
will be bound to dynamic_cast<Plus> (expression)−>left and dynamic_cast<Plus>(expression)−>left
respectively. If the variable does not possess the type Plus, the succeeding line will be exe-
cuted”.

For reasons of clarity, the mandatory binding template specializations have been omitted.
Without these specializations The C<> template can not figure out what values it can bind to
the appropriate instances of var<Exp ∗>.
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Generic traverser

Especially for AST transformations, it is necessary to find each node for whom a certain
predicate holds true. A common example is loop unrolling, which is described in 3.2.1. Loop
expansion clearly makes only sense if it’s applied on nodes of type ForLoopStatement. For a
compiler writer, the need following algorithm 1 arises. Predicate is a higher-order function

Algorithm 1 Abstract description of a generic traverser’s behaviour

rootNode← parseVHDL().getRoot()
predicate← (λtype.λnode.node : type)

function traverse(node: AstNode *, predicate : (x -> bool), functor : (AstNode * -> void))
if predicate(node) = true then

f unctor(node)
end if
for ∀i ∈ node.childs do

if predicate(i) = true then
f unctor(i)

end if
traverse(i, predicate, functor)

end for
end function

that takes one type and maps it onto a new function that checks whether it’s input matches
this type. A predicate could be constructed, for instance, using the expression

predicate ForLoopStatement = λnode.node : ForLoopStatements

where “:” means “has type of”. For a given node node this anonymous function simply
checks if node has the runtime type of class ForLoopStatement.

The semantics of the traverse function from above shall be given in natural language too:
“For any input node n, the function traverse first tests if the predicate holds for n. If it does,
the function f unctor, given as parameter to traverse, gets executed. This function usually
transforms the node in some way. After that, traverse iterates over all child nodes i of node n
and repeats the previous procedure for each i.”

The class GenericTraverser implements this algorithm for the complete class hierarchy
depicted in 3.1 and can be found in generic_traverser.h.

Listing 3.11 Interface definition of the GenericTraverser class
class GenericTraverser {
public :

enum r e c u r _ t { RECUR, NONRECUR } ;
Gener icTraverser (

s td : : funct ion <bool ( const AstNode∗ )> p ,
std : : funct ion <int ( AstNode ∗ ,

const std : : vector <AstNode ∗> &)> v ,
r e c u r _ t r )

/∗ I n i t i a l i z e r L i s t : ∗/
: isMutat ing ( true ) , isNary ( true )
, p r e d i c a t e ( p ) , mutatingNaryVisitorU ( v )
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, recurSpec ( r )
{ }

/∗ The r e s t of the c l a s s i n t e r n a l s
i n t e n t i o n a l l y omitted . ∗/

} ;

Listing 3.11 shows a simplified version of GenericTraverser’s class declaration. The first
constructor parameter p resembles a so called type predicate, v is the visitor function and
finally r is used to specify additional behaviour of the traverser algorithm. The usage of an
generic traverser is shown by listing 3.12.

Listing 3.12 Example usage of an GenericTraverser object
AstNode ∗ a s t = /∗ parsing i n t e n t i o n a l l y omitted ∗/ ;

StatefulLambda <int> cnt (
0 , [ ] ( const AstNode ∗ , int &env ) −> int { env ++; return 0 ; } ) ;

Gener icTraverser counter (
makeNaryTypePredicate <ProcessStatement , WaitStmt > ( ) ,
[& cnt ] ( const AstNode ∗n ) −> int { return cnt ( n ) ; } ,
Gener icTraverser : : RECUR) ;

counter ( a s t ) ;
s td : : cout << "Number of process and wait s ta tements : "

<< counter . environment << std : : endl ;

Listing 3.12 uses a generic traverser in order to count all AST nodes with a dynamic
type of either ProcessStatement or WaitStmt. It uses two currently unknown infrastructure
components:

1. A type predicate generator

2. and a stateful lambda.

Chapter 3.1.5 describes both, hence a comprehensively explanation is not included in this
section. Put simply, a stateful lambda is a C++ object with an overloaded call operator
that possesses an internal state that the functor modifies. In the context of 3.12, if cnt’s call
operator gets executed, it increments its internal state which is a single integer number. In
comparison to algorithm 1 the stateful lambda cnt is equal to the parameter functor of the
traverser function. During the recursive, pre-order traversal, a generic traverser keeps track
of the current node and all of the nodes ancestors. Figure 3.5 shows that if the traverser
visits the leaf node with value 43, the parent vector contains the node · as first and node +
as second parent. If, at this state, the requirements of the specified predicate would be met,
the visitor

std : : funct ion <int ( AstNode ∗n ,
const std : : vector <AstNode ∗> &)> v ,
r e c u r _ t r )

would be called with n = current node and v = [·,+].
Internally a generic traverser object manages parent nodes with the help of a stack. Each

time it descents further down the abstract syntax tree, it pushes the newly visited node onto
the stack and removes it again if the node itself or every child has been visited.
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Figure 3.5 Generic traverser runtime behaviour
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3.1.5 Type predicates and stateful lambdas

This section presents two minor abstractions that have been proven to be useful for Yodl’s
implementation. Stateful lambdas are located in stateful_lambda.h and type predicates
are defined in predicate_generators.h and predicate_generators.cc.

Stateful lambdas

The generic traverser object uses the constructor shown in 3.11 in order to specify visitor and
predicate functions for traversal. This constructor needs a C++ functional with the type

std : : funct ion <bool ( const AstNode∗ )> p

In principle, there are two ways to construct an object of that type. On the one hand,
C++-11’s lambda syntax can be used as follows:

[ ] ( AstNode ∗n ) −> int { /∗ . . . ∗/ } ;

22



3.1 Infrastructure

On the other hand, the usual and much more verbose way would be to construct a normal C++
functor. In this context, a functor is an object that overloads its call operator appropriately.
Let the following code be given as an example:

class FunctorTemp {
FunctorTemp ( ) = default ;

int operator ( ) ( /∗ parameters ∗/ ) { /∗ . . . ∗/ }
private :

/∗ i n t e r n a l s t a t e v a r i a b l e s here ∗/
} ;

For functors without a persistent internal state, both sources are exactly equivalent. However,
lambdas created using the special notation can not contain any private or public member
variables (aka. internal state), because there simply is no special syntax for it. At first there
seems to be no other way as to stick to the lengthy functor class declaration, but stateful
lambdas provide a better solution for simple cases.

The class definition (3.13) for StatefulLambda illustrates how such an improvement can be
implemented. Simply put, a StatefulLambda object encapsulates data together with a C++
functor and provides a custom overload for the call operator. That means it can be called
like any other function. However, instead of just executing the functor with the parameter
passed to operator(), it passes along a reference to the internal state environment (see listing
3.13).

Using this new abstraction a functor that counts nodes with particular types can be build
easily. Listing 3.12 demonstrates a proper definition of a stateful lambda.

Note, because of clarity reasons, listing 3.13 does not contain all implementation details.

Listing 3.13 An interface for stateful lambdas
template<typename T> class StatefulLambda {
public :

StatefulLambda ( T e , s td : : funct ion <int ( AstNode ∗ , T &)> l )
: environment ( e )
, lambda ( l ) { }

// environment ge ts d e f a u l t i n i t i a l i z e d in t h i s c o n s t r u c t o r
StatefulLambda ( std : : funct ion <int ( AstNode ∗ , T &)> l )

: lambda ( l ) { }

int operator ( ) ( AstNode ∗node ) {
return mutatingLambda ( node , environment ) ;

}

void r e s e t ( ) {
environment = T ( ) ;

}

T environment ;
private :

s td : : funct ion <int ( AstNode ∗ , T &value ) > lambda ;
} ;
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Type predicates

In order to check whether a given visitor should be applied to a current node during traversal,
a generic traverser first executes a previously specified predicate. As mentioned before, if
this predicate holds true, the visitor is executed, otherwise it is not.

While visitor functions can either have one or two parameters every predicate must match
the visitor signature established in code 3.11:

std : : funct ion <bool ( const AstNode∗ )>

Section 3.1.5 already showed the two main ways to construct these callable objects. How-
ever, for type predicates, template meta programming provides the means for an even
shorter function constructor. Listing 3.14 illustrates the usage of a predicate constructor. It
produces a predicate that maps a pointer or a reference to an object to either true or false
depending on whether the dynamic type of the object occurs in the parameter list of the
makeNaryTypePredicate template.

Listing 3.14 N-ary predicate generator
makeNaryTypePredicate <ProcessStatement , I f S e q u e n t i a l > ( ) ;

Every C++11 compatible compiler can handle the meta function (listing 3.14) and expands
it in the fashion shown in listing 3.15. The original unexpanded C++ meta code won’t be
printed here. However, this source code can be examined in predicate_generators.cc.

Listing 3.15 shows that the expansion results in an cascaded if-else structure with appro-
priate Mach7 pattern matches. The matches perform the necessary type checks and return
either true if the type matches the specified type or false if this isn’t the case. The complexity
for the generated function is O(n), with n being the number of template parameters of the
makeNaryTypePredicate template function. In the above case (listing 3.14), n = 2, because
only two type parameters – ProcessStatement and IfSequential – have been used in order to
instantiate the function. The reason for the linear time complexity is the progressively
cascading if block illustrated by code 3.15. Here, each additional type parameter used for
instantiation accounts for an additional nested type test block.

