

Product Requirements Document
ver 4.0

ClassyShark

Google

Boris Farber

bfarber@google.com
10/10/2016

(http://skylined.deviantart.com/art/SkyLined-Shark-Ascii-Art-44110547)

1

Revisions:

● Version 1.0 (10/2015): Doc started
● Version 2.0 (11/2015): Added packages view
● Version 3.0 (3/2016): Added NDK
● Version 4.0 (10/2016): Updated with Java inspections

2

Introduction
Glossary
Overview
Scenarios

Jane, an Android app developer
Jill, an Android performance consultant
Joe, an Android support engineer

Scope
Market Assessment

User Flow

GUI Spec
1 - Toolbar
2 - Classes & Packages tab
3 - APK components tree
4 - Individual Component view

API Spec

Technical Characteristics

Performance Metrics & Testing

Appendix A - Android Build

3

Introduction
Glossary 1

1. APK - Android app self contained executable file (equivalent to exe file on Win
platform). The users download and install this file from Google Play store.

2. Dex - Android executable binary format. Low level set of instructions that Android
runtime knows how to execute.

3. Multidex - part of the Dex format, states that no more than 65K methods could be in one
dex file (part of APK). If the app has more than 65K methods, the Android build will
build a couple of dex files each having till 65K methods.

4. Java - standard Android development language. Java code converted to dex
instructions via Android build chain

5. Class - Java executable file format. Low level set of instructions that Java runtime
(JVM) knows how to execute. Not compatible with Dex format. However the Android
toolchain know how to convert them to dex files

6. Jar - zipped folder of class files
7. NDK - Native Development kit for Android, to write pieces of app in C/C++
8. Dependencies - self contained jar files, written by 3-rd party and included in our Android

app. The key reason is not to re-invent the wheel.
9. IDE - Development Environment, for Android it is Android Studio
10. Proguard - code obfuscator, applied as part of release tool chain to make code harder

to reverse engineer.

Overview

ClassyShark is a tool for Android developers. When using ClassyShark, an Android developer
can browse their application executable file, the APK and diagnose performance bottlenecks.

This spec does not discuss the algorithms used by the binary translation engine, which will be
discussed elsewhere. It simply discusses what the user sees when they interact with
ClassyShark.

Scenarios

Jane, an Android app developer

Once Jane finishes integrating her new feature, she will inspect the new release with
ClassyShark. Jane will check if adding the new feature will increase her app method count and
class count, will the new feature introduce other dependencies.

1 The Glossary lists out the key terms to understand this PRD. Readers interested in more
depth, please refer to Appendix A - Android Build

4

In addition, if the new APK will crash in release mode and not in debug, Jane will inspect the
crashed classes, and fix the proguard configuration that likely caused the crash

Jill, an Android performance consultant

Once Jill gets an APK to inspect for performance issues, Jill will open an APK in ClassyShark
and check for slow dependencies. The slow dependencies usually around JSON and XML
parsing. For example Jill could recommend use ig-json parser instead of GSON and/or remove
the slow security library and shift the work to the server side.

Joe, an Android support engineer

Joe is a support engineer in a cool company ABC that creates an SDK to help tracking
analytics events. Sometimes the clients mis-configures the SDK and the data is not arriving. In
this case the support ticket is open.

Joe obviously can’t see his client's sources, but Joe can browse the misbehaving APK with
ClassyShark and look for missing data in Android manifest (usually intents), thus help out his
client.

Scope

The scope of ClassyShark is to show the Java classes structure of an APK, and to provide
browsing inside APK.

ClassyShark will employ binary reading and parsing techniques, however decomposition is out
of scope.

Market Assessment

ClassyShark is a tool for advanced Android developers, developing and maintaining non-trivial
apps. Thus ClassyShark aims for top 1,000 - 1,500 Android apps. An average Android team
has 10-15 developers, so we aim for 15,000 users.

Actually there are standalone Android executable browsers. The closest products are from .net
world, namely .peek and .net reflector that offer the same functionality of browsing executables
for .net platform. Note neither .peek nor .net reflector is open source.

User Flow
An Android developer will be able to use the UI client, within 5 minutes without any training.
The structure of the UI client replicates an IDE, so the developer’s knowledge will be
transferred easily to the ClassyShark UI.

5

https://www.jetbrains.com/decompiler/
http://www.red-gate.com/products/dotnet-development/reflector/?utm_expid=108631182-43.l2pwXIBfRgGo-E63psoVBg.0&utm_referrer=https%3A%2F%2Fwww.google.co.uk%2F

Thus the flow is easy. The developer open ClassyShark (either via double click or via
command line).
As second step, the developer open their APK. Once the APK is open the developer inspects
their APK for performance anti-patterns.

GUI Spec

6

1 - Toolbar

The toolbar will have the following components
1. Open APK button
2. < button - show the list of all classes in 4 - individual component view
3. > - open the first class in 4 - individual component view
4. Input text field - to look for specific class in APK, supports both camel and incremental

search
5. Settings drop menu - TBD
6. History - a drop down list with recently viewed APK files
7. Export - TBD export the relevant data

2 - Classes & Packages tab

1. The Classes tab will display the classes breakdown in 4 - individual component view
2. The Packages tab will display the dependencies breakdown in 4 - individual component

view , as a pie chart.

3 - APK components tree

The tree will display the following APK and Jar components. When the user clicks on a tree
node the relevant is displayed in 4 - individual component view

1. APK/Zip/Jar root with name
2. Classes.dex
3. Classes members of classes.dex
4. Classes members of zip/jar
5. Binary XMLs
6. Native libraries

4 - Individual Component view

Display the following data per tree node from 3 - APK Components Tab

1. APK/Zip/Jar root with name
a. Java dependencies list
b. Native dependencies list

2. Classes.dex
a. Dex header, including the method counts
b. Classes with native methods

3. Classes members of classes.dex/zip/jar
a. Imports list
b. Class definition
c. Fields list
d. Constructors list
e. Methods list

4. Binary XMLs

7

a. XML readable version
5. Native libraries

a. Native dependencies list
b. Dynamic symbols list

API Spec
Provide an API and a command line usage for all info, accessible from UI. We will describe it
somewhere else.

Technical Characteristics
● Platform - ClassyShark will be written in Java, thus will be cross platform
● Integration - ClassyShark will be released as a standalone Java executable (jar) file.

So no integration will be necessary.
● Environment - the only environmental requirement ClassyShark will need, is having

Java installed on the user’s machine
● Support - as on open source project, we can’t commit to any SLA support levels. We

try to provide our best, depends on the situation.
● Workflow, Timelines And Milestones - ClassyShark will be hosted on Github, and we

expect the usual Github distributed development flow.

Performance Metrics & Testing
As with any complex product, the performance is tricky and hard to define. We will have a
testing set of 10 50 MBs APK.

Few usability characteristics

● ClassyShark shouldn’t freeze when loading large APKs
● The search should be instant

Appendix A - Android Build

● Proguard - http://proguard.sourceforge.net/
● Android build - http://tools.android.com/tech-docs/new-build-system

8

http://proguard.sourceforge.net/
http://tools.android.com/tech-docs/new-build-system

9

