
Differentially Private Quantile Trees
Quantile Trees are a general purpose mechanism to compute differentially private (DP) quantiles,
offering benefits such as distributed computation, unlimited quantile queries, easily verifiable privacy,
etc. For certain use cases, they may be outperformed by other mechanisms, but their generality makes
them ideal for the DP Building Blocks library.

Content
● How it Works
● How it Works Faster
● Noisy Quantile Search
● Computational Performance
● Choosing the Height and Branching Factor
● Proof of Privacy

How it Works
At its core, a Quantile Tree is a simple tree data structure of height whose leaf nodes split theℎ
dataset’s domain (that is to say the range of numbers between some provided lower bound and upper𝑙

bound) into buckets, where is the number of children per non-leaf node. Each node of the tree is𝑢 𝑏ℎ 𝑏
identified by a unique index (illustrated by the red fields in Figure 1) and carries an internal counter (the
blue fields in Figure 1). Think of a leaf node’s counter as the number of elements in the bucket
associated with the node. The counters at higher levels in the tree keep track of the total sum of
elements in the leaf nodes of their respective subtree.

Figure 1: Example of a Quantile Tree for and . The index of each node is stored in the redℎ = 2 𝑏 = 3
section of the nodes while the counters are stored in the blue section.

Given this simple data structure we can:

● Compute a quantile by looking for the bucket containing it. This bucket can be found efficiently
by a simple tree search from the root to the respective leaf. All information needed to perform
this search is contained in the counters. See this section for more information.

● Add elements by traversing the tree from the root to the respective leaf and incrementing each
counter along the path by 1.

● Merge Quantile Trees by adding all counters of the same index.

Moreover, we can make a Quantile Tree DP by adding an appropriate amount of noise, either via the
Laplace or the Gaussian mechanism, to the counter of each of its nodes. The exact amount of noise
can be found in the privacy proof.

How to Make it Faster
Initializing and noising a complete Quantile Tree is expensive. So, we only perform these tasks when
necessary. The idea is simple. Instead of storing the nodes of a Quantile Tree in a single data structure
of fixed size , e.g., an array, we store them in two separate data structures, one for raw counters and one
for noisy counters, and we populate these data structures lazily using hashmaps, mapping node indices
to counter values.

Quantile Trees can be in one of two states. The first state is the aggregation state. While in this state,
elements are added to the data structure by inserting them into one of the hashmaps, let’s call this one
hashmap A. The insertion process is identical to that described in the previous section, but only keeps
track of counters greater than 0.

Once the first quantile query is made, the Quantile Tree switches to the query state. This means that no
more elements can be added, effectively freezing hashmap A. From now on, any query we answer we
answer by looking at the noised values in hashmap B. If B already contains the noised count of a node
we are looking up, we use that count. Otherwise we look up the raw count in A and copy that value with
an appropriate amount of noise to B, where it is stored for future reference.

Noisy Quantile Search
For the sake of simplicity, we try to keep the searching for a particular quantile as easy as possible.
Although the search is mostly straight forward, we need to pay attention to potential inconsistencies
due to the added noise, e.g., fractional counters, negative counters and counters not matching the sum
of their children’s counters. The following is a pseudocode implementation of the search algorithm we
use:

1. Let be the root node and the quantile we are looking for𝑥 𝑞 ∈ [0, 1]
2. While is not a leaf node𝑥
3. Let be the set of children of whose noisy counter is positive𝑌 𝑦 𝑥 𝑐

𝑦

2

4. Let be the sum of counters in (ignoring negative values)𝑡: = Σ
𝑦∈𝑌

 𝑚𝑎𝑥{0, 𝑐
𝑦
} 𝑌

5. Let be the set of children whose noisy counter is greater than (the idea of𝑌' ⊆ 𝑌 𝑦 𝑐
𝑦

α · 𝑡 α

is to filter out nodes that are most likely empty)
6. If is empty𝑌'
7. Set (i.e., return the mean bucket value of the current subtree if the current𝑞: = 0. 5

subtree appears to be empty)
8. Break
9. Else
10. Let be the sum of counters in𝑡': = Σ

𝑦∈𝑌'
 𝑐

𝑦
𝑌'

11. Let := be the partial sum of counters in whose index is smaller than𝑡'
𝑧

Σ
𝑦∈𝑌', 𝑦≤𝑧

 𝑐
𝑦

𝑌' 𝑧

12. Let be child of lowest index for which (think of as the root of the subtree𝑧' 𝑡'
𝑧'

≥ 𝑞 · 𝑡' 𝑧'

in which we expect the quantile to be)
13. Set (i.e., update to mark the quantile relative to the𝑞: = (𝑞 − (𝑡'

𝑧'
 − 𝑐

𝑧'
) / 𝑡') / (𝑐

𝑧'
 / 𝑡') 𝑞

new subtree at)𝑧'
14. Set 𝑥: = 𝑧'
15. Let be the lower bound of the domain of the subtree of𝑙

𝑥
𝑥

16. Let be the upper bound of the domain of the subtree of𝑟
𝑥

𝑥

17. Return (this is just a linear interpolation between and)(1 − 𝑞) · 𝑙
𝑥

+ 𝑞 · 𝑟
𝑥

𝑙
𝑥

𝑟
𝑥

Note that all of this is post-processing on the differentially private counters, so the noisy quantile
search is differentially private as well. To see a more detailed explanation, see the privacy proof.