Listing 3.15 Compile time evaluation of makeNaryTypePredicate
struct makeNaryTypePredicate {

bool operator ( ) ( const AstNode ∗n ) {
if ( helper ( n ) ) {

return true ;
} else {

/∗ anonymous c l a s s because of the template recurs ion ∗/
struct anon_inner {

bool operator ( ) ( const AstNode ∗n ) {
Match ( n ) {

CaseInT (mch : : C< I f S e q u e n t i a l > ( ) ) {
return true ;

}
} EndMatch ;
return false ;

}
} ;

return anon_inner ( ) ( n ) ;
}
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}

private :
bool helper ( const AstNode ∗n ) {

Match ( n ) {
CaseInT (mch : : C<ProcessStatement > ( ) ) {

return true ;
}

} EndMatch ;
return false ;

}
} ;

3.1.6 Localizing parser data structures

Yodl uses vhdlpp’s AST data model as well as its parser implementation. Vhdlpp uses
many global variables and data structures for parsing VHDL (cf. [13] revision 5dd2e6a,
file entity.cc line 27, std_types.cc line 24, 26, . . . ). In vhdlpp itself, this does
not pose a problem, because the whole program was built with the intention to parse any
given source file only once. As a consequence, vhdlpp only produces one AST for each run
and exits after it finished its work. Yodl, however, uses smoke tests for verification purposes.
Thus, the need for disposable abstract syntax trees arises. Of course, each of these trees
could be build by hand, but especially for larger structures this is a tedious and error prone
task. For that reason, a new class ParserContext has been introduced and incorporates each
of the previous global structures. By means of this new data structure, unit tests can build
their own throw-away parser for the use of test AST construction.

The file parse_context.h serves as reference for this refactoring effort.

3.1.7 Testing

Compilers are incredibly complex and complicated pieces of software and thus notoriously
difficult to test. There are a few well known approaches for compiler validation. The first of
which is the so called regression test system. . .

Recression tests

The data base system SQLite for instance, uses such a validation framework (cf. [17]). In
order to test sqlite’s SQL interpreter, a TCL script randomly generates SQL statements and
evaluates them using the interpreter and a predefined data base scheme. The script itself
manually calculates the result set and compares it with the output of the SQL interpreter. If
both result are exactly equal, the test iteration was successful.

Vloghammer uses a similar concept in order to validate Yosys’ Verilog frontend. Akin
to SQLite’s regression tester, it randomly generates syntactically and semantically correct
Verilog code snippets, synthesizes them with Yosys and checks the netlist (cf. [18]).

Such regression testing suites are incredibly useful, but also difficult to implement. Hence,
this work won’t present an implementation of this kind of automated test frameworks.
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Formal verification

The second major compiler validation method uses formal tools. Such validations are very
hard to do, because every component of the subjected translator must mathematically be
proven to work according the the formal specification of the language. That’s of course only
possible if there exists a formal description of the language’s semantics.

There indeed is such a specification, but only for an older version of VHDL, which
practically renders the formal verification method unfeasible for VHDL-2008 (cf. [10]).

Smoke tests

So called smoke tests, are much simpler to implement and – if used correctly – can limit the
amount of bugs drastically. Tests of this class are usually hand-coded by the compiler writer.

Yodl comes with a set of standard unit tests. At first, the header only library catch.h
has been used as unit testing framework. Later, a switch to Cpputest was made (cf. [19],
[20]). All tests are located in the files unit_tests_main.cc and unit_tests_part1.cc.
Currently there are about 1076 lines of test code.

3.2 AST transformations

All subsections in this chapter describe the various modifications Yodl performs directly
on the AST. Each transformation produces an output AST as result. Although they don’t
directly generate netlists or RTL descriptions, AST transformations like, for example, generate
expansion (in 3.2.2), must be performed in order to simplify the AST. Even though netlists
could be produced from a raw unsimplified AST in theory, this would be, in practice,
completely unfeasible, because of the drastically higher code complexity.

3.2.1 Loop expansion

All looping control structures must be statically unrolled. VHDL describes hardware, that
means there is no program counter that might be utilized to implement sequential semantics.
Furthermore, since VHDL 2008 (cf. [6]) does not impose any restrictions with regards to
the nesting depth of loops, unrolling is no trivial transformation. VHDL-2008 even allows
for the usage of next and exit statements inside of loop bodies. This is a problem, because
loops containing these control statements are expected to behave like loops implemented in
an imperative and sequential programming language like C. But like mentioned before, bare
netlists don’t contain primitive operations like conditional branching (as provided by any
assembly language).

VHDL’s synthesis standard from 2004 (cf. [7]) explicitly forbids the use of while-loops.
However, in principle, while loops containing arbitrary control expression, can be synthesized
(cf. [8], in particular chapter 3.2.3.2). The high-level synthesis toolkit Legup demonstrates
this, because it allows for the synthesis from ANSI C (including while loops) to behavioural-
less1 Verilog. Legup accomplishes this by creating finite state automata from the behavioural
control structure (cf. [3], chapter 2.4.3). The algorithms behind these transformations are
very complicated and not subject to further examination, at least in this work. Nonetheless,
while loops in C programs may contain the same two troubling statements as VHDL models;

1 = Verilog without looping, always blocks, etc . . .
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next =̂ continue and exit =̂ break. That shows, that Legup’s RTL synthesis algorithms are
at general enough to deal with loops containing an arbitrary number of jumping statements.

Prevention of complexity

A very simple AST transformation method for general loop unrolling is given in algorithm 2.
Here, the algorithm transforms every for loop containing an exit or next statement into

an equivalent while loop. As a consequence, the for loop unroller doesn’t need to care about
those jump statements anymore, because after the illustrated AST modification, there won’t
be any complicated for loops inside the syntax tree anymore.

While this work presents an working for loop unroller, it does not contain anything with
regards to while loop synthesis. Like mentioned above, VHDL 2004 does not allow for those
loops to be written in synthesizeable VHDL anyway.

Algorithm 2 A generic loop pre-processing algorithm

for ∀i ∈ ASToriginal : isForloop(i) ∧ ¬containsForLoop(i) do
if containsNext(i) ∨ containsExit(i) then

convertToWhile(i)
else

unroll(i)
end if

end for

Special cases

In certain cases, it is, however, possible to statically unroll a given for loop even if it contains
next or exit clauses. First, the appearance of next sequential statements shall be illuminated.
The first case, listing 3.16, is probably the most obvious. Here, the next statement is executed
inside a simple if branch whose condition only depends on the loop index variable – that
means that it is statically evaluable.

Listing 3.16 First special case
for i in (0 to 2) loop

if ( i = 0 ) then
next ;

end if ;

foo <= " 001 " + i ;
end loop ;

−− u n r o l l s to
−−−−−−−−−−−−−
−− i = 0 ;
−− i = 1 ;
foo <= " 001 " + 1 ;
−− i = 2 ;
foo <= " 001 " + 2 ;
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The second special case is almost as obvious as the first one, but only of theoretical interest,
because of its lack of usefulness. In the case shown in 3.17, next statements only occur at the
first level below the for loop. As an example, consider the following snippet:

Listing 3.17 Second special case
for i in (0 to 2) loop

foo <= " 001 " + i ;

next ;
unreachedStmt1 ;
unreachedStmt2 ;
−− e t c . . .

end loop ;

Another interesting situation is depicted in the following listing 3.18. Can this code be
statically unrolled? That depends on the properties that <expression> possesses. First of all,
it has to be statically evaluable or else it’s not possible to determine the appropriate branch
at compile time. Second of all, the if condition must not be modified by the statements
ahead1 → aheadn. The reason for the second constraint is given later. Under assumption of
code 3.18, the source codes 3.19 and 3.20 illustrate the unrolling scheme.

Listing 3.18 Third special case
for i in (0 to 2) loop

if ( < expression >) then
ahead_1 ;
ahead_2 ;
−− . . .
ahead_n ;

next ;
end if ;

<statement >;
end loop ;
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Listing 3.19 Unrolling Scheme – First trans-
formation
for i in (0 to 2) loop

if ( < expression >) then
ahead_1 ;
ahead_2 ;
−− . . .
ahead_n ;

end if ;

if ( < expression >) then
next ;

end if ;

<statements >;
end loop ;

−−

Listing 3.20 Unrolling Scheme – Second trans-
formation

−−−−−−−−
−− i = 0
if ( < expression >) then

ahead_1 ; ahead_2 ;
−− . . .
ahead_n ;

end if ;

if ( < expression >) then
next ;

end if ;

<statements >;
−−−−−−−−
−− i = 1
if ( < expression >) then

ahead_1 ; ahead_2 ;
−− . . .
ahead_n ;

end if ;

if ( < expression >) then
next ;

end if ;

<statements >;
−− i = 1
if ( < expression >) then

ahead_1 ; ahead_2 ;
−− . . .
ahead_n ;

end if ;

if ( < expression >) then
next ;

end if ;

<statements >;

For reasons regarding generality, the expansion step at the end was not completely printed.
Since it was stated that <expression> must be statically evaluable, this evaluation needs to
actually happen. However, this is omitted here.

