
CAB230 Web Computing

Assignment 1 Specification
The Stocks Client Application

(Official) Release Date: Monday, April 20 2020

Submission Date: Wednesday, May 13 2020

Weighting: 45% of Unit Assessment

Task: Individual Project

Introduction:
This assignment requires that you develop a React-based web application to allow users to
view and analyse stock market statistics drawn from a database that we have created for this
purpose and exposed to you via a REST API. We will talk about this API in detail below, and
you will implement a version of this backend as your task for the second assignment.

The aims of this assignment are to:

• Allow you to build a sophisticated client web application using modern approaches
• Provide experience in querying REST APIs and presenting the results for your users
• Provide experience with modern web technologies including node.js and React

In this specification, we will not be too prescriptive, and you should feel free to exceed the
specification if you wish to explore the technologies. But overall the assignment task is one
best completed in stages, with each new step allowing you to look at a higher grade level.

The Data:
The dataset consists stock market data drawn from an American exchange from November
2019 through to March 2020. The more precise dates are given below in the format that you
will use in subsequent queries:

from 2019-11-06 to 2020-03-24

We will all work with the same data, but we reserve the right to update our database with
additional records prior to marking your assignments, so please don’t be tempted to hard
code your responses. The easiest way to see what is going on is to look at an example. The
screenshot below shows a query on the backend database holding the data. For each listed
company we will have an identifier which we call a symbol, and a snapshot of the trading
prices and volume for that company over the given day. Note that the exchanges are not open
on weekends and so there will be gaps in the timestamps shown. Here we are looking at (most

of) the records obtained when we query on the symbol AAL, which is used by American
Airlines.

The fields are described in more detail in the table below:

Field Description Example
Timestamp A time stamp (year, month, day) of the

interaction
2020-03-10

Symbol The stock’s symbol AAPL
Name The company name Apple Inc.
Industry The industry that describes the company Information Technology
Open The price at opening on that day 228.08
High The highest price that day 251.83
Low The lowest price that day 228.00
Close The price at close on that day 229.24
Volume The number of shares traded in that day 100,423,000

Table 1: The information in the dataset

We do not work with the database directly, but every successful response from the API will
include some subset of the records held in the database. There are 49500 records from 495
listed companies. Your task will be to display the results from queries over that data set. If the
expected response is a single record, you should tailor your display component to suit. If the
result is an array of records – as will often be the case – then obviously we will expect that
your application will include some use of a table display. We have provided you with a

worksheet to help you, and the component readily supports advanced features such as
filtering and sorting. We now consider the REST API in more detail.

The REST API:
The REST API is documented on the page at: http://131.181.190.87:3000/. The server is
behind the QUT firewall, with remote access via the QUT VPN:
https://qutvirtual4.qut.edu.au/group/student/it-and-printing/wi-fi-and-internet-
access/accessing-resources-off-campus

We will not reproduce the endpoint documentation here – please use the Swagger docs
provided as they will be maintained more regularly than the assignment spec and they have
executable examples. Most of the endpoints are available to everyone, but there is one query
route which requires authentication – think of this as a site membership. And if, like most of
the class, you have never seen Swagger before, please have a brief look here:
https://swagger.io/docs/specification/about/. Essentially Open API allows very professional
documentation to be generated quickly and painlessly. It is really helpful.

Task highlight: Your application must allow the user to navigate cleanly between the query
and user functions. The precise organisation will depend on your design, but these must be
clearly separated in a menu. Please see the Styling React Components worksheet for very
good navigation examples using React.

As discussed in the overview shown, the endpoints are split into two categories: Queries and
Users. If you have not registered with the system before, then you should register and then
you will be able to login. We will discuss authentication properly below and in the lecture in
week 7, but for now just assume that you are able to login to the site.

http://131.181.190.87:3000/
https://qutvirtual4.qut.edu.au/group/student/it-and-printing/wi-fi-and-internet-access/accessing-resources-off-campus
https://qutvirtual4.qut.edu.au/group/student/it-and-printing/wi-fi-and-internet-access/accessing-resources-off-campus
https://swagger.io/docs/specification/about/

Task highlight: Your application must handle the registration and login processes. This
basically requires that you implement two POST operations that have a very similar format.
You should design or use a form component to handle these, though the responses from the
server will be different.