Computational Performance
Quantile Trees can be built in a distributed fashion. The asymptotic time complexity of each operation
as well as the space complexity is:

● Insert: , because we need to increment one counter per level of the tree𝑂(ℎ)

● Merge: , because we need to merge all nodes of the tree𝑂(𝑏ℎ)
● Query for a Quantile: , because we need to look at/noise nodes per layer when𝑂(𝑏 · ℎ) 𝑏

searching the quantile

● Space per Tree: , which is the number of nodes of a complete Quantile Tree𝑂(𝑏ℎ)

A more refined estimate of the merge operation can be obtained by taking the laziness into account. As
a result, the runtime is linear in the number of non-empty nodes rather than the total number of nodes.
This can result in a speed up if the input is sparse.

Because the runtime of a merge operation depends on the number of (non-empty) nodes, distributed
computation will yield a meaningful speedup, if you can partition the input such that each partition is
significantly larger than the number of nodes it takes up in the Quantile Tree.

3

Choosing the Height and Branching Factor
The height and branching factor of a Quantile Tree impact the performance and utility of theℎ 𝑏
mechanism. For instance, the number of buckets into which the domain of the dataset is partitioned
depends directly on and . However, these parameters also affect the amount of noise that needs toℎ 𝑏
be added. Generally speaking, fewer buckets mean less noise but also less granular data. So, assuming
you want to have a certain number of buckets, how should you choose and ?𝑛 ℎ 𝑏

To get some guidance and intuition, it makes sense to look at the sum of noise contributing to the
outcome of a particular query. The noisy search algorithm queries at most nodes, that is nodesℎ · 𝑏 𝑏
per layer. Moreover, assuming we are using Laplace noise, the standard deviation of the noise added to
each node is in (conveniently hiding the parameter in the asymptotic notation). According to the𝑂(ℎ) ε
central limit theorem, the standard deviation of the sum of the noise is in . Let’s set𝑂(ℎ · 𝑏 · ℎ)

and look at the implications of this based on three examples:𝑛 = 1024

● h=1, b=1024: In this case, there is no tree structure at all. We are just looking at an array of

buckets. When estimating the noise, we get a value of .1 · 1024 · 1 = 32
● h=2, b=32: In this setup the tree only has two layers and our noise estimate is .2 · 32 · 2 = 8
● h=10, b=2: This setup results in a full binary tree with estimated noise of .10 · 2 · 10 ≈ 44. 7

Based on this analysis, we would expect a tree of height 2 to perform best in this setup and the other
two configurations significantly worse. Of course, these are only very rough approximations of the
added noise (and there are other things to consider, such as introduced bias), but the general order of
accuracy seems to be reflected in the experimental evaluation shown in Figure 2 below.

4

Figure 2: Statistical comparison of a Quantile Trees with different values of and on a linearlyℎ 𝑏
distributed dataset.

What you see in this figure is the sample mean and sample standard deviation of four different
configurations of a Quantile Tree with 1024 buckets. Each configuration is sampled 1000 times per
quantile. The dataset consists of 1000 equally spaced samples between 0 and 100. Moreover, the
lower and upper bounds are set to -25 and 125 respectively. As a basic rule of thumb, it makes sense to
keep the height of the tree small but greater than 1.

5

Proof of Privacy
The first thing to observe is that the noisy quantile search only looks at noised counters. So the output
generated by the noisy quantile search on a lazy Quantile Tree is indistinguishable from the output the
search would generate on a non-lazy Quantile Tree, i.e., a Quantile Tree where every counter is noised
immediately upon entering the query state. Thus, if a non-lazy Quantile Tree is DP, so is the output of a
lazy Quantile Tree (which is a different statement from claiming that the lazy data structure itself is DP,
which is not the case because it stores the raw values).

Convincing yourself that a non-lazy Quantile tree is DP is easy. The key insight is that each time an
individual contributes a piece of data to a Quantile Tree, at most nodes of the tree are incremented byℎ
1 (we can ignore the root node since it is not used for the quantile search and thus does not affect the
result). Consequently, the L1 Sensitivity of the data structure is where is the maximum numberℎ · 𝑘 𝑘
of contributions a single individual can make to the dataset. If we add appropriately scaled Laplace or
Gaussian noise to each node of the tree, the whole tree becomes DP q.e.d.

6