3.2.2 Generate expansion

VHDL contains two distinct syntactic domains where statements can occur. The first one is
the so called concurrent and the second one is the sequential domain. Concurrent statements
can only occur in the statement part of an architecture body, whereas sequential statements
must be part of process blocks. Note that process blocks itself are concurrent statements, at
least from an syntactic point of view (cf. [6], Annex C – Syntax summary).
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So called generate statements belong to the syntactic class of concurrent statements. These
represent a kind of language aware macro system, because with their help, code can be
generated. In this context, language aware means that macros are expanded on AST level
rather than plain source code (text).

How generate expansion works

Listing 3.21 A nested generate statement
architecture behaviour of ForLoop is

signal r e s u l t : s t d _ l o g i c _ v e c t o r ( n downto 0) ;
begin

gen : for i in 1 to 2 generate
nested : for j in 1 to 1 + ( i − 1) generate

sum <= i + j + k ;
end generate nested ;

end generate gen ;
end architecture ;

Listing 3.21 gives a short example of a common generate statement and the code from 3.22
illustrates what those statements expand to.

Listing 3.22 Generate statement unrolling
architecture behaviour of ForLoop is

signal r e s u l t : s t d _ l o g i c _ v e c t o r ( n downto 0) ;
begin

gen : block is
constant i : na tur a l := 1 ;

begin
nested : block is

constant j : n a t ura l := 1 ;
begin

sum <= i + j + k ;
end block ;

end block gen ;

gen : begin block is
constant i : na tur a l := 2 ;

begin
nested : block is

constant j : n a t ura l := 1 ;
begin

sum <= i + j + k ;
end block nested ;

nested : block is
constant j : n a t ura l := 2 ;

begin
sum <= i + j + k ;

end block nested ;
end begin ;

end architecture ;
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The above example shows, that more than one block is labeled with the same identifier. This
is no error! VHDL-2008 explicitly requests this kind of behavior during generate elaboration
(cf. [6], chapter 14.5.3 – Generate statements). Unelaborated generate statements can
themselves contain arbitrary declarations. These declarations will be put into the respective
declaration part of the expanded block. Note, that only block or process statements are able
to create new scopes inside of architecture statement parts.
Presentation of an own generate expansion algorithm

With the use of the GenericTraverser class, it’s very easy to implement this algorithm. A
generic traverser is used to model the function traverser shown above (see algorithm 3, line
27). In order to realize the logic described by modify (algorithm 3, line 6), a custom C++
functor is needed. Recall that a functor is just a C++ object with functional semantics. That
means it has some internal state – as every other object – and can be called like an ordinary
function; which means, that the object’s call operator must be overloaded. GenerateExpander
is a class that meets these requirements. Since the expander’s implementation very much
follows the illustrated algorithm, it shall not be elaborated here any further. The curious
reader might consult the files generate_expander.cc and generate_expander.h for
further implementation details.

Note that algorithm 3 contains an undefined function in line 14. This function tries to
evaluate the expression of the generate statement. This expression can either be an arbitrary
condition or a simple range. In both cases, however, the function must be able to evaluate the
expression statically. If that’s not possible, an error will be reported and no expansion takes
place. For an if generate statement, EXPANDGENERATE simply encapsulates the statements
below the generate statement in a newly created block, but only if the generate condition
holds true. If the function, on the other hand, encounters a for generate statement, the
statement list of the generate block will be replicated for each item in the specified expression.
After that, every statement list is placed in accordingly created blocks analogously to the if
generate expansion.

3.2.3 Elsif elimination

RTLIL generation is difficult, because the problem – the algorithm that generates RTLIL –
can not easily be broken up into sub problems. The method, of course, can be split into
different functions that do their respective part of traversing over the syntax tree, but those
functions still have their logical place in just one class. The more complicated the input gets,
the more complicated the RTLIL generator itself will be. Hence, it makes sense to keep the
input AST as simple as possible. Elsif elimination is one way to accomplish this.

Example elimination

VHDL provides special syntactic sugar inside of branch statements. The general syntax for
if-else clauses is given below (cf. [6]):

〈if_statement〉 ::= 〈if_part〉 〈elsif_part〉 〈else_part〉 ‘;’

〈if_part〉 ::= [ 〈label〉 ‘:’ ] ‘if’ 〈expression〉 ‘then’ 〈sequence_of_statements〉

〈elsif_part〉 ::= ‘elsif’ 〈expression〉 ‘then’ 〈sequence_of_statements〉

〈else_part〉 ::= [ ‘else’ 〈sequence_of_statements〉 ] ‘end’ ‘if’ [ 〈label〉 ]
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Algorithm 3 Generate expansion algorithm

1: rootNode← parseVHDL().getRoot()
2: currentScope← nil
3: currentEntity← nil
4: statementAccumulator ← nil
5:
6: function modify(statements : &list<Statement*>)
7: tmpStmts← nil
8: while containsGenerateStmt(statements) do
9: for ∀i ∈ statements do

10: if i = NULL then
11: return NotOK
12: end if
13: if isGenerateStatement(i) then
14: expandGenerate(i)
15: tmpStmts← statementAccumulator
16: statementAccumulator ← nil
17: else
18: tmpStmt← i
19: end if
20: end for
21: statements← tmpStmts
22: tmpStmts← nil
23: end while
24: return OK
25: end function
26:
27: function traverser(n)
28: if n : ScopeBase then
29: currentScope← n
30: if n : Architecture then
31: return modify(dynamic_cast<Architecture*>(n)->statements)
32: end if
33: if n : BlockStatement then
34: return modify(dynamic_cast<BlockStatement*>(n)->concurrent_stmts_)
35: end if
36: else if n : Entity then
37: currentEntity← n
38: end if
39:
40: for ∀i ∈ n.childs() : pointerNotNull(i) do
41: traverser(i)
42: end for
43:
44: return OK
45: end function
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This (simplified) grammar allows for the source code 3.23.

Listing 3.23 Original if statement with elsif
if ( s = " 00 " ) then

op <= " 0 " ;
elsif ( s = " 01 " ) then

op <= " 1 " ;
else

of <= " 0 " ;
end if ;

Every elsif clause can be mechanically desugared into a nested branch statement only
consisting of a if and (an optional) else clause. For the previous code example 3.23, the
listing 3.24 demonstrates the process.

Listing 3.24 Desugared if statement
if ( s = " 00 " ) then

op <= " 0 " ;
else

if ( s = " 01 " ) then
op <= " 1 " ;

else
op <= " 0 " ;

end if ;
end if ;

Elimination Algorithm

Algorithm 4 A simple elsif elimination algorithm

1: for ∀n ∈ ASToriginal do
2: if n : IfSequential then
3: eliminateElsif(n :! IfSequential * )
4: end if
5: end for
6:
7: function eliminateElsif(ifStmt : IfSequential*>)
8: elsifCarry : list<SequentialStmt *>← ifStmt->elsePart
9: tmpResult : IfSequential

10: for ∀i ∈ reverse(i f Stmt− > elsi f List) do
11: tmpResult← new IfSequential(i->condition, i->ifPart, nil, elsifCarry)
12: elsifCarry← makeList(tmpResult)
13: end for
14: ifStmt.elsifPart← nil
15: ifStmt.elsePart← elsifCarry
16:
17: return OK
18: end function

The algorithm 4 shows type checks using the operator :. On the right-hand side, the name of
the type is given, whereas the left-hand side consists of a variable identifier. Similarly, the :!

33



3 Yodl – Implementation details

operator denotes a dynamic type conversion, which is also known as dynamic cast in C++.
In assignment contexts, where the assignment operator← is used, the operator : shows the
declared type of the variable subjected to the assignment.

The implementation of algorithm 4 can be found in elsif_eliminator.cc and elsif_-
eliminator.h. It is very short and concise with only 38 lines of code.

3.2.4 If statement elimination

Every if-else clause can be algorithmically transformed into an equivalent case-when clause.
This is useful for the same reason described in section 3.2.3. The listing 3.24 transforms very
easily into listing 3.25.

Listing 3.25 Generated case when statement
case ( s = " 00 " ) is

when TRUE => op <= " 0 " ;
when FALSE =>

case ( s = " 01 " ) is
when TRUE => op <= " 1 " ;
when FALSE => op <= " 0 " ;

end case ;
end case ;

The transition from if-else into case-when clauses can only be performed

• if the original expression from the if statement does not contain any clock edge
specification (cf. [7], 6.1.2)

• and if the statement lists for the if and else code path both contain exhaustive signal
assignments (i.e. every signal from both paths gets at least one assignment).

If the above requirements are met, the transformation produces a semantically equivalent
AST, because of the following reasons:

• The conditions, inside of a case head, can be any syntactically valid expressions, as
long as its evaluation results in something of a scalar2 or 1-dimensional array type. If
it evaluates to an array type, the elements of the array must all have a scalar type (cf.
[6], 10.9). Since an if statement condition must evaluate to either true or false, the first
requirement holds (cf. [6], 10.8), because true maps onto ’1’ and false to ’0’ .

• The conditions inside of the case alternative delimiters (when <exp> =>) must be either
scalar or of one dimensional array type, where the base type of that array has to scalar
(cf. [6] 10.9). Since TRUE and FALSE are enumeration literals, they are scalar.

• Neither if nor case statements impose any restrictions onto the enclosed sequential
statements.

