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Abstract

This technical report describes the sampling algorithms implemented in Google’s Basic DP
Building Blocks Library for Laplace and Gaussian distributions. These algorithms circumvent
problems with näıve floating point implementations, first identified by Mironov [Mir12], that
can cause differential privacy violations.
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1 Introduction

Theoretical results on differential privacy (DP) [DMNS06, DKM+06] (see [DR14] for an overview
and formal definitions of (ε, δ)-Differential Privacy) typically assume precise sampling and compu-
tation using real numbers, but in practice we have only finite resolution. Mironov [Mir12] showed
how this leads to problems whereby strong theoretical DP guarantees can be catastrophically vio-
lated in practice, and gave a practical implementation of the Laplace mechanism that avoids these
problems by rounding the result after adding noise. Although this rounding step uses a resolu-
tion that is tied to the width of the noise already added, and therefore only multiplies the overall
error by a constant factor, the net effect is still a significant reduction in practical utility. This
report proposes an alternative approach that gives significantly lower error and can be applied
to both the Laplace and Gaussian mechanisms (and perhaps others). This method underlies the
implementations in Google’s Basic DP Building Blocks Library.

We note a different algorithm for sampling Gaussians was recently suggested by Canonne et
al. [CKS20].

2 Floating Point Arithmetic

While a full description of the IEEE floating point standard is outside the scope of this report, we
briefly highlight the properties that our mechanisms depend on.

Floating point numbers have an exponent and a significand. This works like scientific notation:
the significand is multiplied by 2exponent to get the represented value. Double-precision floating
point numbers, which we assume throughout the rest of this report, have 52 bits of significand
and 11 bits of exponent; this means that they can represent the first 252 multiples of any power of
two between 2−1022 and 21023. See, e.g., https://en.wikipedia.org/wiki/Double-precision_
floating-point_format for more details.

A key property that we rely on is that the IEEE floating point standard guarantees that the
results of basic arithmetic operations are the same as if the computation was performed exactly
and then rounded to the closest floating point number.

3 From Continuous to Discrete Distributions

While generating privacy-grade continuous noise is fraught with floating point complexities, noise
generated in a finite space (like the bounded integers) is much easier to implement safely. In par-
ticular, we can ensure that every element in the space is sampled with a probability close to its
theoretically correct probability; for instance, a binary search accumulates only a logarithmic num-
ber of (possibly inexact) probability calculations. Although small errors in sampling probabilities
will still have a nonzero effect on privacy measurements, this effect is bounded when the errors are
bounded—in contrast, näıve floating point samplers for continuous noise may simply never sample
large regions of the output space, resulting in catastrophic privacy violations. In this report our
focus is mainly on avoiding these types of violations.

Our approach is to therefore to develop an additive noise mechanism that operates on integers as
much as possible, allowing us to then rely on simple properties of the IEEE floating point standards
to argue durability against numerical attacks. (Note that, while the set of representable floating
point numbers is itself a finite space, their large dynamic range and non-uniform spacing make it
difficult to use this fact directly.)
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Resolution parameter. Our algorithms take a resolution parameter r. It will be important
that r is selected according to the scale of the continuous distribution we are simulating, and not
in a data-dependent way. In this section, we think of r as being fixed ahead of time.

Let f be a function mapping a database to a real number, and fr(D) be f(D) rounded to
the nearest multiple of r. Define ∆ = maxD,D′ ||f(D) − f(D′)|| as the sensitivity of f , and ∆r =
maxD,D′ ||fr(D)− fr(D′)|| as the r-sensitivity of f .

Our approach. Let Sampler(ε, δ, r,∆r) denote a subroutine that draws an integer i according
to some distribution. Most of this report is dedicated to designing such samplers. In particular,
we want the distribution generated by Sampler to approximate a scaled version of the targeted
continuous distribution, and for the approximation to improve as the resolution parameter r gets
smaller.

For now, we focus on the fact that most of the complexity in simulating numerically secure
additive noise can be eliminated by generating integer noise at a specified resolution.

Suppose the following conditions are met:

1. r = 2k, with integer k satisfying −1022 ≤ k ≤ 1023.

