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This document is a supplementary material for the implementation of the algorithms for
building and manipulating privacy loss distributions in the privacy accounting library.

1 Notation and Preliminaries

For two distributions D and D', we use D ® D’ to denote the product distribution of D and
D’. Furthermore, we denote by D + D’ the distribution of X + X’ where X and X’ are
independently sampled from D and D’ respectively; D — D’ is defined similarly. For a real
number k € R, we denote by k + D the distribution of k + X when X ~ D.

Discrete Distributions. For a discrete distribution D, when there is no ambiguity, we
abbreviate Prxp[X = x| as D(z). For two discrete distributions p and p/, we use D= (u|p)
to denote their e-hockey stick divergence, i.e.,

Dec(ullp) = D [nly) — e - 1/ W),
y€Esupp(p)

where [x]+ denotes max{z,0}.

Continuous Distributions. For a continuous distribution D, we use fp(-) to denote its
probability density function. For two continuous distributions p and ', their e-hockey stick
divergence is defined as

Do () = / ) — € - o ()] dy.

Differential Privacy. For a mechanism M and an input dataset x, we use M(x) to de-
note the distribution of the output. The standard definition of differential privacy [DMNS06,
DKM™06] may be rephrased as follows.

Observation 1. A mechanism M is (g, )-differentially private (or (,8)-DP for short) if
and only if, for any neighboring input datasets x,x’, it holds that D (M(x)||M(x')) < 4.


https://github.com/google/differential-privacy/tree/main/python/dp_accounting

2 Privacy Loss Distribution

A notion that will be useful to us is the so-called Privacy Loss Distribution (PLD) defined
in [DR16]. Here we will mostly follow the notations from [MM18, SMM19, KJH19, KJPH20],
from which most of the results we use follow.

Definition 1. For two discrete distributions ., and ., their privacy loss at o € supp(fuyp)

is defined as
Mup(0)>
L =In | —/——=).
;U'up/l‘lo (0) n (ﬂlo(o)

The privacy loss distribution (PLD) of jiup and w,, denoted by PLD,,, /.., is a distri-
bution on R U {oo} where y ~ PLD is generated as follows: sample 0 ~ pyy, and let
Y= £l’fu,p/l"lo (0)

For two continuous distributions fi,, and p,, their privacy loss at o is defined as

o935

The PLD of pup and pu,, denoted by PLD,, /..., is again a distribution on R U {oo}
where y ~ PLD,, /., is generated by picking o ~ ji,, and then letting y = PLD,,, /., (o).

For a mechanism M and two input vectors x and x', the privacy loss distribution (PLD)
between x and X is defined as PLDnq(x)/m(x')-

Nup/“lo

The main observation that makes PLD useful is that it allows one to calculate the e-
hockey stick divergence between the two distributions, or equivalently to check whether a
mechanism is (e, §)-DP.

Observation 2 ([SMM19, KJH19]). For any two distributions ., and py, where both are
discrete or both are continuous, it holds that

CDE(NuPHWO) =Ey~prLD —e Y],

Hup/ﬂ[o [1

Due to Observation 1, a mechanism M is (g,9)-DP if and only if the following holds for all
neighboring input datasets x and x':

— ety
62EyNPLDM(x)/M(x/)[1 € ]+.

For convenience, we may write D¢ (PLD,,, /., ) instead of Dce (ptup||1t10)-

Another observation is that PLD is very compatible with composition of mechanisms.
When the composition is non-adaptive, i.e., when mechanisms M; and My are run in-
dependently, the output distribution on input vector x is simply the product distribution
M (x)® My (x). The observation here is that the PLD of the product distribution is simply
the convolution of the two PLDs. We state that formally and also recall the definition of
convolution below.

Definition 2. Let i and u' be any distributions on real numbers. Their convolution, denoted
by p* ', is a distribution on real numbers where a sample t ~ p * p' is drawn by first
independently sampling a ~ p, a’ ~ u' and then letting t = a + a’.

Observation 3 ([SMM19]). Let ftup, Hyyys 1o and jiy, be any distributions such that all of
them are discrete or all are continuous. Then, we have

PLDu,, )/ (moon,) = LDy jp, * PLD s -



2.1 Composition via Privacy Loss Buckets

Observations 2 and 3 provide a way to compute the privacy parameters for compositions of
multiple mechanisms: first we calculate the PLD of each mechanism, find their convolutions,
and finally compute the e-hockey stick divergence of their convolution. An issue here is that
the trivial implementation of this algorithm is not efficient; for instance, PLD itself can be a
continuous distribution which cannot be represented finitely. Another consideration is that
the convolution of multiple PLDs may blow up the support size. (That is, if we compose
k mechanisms each with PLD support size n, then the resulting PLD may have support as
large as n*.)