The first sentence of this section states that the main reason for this transformation is to make
the AST simple enough to enable a less complex AST to RTLIL transformation algorithm.
This is still valid, because of the fact that such a algorithm, effectively eliminates a whole
class of statements without changing the semantics of the AST. There, however, is another
reason why this kind of transformation is useful. The RTL intermediate language of Yosys

2 actually only std_logic or std_ulogic are allowed
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supports n-ary case statements natively. Hence, the AST to RTLIL translator only has to
map each case branch onto the according branch structure inside the RTLIL data structure.
The current netlist translator, developed in the scope of this work, however, only produces
simple cells and makes no use of RTLIL’s higher abstractions.

The files ifelse_case_converter.cc and ifelse_case_converter.h specify and
implement the shown conversion method from 4.

3.2.5 Process lifting

In VHDL, there are six different kinds of signal assignment statements which are allowed in
a statement list of an architecture or a process.

• Concurrent signal assignment statements

1. Simple concurrent signal assignment

2. Conditional concurrent signal assignment

3. Selected concurrent signal assignment

• Sequential signal assignment statements

1. Simple sequential signal assignment

2. Conditional sequential signal assignment

3. Selected sequential signal assignment

It is possible – and required by the standard (cf. [6], 11.4) – to convert all concurrent signal
assignment statements to semantically equivalent sequential assignments. In the context of
this work, this procedure is called process lifting, because of the fact that a ordinary concurrent
statement gets lifted into an sequential context; which is, of course, only present inside an
process block.

First, let there be some examples for the three kinds of concurrent assignments. The
listings 3.26, 3.27 and 3.28 also contain a syntactic overview.

Listing 3.26 Simple concurrent signal assignment
−− BNF grammar :
−−−−−−−−−−−−−−−
−− Simple_Concurrent_Signal_Assignment : : =
−− Target " <=" [ " guarded " ] [ Delay_Mechanism ] Waveform " ; " ;
−− Waveform : : = Expression | " n u l l " | . . . ;
−− Rule f o r Delay_Mechanism i n t e n t i o n a l l y ommitted

s igVector <= " 01001001 " ;

Listing 3.27 Conditional concurrent signal assignment
−− BNF grammar :
−−−−−−−−−−−−−−−
−− Concurrent_Conditional_Signal_Assignment : : =
−− Target " <=" [ " guarded " ] [ Delay_Mechanism ]

Conditional_Waveforms " ; " ;
−− Target : : = Name | Aggregate ;
−− Conditional_Waveforms : : = Waveform "when" Condition
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−− { " e l s e " Waveform "when" Condition } [
" e l s e " Waveform ; ]

s igVector <= " 1111 " when ( input = ’ 0 ’ )
else " 1000 " when ( input = ’ 1 ’ )
else " 0000 " ;

Listing 3.28 Selected concurrent signal assignment
−− BNF grammar :
−−−−−−−−−−−−−−−
−− Concurrent_Selected_Signal_Assignment : : =
−− " with " Expression " s e l e c t " Target " <="
−− [ Delay_Mechanism ] { Waveform "when" [ Choice ] " , " } " ; " ;

with tmpInteger select s igVector <=
" 0001 " when 0 | 1 | 42 ,
" 0010 " when others ;

The general scheme for appropriate encapsulation is simple on first sight, but as soon as
more details show up, it gets a lot more complicated. In order to enclose one of the shown
statements in a process block, one simply has to create such a block using a snippet like 3.29.

Listing 3.29 Process encapsulation
sampleProc : process ( tmpInteger ) is
begin

with tmpInteger select s igVector <=
" 0001 " when 0 | 1 | 42 ,
" 0010 " when others ;

end process sampleProc ;

What needs to be put in the sensitivity list, though? [6], chapter 10.2, provides an algorithm
that has to be used to fill the sensitivity list. Note, that it makes no semantic difference
whether this list of signals is written right after the process keyword enclosed in parentheses,
or only as the arguments of an additional wait statement at the end of the process’s sequence
of statements (cf. [6], 10.2).

Because of the huge complexity, this work only implements a simplified version of
the official algorithm which can be found inside the files signal_extractor.cc and
signal_extractor.h. The actual process lifting methods are encapsulated in the class
CsaLifter which is located in csa_lifter.cc and csa_lifter.h respectively. The exact
implementation details are of no relevance for this work and have only been presented for
completeness.

3.3 RTLIL generation

The RTLIL generation is a process that transforms a (simplified) VHDL abstract syntax tree
into an functionally equivalent netlist. Netlists have briefly been described in chapter 1.1.

The first subsection below will introduce the RTLIL netlist format used by Yosys’ synthesis
backend, the second specifies a set of requirements of the input syntax tree and the third
describes the netlist generator algorithm itself.
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3.3.1 Yosys’s RTLIL data structures

The term RTLIL stands for Register Transfer Logic Intermediate Language. However, it is not
solely a formal language for netlists, but also a set of C++ classes specifying an internal
representation that is easily interfaceable from within C++ programs. Figure 3.6 shows the
most important classes, their members and their relationship with each other.

Any given RTLIL data structure can be serialized to ilang, which is the textual form of
RTLIL. Of course, any valid ilang file can also be deserialized again and be stored as common
C++ data.

The class Design represents the core of any netlist. A Design object is roughly equivalent to
a VHDL top-level entity, because it subsumes all participating submodules and provides for
the according interconnections between them. Every design can contain arbitrarily many
modules, whose purpose it is to hold wires, cells, memories and processes as well as to
connect them together. Modules represent connections via the connections member which
is simply a list of SigSig objects. SigSig objects are 2-tuples that associate one signal with
another. Signals are modelled via the SigSpec class. It must be noted, that every Wire object
can be converted to a SigSpec object, but not vice versa.

The enumeration State models every possible value a connection between two cells in
the netlist might hold. The last value, marker is only used internally by some optimization
passes.

Right at the end of the member list of Module there are still two entries. The first map
associates identifiers with Memory objects which are used to model block RAM resources and
the second contains Process objects. Verilog and VHDL both offer sequential (behavioural)
hardware description. In both languages behavioural modelling is only possible inside of
always or process blocks respectively. RTLIL’s Process objects try to emulate a part of those
semantics.

Memory and process objects are not relevant, which is the reason for the ellipses in figure
3.6. As figure 1.3 from section 1.2 shows, there exists a backend that converts netlists into
equivalent dot graphs. This is very important for debugging purposes. The picture 3.7
contains a graph describing the netlist for the full adder mentioned in section listing 1.1.

3.3.2 Introduction of SVHDL

The step from abstract syntax trees to netlists is complex enough by itself. Because of that,
it’s only reasonable to keep the input AST as simple as possible. An AST A is said to be
simpler as B if

| tA |<| tB |, with
tA = setO f Types(A)

tB = setO f Types(B)

The function setO f Types maps each syntax tree onto a set of all appearing types the nodes
have. An intuitive example: Let there be two different production trees, one for 1 + 2 · 3
(A) and one for 1 + 2 + 2 + 2 (B). Now tA = {N,+, ·} and tB = {N,+} and furthermore
| tB |<| tA |= 2 < 3. Thus, B is simpler as A.

Syntax trees are unseparable bound to their associated context free grammars. The more
different rules a grammar contains the more different types the equivalent class hierarchy of
the object oriented AST incorporates3. As a consequence a simpler AST can be specified not

3 This fact won’t be proven here
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Figure 3.6 Important classes and their relationship

n

1

RTLIL::SigSpec

+ int width
+ uint64_t hash
+ vector<SigChunk> chunks
+ vector<SigBit> bits

RTLIL::Module

+ Design *design
+ map<string, Wire *> wires
+ map<string, Cell *> cells
+ vector<SigSig> connections
+ string name
+ map<string, Memory *> memories
+ map<string, Process *> procs

RTLIL::Design

+ map<string, Module *> modules
+ addModule(Module *mod)
+ Module *addModule(string name)

RTLIL::Wire

+ string name
+ int width

RTLIL::Process

...

RTLIL::Memory

...

RTLIL::Cell

+ Module *module
+ string name
+ string type
+ map<string, SigSpec> connections
+ map<string, Const> parameters

enum RTLIL::State

S0 - zero
S1 - one
Sx - undefined
Sz - high-impedance
Sa - don’t care
Sm - marker

only by restrictions on its actual data structure, but also by restrictions on the context free
grammar that generates this abstract tree.

The following BNF code presents the restrictions imposed on (parts of) the original
grammar resembling the so called simple VHDL (SVHDL).

〈sequential_statement〉 ::= 〈wait_statement〉
| 〈simple_signal_assignment_statement〉
| 〈simple_variable_assignment_statement〉
| 〈case_statement〉

〈concurrent_statement〉 ::= 〈block_statement〉
| 〈process_statement〉
| 〈component_instantiation_statement〉

Originally, sequential statements could also be constructed from following statements:

• conditional_signal_assignment

• selected_signal_assignment

• conditional_variable_assignment

• selected_variable_assignment

• if_statement

• loop_statement

• next_statement
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Figure 3.7 Netlist for listing 1.1 generated by Yosys
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• exit_statement

• procedure_call_statement

• return_statement

Likewise, the concurrent statements rule hat following right-hand sides:

• concurrent_procedure_call_statement

• concurrent_assertion_statement

• concurrent_signal_assignment_statement

• generate_statement

Generate and for loop unrolling eliminates if_statement and generate_statement as well as next_-
statement and exit_statement. Procedure inlining is not part of this work, but would remove
return_statement and procedure_call_statement. The standard for VHDL-2008 shows how
conditional_variable_assignment, conditional_signal_assignment, selected_variable_assignment and
selected_signal_assignment can be transformed in syntax trees only consisting of if_statement,
simple_variable_assignment_statement, simple_signal_assignment_statement and case_statement
(cf. [6], 11.6). Chapter 3.2.4 describes an algorithm with whom it is possible to eliminate
if_statement. Finally, concurrent_procedure_call_statement, concurrent_assertion_statement and
concurrent_signal_assignment_statement can be wrapped in process statements and thus be
transformed into sequential_statement and process_statement.