Once you have logged in, the response JSON will look something like the following, excepting
that the token will be much longer and far more random (I have edited a real one).

We will show you how to work with JWT tokens (https://jwt.io/) at the next lecture, but for
now you will need this token to use the authenticated routes on the Swagger. If you take a
look at the Swagger image above, you will see a green button with an open lock icon:

Click on this button and you will see the dialogue below. Copy the token from the JSON above
and paste it where I have my fake `myJWTTokenHere` in the image:

Click on the green button and close the dialogue and you will see that the locks are now shut
and the grey icon is now black. You are now able to use the authenticated route in Swagger.

https://jwt.io/

We now consider the main query routes in turn. Each of them is a GET, and the first two are
not authenticated. The error conditions and precise usage you can discover by playing with the
Swagger docs. Here we are concerned with the types of data that come back and what we will
expect you to do:

This first route is very simple and just returns an array of stocks. If you don’t use the optional
query parameter (industry) then you will get some 495 stock objects. The fields in this
response are as shown below. I have edited the JSON to remove all the entries between
Accenture and Xilinx. Note that this list has been filtered to show only those companies from
the industry sector Information Technology.

Task highlight: The obvious display for this response will be in a three-column formatted
table. In designing this part of your application you will need to consider the inputs needed to
support this query to the server – hitting this route in response to a button click for example
– and the appropriate way to specify the text for the industry filter. Explore the results
that come back when you use a prefix instead of the full search term. You then need to think
about how you are going to handle the data when they reach your app – pagination, sorting
by column, filtering by column – typing in partial values and seeing only those which match,
styling, error conditions, no data found.

This again is a simple unauthenticated route, but it relies critically on the symbol, which as
you have seen above is a short upper case string of letters. The rule is that it must contain at
least one and no more than five characters. The response below is for /stocks/AAL:

Task highlight: Here the response is more limited. A table is the minimum requirement, but
there are other approaches that might make more sense here. Your display could have more
of the look and feel of a dashboard. Some charting to show the variation over the day might
also be considered. If you had full control of the database, you might check whether this
volume is big. But you don’t have that available, so that might just be nicely formatted text.
Spend some time designing on paper and then start to think about some mock-ups and then
put it into practice.

The final endpoint is authenticated. By default it has the same behaviour as the previous one.
But if the user is logged in, then they are able to query a particular stock between two dates
specified via the query parameters from and to. The result of such a query is an array of
stock entries like those seen above. Here is the first part of the array that results when the
stock symbol is again AAL and the dates are as shown in the Swagger example:

Task highlight: Here a table is the obvious basic approach. You might also think about the
sorting and the filtering as before, but there are other approaches that might make more
sense here. Your display could have more of the look and feel of a dashboard. You might also
think about charting – showing us how the prices and volumes track over time. You need to
think again about how we choose these date – is it a text box or a widget or whatever.

The Requirements:
The requirements for this assignment are ultimately pretty straightforward, but there are a
lot of choices to be made. These decisions are obvious after you have done a few apps, but

here you are still putting it all together for the first time. At the most basic level, you must
develop a client side web application that allows the user to work with each of the endpoints,
but without the user ever really being aware of the underlying work. The user knows that they
need to specify a symbol or an industry sector or whatever, but they don’t want to know
anything about the underlying calls. In the task highlights above I have given you some
guidance on what we need to see, and you should think very carefully about the forms that
allow us to enter the data and the components that display the responses, and the ways in
which we move between them. We expect that you should be able to successfully process all
of the endpoints. You should choose suitable interface elements to display and interact with
the information. We will give you some latitude in this, and you can also get some ideas from
the discussion below.

Some Guidance on Design:

Landing Page:

Below is an example initial landing page. This is at the very lowest level of expectations and is
intended to get you started. There should be a welcome message like the one I have given,
but chosen to suit your application, you might choose a hero image and your layout should
be chosen to facilitate the information that will come when we hit the endpoints and use the
display components you are developing. You should think about how you intend to present
the information together.