2. If i ∼ Sampler(ε, δ, r,∆r) then fr(D) + ir is (ε, δ)-Differentially Private.

3. P[|i| > 252] < exp(−1000).

Suppose further that the claim that fr(D) + ir is (ε, δ)-Differentially Private holds under exact
real number arithmetic. We argue that it makes little difference if we instead use floating point
arithmetic. Indeed, if |f(D)| ≤ r252, i ≤ 252, and r is a power of two between 2−1022 and 21023, then
fr(D) and ir can be represented exactly as double resolution floating point numbers. Letting ⊕
denote floating point addition, the IEEE standard guarantees that fr(D)⊕ ir is equal to fr(D)+ ir
followed by rounding. Since fr(D) + ir is differentially private, fr(D) ⊕ ir must be too, since
differential privacy is preserved under postprocessing.

The event that |f(D)| > r252 can be controlled via the choice of r and, if necessary, by con-
straining f ; we will assume this does not occur. The event that |i| > 252 can either be ignored or
charged to the δ guarantee of the mechanism. For simplicity, we choose the former in this report.

4 Approximating Laplace

We now describe how to implement Sampler(ε, 0, r,∆r) to approximate the Laplace distribution.
We simply require a differentially private discrete analog to the Laplace distribution, and the
geometric distribution immediately comes to mind.

We must also select the resolution parameter r. We will set the resolution based on the scale of
the noise (i.e., sensitivity / ε). This is the same thing that happens in Mironov’s paper, but rather
than setting the resolution to be equal to the scale of the noise, we set it to some tiny fraction,
significantly reducing impact on utility. Given a fixed integer k:

1. Set r smallest power of 2 exceeding (∆/ε)2−k.

2. Sampler(ε, r,∆r): Sample an integer i with probability proportional to exp(−|i|rε/∆r)

Proposition 1. The mechanism M(D) is ε-differentially private.
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Proof. The output value is guaranteed to be a multiple of r. Consider an arbitrary output value
y = jr and two adjacent databases D,D. We have:

Pr[M(D) = y] = Pr[z = y − x(D)] = Pr[i = j − x(D)/r] (1)

Thus,

Pr[M(D) = y]

Pr[M(D) = y
= exp

(
− (|j − x(D)/r| − |j − x(D)/r|) rε

∆ + r

)
(2)

= exp

(
− (|y − x(D)| − |y − x(D)|) ε

∆ + r

)
(3)

≤ exp

(
|x(D)− x(D)| ε

∆ + r

)
. (4)

Noting that

|x(D)− x(D)| ≤ |x(D)− f(D)|+ |f(D)− f(D)|+ |f(D)− x(D)| (5)

≤ r/2 + ∆ + r/2 (6)

= ∆ + r , (7)

the probability ratio is bounded by exp(ε) and we have the result.

Note that the rounding is forcing us to add some extra noise on the order of r/ε, or about
∆/(2kε2). In practice, as long as ε is larger than about 2−k, this is unlikely to matter. This is
quantified in the next proposition.

Proposition 2. The expected error of M(D) is close to the standard Laplace mechanism; specifi-
cally:

E|M(D)− f(D)|
E|Lap(∆/ε)|

≤ 1 +
1 + 2/ε

2k
. (8)

Proof. Using Lemma 3 from below:

E|M(D)− f(D)| ≤ r/2 + E|z| (9)

= r (1/2 + E|i|) (10)

≤ r
(

1/2 +
∆ + r

εr

)
(11)

= r/2 + (∆ + r)/ε . (12)

Since r ≤ ∆/(2k−1ε), we have

E|M(D)− f(D)| ≤ ∆

ε

(
1 +

1 + 2/ε

2k

)
. (13)

Since the expected absolute value of Lap(∆/ε) is ∆/ε, we have the desired result.

Note that Proposition 2 is loose, and in many realistic cases our mechanism is actually better
than the Laplace mechanism. This is because the geometric distribution is inherently preferable to
Laplace for differential privacy on discrete values (see this paper).