The above elaboration only imposes syntactical restrictions onto VHDL. In order to also
specify semantical constraints, one has to use precise mathematical tools, which would easily
exceed the scope of this thesis. Consequently, those restrictions will not be given here neither
formally nor informally.

3.3.3 Synthesis semantics

In standard [7], a typical semantic specification begins with a listing. Given the snippet 3.30,
the standard would describe what hardware must synthesized. It does not specify what
algorithm has to be used for this task, as this is not the scope of such a specification.
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Listing 3.30 A typical IEEE 1076.6 code snippet
AsyncReset : process : ( c lock , r e s e t )
begin

if ( r e s e t = ’1 ’ ) then
−− async assignment
Q <= ’ 0 ’ ;

elsif ( r i s ing_edge ( c l k ) and r e s e t = ’0 ’ ) then
−− sync assignment
Q <= D;

end if ;
end process ;

The VHDL code in 3.30 is expected to model a single clock edge sensitive flip-flop with
an asynchronous reset behavior. The main characteristic of such a discrete component is
fitting for the code 3.30. If reset goes to value 1 the flip-flop overwrites its current content
with 0, otherwise the output Q gets set only on occurrences of clock edges (cf. [9], 11.4 –
D-Flipflops).

The remainder of this section is concerned with two things: The first subsection will
briefly and informally give a definition for the semantics of certain structures and the second
subsection will show concrete synthesis results using Yodl.

Semantics of simple assignments

Given the assumption that an appropriate entity declaration has already been declared, the
code

simpleAssign : process ( c lock , r e s e t )
begin

foo <= " 00011000 " ;
end process ;

shows a legal signal assignment statements. Note that the enclosing architecture has been
omitted for reasons regarding simplicity.

Let foo have the array type std_logic_vector(downto) with 8 members. Since the base type of
such an array is equal to std_logic, the assignment of a string literal becomes possible. In this
case, the said string can only contain characters representing the state that a single std_logic
value can have (cf. [6], 10.5).

The most important possible values of std_logic are ’0’ , ’1’ , ’z’ and ’−’, where ’z’ describes
a high-impedance on the associated wire and ’−’ simply means that the value does not
matter and can be anything. ’−’ signals are not relevant in this work (see figure 3.6).

Consequently, foo <= "00011000" describes that the wires, foo(7) down to foo(0), shall be
driven by the respective signal values from the string literal. Hence, only foo(4) and foo(3)
are driven with the value ’1’ .

Semantics of variable assignments

Since, VHDL was originally intended as a language for circuit simulation rather than descrip-
tion, there are a few but important differences between simulation semantics and synthesis
semantics. VHDL’s reference manual, which describes mainly the simulation semantics,
states that all signal assignments encapsulated inside an process shall be accumulated until
the very end of the process’ statement list. If this last statement has been executed, only
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then every deferred signal assignment shall be executed at once. Why this semantics was
chosen, will not be elaborated any further here. It should be clear, that only by using
signal assignments of processes, one can not easily model sequential behavior, because of
the previously described semantics. Hence, VHDL’s designers introduced the concept of
variables.

Unlike signal assignments, variable assignments show immediate effect. In other words,
if a variable gets updated inside a process using an variable assignment statement, every
subsequent usage of the same variable identifier will refer to the right-hand side of the latest
assignment.

Listing 3.31 shows how signals and variables have to be declared and how values can be
assigned to them.

Listing 3.31 Declaration of variables and signals
fooP : process ( c lock , r e s e t ) is

signal fooS : s t d _ l o g i c _ v e c t o r (7 downto 0) := " 00100111 " ;
variable fooV : s t d _ l o g i c _ v e c t o r (7 downto 0) := " 00100111 " ;

begin
−− assignment of a s i g n a l
fooS <= " 11111111 " ;
−− assignment of a v a r i a b l e
fooV := " 11111111 " ;

end process ;

Synthesis semantics and simulation semantics for variable assignments are the same. How-
ever, this is not the case for signal assignments. Due to the lack of time, variable assignments
were not implemented in the synthesis algorithm. Consequently, further elaboration is not
relevant here. There is, nevertheless, the paragraph 3.3.1.4 in book [8] regarding variable
assignment synthesis.

Semantics of Case blocks

Case statements in VHDL are constructed as illustrated in code 3.32. The standard demands
case expressions to be either of a scalar type or of one-dimensional array type where the
array type’s base type must be scalar. The when clauses, following the case keyword, must be
exhaustive. In other words, for each possible value of the case expression there must be one
and only one matching choice. If not all choices can reasonably be given – for example if the
width of the case expression exceeds 5 bits – a special VHDL keyword must be used: others
(cf. [6], 10.9).

Listing 3.32 A typical IEEE 1076.6 code snippet
architecture b of e is

signal fnord : s t d _ l o g i c _ v e c t o r (1 downto 0) ;
signal oddParity : s t d _ l o g i c ;

begin
AsyncReset : process ( c lock , r e s e t , fnord )
begin

case fnord is
−− fnord i s c a l l e d case express ion

when " 00 " => oddParity <= ’ 1 ’ ;
−− when " 0 0 " i s c a l l e d a choice
when " 01 " => oddParity <= ’ 0 ’ ;
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when " 10 " => oddParity <= ’ 0 ’ ;
when " 11 " => oddParity <= ’ 0 ’ ;

end case ;
end process ;

end architecture b ;

In VHDL all choices have to be matched in parallel (cf. [8], 3.2.2). This behavior can be
achieved by synthesizing a n-muxer for each bit of each signal that is assigned in all code
paths below the initial case expression, where n equals the number of bits of the case
expression.

This transformation is very expensive as a case expression with just 8-bits leads to a
synthesis of an 8-bit muxer for each assigned bit wide signal. A n-bit muxer can be
constructed using 2n − 1 1-bit multiplexers. An informal proof for this shall be given below:

Let mux be a function defined as

mux(selector, sig0, sig1) =

{
sig0 if selector = 0
sig1 if selector = 1

(3.1)

The function mux can also be defined using boolean logic. Equation 3.2 shows one possibility
and table 3.1 defines both functions in terms of a truth table.

muxbool(selector, sig0, sig1) = (sig0 ∧ selector) ∨ (sig1 ∧ selector)) (3.2)

Now, a n-ary muxer function can be defined recursively using equation 3.3. A 3-muxer for
example, must be able to cope with 23 different input ports and can be created by using
k = 2. The 3-bit selector is thus sufficient to select any of the given signals. Each recursion
step, (k− 1), produces one muxer and binds the outputs of further two multiplexers onto
its input. For muxk there are k + 1 steps in the recursion. Each step adds twice as much
multiplexers to the circuit as the step before, accounting for an overall count of 2k+1 − 1
multiplexers for muxk

4.

mux0(a, b, c) = mux(a, b, c)
muxk(sk, iZ2k−1, iZ2k−2, . . . , iZ0) = mux(sk−1,

muxk−1(sk−1, iZ2k−1, iZ2k−2, . . . , iZ2k−1),
muxk−1(sk−1, iZ2k−1−1, . . . , iZ0))

(3.3)

4 Figure 3.12 shows a netlist for a 3-bit multiplexer

Table 3.1 Truthtable for the equations 3.1 and 3.2
sig0 selector sig1 mux(selector, sig0, sig1)
False False False False
False False True False
False True False False
False True True True
True False False True
True False True True
True True False False
True True True True
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Semantics of if statements

In normal programming languages, if statements are a way to model branches in the
execution path of the program. Depending on the evaluation of a condition, either the true
path or the false path will be chosen. In VHDL’s synthesis semantics, however, if statements
are used to describe memories. Given the example code 3.33,

Listing 3.33 Simple conditional assignment
if ( c lock = ’1 ’ and clock ’ event ) then

A <= B ;
end if ;

A <= B appears as though it’s only executed if the condition is true. This is simply not the
case here. A connection between node A and B in the netlist is made either way, but it’s
the type of connection that matters. Instead of a simple wire going from B to A, a memory
element with a certain conditional runtime behavior has to be utilized in between in order to
achieve the modeled sequential behavior (cf. [7], 6.1).

As the figure 3.8 shows very clearly, an edge sensitive flip-flop is the synthesis result of
listing 3.37’s synthesis. This is the consequence of the controlling if condition at the top of
listing 3.37. The semantics here are that A will only get assigned the current value of B, if
and only if a rising edge on clock is detected.

Level sensitive storage elements like, for instance, D-Latches, can also be synthesized.
Consider for example the snippet 3.34.

Listing 3.34 Simple D-Latch being utilized
if ( foo + 3 < bar − 15) then

A <= B ;
end if ;

Neither foo nor bar are declared to be clock signals but are just ordinary wires transmitting
data. However, the assignment (in hardware) shall only be apparent on A if and only if the
condition evaluates to true. So how does one get this behaviour in a unchangeable circuit.
Like above, it comes down to discrete elements that can remember data (cf. [7], 6.2). In the
synthesis result of code 3.34, the assignment is not done through a DFF. Instead a D-Latch
sits between the signals A and B. As clock input for the latch serves the netlist for the if
expression foo + 3 < bar − 15 (cf. section 3.3.4).