This brings us to an algorithm of Meiser and Mohammadi [MM18] called Privacy Buck-
ets. This simple algorithm allows us to “approximate” PLDs in such a way that the con-
volution is efficient, and still gives good numerical approximation for privacy parameters.
As its name suggest, privacy buckets rounds the value of the PLD into buckets, which are
integer multiples of a chosen positive real number (called value discretization_interval
in our implementation). The point here is that, once the values are integer multiples of
such a number, we may use (inverse) Fast Fourier Transform (FFT) to quickly compute
the convolution. (The idea of using FFT has been suggested by [KJH19, KJPH20].) We
basically implement this; there are several subtleties in the implementation, which are listed
below:

e We separately account for the “infinity mass”, i.e., the probability of o ~ pi,, such
that u,(0) = 0.

e Our code allows one to compute both the “pessimistic” (i.e., safe) and “optimistic”
estimates of the hockey stick divergence between ., and .. In the former case, the
PLD values are rounded up. In the latter case, the PLD values are rounded down.
The pessimistic estimate results in a larger ¢ value than the true value, whereas the
optimistic estimate results in a smaller 6 than the true value.

e To make the implementation efficient, we also make sure that the array is not too
long. This is done by truncating any outcome o (resp. a set .S of outcomes) such that
Hup(0) (resp. ftyp(S)) is smaller than a certain threshold. For the pessimistic case, this
mass is accounted in infinity_mass. For the optimistic case, this mass is completely
thrown away.

3 PLDs of Specific Mechanisms

In this section, we calculate the privacy loss distributions for several well-known mecha-
nisms. Throughout this section, we only consider a scalar-valued function f. Recall that
its sensitivity is defined as A(f) := maxy x| f(x) — f(x’)| where the maximum is over two
neighboring datasets x and x’.

3.1 Laplace Mechanism

The Laplace mechanism [DMNSO06] simply outputs f(z)+Lap(b) where Lap(b) is the Laplace

random variable with parameter b; its probability density function at point z is equal to
L o—lxl/b
55 " € .
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In this case, the “worst case”! PLD of the mechanism is the same as the PLD between
Lap(b) and Lap(b) + A(f). Let A := A(f)/b. The aforementioned PLD is the same as the
PLD between Lap(1) and Lap(1) + A. That is, the privacy loss variable is generated by first
picking z ~ Lap(1) and letting the privacy loss be

1. —lal A if x <0,
3 e

A—2z if —A<ax<A.

3.2 Gaussian Mechanism

The Gaussian mechanism (see [BW18] and the references therein) simply outputs f(x) +
N(0,0?%) where N (0, 0?) is the centered Gaussian random variable with standard deviation
22
0; its probability density function at point z is equal to ﬁ ce 202,
Here, the worst-case PLD of the mechanism is the same as the PLD between N (0, o?)
and N(A(f),0?). Let A := A(f)/o. The aforementioned PLD is the same as the PLD
between N (0,1) and N (A(f)/o,1). That is, the privacy loss variable is generated by first

picking z ~ A(0,1) and letting the privacy loss be

1 —z?%/2 <
.e ~
In ALLY _ :é~(A72x).
1l_ e (z—A)2/2 2
oV 2T

3.2.1 Calculating s-hockey stick divergence of Gaussian Mechanism

The e-hockey stick divergence between N (0,0?) and N(A(f),0?) is equal to the e-hockey
stick divergence between A(0,1) and N(A,1). Let ¢ and ® denote the PDF and CDF of
the standard normal distribution respectively. We can write

0 NODWED) = [ [8) — ¢ oo~ Dade
Now, as stated above, ¢(q;(f)5) = e%‘(A—zx), which is greater than e if and only if z <

Tupper = 0.5A — E/A. As a result, we have

D WONINE D) = [ (60) - o0 - B)) .

— 0o

= O(Typper) — €+ P(Tupper — A) (1)

3.3 Discrete Laplace Mechanism

The Discrete Laplace Mechanism (also known as the Symmetric Geometric Mechanism; e.g.,
see [GRS12]) outputs f(x) + DLap(a) where DLap(a) is the Discrete Laplace distribution
with parameter a; its probability mass function at x € Z is iz_ﬁ e—alzl, (For simplicity, we
assume that the image of f is a subset of the integers.)

1See section 3.6 for more discussion on “worst case” PLD.



In this case, the PLD of the mechanism is the same as the PLD between DLap(a) and
DLap(a)+A(f). That is, the privacy loss variable is generated by first picking = ~ DLap(a)
and letting the privacy loss be

ez—l . e—alz| a- (f) ifz <0
In <eaeljf16a|IA(f)|> :a(|w_A(f)| - |.7J|) =4 —a-A(f) if z > A(f),
e+ A(Af) —22) i — A(f) <z < A(f).

3.4 (Truncated) Discrete Gaussian Mechanism

The Discrete Gaussian Mechanism [CKS20] adds a noise supported on the integers such that

the probability mass function at z is proportional to ez o7 , where o is the parameter of the
distribution. (Unlike the continuous case, o here is not equal to the standard deviation.)