Note also that the error for Mironovs mechanism is roughly 2∆/ε (see the paragraph just after
the proof of Theorem 1 in the paper), so for reasonable parameter values M(D) should have about
50% less error.
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Lemma 3. If i is an integer sampled with probability proportional to exp(−c|i|) for some constant
c > 0, then

E|i| = 2

exp(c)− exp(−c)
≤ 1

c
. (14)

Proof. We start with some geometric series calculations:

A :=
∞∑

i=−∞
exp(−c|i|) (15)

= 1 + 2
∞∑
i=1

exp(−ci) (16)

= 1 +
2 exp(−c)

1− exp(−c)
(17)

=
1 + exp(−c)
1− exp(−c)

(18)

B :=
∞∑

i=−∞
|i| exp(−c|i|) (19)

= 2
∞∑
i=1

i exp(−ci) (20)

= 2
∞∑
j=1

∞∑
i=j

exp(−ci) (21)

= 2
∞∑
j=1

exp(−cj)
1− exp(−c)

(22)

=
2 exp(−c)

(1− exp(−c))2
(23)

So we have

E|i| = B/A (24)

=
2 exp(−c)

(1− exp(−c)) ∗ (1 + exp(−c))
(25)

=
2 exp(−c)

1− exp(−2c)
(26)

=
2

exp(c)− exp(−c)
. (27)

Finally, note that when c = 0, 2c = 0 = exp(c)− exp(−c), and for c ≥ 0 we have

∂

∂c
[exp(c)− exp(−c)] = exp(c) + exp(−c) ≥ 2 . (28)

Thus 2c ≤ exp(c)− exp(−c) for all c >= 0.
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4.1 Discussion

In summary, all of the steps required to implement M(D) can be performed exactly on a modern
computer, allowing that (a) we assume away (or δ away) astronomically unlikely events and (b) we
accept a mandatory post-processing step that rounds the final result to the nearest double. Neither
of these is of serious concern.

Note that we now have a tradeoff for the choice of k, which controls the accuracy of the
discretization. If k is small, we discretize coarsely and potentially suffer utility loss due to rounding.
If k is too large, we discretize finely and might have an unacceptably high probability of the noise
level stretching beyond the capacity of a double, leaving us with a privacy violation. Luckily, in
practice, we have a very wide range of acceptable values; probably anything between 10 and 45 is
perfectly fine.

For example, if we select k as a function of ε, say, k = 10 + log2(1 + 2/ε), the utility guarantee
becomes

E|M(D)− f(D)|
E|Lap(∆/ε)|

≤ 1 + (1 + 2/ε)/2k (29)

≤ 1 + 2−10 (30)

≤ 1.001 . (31)

At the same time if ε ≥ 2−9, then the privacy violation probability in step 3 is bounded by

exp(−250−k) ≤ exp(−240−log2(1+210)) (32)

≤ exp(−229) (33)

≤ 1/[atoms in the universe]3 . (34)

5 Efficient Binomial/Gaussian Sampling

The main idea is to realize hole-free Gaussian sampling using binomial sampling. There are three
ingredients to make this work. The first is to argue this does not hurt accuracy. The second is to
show this can be done in a hole-free way. The third is regarding the computational efficiency.

Assume for simplicity that n is even. LetX = U−n
2 where U ∼ Bin(n, 1/2) and let V ∼ N(0, n4 ).

Note that the random variables X and V have the same mean and standard deviation. Intuitively,
we wish to show that the random variables X and V are “close”. Since the total variation distance
between a discrete and a continuous random variable is infinite, we start by considering a natural
discretization of the distribution of V . Specifically, let pV (·) denote the probability density function

of V . Note that for all v ∈ R, it holds that pV (v) =
√

2
πn · e

− 2v2

n . Let Y be the discrete random

variable obtained by sampling a random variable from N(0, n4 ) and taking the ceiling in Z. We
next show that the (discrete) random variables X and Y are at a small total variation distance.
Note that we need an explicit (non-asymptotic) bound on the total-variation distance in order to
obtain a concrete guarantee for the particular parameter settings of our algorithm.

Lemma 4 (Distance between Binomial and Discretized Gaussian; [CGS10]). For any positive
integer n, the total variation distance between X and Y is at most 15.2√

n
.

From Lemma 4, in order to sample a Gaussian random variable in a hole-free way it suffices to:

1. Sample a binomial random variable U ∼ Bin(n, 1/2) and set X = U − n
2 .
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2. Normalize X by the standard deviation obtaining Ŷ = 2·X√
n

.

In order for the output Ŷ to be as close as possible to a true Gaussian, Lemma 4 requires setting√
n as large as possible (ideally so that the upper bound of 15.2√

n
is close to machine precision). It

turns out that the main challenge is sampling of the random variable U in step 1 in a way that is
at the same time:

(i) efficient, i.e., the sampling should run in O(1) of steps,

(ii) implementable using operations on 64-bit integers, even for values of
√
n larger than 232.