The only difference between listings 3.34 and 3.33 is the missing clock edge specification
in listing 3.34. The following paragraph will inform about the nature of clock edges and
explains the term synchronous condition.

Clock edge specification According to [7] 6.1.2 there are 10 ways how a clock edge can be
described in VHDL. These are shown in code 3.35.

Listing 3.35 Clock edge specification syntax in VHDL
−− r i s i n g c lock edge modelling
c lock = ’1 ’ and clock ’ event
c lock = ’1 ’ and not clock ’ s t a b l e
clock ’ event and c lock = ’1 ’
not clock ’ s t a b l e and c lock = ’1 ’
r i s ing_edge ( c lock )
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−− f a l l i n g c lock edge modelling
c lock = ’0 ’ and clock ’ event
c lock = ’0 ’ and not clock ’ s t a b l e
clock ’ event and c lock = ’0 ’
not clock ’ s t a b l e and c lock = ’0 ’
f a l l i n g _ e d g e ( c lock )

falling_edge(clock) and rising_edge(clock), in particular, are more than just procedure calls
abbreviating the above mentioned long versions of clock edge specificators. This is a detail
of VHDL and not relevant here.

A Synchronous condition is a condition (i.e. expression) that contains a clock edge specifi-
cation and is true only if the clock edge specification evaluates true. This connection can be
made formal by the following boolean predicate 3.4.

syncCond(c) = typeOfBool(c)∧
containsClockEdge(c)
(c = true→ clockEdge(c) = true)

(3.4)

As an example consider the VHDL expression:

en = ’1 ’ and ( c lock = ’1 ’ and clock ’ event )

Now, the according boolean formula for c can be extracted and used in the previously
defined predicate.

let c : = (en = true∧ clock) =⇒ clockEdge(c) = clock
syncCond(c) = typeOfBool(c)

∧ containsClockEdge(c)
∧ ((en = true∧ clock) = true→ clock = 1)

(3.5)

Hence, a synchronized condition must be of type boolean, it must contain at least one clock
edge and finally, the expression

((en = true∧ clock) = true→ clock = 1)

must evaluate true for each possible binding of en and clock. In this case there are exactly 22

possible bindings.

3.3.4 Transformation algorithm – Synthesis examples

This chapter presents an own synthesis algorithm. Because of Yodl being the first open-source
synthesis tool for VHDL – at least at the time of this writing – this was necessary, because
every other available tool is closed-source and the IEEE standard [7] does not specify how
the synthesis should be done, but rather explains what should be synthesizeable and what
hardware representation shall be used for synthesis.

The transformation component, which ultimately generates a RTLIL netlist from a VHDL
AST, is named NetlistGenerator. This synthesis component lies entirely in one class providing
the public API summarized in listing 3.36.
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Listing 3.36 Public API of NetlistGenerator
class N e t l i s t G e n e r a t o r {
public :

N e t l i s t G e n e r a t o r ( Yosys : : RTLIL : : Module ∗ r ) : r e s u l t ( r ) { } ;
int operator ( ) ( E n t i t y ∗ ) ;

Yosys : : RTLIL : : Module ∗ r e s u l t ;
private :

/∗ i n t e n t i o n a l l y l e f t out ∗/
} ;

Code 3.36 shows the signature of the overloaded call operator. If a netlist generator object
gets called with a valid pointer to an entity object, the entire entity will be traversed and
the generated netlist will be located in result . The rest of this chapter shortly explains how
the synthesis is done in particular. Note that every netlist presented here is the unmodified
result of Yodl itself.

Synthesis of Entity objects

An entity object holds a list of port declarations. Those are used in order to describe what
inputs or outputs the architecture can manipulate. Because of Yodl’s reuse of vhdlpp’s
codebase, it is restrained to only one architecture for each given entity (cf. file entity_-
elaborate.cc, line 50). For that reason the netlist generator component does not need to
take care about more than one architecture.

The said entity ports are synthesized to RTLIL wire objects (cf. section 3.3.1). Currently
only ports of type std_logic or std_logic_vector can be synthesized. Every other type raises an
error message.

Synthesis of Block and Process statements

In the current prototype, declarations in block or process statements won’t be taken care
of. The synthesizer only traverses the concurrent/sequential statements inside a block or
process.

Synthesis of sequential statements

Section 3.3.2 introduces SVHDL which basically represents a strongly simplified format for
VHDL AST’s. According to this (informal) specification (see grammar in section 3.3.2), a
sequential statement can only be a wait statement, a simple signal assignment statement a
simple variable assignment statement or a case statement. This work is only concerned with
simple signal assignment statements, case statements and if statements. Wait statements are
not mandatory, as they mostly serve for purposes regarding checks for semantic correctness
of the source program. Hence, they won’t be considered in synthesis.

The following part of this section will show a few motivating examples of what the current
synthesizer is capable of. Every example will show a listing, a netlists produced by the
synthesis algorithm for the source and a corresponding explanation.

A simple synchronized assignment
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Listing 3.37 Code for a synchronized bit assignment
−− l i b r a r i e s and e n t i t y dec l d e l i b e r a t e l y omitted
−− A and clock are both of type s t d _ l o g i c
architecture behv of adder is

function r i s ing_edge ( c : in s t d _ l o g i c ) return s t d _ l o g i c ;
begin

process (A) is
begin

if r i s ing_edge ( c lock ) then
A <= ’ 0 ’ ;

end if ;
end process ;

end behv ;

As can be seen in the process part of listing 3.37, the signal A shall only be driven if and only
if a rising edge in signal clock occurs. If there is no rising edge, the current value needs to
be stored. This can be achieved through the usage of a simple edge sensitive flip-flop5 also
known as D-flip-flop (DFF for short). Yodl transforms listing 3.37 into the netlist shown in
figure 3.8. The netlist also shows, how the signals are connected to represent the semantics
from the listing. The values in the elliptical shapes represent constant values, whereas strings
contained in diamond shapes are used to denote driving signals. The netlist format identifies
all driven signals with an octagonal border. Moreover, the cells (aka. functional building
blocks) are easy to spot, because of their $-naming scheme. A muxer cell, for example, is
always labeled by the string $-mux. “BUF” nodes are not relevant, because they don’t add
any logic to the netlist and thus shall be neglected.

Nested synchronized assignment

Listing 3.38 Code for a nested synchronized bit assignment
−− [ . . . ]
−− A and clock are both of type s t d _ l o g i c
architecture behv of adder is

function r i s ing_edge ( c : in s t d _ l o g i c ) return s t d _ l o g i c ;
begin

process (A) is
begin

if r i s ing_edge ( c lock ) then
if r i s ing_edge ( c lock ) then

A <= ’ 0 ’ ;
end if ;

end if ;
end process ;

end behv ;

Listing 3.38 contains an assignment that gets doubly synchronized by the two enclosing if
statements. Commercial tools would probably report a warning or, in some contexts, an
error. Yodl, however, does not complain as standard [7] does not explicitly forbids this kind
of synthesis behavior (cf. chapter 6.1). The netlist in figure 3.9 clearly shows the result of
such a nesting. As opposed to circuit 3.8, the nested version needs one additional clock cycle
for ’0’ to appear on output A.

5 See chapter 11.4 in [9]
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Simple latched assignment

Listing 3.39 Code for a simple latched bit assignment
−− same l i b r a r i e s as above
−− A, B and C are of type s t d _ l o g i c
architecture behv of adder is

function r i s ing_edge ( c : in s t d _ l o g i c ) return boolean ;
begin

process (A) is
begin

if A = B then
C <= ’ 1 ’ ;

end if ;
end process ;

end behv ;

Level sensitive flip-flops are commonly called latch. DFF’s only sample values at clock edge,
whereas latches maintain a constant connection between their inputs and outputs if the signal
value is either zero or one (cf. [9], 11.3). For instance, suppose a latch is low-level active.
This latch would only interconnect its input and output only if the enable input equals zero.
DFF’s also possess input pins like enable, but in this case those inputs are commonly called
clock, because of the emphasis on clock edge synchronicity.

Listing 3.39 contains a single if statement with an ordinary condition on top of it. It does
not have an else-path. As a consequence, a register-like hardware cell must be used to
handle the case when the condition A = B does not apply. If it does, C will be driven with
the constant value of 1. Otherwise, the previous value (in this case always 1) will be stored.
Note how 3.10 connects the netlist for the condition directly with the EN input of the latch.

In digital circuits, particularly in synchronous circuits, the usage of latches is mostly
unwanted as latches can’t generally be used for feedback assignments like: A <= A + 1;
However, this is a topic far beyond the scope of this work. References for further reading are
3.6.2, 3.6.1 and, most importantly 3.4 from [8].