Due to technical reasons, we truncate the noise so that it is supported in {—7,...,7}.
Let NZ(0,02) denote this noise distribution. The PLD of this mechanism is the same as
PLD between N7 (0,02) and N7 (0,02)+A(f). That is, the privacy loss variable is generated
by first picking z ~ N7 (0,02) and letting the privacy loss be

—z2
" () =2 (A=) o2 -T+AQ)
672
00 otherwise.

To deal with the possible probability mass difference due to truncation, we use the
following tail bound [CKS20, Proposition 25]:

Proposition 1. For any 7 € N and any o > 0,

XN X = +1] < [|X] > 7].
~. Z(OU XN(OUQ)

3.5 k-Randomized Response

In the k-Randomized Response [War65], the input is one of &k values. The protocol outputs
the input with probability 1 — p. With the remaining probability p, the protocol outputs a
uniformly random element from the k possible values (including the input itself).

Let Ry denote the randomized response. In this case, the PLD of the mechanism is
equal to the PLD between Ry (x) and Ry (') where z and 2’ are two distinct inputs. That
is, the privacy loss variable is generated by first picking o ~ R (z) and letting it be

[Ry(x) = o] n (FEEPEE)ifo = x,
Pr Rk ) =o0
In [ ==t/ = 21 ) s .
! <Pr[Rk($/) = 0]> In E(—p)+p ifo=x ,
0 ifo¢ {x,2'}.

In other words, the privacy loss variable is equal to

k(l—p)+ . .
In # with probability 1 —p + %’
In(z7t5;)  with probability Z,
0 with probability Z (k 2)



3.6 Pessimistic PLD for (¢,J)-DP Algorithms

In some scenarios, we may not know the specific algorithm being applied or it may be hard
to write down the PLD exactly, but we do know that the algorithm is (g, 4)-DP. In this case,
it is possible to define the “worst case” PLD, which is a pessimistic estimate of the true
PLD. Specifically, [KOV15] proves the following:?

Theorem 1. For any (g,0)-DP mechanism M and neighboring input datasets x,x’, Let

M* be the following algorithm:
PrM*(x) =0] =0, Pr[M*(x) = 0] =0,
e® 1

PrM*(x) = 1] = (1 —6) - PrM*(x) =1] = (1 - 6§)  ——

1+e’ 1+es’
* 1 * et

Pr[M*(x) = 3] = 0,

Pr[M*(x) = 3] = 0.

Then, there exists an algorithm T such that T(M*(x)) and T(M*(x')) are identically dis-
tributed as M(x) and M(x") respectively.

By post-processing property of differential privacy, the above theorem means that M is
more private than M*. As such, we may use the PLD of M* as a pessimistic estimate of
the PLD of M. The privacy loss of M* is equal to

oo  with probability 4,

€ with probability (1 —J) - %,
—e  with probability (1 —4) - H%

4 Other Implementation Details

In this section, we discuss other implementation details that are included in the library.

4.1 Fast Computation of Divergence of Composition of Two PLDs

Suppose we would like to find the e-hockey stick divergence of the composition of two PLDs
w,w’. This can, of course, be computed by first computing the convolution w * w’ and then
compute the e-hockey stick divergence using the formula in Observation 2.

Here we also implement a faster way to compute this: we may write the desired hockey
stick divergence as

> >

vesupp(w) v’ €supp(w’)

S Y w) W) (-

veEsupp(w) v’ €supp(w’)
v4v!>e

a—v—v/}

D (wxw') = w(v) - w'(v') - max{0,1 — e

= Z w(v) - Z ) - Z () e (2)
vEsupp(w) v/ €supp(w’) v’ €supp(w’)
v4v! >e v/ >e

2See also [MV18] for an alternative proof.



The above formula can be computed efficiently by first iterating over v € supp(w) in in-
creasing order, and then keeping a cumulative sum for

> W) (3)
v/ €supp(w’)

v/ >e

and

v/ €supp(w’)
v4v!/ >e

4.2 Truncation

Recording an entire PLD (even after discretization) is often costly and sometimes even
impossible if the privacy loss values can be very large. As a result, our implementation
truncates the tails of the distribution after compositions. For composition of two PLDs,
we compute the composition using convolution and then truncate the two ends of the dis-
tribution so that the truncated mass is no more than a given value. For composing PLD
with itself a number of times, truncation is slightly more complicated as we cannot see
the entire output beforehand but needs to decide on truncation threshold right away for
efficient convolution. Thus, we resort to using a Chernoff bound (similar to [KJPH20]).
To state the bound, recall that the moment-generating function (MGF) of a distribution
p over real numbers is defined as M, (t) = E,-,[e’°]. The Chernoff bound states that
Prooulp > a] < M, (t)/e' for any t > 0. Recall also that, if we let w*" denote w * - -+ * w
where the convolution is done n — 1 times, then we have the identity M« (t) = M, (¢)".
Thus, we may compute a truncation point aypper such that Proog«n (g > aupper] < 7 by

upper ¢ .

In our code, we compute the above bound for many orders ¢ > 0 and take the best (i.e.
smallest) among the derived bounds. A similar approach can be used for ¢ < 0 to derive a
truncation point ajgyer such that Proogn [t < ajower] < 7.
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