
Selenium and Specflow

 warning, strong opinions ahead.
 code demonstrated should be repeatable in a number of
 languages using a suitable “gherkin” test runner and selenium api
is available for your language. (ask the audience)

 Alan Hemmings

 @snowcode

Skills Matter, London 
Tue 26 March 2019

http://goblinfactory.co.uk
https://twitter.com/snowcode

• sdsdfsdfs

London Selenium User Group

& soon combining with taiko.js user group!

all the planz…
• Shout outs, what other testing groups are present? 10m

• what do we want from the user group? post its and stickers to  
create an unsorted backlog for the user group.

• Collaboration why are full end to ends tests of web UX not common? 
- or, if you’re not already using Selenium (or similar)…why not?  
- shout outs and post it notes 
should I set up a Gitter for the group?

• What types of automation tests are there? 8m

• intro to specflow syntax 15m

• Selenium + Specflow 
 driving selenium from specflow in C# 
(using draki nuget package to 
 simplify getting started) 25m 
(change of plan : not doing a live code walk through, rather refer to a live 
coding I did last night, don’t want to tempt the live coding gods on my first night 
 want to spend more time getting the group properly started. A lot of those attending  
are seasoned veterans.)  
All the code is available on https://github.com/goblinfactory/Draki master branch.

• Q&A 8m 
 
Vote for 3 “backlog feature” on your way out to the pub!

• If we have enough time I will demonstrate creating a specflow feature 
for one of the set of Draki acceptance tests.

• pub - aim to be in the pub (SkillsMatter pub if they r open?) before 8pm! ~ 

https://github.com/goblinfactory/Draki

types of tests?
• UAT - User acceptance and System tests 

Full monty, can take hours to run and or even days to schedule. (see “release trains” for bigger organisations)  
involves manual testing and or very slow processes. Hitting real external systems.

• smoke test 
all areas of the software application are tested without getting into too deep.  
Simple as possible, low cost to produce, quick and easy to run so that it’s run by developer before checking in code, and 
 quicker and easier to run against a custom test environment, as an early warning system. Runs in seconds or minutes.  
External systems are optional mocked out, or hit.

• sanity test

a narrow regression testing with a focus on one or a small set of areas of functionality of the software application. The purpose of a sanity test is to be able to get feedback as quickly as possible without having to
wait for a full UAT test. Can involve human testing. Because it’s an agreed slice through the system, human testing can be focused and quite effective at providing valuable feedback before deployment to
production, resulting in the biggest savings and best agile gains. Work done to create sanity tests allow you to slowly chip away at the UAT and move human tests into automated regression tests. External systems
are optional mocked out, or connected to.

• regression test 
As close the real UAT as possible, automating as much as possible all the human or slow processes. Mock out external systems with option to hit real external sandboxes.  
Ideally the regression test is simply a sum of all the acceptance tests. If there’s a need for something to happen, or be tested, then we need a requirement plus an acceptance test.

• acceptance 
All the tests for a single requirement or feature. (separately deliverable piece of work) that span across multiple services that may need to play well together in order to  
deliver the required business value.

• functional test 
this is the acceptance test with all the external services mocked out. If the system under test is a single service, and has a decent domain bounded context.  
This is where most of the problems with testing for large organisations show up. e.g. domain logic living in a database, or delivery of new multiple

• integration test 
Full end to end test run against a set of services deployed to an environment, hitting real back end systems but with external services mocked out. (Single service at a time)

• component test 
A test covering a set of class that have to collaborate together to perform a specific business domain activity that warrants having tests that serve as documentation on how the domain delivers certain business
logic.

• unit 
one of more closely related classes and tests to confirm the classes work as required. Typically additional classes as a result of refactoring would not be mocked out.  
This is controversial, and some people say a unit test is one class only, and I say, all the definitions are whatever your team agrees that they are, and what works for your culture and business
challenges.

what do we want from
London Selenium?
• who is not a full time tester?

• what did you want 
to get out of today?

• disclaimer - I’m not a “tester" : (packing
parachutes)

• apply sharpie to post it (shout out, cards) what do
we want?

