
Tolerance Calculation for
ApproxEquals in Tests
This document explains how to calculate the tolerance needed to achieve
a desired flakiness when approxEquals is used Privacy on Beam tests.

Floats

Laplace Noise

CDF of a Laplace Distribution with mean , epsilon  and  sensitivity 
is given by:

For , in order to achieve a flakiness of , i.e. tests pass with
probability , we need to have the following:

where  comes from the fact that we need to use a two-sided
confidence interval and  is the tolerance. Solving for , we get:

For example, in order to achieve a flakiness of , i.e. , with 
 and , we need a tolerance of .

Gaussian Noise

CDF of a Gaussian Distribution with mean , epsilon , delta  and 
sensitivity  is given by:
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where  is the error function. For , in order to achieve a flakiness
of , i.e. tests pass with probability , we need to have the
following:

where  comes from the fact that we need to use a two-sided
confidence interval and  is the tolerance. Solving for , we get:

where  is the inverse error function.

We use math package function Erfinv to approximate  and the Go
DP Library's sigmaForGaussian function to compute  with ,  and .

Integers

The logic for floats applies to integers as well. However, the caveat is that
the noise is rounded to the nearest integer for aggregations on integers.

This is not a problem when the decimal part of the tolerance needed for a
given flakiness is less than  since all the noise values up to  are
going to be rounded down to .

When the decimal part of the tolerance is greater than , however, we
need to round tolerance up to the next integer since all the noise values
from  up to tolerance would be rounded up.

For example, for a given flakiness, if we need a tolerance of , we can
use a tolerance of  (or any value ). On the other hand, if we need a
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tolerance of , we would need to use a tolerance of .

For simplicity, we always round up to the nearest integer in our tests for
both integers and floats.

Multiple Pa�itions

When there multiple partitions in a test, noise is applied to each partition
independently. If there are  partitions and each has a flakiness of ,
then the overall test has a probability  of passing.

In the tests we use, we always have  and want , so we can
approximate .

Therefore, in order to get an overall flakiness of , we need to use
the tolerance for partition-level flakiness of .

For example, if we want to achieve an overall flakiness of , we need
to use the tolerance for .

Mean

For mean we can not just take CDF of a Laplace distribution, because
bounded mean algorithm is using noisy sum and noisy count in order to
calculate mean.

The formula for the noisy mean is given by 

, where

noisyNormalizedSum is noisy sum of distances of the input entities from

the , and  and  represent the upper
and lower bounds for the input elements respectively. In other words, if
the element is less than lower bound it will be clamped to the lower
bound, and if the element is bigger than upper bound it will be clamped to
the upper bound.

So, when calculating the tolerance for mean, we have to take into account
that we are using two different confidence intervals (one for sum and
count each). In order to do that we should calculate the maximum
possible difference between the exact mean and noisy mean. We cannot
say for sure which difference is bigger - the difference between the exact
mean and the minimum possible noisy mean or the difference between
the exact mean and the maximum possible noisy mean.
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where  and 

We take maximum of absolute values in order to be safe (there is an edge
case when  and  swap places).

We need to calculate the tolerance for sum and count in order to achieve
desired flakiness for mean. Suppose we want  flakiness then:

The noisyCount (which is in the denominator) is outside of this
confidence interval should have  flakiness.
The noisyNormalizedSum (which is in numerator) is outside of this
confidence interval should have  flakiness.

Both of these things have to be true at the same time for the confidence
interval to be correct. Therefore the overall flakiness would be .

So in order to get overall flakiness  for mean we should calculate the
tolerance for count and sum for  flakiness.

Complementary Tolerance Calculation

for checkMetricsAreNoisy

We use checkMetricsAreNoisy to ensure that PlumeGo is adding noise.
The same logic for approxEquals applies here but the tolerance
calculation is different because we need to have a "complementary
confidence interval" that includes all values except for a narrow interval
around the mean.

Unlike approxEquals, we do not round values up to the nearest integer to
deal with integer valued aggregations because this is a complementary
tolerance.

Laplace Noise

CDF of a Laplace Distribution with mean , epsilon  and  sensitivity 
is given by:

For , in order to achieve a flakiness of , i.e. tests pass with
probability , we need to have the following:
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where  comes from the fact that we need to use a two-sided
confidence interval and  is the tolerance. Solving for , we get:

Gaussian Noise

CDF of a Gaussian Distribution with mean , epsilon , delta  and 
sensitivity  is given by:

where  is the error function. For , in order to achieve a flakiness
of , i.e. tests pass with probability , we need to have the
following:

where  comes from the fact that we need to use a two-sided
confidence interval and  is the tolerance. Solving for , we get:

where  is the inverse error function.

We use math package function Erfinv to approximate  and the Go
DP Library's sigmaForGaussian function to compute  with ,  and .
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Mean

Complementary tolerance calculation for Mean is the same as regular
tolerance calculation for mean, except we use complementary
Laplace/Gaussian tolerance instead of the regular Laplace/Gaussian
tolerance when computing maximum and minimum values for count and
normalizedSum.