Routing:

For each route in this client side application you should think about how you are going to
handle it – have a look at the React Router examples in the lectures and in the Styling
Components worksheet. You may use a basic HTML menu but the use of React routing will
attract more credit.

Choice of Widgets:

Each endpoint call needs parameters and you will need to choose how to specify them. In the
case of the Industry Sector filtering, it may work to have a list because there aren’t so many

Home | Stocks | Quote | Price History (restricted) Register | Login

Stock Prices

Welcome to the Stock Analyst portal. Click on Stocks to see the available companies, Quote
to get the latest price information by stock symbol, or choose Price History to sample from
the most recent one hundred days of information for a particular stock.

alternatives, but the endpoint supports prefix queries like ‘Consum’ – giving results for both
Consumer Discretionary and Consumer Staples. A simple list would not map well here as you
wouldn’t be taking full advantage of the endpoints. Your industry sector choices are as
follows:

Health Care Financials
Industrials Real Estate
Consumer Discretionary Materials
Information Technology Energy
Consumer Staples Telecommunication Services
Utilities

Table Components:

As discussed in the Task Highlights, the table structures are crucial to the successful display of
the data from the server. Using a sophisticated table component like ag-Grid-react means that
we can do a lot of things in the client application without going back to the server. So, if we
perform a /stocks/symbols query – especially if it includes all of the available company
records – what can we offer the user without going back to the server?

Charting:

For more sophisticated endpoints which offer a lot of data, line or bar charting or some other
mechanism for showing the data will be very well received. You may use standard chart
libraries to produce these, and as shown below there may well be a mix of table and chart
displays.

Home | Stocks

Search date from

Showing stocks for the Apple Inc

Date Open High Low Close Volumes
10/3/2020 228.08 224.37 228.5 212.61 83,134,900
9/3/2020 247.18 229.24 251.83 228 100,423,000
8/3/2020 247.38 244.78 252.84 242.61 67,964,300
5/2020 239.77 246.67 250 237.12 75,058,400
4/3/2020 247.51 252.86 257.61 238.4 81,014,000

 Search ---------

In keeping with the earlier discussion, we will also look very favourably on applications which
allow the user to select or filter on the client side and have the table and the charting update
in response to these changes, as shown in a simple mock up below:

Grading:
The marking for this assignment will be governed by the CRA rubric, and this will take account of
a number of aspects of the assignment process. These will include:

1. The overall level of functionality successfully implemented
2. The usability of the application
3. The robustness of the application
4. Evidence of a professional approach to design
5. Evidence of a professional approach to development and code quality
6. The quality of the professional report and submission video (TBC)*

Full details of this split will be found in the CRA document, which will also be made available in the
assessment section of BB. Here we are concerned only with the marks for functionality, application
usability and robustness. The precise marks awarded may be reduced as a result of features which
are only partially implemented or error-prone or components which are poorly chosen and so on.
But as an approximate guide, these are our expectations:

• [Grade of 4 level]: A simple React app with limited styling which implements the
unauthenticated Query endpoints and presents the data cleanly using table components.
User endpoints and the authenticated queries may not have been implemented
successfully and the client side processing in the table components is very limited. A react-
strap table component or similar would suffice here.

• [Grade of 5 level]: At this level we would expect successful implementation of the User
endpoints and the authenticated Query route. Table component usage and client side
processing would be expected to use the standard functionality provided by a component
such as ag-Grid-react, and there should not be excessive querying of the server.

