Tolerance Calculation for
ApproxEquals in Tests

This document explains how to calculate the tolerance needed to achieve
a desired flakiness when approxEquals is used Privacy on Beam tests.

Floats

Laplace Noise

CDF of a Laplace Distribution with mean 0, epsilon € and /| sensitivity s
is given by:

exp()

PX<x)=1-
(X < x) 7

For k > 0, in order to achieve a flakiness of 107, i.e. tests pass with
probability 1 — 107%, we need to have the following:

a0t ew(E)
2 2
-k
where 102 comes from the fact that we need to use a two-sided

confidence interval and x is the tolerance. Solving for x, we get:

exp(g—x> = 10*

S1
8—x=k>x<ln10
S1
s * k=xIn10
X = .

For example, in order to achieve a flakiness of 10723, i.e. k = 23, with
e = 50 and s; = 1, we need atolerance of x = 1.05919.

Gaussian Noise

CDF of a Gaussian Distribution with mean 0, epsilon €, delta © and /,
sensitivity s, is given by:

P(X <x)= ;<l+erf<6\/_>>

where er f is the error function. For k > 0, in order to achieve a flakiness
of 107, i.e. tests pass with probability 1 — 107%, we need to have the

following:
107X 1
1 — 1+er
2 2< / <of>>
where 102 comes from the fact that we need to use a two-sided

confidence interval and x is the tolerance. Solving for x, we get:

1007 1 1
' 5+_ef<6\/_>

x = erfinv (1 — lO_k) o2
where er finuv is the inverse error function.

We use math package function Erfinv to approximate er finv and the Go
DP Library's sigmaForGaussian function to compute ¢ with s, € and 3.

Integers

The logic for floats applies to integers as well. However, the caveat is that
the noise is rounded to the nearest integer for aggregations on integers.

This is not a problem when the decimal part of the tolerance needed for a
given flakiness is less than 0.5 since all the noise values up to 0.5 are
going to be rounded down to 0.

When the decimal part of the tolerance is greater than 0.5, however, we
need to round tolerance up to the next integer since all the noise values
from 0.5 up to tolerance would be rounded up.

For example, for a given flakiness, if we need a tolerance of 1.1, we can
use a tolerance of 1.1 (or any value> 1). On the other hand, if we need a

https://en.wikipedia.org/wiki/Error_function
https://golang.org/pkg/math/#Erfinv

tolerance of 2.6, we would need to use a tolerance of 3.0.

For simplicity, we always round up to the nearest integer in our tests for
both integers and floats.

Multiple Partitions

When there multiple partitions in a test, noise is applied to each partition
independently. If there are p partitions and each has a flakiness of 107,
then the overall test has a probability (1 — 107%)? of passing.

In the tests we use, we always have p < 10 and want k > 20, so we can
approximate (1 — 107%)? ~ 1 — p % 107% < 1 — 107+*+2,

O—k+2

Therefore, in order to get an overall flakiness of 1 , we need to use

the tolerance for partition-level flakiness of 107.

For example, if we want to achieve an overall flakiness of 10723, we need
to use the tolerance for 1072.

Mean

For mean we can not just take CDF of a Laplace distribution, because
bounded mean algorithm is using noisy sum and noisy count in order to
calculate mean.

The formula for the noisy mean is given by
noisyNormalized Sum

noisyMean = : + mid Point, where
noisyCount
noisyNormalizedSum is noisy sum of distances of the input entities from
. . I
the mid Point = M, and upper and lower represent the upper

2
and lower bounds for the input elements respectively. In other words, if

the element is less than lower bound it will be clamped to the lower
bound, and if the element is bigger than upper bound it will be clamped to
the upper bound.

So, when calculating the tolerance for mean, we have to take into account
that we are using two different confidence intervals (one for sum and
count each). In order to do that we should calculate the maximum
possible difference between the exact mean and noisy mean. We cannot
say for sure which difference is bigger - the difference between the exact
mean and the minimum possible noisy mean or the difference between
the exact mean and the maximum possible noisy mean.

meanTolerance = max(|maxNoisyMean — exact Mean|, |minNoisyMean — exact M ean|)

minNoisyNormalizedSum

and

where minNoisyMean = s NoisyCount

maxNoisyNormalized Sum

maxNozsyMean = minN oisyCount

We take maximum of absolute values in order to be safe (there is an edge
case when max NoisyMean and min N oisy M ean swap places).

We need to calculate the tolerance for sum and count in order to achieve
desired flakiness for mean. Suppose we want 10~ flakiness then:

« The noisyCount (which is in the denominator) is outside of this
confidence interval should have 107* flakiness.

« The noisyNormalizedSum (which is in numerator) is outside of this
confidence interval should have 107* flakiness.

Both of these things have to be true at the same time for the confidence
interval to be correct. Therefore the overall flakiness would be 107X,

So in order to get overall flakiness 107 for mean we should calculate the
tolerance for count and sum for 107%2 flakiness.

Complementary Tolerance Calculation
for checkMetricsAreNoisy

We use checkMetricsAreNoisy to ensure that PlumeGo is adding noise.
The same logic for approxEquals applies here but the tolerance
calculation is different because we need to have a "complementary
confidence interval" that includes all values except for a narrow interval
around the mean.

Unlike approxEquals, we do not round values up to the nearest integer to
deal with integer valued aggregations because this is a complementary
tolerance.

Laplace Noise

CDF of a Laplace Distribution with mean 0, epsilon € and /| sensitivity s
is given by:

€X
PX<x)=1-

For k > 0, in order to achieve a flakiness of 107X, i.e. tests pass with
probability 1 — 107¥, we need to have the following:

1 107* exp(—=*)
i w—

2
confidence interval and x is the tolerance. Solving for x, we get:

exp(_s—ix> —1-10F
—EX

=In(1 — 10"
S1

_ sy xIn(109
€

Gaussian Noise

CDF of a Gaussian Distribution with mean 0, epsilon €, delta 6 and /,
sensitivity s, is given by:

e L (s (25))

where er f is the error function. For k > 0, in order to achieve a flakiness
of 107X, i.e. tests pass with probability 1 — 107%, we need to have the

1 107 1
Ll Q(Herf((sf))
2

confidence interval and x is the tolerance. Solving for x, we get:

following:

1+1o—"_1+erf<m/_)

07 =ers f)

erfmv(lO) \/_
o

x = erfinv (IO_k) 642
where er finuv is the inverse error function.

We use math package function Erfinv to approximate er finv and the Go
DP Library's sigmaForGaussian function to compute 6 with s;, € and d.

https://en.wikipedia.org/wiki/Error_function
https://golang.org/pkg/math/#Erfinv

Mean

Complementary tolerance calculation for Mean is the same as regular
tolerance calculation for mean, except we use complementary
Laplace/Gaussian tolerance instead of the regular Laplace/Gaussian
tolerance when computing maximum and minimum values for count and

normalizedSum.