• how many people C# devs?

• what are you using?

• Other devs ?

• what are you using?

• dot notation voting (grab a pen and vote)

?

what are some of the challenges
to writing web tests?…

• 1 Identifying elements

• 2 identifying page has loaded

• 3 waiting for things

• 4 unexpected responses - asserts vs expectations 
reporting how the test has failed, screenshots

• 5 dealing with fast changing content

• handling test data.

Anatomy of a specflow feature file

Anatomy of a specflow feature file

comments start with #

Anatomy of a specflow feature file
free text describing the
feature, who it’s for, and
most importantly why it’s

needed.

Anatomy of a specflow feature file

specflow plug in
colorises scenario steps
that do and don’t have

bindings.

Anatomy of a specflow feature file

right click context menu
to debug, run, scenario,

or goto bindings

Anatomy of a specflow feature file

specification by  
example, use values that

explain the business
requirement so that it is

unambiguous.

Anatomy of a specflow feature file
multiple scenarios to

define the requirements 
and scope of work

Anatomy of a specflow feature file

parameterised  
test values

Anatomy of a specflow feature file

vs extension  
auto formats  

and align example  
columns

for quick editing

parameterised  
test values

multiple scenarios to
define the requirements 

and scope of work

specification by  
example, use values that

explain the business
requirement so that it is

unambiguous.

comments start with #

vs extension  
auto formats  

and align example  
columns

for quick editing

Anatomy of a specflow feature file

specflow plug in
colorises scenario steps
that do and don’t have

bindings.

right click context menu
to debug, run, scenario,

or goto bindings

free text describing the
feature, who it’s for, and
most importantly why it’s

needed.

interacting with elements

locating elements

expectations

Anatomy of a typical selenium test

navigations

expectations

boot strap web driver

page abstractions

expectations

interacting with elements

locating elements

expectations

Anatomy of a typical selenium test

navigations

expectations

boot strap web driver

page abstractions

expectations

I.Open(url)

interacting with elements

locating elements

expectations

Anatomy of a typical selenium test

navigations

expectations

boot strap web driver

page abstractions

expectations

I.Expect.Text(text) 
.In(selector)

interacting with elements

locating elements

expectations

Anatomy of a typical selenium test

navigations

expectations

boot strap web driver

page abstractions

expectations

I.Find(selector) 
.Click()

I.Expect.Text(text) 
.In(selector)

programatic / more idiomatic

fluent using  
builder patterns

interacting with elements

locating elements

expectations

Anatomy of a typical selenium test

navigations

expectations

boot strap web driver

page abstractions

expectations

I 
.Click

.Switch
.Upload

.Wait
.Drag 
.Enter 
.Find 

.Focus 

.Hover
.Select

.TakeScreenShot

page abstractions helper class per page

page abstractions helper class per page

the purpose of this is to keep the bindings easy to read and scan.

creating .NET framework project using
new pkg manager and slimline  

project structure

If you need to write your tests as .net framework tests

• create a new dotnet core project

• delete the properties, debug and obj folders

• edit csproj set <TargetFramework>net472</
TargetFramework>

• follow the .NET Core instructions

dev.swopshop.co.za  
legacy testing requirements

http://dev.swopshop.co.za

dev.swopshop.co.za  
legacy testing requirements

The tickets I’ve picked up to work on are some urgent
smoke tests for a legacy classified website that we need  
to make some changes to the backend. Before we can do
that, we need to put in place some integration tests. 
 
the tickets we’re working on are the smoke tests for the …

pagination, navigation and place new advert features.

http://dev.swopshop.co.za

getting started  
.NET Core & .NET Framework

• file new .NET core library

• add packages, Nunit, Draki, Specflow, Specflow.Nunit, Specflow.Nunit.Runners 
 
 (latest stable, 2.4.1 as of 26.3.19)

• write hello world, smoke test, make sure draki works

• Install specflow visual studio extension 
 
 
 

•

• write your first specflow feature file,

• write the bindings calling out to selenium to drive the website  
(the system under test)

.NET core not tested yet! 
busy with tests for 

my recent migration (alpha spike) 
 to .NET core. 26.3.19

Pagination.feature

• add new item, “specflow
feature”