(iii) hole-free.

Note that without the efficiency constraint (i), sampling U could be done by flipping n independent
unbiased coins and aggregating the values in a 64-bit integer, though of course this approach would
run in time O(n) and would be absolutely infeasible for large values of n (such as the ones we have
to consider in order to guarantee small total variation error). On the other hand, to achieve the
hole-freeness property (iii), it is sufficient to prove that the mechanism for sampling U produces its
desired distribution up to a very small total variation error, which can then be lumped in the “δ
probability” of the differential privacy failure event. As acceptable values of δ can range between
10−6 and 10−9, the total variation error due to this sampling procedure has to be bounded by a
very small quantity.

A rejection sampling based algorithm of Bringmann et al. [BKP+14] achieves the efficiency
requirement (i). However, it cannot be directly implemented using operations on 64-bit integers
while allowing values of

√
n larger than 232, as required in (ii) above. This is because its sampling

probabilities are computed by approximating the binomial coefficients
(
n
k

)
using Spouge’s approxi-

mation of the factorial, which requires performing arithmetic operations on the value of n itself (as
opposed to

√
n)) which does not seem directly doable using with 64-bit integers. Instead, we will

use a simple accurate approximation of the binomial probability mass function (Lemma 5 below)
which can be computed by performing 64-bit arithmetic operations on

√
n itself without having to

explicitly store the value of n (which will be larger than 264). Note that asymptotic versions of the
Lemma 5 are well-known in the literature. Nevertheless we work out the proof as we need to state
explicit constants for concrete settings of n.

Lemma 5 (Binomial Density Approximation). Assume that n ≥ 106 and that n is even1. For all

i ∈ {−
√
n·lnn
2 , . . . ,+

√
n·lnn
2 } the probability that X is equal to i is given by:

pX(i) =

√
2

πn
· e−

2i2

n · (1 + ζn),

where |ζn| ≤ 0.4·ln1.5(n)√
n

. In particular for n = 296, it holds that |ζn| ≤ 2−40.

We next summarize the rejection sampling procedure of [BKP+14] which we will use.

Lemma 6 (Rejection Binomial Sampling; [BKP+14]). Let n be an even integer, κ < 1/8, and
p̃ : {−n

2 , . . . ,+
n
2 } → [0, 1] be such that:

1. the `1-distance between p̃ and pX is bounded, i.e.,

‖p̃− pX‖1 :=

n
2∑

i=−n
2

|p̃(i)− pX(i)| ≤ κ.

1This assumption is made for ease of notation.
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2. p̃ is bounded point-wise by pX , i.e., for all i ∈ {−n
2 , . . . ,+

n
2 },

p̃(i) ≤ pX(i),

3. the value of p̃ at every point in its support can be approximated up to machine precision using
operations on 64-bit integers.

Then, there is an algorithm that outputs a random variable X̂ such that:

(a) the total variation distance between X and X̂ is small, namely,

dTV (X, X̂) ≤ κ,

(b) the expected number of steps executed by the algorithm is constant,

(c) the algorithm can be implemented using simple arithmetic operations on 64-bit integers.

We now use Lemma 5 to construct a function p̃ satisfying properties 1, 2 and 3 that are listed
in Lemma 6.

Lemma 7. Let n be an even integer. For i ∈ {−n
2 , . . . ,+

n
2 }, we define the function

p̃(i) =


√

2
πn · e

− 2i2

n · (1− νn) if −
√
n·lnn
2 ≤ i ≤

√
n·lnn
2 ,

0 otherwise,
. (35)

where νn := 0.4·ln1.5(n)√
n

. Then, p̃ satisfies properties 1, 2 and 3 in Lemma 6 with κ = 0.88·ln1.5(n)√
n

.

The pseudocode for the overall binomial sampling algorithm is given in Algorithm 1.

Algorithm 1 Efficient Binomial Sampling

1: procedure BinomialSample(
√
n)

2: if
√
n < 4 then

3: i← 0
4: for n iterations do
5: i← i+Ber(1/2)

6: return i− n/2
7: m← b

√
2 ·
√
n+ 1c.

