

Data Analytics Project
Professor: D.Gounopoulos

❖ Panagiotopoulos Georgios : ​CS2190012

❖ Stefou Theodoros : ​CS2190002

Fall 2020

The code for this project can be found in this github repository:
https://github.com/giorgospan/Data-Analytics

We ran the code on a machine with the following specifications*:

● OS: Ubuntu 16.04 LTS
● CPU: AMD Ryzen 5 2600 3.4GHz
● RAM: 16GB 3000MHz
● Python: 3.5.2

*For the Neural Network implementation of the last requirement, we ran our
experiments on Google Colab.

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​2

https://github.com/giorgospan/Data-Analytics

Requirement 1: Text classification

Question 1a: Get to know the Data: WordCloud

We removed any punctuation and stop words in the Title and Content columns (in that
order). For stop words, we used the ones provided in nltk.corpus and added a few of
our own (can be found in the file stopwords.txt). For each article, we fed 20*Title +
Content to the wordcloud API. The following pictures are the results we produced.

Business

Entertainment

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​3

Health

Technology

Question 1b: Classification Task

For this question, we used the same stop words as in the previous question. Our
heuristic for taking the title into consideration is to prepend it 3 times to the content. We
also tried prepeding the title more times (up to 20) and it did not make a difference.

To vectorize the sentences we chose sklearn’s TfidfVectorizer over CountVectorizer.
The main difference is that the former normalizes the word values by taking into account
the frequency of the word in the corpus.

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​4

Beat the Benchmark

In order to beat the benchmark, we used KNN with the bag of words technique.
Since Linear SVM worked very well on our data, it seems that this problem is well suited
to be modelled spatially. Therefore, KNN seems ideal for this kind of task. Unfortunately
it didn’t surpass our previous results (only for 0.003) and also took a lot of time to
complete (11+ minutes). This came as no surprise because KNN ​does not generalize
over data in advance (lazy learner) ​and we are also dealing with a lot of data.

Evaluation Results

In the following table you can see the metrics we achieved for the various algorithms we
tested using 5-Fold.

Statistic
Measure

SVM
(BOW)

Random
Forest
(BOW)

SVM
(SVD)

Random
Forest
(SVD)

KNN
(BOW)

Accuracy 0.9759 0.7504 0.8886 0.9390 0.9722

Precision 0.9744 0.8643 0.8818 0.9355 0.9701

Recall 0.9730 0.6655 0.8713 0.9276 0.9688

F-Measure 0.9737 0.7134 0.8761 0.9314 0.9694

Model Parameters:

● SVM:​ We decided to set the value of tolerance to1e-5, as it produced slightly
better results than the default value (1e-4)

● Random Forest:​ After experimenting with various parameter values, we found
that n_estimators=100 and max_depth=18 led to the best accuracy-performance
ratio for our model

● KNN:​ After various experiments, we settled for n_neighbors=10.

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​5

Output File

For this task we used SVM with BOW representation and produced the
testSet_categories.csv file.

Our team’s submission on Kaggle can be found under the username “​Thodoris Stefou -
George Panagiotopoulos​”.

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​6

Requirement 2: Nearest Neighbor Search and Duplicate Detection

Question 2a: De-Duplication with Locality Sensitive Hashing

For this question we decided to not use stop words. The reason for this is that for the
next question, we got worse results when using stop words and since these two are
related, we decided to go without them.

The implementations we used are the following:

● Exact-Cosine: sklearn.metrics.pairwise.cosine_similarity
● Exact-Jaccard: Python sets and 10 processes as workers
● LSH-Cosine: This​ github repository
● LSH-Jaccard: datasketch

Evaluation Results

Type BuildTime QueryTime TotalTime #Duplicates Parameters

Exact-Cosine 0 42.78 42.78 1373 -

Exact-Jaccard* 0 26m40s 26m40s
(~260-300m)

313 -

LSH-Cosine 21m55s 11m15s 33m5s 1243 K=1

LSH-Cosine 11m42s 6m22s 18m4s 1114 K=2

LSH-Cosine 8m5s 4m1s 12m6s 971 K=3

LSH-Cosine 4m6s 1m52s 5m58s 833 K=4

LSH-Cosine 4m25s 50s 5m15s 762 K=5

LSH-Cosine 3m49s 32s 4m21s 710 K=6

LSH-Cosine 3m52s 22s 4m16s 587 K=7

LSH-Cosine 3m40s 15s 3m55s 540 K=8

LSH-Cosine 3m39s 12s 3m51s 482 K=9

LSH-Cosine 3m40s 11s 3m51s 449 K=10

LSH-Jaccard 6m8s 4s 6m12s 618 P=16

LSH-Jaccard 9m2s 5s 9m7s 499 P=32

LSH-Jaccard 14m3s 8s 14m11s 538 P=64

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​7

https://gist.github.com/santhoshhari/52d8b7acd39c1b744736d7591497ae39#file-hashtable-py

- Exact-Cosine:​ Batches consisting of 1000 test vectors

We used the cosine_similarity function found in the sklearn.metrics.pairwise
module.

- Exact-Jaccard:​ We utilized python’s multiprocessing module and equally
distributed the workload among 10 worker processes.
We wrote our own implementation which uses python sets and divides the length
of the intersection over the length of the union.

The similarity threshold for all combinations of methods and parameters is 0.8 .

Question 2b: Same Question Detection

For this question we used the Linear SVM implementation of sklearn. For the training,
we tried several heuristics between the pairs of vectors. The following table shows the
results we got for each heuristic using 5-fold validation, X1 and X2 being the vectors of
the first and second question respectively. (For all rows)

Evaluation Results

Heuristic* Accuracy Precision Recall F-Measure

1 2X * X 0.7702 0.7619 0.7324 0.7411

1 X2X + 0.7523 0.7355 0.7249 0.7290

1 X2X − 0.5736 0.5017 0.5013 0.4873

X1 X2|| + 0.7523 0.7355 0.7249 0.7290

X1 X2|| − 0.7796 0.7644 0.7714 0.7673

X1 X2|| − 0.7 0.7808 0.7659 0.7740 0.7690
*​Element by element operations

Output File

Our team’s submissions on Kaggle can be found under the username “​Thodoris Stefou
- George Panagiotopoulos​”.

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​8

Requirement 3: Sentiment Analysis

We noticed that the files contained the HTML tag
. That is why we removed it from
the test and training set.

1. For the classic Machine Learning technique we used LinearSVC and the
TfidfVectorizer.

2. For the deep learning technique we used Keras library in order to build a CNN
network.

NN Fine-Tuning:

● We opted for pre-trained word embeddings (GloVe) instead of initializing our
embedding layer from scratch and learning its weights during training. GloVe
vectors lead to slightly higher accuracy.

● We opted for only 2 epochs, as the size of the dataset is relatively small (25.000
imdb reviews)

● We used an 1-D convolutional layer with max pooling with dropout rate of 25%.

● We decided to use ​sigmoid ​ as an activation function and Binary Cross-Entropy
for calculating the loss

The table below presents the metrics we extracted from the two algorithms using 5-fold
cross validation.

Statistic Measure SVM Neural Network

Accuracy 0.8942 0.8775

Precision 0.8943 0.8780

Recall 0.8943 0.8773

F-Measure 0.8942 0.8774

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​9

Output File

Our team’s submissions on Kaggle can be found under the username “​Thodoris Stefou
- George Panagiotopoulos​”.

Data Analytics Project Report Fall 2019 - Stefou Theodoros, George Panagiotopoulos ​10

