
Delta Calculation for Thresholding
This document contains technical statements (complete with proofs) of when thresholding can be used in
our differential privacy library.

Thresholding For Histograms of Positive Values
We consider the case histograms are constructed from input data of the form (ID, partition, value). An
example form of this setting is where each ID corresponds to a user and we wish to count the number of
unique users in each partition. In the example case, value is always 1. However, in this section, we will
assume something a bit more general: user contributions to each partition are positive and bounded. In this
setting, we wish to keep the presence or absence of any particular ID in the database private.

More formally, we assume:

Each ID is associated with at most  partitions.
The contribution of each ID to a single partition is non-negative and bounded by .

We build a differentially private mechanism in two parts: . The mechanism  adds noise
independently to each coordinate in the support of the histogram with noise distribution given by a
continuous cumulative density function . The mechanism  thresholds histogram entries with a fixed 

: for any histogram partition with value less than , the partition is removed entirely.

Fix two histograms  and  that differ by one ID. We divide the histogram coordinates into two sets:

 is the set of partitions that appear in one but not both of  and .
 is the set of partitions that appear in both histograms.

For any set of partitions , we denote by  the restriction of the histogram  to the partitions in . We
assume throughout that  is -indistinguishable from . That is, we assume for
every (measurable)  a subset of the range of ,

We first demonstrate that for sufficiently large ,  leaks partitions of  with small  probability.
We then show that this implies the overall mechanism  is  differentially private on the full
histogram.

Throughout, we assume that , , and .

Lemma 1 If , then .

Proof. Without loss of generality, we assume that  contains one fewer ID than . Thus,  consists of
partitions in  not present in , and  deterministically. It suffices to show 
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Ū

X HX H X

(HM1 )U (ε, )δ1 (M1 H ′)U

S M1|
Ū
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Abusing the notation, we denote by  the application of the noise distribution to a single scalar value 
. Thus  and  have the same distribution.

Note that  if and only if . Because  is an increasing function with
respect to  and  for all , we see

Since  is nondecreasing, we substitute  to obtain

Taking the complement yields . 

Theorem 1. If , then  is  differential private.

Proof. Let  be a measurable subset of the range of . We let  denote the event that both 
 and . Partitioning the probability space, we see:

By Lemma 1, . As such,

Let . Since  (and hence ) is -indistinguishable on , we see:

Continuing from , we obtain:
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