8: while true do
9: s ∼ Geom(1/2)

10: k ← s with probability 1/2 and k ← −s− 1 with probability 1/2.
11: i← km+ ` where ` is a uniform random number between 0 and m− 1.
12: if p̃(i) > 0 then
13: f ← 4

m·2s .
14: c← Ber(p̃(i)/f)
15: if c = 1 then
16: return i

Remark 8. We note that there are in principle two additional possible sources of total variation
error in implementations of Algorithm 1, namely:
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1. The fact that the sampling of the random variable i in line 11 might incur a total variation
error of δ′ in actual implementations (this includes the total variation error in sampling from
the geometric distribution in line 9, the sampling of k in line 10 and that of the uniform
random number in line 11, in addition to the exponentially small probability that the results
do not fit in a 64-bit integer which would result in overflows).

2. The fact that the sampling of the biased Bernouilli random variable in line 14 might suffer
from a total variation error of δ′′.

These two errors would not significantly alter our overall total variation bound. As in [BKP+14],

we define f(i) := 4
2max(s,−s−1)m

and f(i) = f(i)
16 , for all i ∈ {sm, sm + 1, . . . , sm + m − 1} and all

s ∈ Z. Note that f is a probability distribution. Thus, the total variation distance between a true
outcome of the rejection sampling process in (a given iteration of the while loop in) Algorithm 1
and the outcome in the noisy process (that incorporates the aforementioned δ′ and δ′′ events) can
be bounded as

1

2

∣∣∣∣∑
i

(f(i) + ξi)(
p̃(i)

f(i)
+ δ′′)−

∑
i

f(i)
p̃(i)

f(i)

∣∣∣∣ ≤ δ′ + δ′′

2
+ δ′δ′′,

where
∑

i |ξi| = 2δ′.

5.1 Putting things together for N(0, 1)

We apply Lemmas 6 and 7 with n = 296. For this setting, the random variable Ŷ = 2·X√
n

is an

integer multiple of 2−50 and it lies between −5 and +5. Thus, Ŷ is exactly representible as a 64-bit
floating point number (and its generation fits within the recipe of Section 3). Applying Lemmas 4
and 7 with the triangle inequality implies that the total variation distance between Ŷ and the

normalized discretized Gaussian
√
n
2 · Y is at most

15.2√
n

+
0.88 · ln1.5(n)√

n
,

which for n = 296 is at most 2−40.
Denote by s the input to which the (approximate) N(0, 1) noise is to be added. As long as we

first round s to the nearest integer multiple of 2−50, the above implies if the mechanism analyzed
under true N(0, 1) noise was (ε, δ)-differentially private, then the output of the above algorithm is
(ε, δ + 2−40)-differentially private.

5.2 Sampling of N(µ, σ2) with general µ and σ

The above handles the case where the desired distribution is N(0, 1). We next describe how to
handle the case of N(µ, σ2). Let s be the input value to which an (approximate) N(µ, σ2) noise
term has to be added. We can first divide s by σ, then add (approximate) noise sampled from
N(0, 1) as in the above. The previous subsection guarantees that the result in differentially private.
We can then multiply the noise outcome by σ and then add µ. The post-processing property of
differential privacy guarantees that the scaled and shifted value is still differentially private. The
degree to which the distribution of the output approximates a N(µ, σ2) random variable remains
the same as in the previous subsection as long as µ and σ are accurately representible as 64-bit
floating point numbers. Moreover, for the above scheme to be accurate, s and σ should be in a
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reasonable range so that dividing s by σ and then multiplying the result by σ should produce a
value close to s (e.g., the intermediate result s

σ does not go out-of-range).
Note that in the actual implementation we set the scaling parameters slightly differently in

order to parallel the treatment for the Laplace mechanism described in Section 3. Specifically, we
divide s by a “granularity” parameter that is set to the smallest power of 2 greater than or equal
to σ

256
. We then round the result to the closest integer, add to it the binomial sample with

√
n

set to the ratio of σ to the granularity. It can be verified that
√
n is guaranteed to be between

256 and 257 (and hence a total variation bound even stronger than the one stated in Section 5.1
holds). Finally, we multiply the sum by the granularity parameter. By tracking the cancellations,
this operation can be seen to be equivalent to the one described in the previous paragraph.

5.3 Proof of Lemma 5

In order to prove Lemma 5, we will need the following explicit version of Stirling’s approximation
of the factorial.