• [Grade of 6 and 7 level]: Here the expectation is that you have exceeded the grade of 5
level in that all of the basics are there and working smoothly. Navigation is handled using
React Router, React forms are used for the data entry and there is evidence of a really good

Home | Stocks

Search date from

Showing stocks for the Boeing Company

Date Open High Low Close Volumes
10/3/2020 4.79 4.79 4.28 4.69 713075
9/3/2020 4.95 5.11 4.27 4.58 802684

 09/03/2010 Search

match between your components and the services that they are using. We would expect
some use of charting or other information graphics to show how the stock prices are
varying and advanced use of the client side processing. The split between the grade of 6
and grade of 7 will involve a tradeoff between the features and the quality of the execution,
and we will happily give you an opinion on your proposed application. For charting we
recommend the use of chartJS (https://www.chartjs.org/), especially via the widely used
React wrapper you can find here: https://www.npmjs.com/package/react-chartjs-2.
d3 (https://d3js.org/) is a popular choice, but it is an advanced library and you shouldn’t
attempt it unless you have prior experience.

A reminder that these are guides only, and that the mark levels are based on successful
implementation of the features mentioned. If unsure, please get in touch and discuss them
with us.

Submission:
The submission instructions for this assignment cannot be finalised at the time of release – or
at least at the time of unofficial release. It is our practice to assess these assignments via a
face to face demo and we cannot use that approach in the middle of a pandemic. It is our
intention that the submission will require a video demonstration of your application, with the
option of us requiring a Zoom-based face to face. We cannot confirm the details of this at this
stage as we are waiting on guidelines in respect of file sizes and platforms. We will have this
in place by Week 8, well before the due date for the assignment.

Your submission will definitely include the following components:

The Code:
The code archive should be based on the React application structure that you inherit from create-
react-app or codesandbox. We will not be impressed if this has been disrupted badly or there are
additional folders with a seemingly random purpose and organisation.

Above all, however, we will need you to pay close attention to your node_modules:

Node apps involve installation of packages, and that this leads to the installation of
node_modules, and that eventually these take up rather a lot of space. Please delete them. And
then look around through the directory structures again, and delete any others that you missed
the first time. We don’t want to see them, we don’t want to store them, and you don’t want to
wait while they upload.

And in case you missed it the first time, please delete your node_modules.

Report:
We will expect a short report and user guide, generally running to 10 pages or so, including a
lot of screenshots. The report is there to help us better understand your application, and to
get your thoughts on the process, the bits that worked and the bits that didn’t, and the

https://slack-redir.net/link?url=https%3A%2F%2Fwww.chartjs.org%2F&v=3
https://www.npmjs.com/package/react-chartjs-2
https://slack-redir.net/link?url=https%3A%2F%2Fd3js.org%2F&v=3

usability and correctness of the application. We will provide an example and a template for
this report.

The report will include the following:

1. Introduction – telling us what was implemented and what wasn’t, showing a few
screenshots to illustrate the functionality. This will probably occupy a page or a bit
more.

2. Technical description of the application. This section is to allow you to talk about the
APIs used, to show us any tricky data flows, and to discuss technical issues that caused
you problems. This is especially important if something doesn’t actually work.

3. Application Design and Usability. This section is a quick discussion of the choices you
made in designing the app, and some frank assessments of its usability.

4. Testing and limitations – test plan, results, compromises. We do not expect
automated testing. We do expect you to verify that the application works for each of
the use cases. Screen shots are your friend.

5. References
6. Appendix: brief user guide

The report should be entitled report.pdf

Video Demonstration (To be confirmed):

You will need to record a video demonstration of your app, showing all of the actions outlined
in this document. In particular you will need to:
• Navigate to the landing page of your app
• Show us the use of each of the implemented end points and their principal use cases:

a. Show all the stocks with their associated detail
b. Show the ability to limit by industry sector
c. Show the ability to get information for a particular stock
d. Show the ability to register a new user and login
e. Show the ability to limit stock from a particular date
f. Demonstrate error handling

We will provide more specific information closer to time – instructions on editing, on formats
and file sizes, and on the options for linking a higher resolution alternative file.

The video report should be entitled video.mp4

Final Submission:
The final submission instructions are not yet confirmed, but ideally we will require that you
create a directory called assign which should include:

• The client application code directory
• The report
• The video demonstration

You should then zip up assign and uploaded to blackboard. We will mark the last attempt
received and we will ignore all the others.

The CRA rubric will be released as a separate file.