Nested, latched assignment

Listing 3.40 Code for a nested latched bit assignment
−− [ . . . ]
−− same preamble as above

process (A) is
begin

if A = B then
if not A then

C <= ’ 1 ’ ;
end if ;

end if ;
end process ;

end behv ;

Analogous to the snippet in listing 3.38, latches can be cascaded too. The relationship between
the netlists 3.11 and 3.10 exactly correspond to 3.8 and 3.9. Consequently, a description of if
would be redundant.
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Figure 3.8 Netlist for listing 3.37
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Simple case statement

Listing 3.41 Code for a simple case statement
−− same l i b r a r i e s as before
−− A i s a s t d _ l o g i c and baz a s t d _ l o g i c _ v e c t o r (2 downto 0)
architecture behv of caseT is
begin

process (A) is
begin

case baz is
when " 000 " => A <= ’ 0 ’ ;
when " 001 " => A <= ’ 1 ’ ;
when " 010 " => A <= ’ 1 ’ ;
when " 011 " => A <= ’ 1 ’ ;
when " 100 " => A <= ’ 0 ’ ;
when " 101 " => A <= ’ 1 ’ ;
when " 110 " => A <= ’ 1 ’ ;
when " 111 " => A <= ’ 1 ’ ;

end case ;
end process ;

end behv ;

VHDL’s case statement’s are particularly interesting for synthesis because all test from all
choices must be performed parallel in hardware. Listing 3.41 shows a simple example of a
case statement being used to model a 3-muxer. The fact that, for instance, A <= ’0’, could be
replaced by an arbitrary sequence of sequential statements shall be neglected for now.

The code from 3.41 can be interpreted as: “if baz equals the signal vector containing 000, A
shall be driven by ’0’ . . . ”. The netlist 3.12 presents an implementation of this behaviour.
Note that $-mux cells are equivalent to the abstract multiplexers from section 3.3.3. Figure
3.12 shows that each muxer has three inputs and a single output. Analogous to the the
muxer semantics from 3.3.3, A gets selected if S equals zero, otherwise B.

Note that nodes with rounded corners connecting the various muxer selectors with the
signal baz show which bit is being connected by the respective edge. For example 2:2 − 0:0
means that the slice 2:2 (just one bit) is connected to the zeroth bit on the other side.

Nested case statements

Listing 3.42 Code for three nested case statements
−− same l i b r a r i e s as before
−− A, B , C and sum are ports of type s t d _ l o g i c
architecture behv of adder is
begin

process (A) is
begin

case A is
when ’ 0 ’ => case B is

when ’ 0 ’ => sum <= ’ 0 ’ ;
when ’ 1 ’ => sum <= ’ 1 ’ ;

end case ;
when ’ 1 ’ => case C is

when ’ 0 ’ => sum <= ’ 0 ’ ;
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Figure 3.12 Netlist for listing 3.41
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when ’ 1 ’ => sum <= ’ 1 ’ ;
end case ;

end case ;
end process ;

end behv ;

Case statements, in VHDL, can be arbitrarily deep nested as example code 3.42 shows. As
can seen from the snippet, if signal A equals ’1’ and C equals ’0’ , sum will be driven by the
value ’1’ . The three other paths follow analogous. Of course, the same functionality couldn’t
be achieved through the usage of a single case statement whose condition expression is
composed of a 2-bit signal, because both inner case statements use two different input signals
as selectors.

In 3.42 it appears as if the case statements are going to be evaluated from outside to inside.
Concretely, it seems as though first signal A is matched to either ’0’ or ’1’ and according
to the result, the interpreter evaluates either the first or the second path. In hardware,
however, there is no notion of evaluation, because the circuit is static and cannot change
during its runtime. For better illustration of how a synthesis algorithm works, nested control
statements must be read from the inside to the outside. Following this guideline, figure 3.13
is easier to comprehend with. Given the first path of 3.42

case A is
when ’ 0 ’ => case B is

when ’ 0 ’ => sum <= ’ 0 ’ ;

the constant value ’0’ connects to the A input port of the muxer for the case statement
containing B as conditional expression. Because of its hardware representation as muxer, the
inner case statement itself possesses an output bit for every element of the disjoint set of
driven signals below the root of the case statement. Therefore, this output signal serves as
input to the outer case statement if and only if A equals ’0’ .

Synchronized simple case statement

Listing 3.43 Code for a simple synchronized case statement
−− [ . . . ]
−− A, c lock are ports of type s t d _ l o g i c and
−− s e l i s a s t d _ l o g i c _ v e c t o r (2 downto 0)

architecture behv of syncCase is
function r i s ing_edge ( c : in s t d _ l o g i c ) return s t d _ l o g i c ;

begin
process (A) is
begin

if r i s ing_edge ( c lock ) then
case s e l is

when " 000 " => A <= ’ 0 ’ ;
when " 001 " => A <= ’ 1 ’ ;
when " 010 " => A <= ’ 1 ’ ;
when " 011 " => A <= ’ 1 ’ ;
when " 100 " => A <= ’ 0 ’ ;
when " 101 " => A <= ’ 1 ’ ;
when " 110 " => A <= ’ 1 ’ ;
when " 111 " => A <= ’ 1 ’ ;
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end case ;
end if ;

end process ;
end behv ;

Listing 3.43 illustrates how assignments occurring inside the choice statement lists of case
structures can be synchronized. As can be seen in the code, the choices are exhaustive,
which means that every possible combination of the bits in sel occurs only once as option
for a possible code path. VHDL-2008 does require semantic checks in this regard, but Yodl
currently does no such thing, since a proper validity check suite would far exceed the scope
of this work (cf. [6], 10.9).

As can be seen in the comment on top of 3.43, sel is a signal vector with a width of three
bits. Hence, a 3-muxer is shown in the rendered netlist 3.14 belonging to the code. The
netlist for the muxer depicted in 3.14 is exactly equivalent to that shown in 3.12. However,
the output of this structure does not simply drive the signal A but rather feeds the data port
(D) of the preceding DFF. Furthermore, figure 3.14 confusingly shows 8 equal connections
between the 3-muxer’s output and the data input of the DFF. This is a result of the inner
workings of the synthesis algorithm and not relevant here. Yosys provides for a optimization
pass that eliminates duplicated (and equal) connections anyway and, as a consequence, the
algorithm does not need to be adjusted with regard to this issue.

If statement representing a muxer

Listing 3.44 Code for an if statement actually representing a case statement (aka. muxer)
−− [ . . . ]
−− A, B and C are ports of type s t d _ l o g i c
architecture behv of adder is

function r i s ing_edge ( c : in s t d _ l o g i c ) return boolean ;
begin

process (A) is
begin

if A = B then
C <= ’ 0 ’ ;

else
C <= ’ 1 ’ ;

end if ;
end process ;

end behv ;

The last code excerpt 3.44 shows that, given the right preconditions, an if statement does not
produce synchronized netlists whatsoever. One could argue that in this case, the if statement
is nothing else than a case statement. In the current context he/she would be completely
right. Yodl’s synthesis algorithm actually converts 3.44 into a semantically equivalent case
statement AST before it continues its synthesis.

For that reason the code in 3.44 leads to the same netlist as the source code 3.45.

Listing 3.45 Equal semantics as in 3.44
−− [ . . . ]
case A = B is

when TRUE => C <= ’ 0 ’ ;
when FALSE => C <= ’ 1 ’ ;
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Figure 3.13 Netlist for listing 3.42
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Figure 3.15 Netlist for listing 3.44
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end case ;
−− [ . . . ]

3.3.5 Transformation algorithm – Implementation details

During traversal, every time the algorithm encounters an if or case statement, it first examines
the conditions and bodies of those structures. Based on this information, the synthesizer
pushes a netlist object on top of a special stack which contains references to all input and
output ports as well as some additional information like, for example, the corresponding
control structure resulting in the netlist.

Introduced abstractions

The netlist generator object carries around a stack containing elements of type stack_element_t.
As can be seen in file netlist_generator.h, the stack is represented by a STL vector (cf.
Glossary). The algorithm only adds new elements using push_back and only removes them
with pop_back. However, the container must be a vector, because the algorithm needs to be
able to randomly access the structure when synthesizing signal assignments.

Listing 3.46 API of base stack element
class N e t l i s t G e n e r a t o r {
public :

// [ . . . ]
struct s tack_e lement_t {

// c o n s t r u c t o r s i n t e n t i o n a l l y omitted
std : : map< s t r i n g , n e t l i s t _ e l e m e n t _ t ∗> n e t l i s t ;
s td : : se t < s t r i n g > o c c u r r i n g S i g n a l s ;

} ;
// [ . . . ]

} ;

Objects of type struct_element_t possess the API depicted in listing 3.46. There are three
classes that inherit from struct_element_t. As code 3.46 illustrates, every element on the stack
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carries an association between signal IDs (strings) and netlist_element_t objects as well as a
list of all driven Signals. These two members describe the core of the current context. For
understandability purposes, code excerpt 3.47 shows one of the derived classes used for the
case statement context. If the algorithm, for example, would encounter a case statement
like the one in 3.43, it’d first search all possible traversal paths below the subjected case
statement for driven signals creating a set of those signals along the way. In the context of
3.43 this set would only contain one element: A. After that, the synthesizer would construct
a appropriate netlist for each of the set’s elements. Finally, the set, and the association of the
signals with their muxer netlists is packaged into an object of type case_t and pushed to the
stack (cf. file netlist_generator.cc, function executeIfStmt in line 1041 and 1096, and
function executeCaseStmt).