Lemma 9 ([Rob55]). For every positive integer n, it holds that

√
2π · nn+

1
2 · e−n · e

1
12n+1 ≤ n! ≤

√
2π · nn+

1
2 · e−n · e

1
12n .

We are now ready to prove Lemma 5.

Proof of Lemma 5. Throughout the proof, we denote t :=
√
n·lnn
2 . We have that:

pX(i) := Pr[U = i+
n

2
]

=

(
n

i+ n
2

)
· 1

2n

=
n!

(n2 + i)! · (n2 − i)!
· 1

2n
(36)

Applying Stirling’s approximation in Lemma 9, we get that

n! =
√

2π · nn+
1
2 · e−n · ν(n),

where
e

1
12n+1 ≤ ν(n) ≤ e

1
12n , (37)

and similarly, for (n2 + i)! and (n2 − i)!. Plugging back in Equation (36), we get that

pX(i) =

√
n

2π · (n2 + i) · (n2 − i)
· nn

(n2 + i)
n
2
+i · (n2 − i)

n
2
−i ·

ν(n)

ν(n2 + i) · ν(n2 − i)

=

√
1

2π · (n4 −
i2

n )
· 1

(1 + 2i
n )

n
2
+i · (1− 2i

n )
n
2
−i · κ(n, i), (38)

where κ(n, i) = ν(n)
ν(n

2
+i)·ν(n

2
−i) satisfies

e
− 1

6·(n2−t) ≤ κ(n, i) ≤ e
1

12n , (39)
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for all i ∈ {−t, . . . , t} (this follows from the inequality in (37)). We next bound the middle factor
in (38) which we denote as

γ(n, i) :=
1

(1 + 2i
n )

n
2
+i · (1− 2i

n )
n
2
−i =

1

α(n, i) · β(n, i)
(40)

where

α(n, i) := (1 +
2i

n
)
n
2
+i = e(

n
2
+i)·ln(1+ 2i

n
) (41)

and

β(n, i) := (1− 2i

n
)
n
2
−i = e(

n
2
−i)·ln(1− 2i

n
). (42)

Consider the function f(x) := ln(1 + x) where |x| < 1. The second-order Taylor approximation

of f is given by f(x) = x − x2

2 + R(x) where the remainder term satisfies |R(x)| ≤ |x|3
3 . This

approximation implies that

ln(1 +
2i

n
) =

2i

n
− 2i2

n2
+ θ(n, i), (43)

and

ln(1− 2i

n
) = −2i

n
− 2i2

n2
+ η(n, i), (44)

where

|θ(n, i)|, |η(n, i)| ≤ 8|i|3

3n3
(45)

Plugging (43) and (44) back in (41) and (42) respectively, we get that

α(n, i) = ei+
i2

n
− 2i3

n2 +(n
2
+i)·θ(n,i), (46)

and

β(n, i) = e−i+
i2

n
+ 2i3

n2 +(n
2
−i)·η(n,i). (47)

Plugging (46) and (47) back into (40) yields

γ(n, i) = e−
2i2

n
−(n

2
+i)·θ(n,i)−(n

2
−i)·η(n,i). (48)

Using (38) and (48), we obtain that

pX(i) =

√
2

πn
· e−

2i2

n · 1√
1− 4i2

n2

· e−(
n
2
+i)·θ(n,i)−(n

2
−i)·η(n,i) · κ(n, i)

≤
√

2

πn
· e−

2i2

n · (1 +
8t2

n2
) · e

8t3

3n2 · e
1

12n (49)

≤
√

2

πn
· e−

2i2

n · (1 +
16t2

n2
) · (1 +

16t3

3n2
) · (1 +

1

6n
) (50)

=

√
2

πn
· e−

2i2

n · (1 +
16t2

n2
+

16t3

3n2
+

1

6n
+

256t5

3n4
+

8t2

3n3
+

8t3

9n3
+

128t5

9n5
), (51)

where inequality (49) follows from the fact that 1√
1−a ≤ 1 + 2a for all a ∈ [0, 1), the assumption

that |i| ≤ t, as well as (39) and (45), and inequality (50) follows from the fact that ex ≤ 1 + 2x for
all x ∈ [0, 1].
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On the other hand, we have that:

pX(i) ≥
√

2

πn
· e−

2i2

n · e−
8t3

3n2 · e−
1

6·(n2−t) (52)