• enter the text of the feature
using specflow and gherkin
syntax

• right click a scenario step, 
select goto step definition 
(select copy to clipboard)

writing the specflow test 
after you’ve written the .feature 

in gherkin

 
generate step definitions

• right click the scenario step, select “generate step
defintions” to generate the binding file

• convert the PaginationSteps.cs to derive from
FluentTest	

update the bindings to automate the
web page using draki (selenium)
• convert the starter step definition class from previous

step (PaginationSteps.cs) to derive from FluentTest	

bootstrap selenium
derive from 
fluent test

convert your functional (xunit or nunit
selenium test) to a specflow binding

functional tests written in gherkin syntax.

executable
(verifiable)

requirements 
with

guarantees

if you run and have issues…  

• if you run the tests and get “no tests found
to run”

• if you run and nothing happens, no error
but output shows bindings you have
definitely updated ->  
* you probably left off the [Binding]
attribute on your binding class.

• start over, new file, new names for
everything, right click feature file and
generate the whole binding starter file.

• rename the Scenario name (not just the
file) and rebuild.

• if you get TinyIOC registration errors then
check that you remembered to add
[SetupFixture] to the bootstrapper.

get-process | where { $_.name -eq ‘chromedriver’ } | stop-process

https://github.com/techtalk/SpecFlow/issues/1109

known selenium / draki Issues

• Element.Drag(from).To(to) does not work with HTML5 onXX events.
This is a known (?) issue with Selenium, I found a work around a few
days ago, that will need some testing, involves injecting event
mocks, in the same way Draki currently injects Sizzle. 
 

• not tested with .NET core. literally finished alpha (spike test)
yesterday.

• Not tested cross platform. Not even considered what will work on
OSX, Linux. (audience?)

• multiple browsers not tested. Some tests disabled.

Draki roadmap, what currently working on, volunteers wanted to test 
help with the project….

https://github.com/techtalk/SpecFlow/issues/1109

some acceptance tests work perfectly
well just using XUnit or NUnit,  

not everything has to be a .feature file.

• ask experts present : when to use a .feature file, and
when to simply write a functional acceptance test?

• .

• .

• .

using Draki  
in any sensitive project

• fork the project and build your own package.

• one of the reasons Draki is so easy to use is that it
embeds the latest chomedriver.exe compatible 
with Selenium.Support and Selenium.WebDriver

references…

• books

• Specification by example (Gojko Adzic)

• Don’t make me think (A common sense approach to web usability)	 , (Steven Krug)

• links

• Draki (C# library to make selenium tests fun) :

• https://github.com/goblinfactory/Draki

• Specflow official website :

• https://specflow.org/getting-started/

• specflow getting started samples

https://www.amazon.co.uk/Specification-Example-Successful-Deliver-Software/dp/1617290084
https://www.amazon.co.uk/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?s=books&ie=UTF8&qid=1553560438&sr=1-1&keywords=dont+make+me+think
https://github.com/goblinfactory/Draki
https://specflow.org/getting-started/
https://github.com/techtalk/SpecFlow-Examples/tree/master/ASP.NET-MVC/BookShop/BookShop.AcceptanceTests/Features

contact details

Journeyman agile dev, mostly .NET, cloud,  
micro-services & web. Passionate about good
code, good requirements, good tests and
happy customers. Maintainer of the open
source fluent testing library Draki - Fluent web
automation for C#. 

https://github.com/goblinfactory/ 
 
@snowcode  
@drakiSelenium 
 
hire me :: www.goblinfactory.co.uk 
https://www.linkedin.com/in/goblinfactory/ 
 
organiser : London Selenium Meetup 
www.meetup.com/London-Selenium-Meetup/

things change quickly, so if you find a bug 
when working through these notes on your own, please

contact me on github or twitter with details to reproduce
so that I can help you and update the notes.

https://github.com/goblinfactory/
http://www.goblinfactory.co.uk
https://www.linkedin.com/in/goblinfactory/
https://www.meetup.com/London-Selenium-Meetup/