Listing 3.47 Case statement context class derived from stack_element_t
class N e t l i s t G e n e r a t o r {
public :

// [ . . . ]
struct c a s e _ t : s tack_e lement_t {

// c o n s t r u c t o r s i n t e n t i o n a l l y omitted
Yosys : : RTLIL : : SigSpec curWhenAlternative ;

} ;
// [ . . . ]

} ;

The synthesis algorithm does the same for if statements. Regarding this, however, there
are a few subtleties that need further attention. As the synthesis results for 3.37, 3.39 and
3.44 show, netlists for if statements depend on two factors: The if condition and the set of
disjoint driven signals below the root of the respective if block. Depending on the kind
of condition of the if expression and the distribution of the various statements inside the
if block, the contained signal assignments will be latched, clock accurately synchronized
or only carried through a simple multiplexer. Consequently, there are two other classes
implementing the common interface presented in 3.46: Class if_dff_t and if_latch_t ; both of
which being declared by the struct keyword making every member public by default as
opposed to the keyword class. The two classes, however, don’t add anything new to the
base interface from 3.46 but only serve as a kind of enumeration on the type level. This is a
common design pattern in functional programming and becomes feasible in C++ through
the use of the pattern matching library Mach7.

An open point of this elaboration still remains: Objects of type netlist_element_t. Like
stack_element_t, a netlist element constructs an interface using an abstract class. As 3.48
shows, this API solely consists of one member named output. While some netlists (e.g.
Multiplexers or RAM blocks) can have inputs with attributes associated with them, others
only have one ore more anonymous inputs. For example, inputs of multiplexers have to carry
the selection semantics with them, because the synthesis algorithm needs to know which
muxer input corresponds to which choice in the corresponding case statement. On the other
hand, netlist parts, such as latches or DFFs, only ever have one possible input.

Listing 3.48 API of base netlist element
class N e t l i s t G e n e r a t o r {
public :

// [ . . . ]
struct n e t l i s t _ e l e m e n t _ t {
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// c o n s t r u c t o r s i n t e n t i o n a l l y omitted
Yosys : : RTLIL : : SigSpec output ;

} ;
// [ . . . ]

} ;

3.4 Current Limitations

The following is a non-comprehensive list of the most important limitations of Yodl.

• Only one architecture definition per entity declaration is allowed.

• Configurations are not supported, because the underlying parser does not support this
yet (cf. file parse.y in line 650).

• Yodl can’t fully parse VHDL-2008. The code snippet below shows that, for example, a
list of named arguments can’t be used as a parameter list for a function called inside of
an expression context (cf. parse.y).

architecture beh of ent is
−− some dec l s

begin
−− t h i s should be parsable , but produces syntax e r r o r
r e s u l t <= foo ( fnord => 3 , foobar => 4) ( 3 ) ;

−− t h i s i s parsable
r e s u l t <= foo ( 4 , 3 ) ( 3 ) ;

end beh ;

• The synthesis algorithm is in a proof-of-concept pre-alpha state. It is untested and does
not support signal or variable assignments with a vector subscription as left-hand side
expression.

• The synthesis implementation can not translate variable assignments.

• The implementation is unable to cope with signal assignments like A <= A + 1, i.e.
assignments where the left-hand side also occurs, possibly multiple times, in the
right-hand side expression.

• Synthesis of complex types (e.g. arrays of arrays of records . . . ) is not possible yet.

• The test suite is still rudimentary.

• The library and package concept was not considered in this work.

• The complex visibility rules from chapter 12 of [6] were not considered, since Yodl’s
base, vhdlpp, already came with an implementation of the scoping and visibility rules.

• Component instantiations can’t be processed.
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4.1 Complete parser

Section 3.4 has already made clear, that the current parser solution is unfinished and hence
unable to parse the entirety of VHDL-2008. Thus, a very important future goal of Yodl is to
completely refactor or rewrite the parser component. This is likely to be difficult because of
the reasons denoted in section 2.1

The following section describes a tool that offers a lot of help if the parser actually needs
to be rewritten.

4.1.1 BNFC and LBNF

LBNF is a formalism which is based on the notation system BNF. The L in LBNF stands for
labeled. Like BNF, the LBNF notation is used to describe context free grammars, but unlike
BNF it forces the writer of the grammar to annotate every rule with a certain label.

For example, a simple expression grammar would be given in LBNF using

ENum . Exp3 ::= Integer ;
EMul . Exp2 ::= Exp2 "*" Exp3 ;
EPlu . Exp ::= Exp "+" Exp2 ;
_ . Exp ::= Exp2 ;
_ . Exp2 ::= Exp3 ;
_ . Exp3 ::= "(" Exp ")" ;

BNFC is a program generator that takes LBNF code as input and produces a complete
frontend for the specified language, given the fact that the grammar is sound. It can output
language frontends in different languages. At the time of this writing, BNFC is able to
generate Haskell, OCaml, C/C++, C-Sharp and Java code. For the previously defined
expression grammar, BNFC would output a flex and bison file describing the scanner and
parser part and a data model for the abstract syntax tree. This data model in turn is used
in the bison file in order to actually create the said AST. The according C++ classes for the
grammar roughly look like listing 4.1.

Listing 4.1 Generated classes for expression grammar
class Exp { public : virtual ~Exp ( ) = default ; } ;
class ENum : Exp { public : int value ; ENum( int v ) : value ( v ) { } }
class EPlu : Exp {

public : Exp ∗ l , ∗ r ;
EPlu ( Exp ∗ le , Exp ∗ r i ) : l ( l e ) , r ( r i ) { }

} ;
class EMul : Exp {

public : Exp ∗ l , ∗ r ;
EMul ( Exp ∗ le , Exp ∗ r i ) : l ( l e ) , r ( r i ) { }

} ;
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Normally the above classes need to be handcrafted. This was done for Yodl’ parser. For
anything but trivial grammars, this task is tedious and error prone and should be automated.
Refer to [22] for details about the labeled BNF formalism.

In the scope of this work, the entire VHDL-2008 BNF grammar has already been extracted
from the official standard and completely translated into LBNF (cf. vhdlpp_parser/-
newparser/vhdl-2008/vhdl-2008-all.lbnf).

4.2 Further grammar issues

Yodl’s current parser demonstrates how especially reduce-reduce ambiguities can be dealt
with. Simply put, the parser needs to carry around a stack of scopes that it currently
processes (cf. parse.y, in particular line 366 pushes a new scope frame and line 385 pops
the same). Since every RR conflict arises because of VHDL’s use of parentheses for array
subscriptions, function/procedure calls and type declarations (see listing 4.2), the parser
must know about the scope it currently parses and every already declared/defined symbol
that scope possesses.

Listing 4.2 Illustration of a common reduce-reduce conflict
function foo ( ) is
begin
−− [ . . . ]
return " 0000 " ;
end function foo ;

signal foo : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

foo ( 0 ) ; −− This could be parsed as
−− 1 . s u b s c r i p t i o n of the vec tor foo
−− 2 . as c a l l to the 0−ary funct ion foo with one argument ,
−− which would be s y n t a c t i c a l l y c o r r e c t but semant ica l

non−sense
−− 3 . as s u b s c r i p t i o n of the return value r e s u l t i n g from the
−− c a l l to the 0−ary funct ion foo with no argument

Hence, there is a solution for dealing with RR conflicts, but what is about shift-reduce
conflicts? They aren’t allowed to lift the grammar into the set of non-deterministically
context free languages because that would mean that even with Bison’s GLR feature enabled
the grammar couldn’t practically be processed. A parse-forest would result from a parser
run, which is completely inacceptable for production-aspiring compilation systems.

For that reason, it must be proven that all SR conflicts together (without the RR) indeed
don’t make the grammar non-determinstic. This work does not provide any proof of that
kind, because of the complexity of the problem. The next paragraph, however, shows a first
approach.

GLR is a parser algorithm which, simply put, duplicates itself if it encounters an ambiguity.
Each parser then continues virtually in parallel. Each duplicate can of course in turn
duplicate and split itself again and again if ambiguities are hit very often. If it is guaranteed,
that for each split only one of the duplicated parsers succeeds, the parser produces only one parse tree
for all inputs over the grammar. This condition is the core of the previously mentioned proof!
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4.3 Complete VHDL support

Currently Yodl is mainly an experimental project that does not support VHDL specific
language concepts such as packages, libraries, components, configurations, generics and
multiple architectures for a given entity. As every industry-quality synthesis tool supports
those features, Yodl will support them too in the near future.

Packages and libraries are not trivial to implement because of the complicated visibility
rules described in chapter 12 of [6] Especially generics provide for another challenge as
6.5.6.2 of [6] allows for generic functions and types which renders them more like generics
found in the programming language ADA as opposed to the older concept where they were
handled as simple constants.

4.4 Far in the future

The two last sections elaborate two projects that are probably very work intensive. Hence,
they won’t be concerned until a first prototype for full VHDL-2008 is released.

4.4.1 Formal specification of VHDL’s synthesis semantics

The Book [10] already provides formal semantics for VHDL. Since its initial release, which
was in 1995, a lot of VHDL’s synthesis semantics has changed however. Because of that, a
new specification becomes necessary.

4.4.2 Regression based test suite

As section 3.1.7 already states, the automation of tests is important to maintain a correct
code base. Compilers are among the most complex and complicated software systems in
existence which makes formal verification very hard. Smoke tests, as they are implemented
in the scope of this work, are not quite sufficient because of their inadequate code coverage.
A Regression test suite in the sense of 3.1.7 solves the coverage issue.
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