≥
√

2

πn
· e−

2i2

n · (1− 8t3

3n2
) · (1− 1

3n− 6t
) (53)

≥
√

2

πn
· e−

2i2

n · (1− 8t3

3n2
) · (1− 1

2n
) (54)

=

√
2

πn
· e−

2i2

n · (1− 8t3

3n2
− 1

2n
+

4t3

3n3
)

≥
√

2

πn
· e−

2i2

n · (1− 8t3

3n2
− 1

2n
), (55)

where inequality (52) follows from (39) and (45), inequality (53) applies twice the fact that e−a ≥
1−a for any real number a, and inequality (54) follows from the fact that t ≤ n/6. Putting together
inequalities (51) and (55), we get that

pX(i) =

√
2

πn
· e−

2i2

n · (1 + ζn),

with

|ζn| ≤
16t2

n2
+

8t3

3n2
+

1

2n
+

128t5

3n4
+

8t2

3n3
+

4t3

9n3
+

64t5

9n5

≤ 1.2 · ln1.5(n)

3
√
n

(56)

=
0.4 · ln1.5(n)√

n
.

where inequality (56) follows from the fact that t =
√
n·lnn
2 and the assumption that n ≥ 106.

5.4 Proof of Lemma 7

To prove Lemma 7, we will need the following standard probabilistic inequality.

Lemma 10 (Hoeffding’s inequality [Hoe94]). For any positive integer n and real number p ∈ [0, 1],
if Z ∼ Bin(n, p) then for any positive real number ε,

Pr[Z ≤ (p− ε) · n] ≤ e−2·ε2·n.

We are now ready to prove Lemma 7.

Proof of Lemma 7. Denote t :=
√
n·lnn
2 . We have that

‖p̃− pX‖1 :=
∑
i∈Z
|p̃(i)− pX(i)|

=

t∑
i=−t
|p̃(i)− pX(i)|+

∑
i∈Z\{−t,...,t}

|p̃(i)− pX(i)| (57)

12



We next separately upper-bound the two sums in (57). For the first, we have

t∑
i=−t
|p̃(i)− pX(i)| =

t∑
i=−t

pX(i) · | p̃(i)
pX(i)

− 1|

≤
t∑

i=−t
pX(i) · νn (58)

≤ νn, (59)

where the inequality in (58) follows from Lemma 5 and the setting νn = 0.4·ln1.5(n)√
n

. For the second

sum in (57), we have ∑
i∈Z\{−t,...,t}

|p̃(i)− pX(i)| ≤
∑

i∈Z\{−t,...,t}

pX(i) +
∑

i∈Z\{−t,...,t}

p̃(i)

≤ Pr[X /∈ {−t, . . . , t}] (60)

≤ 2√
n
, (61)

where the inequality in (60) follows the fact that p̃(i) = 0 for all i ∈ Z \ {−t, . . . , t}, and inequal-
ity (61) follows from Hoeffding’s inequality (Lemma 10). Plugging (59) and (61) back into (57)
and using the assumption that n ≥ 106, we deduce that property 1 of Lemma 6 holds with

κ = 11
5 · νn = 0.88·ln1.5(n)√

n
.

Property 2 of Lemma 6 directly follows from the setting of p̃ in (35) and from Lemma 5. Finally,
to prove that p̃ satisfies property 3 of Lemma 6, we separately consider the 3 factors in (35):

• The factor of
√

2
πn can be represented as a 64-bit floating point number up to machine

precision by computing
√

2
π and multiplying it by 1√

n
.

• The last factor of (1− νn) is also computed naturally as a 64-bit floating point number, e.g.,

compute νn := 0.4·ln1.5(n)√
n

up to machine precision and subtract it from 1.

• The middle factor of e−
2i2

n is slightly trickier to compute. This is because both i2 and n
can be larger than 264 while the ratio 2i2

n can still be small (and could still be represented
as a floating point number up to machine precision). To circumvent this, we can proceed
by computing a 64-bit floating point representation of the factor i√

n
, then squaring it and

multiplying the result by 2. This guarantees that the result of the computation is accurate
up to machine precision. Since exact rounding algorithms for the exponential function are

available, we conclude that we can approximate the middle factor of e−
2i2

n up to machine
precision.

Putting the three approximations together, we conclude that property 3 of Lemma 6 holds.
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